EP1846660B1 - Method for optimizing the functioning of a plurality of compressor units and corresponding device - Google Patents

Method for optimizing the functioning of a plurality of compressor units and corresponding device Download PDF

Info

Publication number
EP1846660B1
EP1846660B1 EP06707973A EP06707973A EP1846660B1 EP 1846660 B1 EP1846660 B1 EP 1846660B1 EP 06707973 A EP06707973 A EP 06707973A EP 06707973 A EP06707973 A EP 06707973A EP 1846660 B1 EP1846660 B1 EP 1846660B1
Authority
EP
European Patent Office
Prior art keywords
compressor
units
plant
compressor units
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06707973A
Other languages
German (de)
French (fr)
Other versions
EP1846660A1 (en
EP1846660B8 (en
Inventor
Michael Metzger
Helmut Liepold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL06707973T priority Critical patent/PL1846660T3/en
Publication of EP1846660A1 publication Critical patent/EP1846660A1/en
Publication of EP1846660B1 publication Critical patent/EP1846660B1/en
Application granted granted Critical
Publication of EP1846660B8 publication Critical patent/EP1846660B8/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0269Surge control by changing flow path between different stages or between a plurality of compressors; load distribution between compressors

Definitions

  • the invention relates to a method for controlling a compression system with at least two separately zu- and / or turn-off compressor units, with a plurality of devices for changing the performance of the compressor units and with a control device.
  • the invention relates to a control device for controlling a compression system with at least two separately zu- and / or turn off compressor units and with a plurality of devices for changing the performance of the compressor units.
  • Compaction plants for example natural gas compression plants, for gas transport and / or gas storage are essential facilities in the sense of national and international energy supply.
  • a system for gas transport consists of a plurality of compression systems, which can each consist of several compressor units.
  • the task of the compressor units is to add a sufficient amount of mechanical energy to a pumped medium in order to compensate for friction losses and to ensure the required operating pressures or flows.
  • Compressor units often have very different drives and wheels, as they are designed for example for a base load or a peak load operation.
  • a compressor unit includes e.g. at least one drive and at least one compressor.
  • Plant automation is especially important for cost-effective driving.
  • the ability of plant automation to guide the process, and the Optimizing the compaction plant within production constraints provides decisive economic benefits.
  • compressors of a compression plant are driven by turbines that cover their fuel needs directly from a pipeline.
  • compressors are driven by electric motors. Cost-effective driving means to minimize the energy consumption of the turbines and the electric drives for a given compression capacity, flow rate, delivery capacity and / or given volume flow.
  • a useful operating range of compressors is limited by adverse effects of internal flow processes. This results in operating limits, such as a temperature limit, exceeding the local speed of sound (compression shock, sip limit), the circumferential tearing off of the flow at the impeller or the surge line.
  • the automation of a compression system has primarily the task of a dispatching center predetermined setpoints, such as either a flow through the station or a final pressure on the output side to realize as actual values. Specified limits for the suction pressures at the inlet side, the final pressures at the outlet side and the final temperature at the system outlet must not be exceeded.
  • WO 03/036096 A1 a method for optimizing the operation of multiple compressor units of a natural gas compression station is known.
  • the speeds of the running compressor units are run in a fixed speed ratio with respect to stored for each compressor unit map data.
  • the speeds of all are in operation after starting an additional compressor units are changed by an equal percentage flow adjustment until, if possible, all pump preventive valves of the system are closed. Only after all the pump preventive valves are closed, operating points of the compressor unit are pushed in their maps as close as possible to a line of maximum efficiency.
  • EP 0 769 624 B1 For example, a method is known for balancing the load between multiple compressors and manipulating the performance of the compressors to maintain a predetermined relationship between all the compressors when the operating points of all the compressors are farther than a specified value from the surge line.
  • EP 0 576 238 B1 For example, a method and apparatus for load sharing is known. With a designated as a guide compressor compressor, a control signal is generated, which is used as a reference for the non-leading compressor.
  • the invention has for its object to provide a method and apparatus for further optimization of energy consumption for operation of multiple compressor units of a compaction system.
  • This object is inventively achieved in that, for presetting of new setpoints or change of the current state of the compressor plant by means of an optimization calculation from a current switching configuration of the compressor units with regard to an optimized total energy demand of the compressor plant, a new switching configuration is calculated, and that the new switching configuration is set automatically via the control device.
  • An advantage of the invention is that, in the optimization of all compressor units available or operable on the respective compacting system, it can be assumed that they are independent of their respective operating or switching state.
  • the invention allows - in contrast to known controls for compression systems - as a result of the optimization of an automatic connection of a previously out of service compressor unit or a complete shutdown of a compressor unit.
  • automatically means “online” in particular, meaning that it can automatically mean, for example, that the switching configuration is used by the operating staff of the compacting system without manual intervention, preferably in real time.
  • Real time means that the result of a calculation is guaranteed within a certain period of time, that is, before a certain time limit has been reached.
  • the optimization calculation can take place on a separate data processing system, which automatically forwards its calculation data to the control device.
  • the invention is based on the known sequential concept, ie after the start of an externally specified additional unit, first to close the pump-preventive valves and then to optimize the operating points of the compressor units with regard to their efficiency.
  • the entire compaction plant is preferably considered during each optimization calculation and the switching configuration of the compaction plant, ie the specification of a switching state of the individual compressor units, calculated.
  • the closing of the or all of the pump preventive valves can be ensured by a minimum flow through the compressor units in the optimization. Even a first start of the compression system can already with a favorable with regard to an optimized total energy demand switching configuration done.
  • the switching configuration is represented by the switching states "0" for Off or "1" for On, which is stored bit by bit, for example, in an integer variable.
  • switching operation is meant the change from one, in particular electrical, switching state to another.
  • a prognosis is determined by means of the optimization calculation for at least one, preferably several, future time (s). Since the method allows for predictions up to a given time, it is possible to know about a normal driving style of the station, i. e.g. a conventional load curve to use to minimize the switching frequency of compressor units.
  • compressor unit-specific data records and / or compressor unit-specific maps evaluated and determined for the individual compressor units operating points which depend on predetermined or changed values of mass flow and a specific production work, the operating points are set such that the total energy demand the compaction plant is optimized.
  • the data sets and / or maps are specified as a function of a mass flow and a specific production work of the individual compression units.
  • a load distribution ie a speed ratio, calculated between the compressor units and changed if necessary.
  • Another significant advantage is that constraints on the optimization, e.g. The pumping limit can not be violated, even with an optimal efficiency calculation of the speed setpoints for the individual compressor stations can be considered.
  • optimization calculation is carried out with a control cycle, in particular self-triggering.
  • speed setpoint values and / or the new switching configuration for the control device are provided as output variables of the optimization calculation with each control cycle.
  • the speed setpoints and / or the switching configuration are kept constant.
  • the speed setpoints are scaled with a common factor and used as a setpoint for a compressor unit controller.
  • control device with the new switching configuration triggers a warm-up phase of the compressor units for the subsequent connection of a previously out of service compressor unit already before the end of the control cycle.
  • a load readiness for the next control cycle is communicated with the end of the warm-up phase of the control device. If, for example, the speed of an approaching compressor unit is sufficient is high and the warm-up phase of the turbine is completed, a signal "load ready" is set. This means that the compressor unit participates in the load sharing procedure and is included in the optimization calculation for the best load distribution between those in service.
  • the optimization calculation according to the principle of model-predictive control by means of forecast calculations minimizes the total energy demand expected up to a later point in time.
  • an energy consumption of a switching operation is taken into account in the optimization calculation.
  • the energy consumption of the switching process from the data sets and / or the maps of the compressor units is calculated.
  • the knowledge of a proportionate energy consumption for the switching process allows an even more accurate determination of the minimum total energy consumption of the compression plant.
  • An advantageous variant of the invention is that the specific conveying work of the compressor system for the control cycle is assumed to be constant, in particular in a parallel connection of the compressor units.
  • An alternative advantageous variant of the invention is that the mass flow of the compressor system for the control cycle is assumed to be constant, in particular in a series circuit of the compressor units.
  • an active compressor unit is operated at least with a predetermined or predetermined minimum flow.
  • the optimization calculation is carried out by means of a branch-and-bound algorithm.
  • a limit to the branch-and-bound algorithm is determined by solving a relaxed problem using sequential quadratic programming.
  • a further increase in the efficiency of the calculation method is achieved in that the optimization calculation solves partial problems by means of dynamic programming, in particular in a series connection.
  • the device-related task is based on the above-mentioned control device solved by an optimization module with the new setpoints or change the current state of the compression system by means of an optimization calculation of a current switching configuration of the compressor units with respect to an optimized total energy demand of the compression plant a new switching configuration is calculated, and by a control module, with which the new switching configuration is automatically adjustable.
  • the optimization module for optimizing the energy consumption is in particular designed to distribute in combination with the control device and / or the dispatching center the predetermined total load on the individual compressor units so that the station setpoints with the lowest possible energy consumption, i. with maximum overall efficiency, be realized.
  • This includes, for example, both the decision which compressor units are active and which are switched inactive, as well as the specification of how much each of the active units should contribute to the overall performance, so the specification of the load distribution.
  • the optimization module is arranged at a spatial distance, in particular several km, to the control device.
  • the optimization module is prepared for the consideration of an energy consumption of a switching operation.
  • Another embodiment is that the optimization module for optimization calculation for a plurality of control devices of several compression systems is prepared.
  • the invention also includes a computer program product containing software for carrying out a method according to one of claims 1 to 21.
  • a machine-readable program code on a data carrier, it is possible to prepare DV systems for an optimization module.
  • the maps 20 are not provided by a closed formula. From a measurement, a delivery characteristic 21 and an efficiency curve 23 are determined. At a constant speed, the dependence on the conveying work and an efficiency ⁇ i on the volume flow V ⁇ i or mass flow ⁇ at support points is determined.
  • the operating limits such as a surge line 36, which are caused by the occurrence of certain flow phenomena in the compressor, must be recorded as a function of the speed. From these interpolation points and the associated values for different speeds, the maps 20 can be constructed as a function of mass flow ⁇ i and specific conveying work y i and their domain of definition by means of suitable approaches, such as piecewise polynomial interpolation or B-splines.
  • Equation 2 When connected in series compressor units 3, 4, 5, the entire conveying work on the individual compressor units 3, 4, 5 distributed energy optimal, the mass flow is assumed to be the same by the compressors.
  • FIG. 1 shows a block diagram of a method for optimizing the operation of a compression plant.
  • the compression plant is equipped with three compressor units 3, 4 and 5 shown in a very schematic way. For an interconnection of the compressor units 3, 4 and 5, a parallel connection is assumed.
  • the compressor units 3, 4 and 5 are controlled and regulated by a control device 10.
  • the control device 10 comprises a controller of the control device 12, a first compressor unit controller 13, a second compressor unit controller 14 and a third compressor unit controller 15.
  • An optimization module 11 is in bidirectional communication with the controller 10. By means of the optimization module 11, a nonlinear mixed-integer optimization problem is solved , A mathematical formulation of the optimization problem is implemented in the optimization module 11.
  • the input variables 33 are composed of a model library 26, with a model 24a, 24b, 24c for each compressor unit 3, 4, 5 and process variables of the compactor.
  • the setpoint values or limit values 31 for the control of the control device 12 are made up of a maximum temperature T g, A, max of a pressure P g, A (Should) and a volume flow V ⁇ g (Should) on the output side of the compression system and a maximum suction pressure P g , E (max) and P g, A (max) on the input side and the output side of the compression system together.
  • the compression system is calculated by means of the optimization calculation in the optimization module 11 from a current switching configuration S i, t-1 of the compressor units 3, 4 and 5 with respect to an optimized total energy demand of the compression system, a new switching configuration S i, t .
  • the output variables 32 of the optimization module 11 thus also contain, in addition to the switching states of the compressor units currently to be set, a speed setpoint input ⁇ i for the individual compressor units 3, 4 and 5.
  • the speed setpoints ⁇ i From the subordinate station control, which runs higher than the optimization cycle, the speed setpoints ⁇ i , before being applied to the compressor aggregate controllers, scaled by a common factor ⁇ to regulate the setpoints.
  • the optimization calculation is executed with a control cycle R in the optimization module 11 itself triggering.
  • the load distribution between the compressor units, ie the efficiency of optimum speed setpoint values ⁇ i for the individual compressor units 3, 4 and 5 are cyclically executed in addition to the calculation of a possible switching configuration S i, t .
  • the desired speed values ⁇ i and the shift configuration S i, t-1 are kept constant.
  • the new switching configuration is now operated by three out of three compressor units. Since the result of the optimization calculation is known before the end of the control cycle, a warm-up phase is started for the third compressor unit 5 to be approached. Upon completion of the control cycle R, the new values of the control device 10 and in particular the compressor unit regulators 13, 14, 15 are provided. The previously prepared with a warm-up compressor unit 5 can now be seamlessly connected to the new control cycle R and the optimal total energy consumption for the required flow rate or the required flow rate V ⁇ g (Should) is given again.
  • FIG. 2 shows a compressor-specific map 20 of a compressor unit 3.
  • Efficiency optimal operating points 22 are close to the pumping limit 36 on an efficiency curve 23 with a high efficiency ⁇ 3, max .
  • the mathematical formulation of the maps 20 as a calculation function is part of the optimization module 11 or the optimization calculation.
  • FIG. 3 shows a control device 10 for controlling a compression system 1.
  • the determined by the optimization module 11 optimal speed setpoints ⁇ i and the new switching configuration S i, t are, in cooperation with the controller 10, via an adjusting module S to the compressor units 3, 4 and 5 set and / or regulated.
  • control device 10 As a controlled variable for a control of the control device 10, in particular that variable of flow, suction pressure, discharge pressure and end temperature, which has the smallest positive control deviation, is used.
  • the control of the control device 10 supplies as output together with the optimization module, the setpoint values for a single compressor unit controller 13, 14, 15 see Fig. 2 ,
  • FIG. 4 shows a flowchart of the method steps 40, 42, 44 and 46.
  • the optimization process is initiated cyclically.
  • the current state of the compressor station 1 is determined. The following values are recorded: actual values 30, setpoints 31, limit values and boundary conditions 37 and models 24a, 24b, and 24c from the model library 26.
  • the current switching state S i , t-1 of the compression plant 1 is determined.
  • a third method step 44 represents a decision point. The decision is made with the third method step 44 perform an optimization calculation 46 in a fourth method step or end the method 48. On the basis of the present actual values 30 and set values 31, it can be decided whether an optimization calculation is necessary.
  • the method will continue with the fourth method step 46.
  • the fourth method step 46 the mixed-integer optimization problem is solved.
  • Input variables for the fourth method step 46 are again actual values 30, setpoint values 31, limit values and boundary conditions 37 and the models from a model library 26.
  • speed setpoint values ⁇ i and new switching states S i, t are output.
  • the method is ended 48. With the cyclical initiation from the first method step 40, the method is run through again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Feedback Control In General (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

In a method for controlling a compression installation (1), the installation has at least two compressor units (i=1, , N) that can be separately turned on or off, a plurality of devices for modifying the output of the compressor units and a control device (10). Known methods and devices do not function optimally in terms of the power consumption of the entire compression installation. The power consumption (EG) for the operation of a plurality of compressor units (i=1, , N) of a compression installation (1) can be optimized by calculating a novel circuit configuration (Si, t) and automatically adjusting the novel circuit configuration (Si, t) by a control device (10).

Description

Die Erfindung bezieht sich auf ein Verfahren zur Steuerung einer Verdichtungsanlage mit mindestens zwei gesondert zu-und/oder abschaltbaren Verdichteraggregaten, mit einer Mehrzahl von Vorrichtungen zur Änderung der Arbeitsleistung der Verdichteraggregate und mit einer Steuerungseinrichtung.The invention relates to a method for controlling a compression system with at least two separately zu- and / or turn-off compressor units, with a plurality of devices for changing the performance of the compressor units and with a control device.

Des Weiteren betrifft die Erfindung eine Steuerungseinrichtung zur Steuerung einer Verdichtungsanlage mit mindestens zwei gesondert zu- und/oder abschaltbaren Verdichteraggregaten und mit einer Mehrzahl von Vorrichtungen zur Änderung der Arbeitsleistung der Verdichteraggregate.Furthermore, the invention relates to a control device for controlling a compression system with at least two separately zu- and / or turn off compressor units and with a plurality of devices for changing the performance of the compressor units.

Verdichtungsanlagen, beispielsweise Erdgasverdichtungsanlagen, für den Gastransport und/oder die Gasspeicherung sind wesentliche Einrichtungen im Sinne der nationalen und internationalen Energieversorgung. Ein System zum Gastransport besteht aus einer Vielzahl von Verdichtungsanlagen, welche sich jeweils aus mehreren Verdichteraggregaten zusammensetzen können. Den Verdichteraggregaten kommt hier die Aufgabe zu, einem Fördermedium hinreichend viel mechanische Energie hinzuzufügen um Reibungsverluste zu kompensieren und die geforderten Betriebsdrücke bzw. -flüsse sicherzustellen. Verdichteraggregate weisen oft sehr unterschiedliche Antriebe und Laufräder auf, da sie beispielsweise für eine Grundlast- oder einen Spitzenlastbetrieb ausgelegt sind. Ein Verdichteraggregat umfasst z.B. mindestens einen Antrieb und mindestens einen Verdichter.Compaction plants, for example natural gas compression plants, for gas transport and / or gas storage are essential facilities in the sense of national and international energy supply. A system for gas transport consists of a plurality of compression systems, which can each consist of several compressor units. Here the task of the compressor units is to add a sufficient amount of mechanical energy to a pumped medium in order to compensate for friction losses and to ensure the required operating pressures or flows. Compressor units often have very different drives and wheels, as they are designed for example for a base load or a peak load operation. A compressor unit includes e.g. at least one drive and at least one compressor.

Der Anlagenautomatisierung kommt insbesondere für eine kostenoptimale Fahrweise eine große Bedeutung zu. Die Fähigkeit der Anlagenautomatisierung den Prozess zu führen, und die Verdichtungsanlage innerhalb der Produktionszwänge zu optimieren, liefert entscheidende wirtschaftliche Vorteile.Plant automation is especially important for cost-effective driving. The ability of plant automation to guide the process, and the Optimizing the compaction plant within production constraints provides decisive economic benefits.

Häufig werden die Verdichter einer Verdichtungsanlage über Turbinen angetrieben, die ihren Brennstoffbedarf direkt aus einer Pipeline decken. Alternativ werden Verdichter über elektrische Motoren angetrieben. Eine kostenoptimale Fahrweise bedeutet, den Energieverbrauch der Turbinen bzw. der elektrischen Antriebe bei gegebener Verdichtungsleistung, Förderleistung, Förderkapazität und/oder bei gegebenem Volumenstrom zu minimieren.Often, the compressors of a compression plant are driven by turbines that cover their fuel needs directly from a pipeline. Alternatively, compressors are driven by electric motors. Cost-effective driving means to minimize the energy consumption of the turbines and the electric drives for a given compression capacity, flow rate, delivery capacity and / or given volume flow.

Ein nutzbarer Betriebsbereich von Verdichtern wird durch nachteilige Auswirkungen innerer Strömungsvorgänge eingeschränkt. Hieraus ergeben sich Betriebsgrenzen, wie z.B. eine Temperaturbegrenzung, Überschreiten der lokalen Schallgeschwindigkeit (Verdichtungsstoß, Schluckgrenze), das umlaufende Abreißen der Strömung am Schaufelrad oder die Pumpgrenze.A useful operating range of compressors is limited by adverse effects of internal flow processes. This results in operating limits, such as a temperature limit, exceeding the local speed of sound (compression shock, sip limit), the circumferential tearing off of the flow at the impeller or the surge line.

Die Automatisierung einer Verdichtungsanlage hat primär die Aufgabe von einer Dispatching-Zentrale vorgegebene Sollwerte, wie wahlweise einen Durchfluss durch die Station oder einen Enddruck an der Ausgangsseite als Istwerte zu realisieren. Es dürfen hierbei vorgegebene Grenzwerte für die Saugdrücke an der Eingangsseite, die Enddrücke an der Ausgangsseite und die Endtemperatur am Anlagenausgang nicht überschritten werden.The automation of a compression system has primarily the task of a dispatching center predetermined setpoints, such as either a flow through the station or a final pressure on the output side to realize as actual values. Specified limits for the suction pressures at the inlet side, the final pressures at the outlet side and the final temperature at the system outlet must not be exceeded.

Aus WO 03/036096 A1 ist ein Verfahren zur Optimierung des Betriebs mehrerer Verdichteraggregate einer Erdgasverdichtungsstation bekannt. Bei diesem Verfahren werden nach dem Anlauf eines zweiten bzw. eines weiteren Verdichteraggregats die Drehzahlen der laufenden Verdichteraggregate in einem festen Drehzahlverhältnis in Bezug auf für jedes Verdichteraggregat hinterlegte Kennfelddaten gefahren. Um eine erste Reduzierung des Energieverbrauchs zu realisieren werden nach Anlaufen eines zusätzlichen Verdichters die Drehzahlen aller in Betrieb befindlichen Aggregate durch eine gleichprozentige Durchflussmengenverstellung solange verändert, bis, wenn möglich, alle Pumpverhütungsventile der Anlage geschlossen sind. Erst nachdem alle Pumpverhütungsventile geschlossen sind, werden Arbeitspunkte der Verdichteraggregat in deren Kennfeldern so nahe wie möglich an eine Linie des maximalen Wirkungsgrades geschoben.Out WO 03/036096 A1 a method for optimizing the operation of multiple compressor units of a natural gas compression station is known. In this method, after the start of a second or another compressor unit, the speeds of the running compressor units are run in a fixed speed ratio with respect to stored for each compressor unit map data. In order to realize a first reduction of the energy consumption, the speeds of all are in operation after starting an additional compressor units are changed by an equal percentage flow adjustment until, if possible, all pump preventive valves of the system are closed. Only after all the pump preventive valves are closed, operating points of the compressor unit are pushed in their maps as close as possible to a line of maximum efficiency.

Gemäß EP 0 769 624 B1 ist ein Verfahren bekannt zur Lastausgleichung zwischen mehreren Verdichtern und zum Manipulieren der Arbeitsleistung der Verdichter, um eine vorbestimmte Beziehung zwischen allen Verdichtern aufrechtzuerhalten, wenn die Arbeitspunkte aller Verdichter weiter als ein spezifizierter Wert von der Pumpgrenze entfernt sind.According to EP 0 769 624 B1 For example, a method is known for balancing the load between multiple compressors and manipulating the performance of the compressors to maintain a predetermined relationship between all the compressors when the operating points of all the compressors are farther than a specified value from the surge line.

Mit EP 0 576 238 B1 ist ein Verfahren und eine Vorrichtung zur Lastverteilung bekannt. Mit einem als Führungsverdichter bestimmten Verdichter wird ein Regelsignal erzeugt, welches als eine Bezugsgröße für die nicht führenden Verdichter genutzt wird.With EP 0 576 238 B1 For example, a method and apparatus for load sharing is known. With a designated as a guide compressor compressor, a control signal is generated, which is used as a reference for the non-leading compressor.

Die oben beschriebenen Verfahren können den Energieverbrauch der gesamten Verdichtungsanlage noch nicht zufrieden stellend herabsetzen.The methods described above can not satisfactorily reduce the energy consumption of the entire compacting plant.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur weiteren Optimierung des Energieverbrauchs für einen Betrieb mehrerer Verdichteraggregate einer Verdichtungsanlage zur Verfügung zu stellen.The invention has for its object to provide a method and apparatus for further optimization of energy consumption for operation of multiple compressor units of a compaction system.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass bei Vorgabe neuer Sollwerte oder Änderung des aktuellen Zustandes der Verdichtungsanlage mittels einer Optimierungsrechnung aus einer aktuellen Schaltkonfiguration der Verdichteraggregate hinsichtlich eines optimierten Gesamtenergiebedarfs der Verdichtungsanlage eine neue Schaltkonfiguration berechnet wird, und dass die neue Schaltkonfiguration über die Steuerungseinrichtung automatisch eingestellt wird.This object is inventively achieved in that, for presetting of new setpoints or change of the current state of the compressor plant by means of an optimization calculation from a current switching configuration of the compressor units with regard to an optimized total energy demand of the compressor plant, a new switching configuration is calculated, and that the new switching configuration is set automatically via the control device.

An der Erfindung ist vorteilhaft, dass bei der Optimierung von allen an der jeweiligen Verdichtungsanlage verfügbaren oder betriebsbereiten Verdichteraggregaten unabhängig von ihrem jeweiligen Betriebs- oder Schaltzustand ausgegangen werden kann. Insbesondere erlaubt die Erfindung - im Gegensatz zu bekannten Steuerungen für Verdichtungsanlagen - als Ergebnis der Optimierung ein automatisches Zuschalten eines vorher außer Betrieb befindlichen Verdichteraggregates oder ein völliges Abschalten eines Verdichteraggregates sein.An advantage of the invention is that, in the optimization of all compressor units available or operable on the respective compacting system, it can be assumed that they are independent of their respective operating or switching state. In particular, the invention allows - in contrast to known controls for compression systems - as a result of the optimization of an automatic connection of a previously out of service compressor unit or a complete shutdown of a compressor unit.

Automatisch bedeutet hierbei insbesondere "online", dass heißt automatisch kann zum Beispiel heißen, dass die Schaltkonfiguration ohne manuelles Zutun vom Betriebspersonal der Verdichtungsanlage verwendet wird, vorzugsweise in Echtzeit. Echtzeit bedeutet, dass das Ergebnis einer Berechnung innerhalb eines gewissen Zeitraumes garantiert vorliegt, das heißt bevor eine bestimmte Zeitschranke erreicht ist. Dabei kann die Optimierungsrechnung auf einer gesonderten Datenverarbeitungsanlage ablaufen, welche ihre Rechendaten automatisch an die Steuerungseinrichtung weitergibt.In this case, automatically means "online" in particular, meaning that it can automatically mean, for example, that the switching configuration is used by the operating staff of the compacting system without manual intervention, preferably in real time. Real time means that the result of a calculation is guaranteed within a certain period of time, that is, before a certain time limit has been reached. In this case, the optimization calculation can take place on a separate data processing system, which automatically forwards its calculation data to the control device.

Die Erfindung geht von dem bekannten sequentiellen Konzept, d.h. nach dem Anlaufen eines von außen vorgegebenen, zusätzlichen Aggregates erst die Pumpverhütungsventile zu schließen und danach die Arbeitspunkte der Verdichteraggregate hinsichtlich ihres Wirkungsgrades zu optimieren, ab. Erfindungsgemäß wird vorzugsweise während jeder Optimierungsrechnung die gesamte Verdichtungsanlage betrachtet und die Schaltkonfiguration der Verdichtungsanlage, d.h. die Vorgabe eines Schaltzustands der einzelnen Verdichteraggregate, berechnet. Das Schließen der oder aller Pumpverhütungsventile kann durch einen minimalen Durchfluss durch die Verdichteraggregate bei der Optimierung sichergestellt werden. Auch ein erstmaliges Anfahren der Verdichtungsanlage kann bereits mit einer hinsichtlich eines optimierten Gesamtenergiebedarfs günstigen Schaltkonfiguration erfolgen.The invention is based on the known sequential concept, ie after the start of an externally specified additional unit, first to close the pump-preventive valves and then to optimize the operating points of the compressor units with regard to their efficiency. According to the invention, the entire compaction plant is preferably considered during each optimization calculation and the switching configuration of the compaction plant, ie the specification of a switching state of the individual compressor units, calculated. The closing of the or all of the pump preventive valves can be ensured by a minimum flow through the compressor units in the optimization. Even a first start of the compression system can already with a favorable with regard to an optimized total energy demand switching configuration done.

Unter der, vorzugsweise elektrisch manipulierbaren, Schaltkonfiguration einer Verdichtungsanlage versteht man eine Menge der jeweiligen Schaltzustände der einzelnen Verdichteraggregate. Die Schaltkonfiguration wird durch die Schaltzustände "0" für Aus oder "1" für Ein repräsentiert, welche beispielsweise in einer ganzzahligen Variable bitweise abgelegt ist.Under the, preferably electrically manipulable, switching configuration of a compression system to understand a lot of the respective switching states of the individual compressor units. The switching configuration is represented by the switching states "0" for Off or "1" for On, which is stored bit by bit, for example, in an integer variable.

Unter Schaltvorgang versteht man den Wechsel von einem, insbesondere elektrischem, Schaltzustand in einen anderen.By switching operation is meant the change from one, in particular electrical, switching state to another.

Vorteilhafterweise wird eine Prognose mittels der Optimierungsrechnung für mindestens einen, vorzugsweise mehrere zukünftige(n) Zeitpunkt(e) ermittelt. Da das Verfahren Prognosen bis zu einem gegebenen Zeitpunkt zulässt, ist es möglich Kenntnisse über eine normale Fahrweise der Station, d.h. z.B. einen üblichen Lastverlauf, zu verwenden um die Schalthäufigkeit von Verdichteraggregaten zu minimieren.Advantageously, a prognosis is determined by means of the optimization calculation for at least one, preferably several, future time (s). Since the method allows for predictions up to a given time, it is possible to know about a normal driving style of the station, i. e.g. a conventional load curve to use to minimize the switching frequency of compressor units.

Zweckmäßig ist, dass verdichteraggregat-spezifische Datensätze und/oder verdichteraggregat-spezifische Kennfelder ausgewertet und für die einzelnen Verdichteraggregate Arbeitspunkte bestimmt werden, welche von vorgegebenen bzw. geänderten Werten des Massenflusses und einer spezifischen Förderarbeit abhängen, wobei die Arbeitspunkte derart eingestellt werden, dass der Gesamtenergiebedarf der Verdichtungsanlage optimiert wird.It is expedient that compressor unit-specific data records and / or compressor unit-specific maps evaluated and determined for the individual compressor units operating points, which depend on predetermined or changed values of mass flow and a specific production work, the operating points are set such that the total energy demand the compaction plant is optimized.

Mit Vorteil werden die Datensätze und/oder Kennfelder als Funktion von einem Massenfluss und einer spezifischen Förderarbeit der einzelnen Verdichtungsaggregate angegeben.Advantageously, the data sets and / or maps are specified as a function of a mass flow and a specific production work of the individual compression units.

Mit Vorteil wird bei der Optimierungsrechnung zusätzlich zur Schaltkonfiguration eine Lastverteilung, d.h. ein Drehzahlverhältnis, zwischen den Verdichteraggregaten berechnet und gegebenenfalls geändert.Advantageously, in the optimization calculation, in addition to the switching configuration, a load distribution, ie a speed ratio, calculated between the compressor units and changed if necessary.

Ein weiterer wesentlicher Vorteil liegt darin, dass Nebenbedingungen an die Optimierung, wie z.B. die Pumpgrenze nicht zu verletzen, schon bei einer Wirkungsgradoptimalen Berechnung der Drehzahlsollwerte für die einzelnen Verdichterstationen berücksichtigt werden können.Another significant advantage is that constraints on the optimization, e.g. The pumping limit can not be violated, even with an optimal efficiency calculation of the speed setpoints for the individual compressor stations can be considered.

Zweckmäßig ist, dass die Optimierungsrechnung mit einem Regelzyklus, insbesondere selbstauslösend, ausgeführt wird.It is expedient that the optimization calculation is carried out with a control cycle, in particular self-triggering.

Mit Vorteil werden als Ausgangsgrößen der Optimierungsrechnung mit jedem Regelzyklus Drehzahlsollwerte und/oder die neue Schaltkonfiguration für die Steuerungseinrichtung bereitgestellt.Advantageously, speed setpoint values and / or the new switching configuration for the control device are provided as output variables of the optimization calculation with each control cycle.

Zweckmäßig ist, dass für die Dauer des Regelzyklus, welcher insbesondere ein Vielfaches einer Zykluszeit einer Regelung der Steuerungseinrichtung ist, die Drehzahlsollwerte und/oder die Schaltkonfiguration konstant gehalten werden.It is expedient that for the duration of the control cycle, which is in particular a multiple of a cycle time of a control of the control device, the speed setpoints and / or the switching configuration are kept constant.

In einer besonderen Ausgestaltung der Erfindung werden die Drehzahlsollwerte mit einem gemeinsamen Faktor skaliert und als Sollwert für einen Verdichteraggregat-Regler genutzt.In a particular embodiment of the invention, the speed setpoints are scaled with a common factor and used as a setpoint for a compressor unit controller.

Eine weitere Steigerung der Effektivität des Anlagenbetriebes wird erreicht indem die Steuerungseinrichtung mit der neuen Schaltkonfiguration bereits vor Ende des Regelzyklus eine Aufwärmphase der Verdichteraggregate für das spätere Zuschalten eines vorher außer Betrieb befindlichen Verdichteraggregates auslöst.A further increase in the effectiveness of the system operation is achieved by the control device with the new switching configuration triggers a warm-up phase of the compressor units for the subsequent connection of a previously out of service compressor unit already before the end of the control cycle.

In einer besonderen Ausführungsform wird mit dem Ende der Aufwärmphase der Steuerungseinrichtung eine Lastbereitschaft für den nächsten Regelzyklus mitgeteilt. Wenn beispielsweise die Drehzahl eines anfahrenden Verdichteraggregates hinreichend hoch ist und die Aufwärmphase der Turbine beendet ist, wird ein Signal "lastbereit" gesetzt. Das bedeutet, dass das Verdichteraggregat an dem Verfahren der Lastverteilung teilnimmt und in der Optimierungsrechnung für die günstigste Lastverteilung zwischen den in Betrieb befindlichen berücksichtigt wird.In a particular embodiment, a load readiness for the next control cycle is communicated with the end of the warm-up phase of the control device. If, for example, the speed of an approaching compressor unit is sufficient is high and the warm-up phase of the turbine is completed, a signal "load ready" is set. This means that the compressor unit participates in the load sharing procedure and is included in the optimization calculation for the best load distribution between those in service.

In einer weiteren vorzugsweisen Ausführungsform werden als Eingang für die Optimierungsrechnung

  • ein Modell der einzelnen Verdichtungsaggregate und/oder
  • eine Modellbibliothek der gesamten Verdichtungsanlage und/oder
  • eine aktuelle spezifische Förderarbeit der einzelnen Verdichtungsaggregate und/oder
  • eine aktuelle spezifische Förderarbeit der Verdichtungsanlage und/oder
  • einen aktuellen Massenfluss durch das einzelne Verdichtungsaggregat, insbesondere durch einen einzelnen Verdichter und/oder
  • einen aktuellen Massenfluss durch die Verdichtungsanlage und/oder
  • die aktuelle Schaltkonfiguration und/oder
  • ein Saugdruck an der Eingangsseite der Verdichtungsanlage und/oder
  • ein Saugdruck an der Eingangsseite des einzelnen Verdichtungsaggregates und/oder
  • ein Enddruck an der Ausgangsseite der Verdichtungsanlage und/oder
  • ein Enddruck an der Ausgangsseite des einzelnen Verdichtungsaggregates und/oder
  • eine Temperatur an der Ausgangsgangsseite der Verdichtungsanlage und/oder
  • eine Temperatur an der Eingangsseite der Verdichtungsanlage und/oder
  • eine Temperatur an der Ausgangsgangsseite der einzelnen Verdichtungsaggregate und/oder
  • eine Temperatur an der Eingangsseite der einzelnen Verdichtungsaggregate und/oder
  • die aktuellen Drehzahlen der einzelnen Verdichteraggregate ausgewertet.
In a further preferred embodiment, the input for the optimization calculation
  • a model of the individual compression units and / or
  • a model library of the entire compaction plant and / or
  • an actual specific conveying work of the individual compaction aggregates and / or
  • a current specific work of the compaction plant and / or
  • a current mass flow through the single compression unit, in particular by a single compressor and / or
  • a current mass flow through the compression plant and / or
  • the current switching configuration and / or
  • a suction pressure on the input side of the compression system and / or
  • a suction pressure on the input side of the individual compression unit and / or
  • a final pressure at the outlet side of the compressor and / or
  • a final pressure on the output side of the individual compression unit and / or
  • a temperature at the output side of the compression plant and / or
  • a temperature at the input side of the compression system and / or
  • a temperature at the output side of the individual compression units and / or
  • a temperature at the input side of the individual compression units and / or
  • evaluated the current speeds of the individual compressor units.

In zweckmäßiger Weise minimiert die Optimierungsrechnung nach dem Prinzip der modelprädiktiven Regelung mittels Prognoserechnungen den bis zu einem späteren Zeitpunkt erwarteten Gesamtenergiebedarf.Conveniently, the optimization calculation according to the principle of model-predictive control by means of forecast calculations minimizes the total energy demand expected up to a later point in time.

In einer weiteren bevorzugten Ausführungsform wird bei der Optimierungsrechnung ein Energieverbrauch eines Schaltvorgangs berücksichtigt.In a further preferred embodiment, an energy consumption of a switching operation is taken into account in the optimization calculation.

Zweckmäßigerweise wird der Energieverbrauch des Schaltvorgangs aus den Datensätzen und/oder den Kennfeldern der Verdichteraggregate berechnet. Die Kenntnis über einen anteiligen Energieverbrauch für den Schaltvorgang ermöglicht eine noch exaktere Bestimmung des minimalen Gesamtenergieverbrauchs der Verdichtungsanlage.Conveniently, the energy consumption of the switching process from the data sets and / or the maps of the compressor units is calculated. The knowledge of a proportionate energy consumption for the switching process allows an even more accurate determination of the minimum total energy consumption of the compression plant.

Eine vorteilhafte Variante der Erfindung ist, dass die spezifische Förderarbeit der Verdichteranlage für den Regelzyklus als konstant angenommen wird, insbesondere bei einer Parallelschaltung der Verdichteraggregate.An advantageous variant of the invention is that the specific conveying work of the compressor system for the control cycle is assumed to be constant, in particular in a parallel connection of the compressor units.

Eine alternative vorteilhafte Variante der Erfindung ist, dass der Massenfluss der Verdichteranlage für den Regelzyklus als konstant angenommen wird, insbesondere bei einer Serienschaltung der Verdichteraggregate.An alternative advantageous variant of the invention is that the mass flow of the compressor system for the control cycle is assumed to be constant, in particular in a series circuit of the compressor units.

Zweckmäßiger Weise wird ein aktives Verdichteraggregat zumindest mit einem vorgebbaren oder vorgegebenen minimalen Durchfluss betrieben.Appropriately, an active compressor unit is operated at least with a predetermined or predetermined minimum flow.

Vorteilhafterweise wird die Optimierungsrechnung mittels eines Branch-and-Bound Algorithmus ausgeführt.Advantageously, the optimization calculation is carried out by means of a branch-and-bound algorithm.

In einer weiteren vorteilhaften Weise wird eine Grenze für den Branch-and-Bound Algorithmus durch das Lösen eines relaxierten Problems mittels Sequential-Quadratic-Programming bestimmt.In a further advantageous manner, a limit to the branch-and-bound algorithm is determined by solving a relaxed problem using sequential quadratic programming.

Eine weitere Steigerung der Effizienz des Berechnungsverfahrens wird erreicht indem die Optimierungsrechnung mittels einer dynamischen Programmierung Teilprobleme löst, insbesondere bei einer Serienschaltung.A further increase in the efficiency of the calculation method is achieved in that the optimization calculation solves partial problems by means of dynamic programming, in particular in a series connection.

Die vorrichtungsbezogene Aufgabe wird bezogen auf die eingangs genannte Steuerungseinrichtung gelöst durch ein Optimierungsmodul, mit dem bei Vorgabe neuer Sollwerte oder Änderung des aktuellen Zustands der Verdichtungsanlage mittels einer Optimierungsrechnung aus einer aktuellen Schaltkonfiguration der Verdichteraggregate hinsichtlich eines optimierten Gesamtenergiebedarfs der Verdichtungsanlage eine neue Schaltkonfiguration berechenbar ist, und durch ein Stellmodul, mit welchen die neue Schaltkonfiguration automatisch einstellbar ist.The device-related task is based on the above-mentioned control device solved by an optimization module with the new setpoints or change the current state of the compression system by means of an optimization calculation of a current switching configuration of the compressor units with respect to an optimized total energy demand of the compression plant a new switching configuration is calculated, and by a control module, with which the new switching configuration is automatically adjustable.

Das Optimierungsmodul zur Optimierung des Energieverbrauchs ist insbesondere dazu hergerichtet in Kombination mit der Steuerungseinrichtung und/oder der Dispatching-Zentrale die vorgegebene Gesamtlast auf die einzelnen Verdichteraggregate so zu verteilen, dass die Stationssollwerte unter möglichst geringem Energieverbrauch, d.h. mit maximalem Gesamtwirkungsgrad, verwirklicht werden. Dies umfasst beispielsweise sowohl die Entscheidung welche Verdichteraggregate aktiv und welche inaktiv geschaltet werden, als auch die Vorgabe wie viel jedes der aktiven Aggregate zur Gesamtleistung beitragen soll, also die Vorgabe der Lastverteilung.The optimization module for optimizing the energy consumption is in particular designed to distribute in combination with the control device and / or the dispatching center the predetermined total load on the individual compressor units so that the station setpoints with the lowest possible energy consumption, i. with maximum overall efficiency, be realized. This includes, for example, both the decision which compressor units are active and which are switched inactive, as well as the specification of how much each of the active units should contribute to the overall performance, so the specification of the load distribution.

In einer besonderen Ausführungsform der Erfindung ist das Optimierungsmodul in räumlicher Entfernung, insbesondere mehrere Km, zur Steuerungseinrichtung angeordnet.In a particular embodiment of the invention, the optimization module is arranged at a spatial distance, in particular several km, to the control device.

Nach einer zweckmäßigen Ausgestaltung ist das Optimierungsmodul zur Berücksichtigung eines Energieverbrauchs eines Schaltvorganges hergerichtet.According to an expedient embodiment, the optimization module is prepared for the consideration of an energy consumption of a switching operation.

Eine weitere Ausgestaltung ist, dass das Optimierungsmodul zur Optimierungsrechnung für eine Mehrzahl von Steuerungseinrichtungen mehrerer Verdichtungsanlagen hergerichtet ist.Another embodiment is that the optimization module for optimization calculation for a plurality of control devices of several compression systems is prepared.

Zur Erfindung gehört auch ein Computerprogrammprodukt enthaltend eine Software zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 21. Mit einem maschinenlesbaren Programmcode auf einem Datenträger lassen sich mit Vorteil DV-Anlagen zu einem Optimierungsmodul herrichten.The invention also includes a computer program product containing software for carrying out a method according to one of claims 1 to 21. With a machine-readable program code on a data carrier, it is possible to prepare DV systems for an optimization module.

Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert, wobei in

FIG 1
ein Blockschaltbild eines Verfahrens zur Optimierung des Betriebs einer Verdichtungsanlage,
FIG 2
ein verdichter-spezifisches Kennfeld eines Verdich- teraggregats,
FIG 3
eine Steuerungseinrichtung zur Steuerung einer Ver- dichtungsanlage und in
FIG 4
ein Ablaufdiagramm der Verfahrensschritte
gezeigt ist.In the following the invention will be explained in more detail with reference to an embodiment, wherein in
FIG. 1
a block diagram of a method for optimizing the operation of a compression plant
FIG. 2
a compressor-specific characteristic diagram of a compressor unit,
FIG. 3
a control device for controlling a compression system and in
FIG. 4
a flowchart of the method steps
is shown.

Das Verhalten eines einzelnen Verdichtungsaggregats 3, 4, 5 wird durch ein Kennfeld 20 modelliert, das Kennfeld 20 beschreibt dessen Wirkungsgrad und seine Drehzahl als Funktion seines Arbeitspunktes 22. Der Arbeitspunkt 22 wird mittels einer Zustandsvariablen , welche einen Massenfluss durch das Verdichtungsaggregat beschreibt, und einer mit Gleichung 1 bestimmbaren spezifischen Förderarbeit y = κ κ - 1 R T E Z p A / p E κ κ - 1 - 1 + c A 2 - c E 2 2 + g z A - z E

Figure imgb0001
beschrieben, wobei

R
eine spezifische Gaskonstante,
κ
ein Isentropenexponent,
Z
ein Realgasfaktor,
cE,cA
eine Geschwindigkeit am Eingang bzw. Ausgang des Ver- dichteraggregats,
zA, zE
ein Höhenunterschied,
pE
ein Saugdruck,
pA
ein Enddruck, und
TE
eine Eingangstemperatur ist.
The behavior of a single compression unit 3, 4, 5 is modeled by a map 20, the map 20 describes its efficiency and its speed as a function of its operating point 22. The operating point 22 by means of a state variable , which describes a mass flow through the compression unit, and a specific funding work determinable with equation 1 y = κ κ - 1 R T e Z p A / p e κ κ - 1 - 1 + c A 2 - c e 2 2 + G z A - z e
Figure imgb0001
described, wherein
R
a specific gas constant,
κ
an isentropic exponent,
Z
a real gas factor,
c E , c A
a speed at the inlet or outlet of the compressor unit,
z A , z E
a height difference,
p E
a suction pressure,
p A
a final pressure, and
T E
an input temperature is.

Die Kennfelder 20 sind nicht durch eine geschlossene Formel zur Verfügung gestellt. Aus einer Messung werden eine Förderkennlinie 21 und eine Wirkungsgradkennlinie 23 ermittelt. Bei konstanter Drehzahl wird die Abhängigkeit von der Förderarbeit und einem Wirkungsgrad η i vom Volumenstrom i oder Massenfluss an Stützstellen bestimmt.The maps 20 are not provided by a closed formula. From a measurement, a delivery characteristic 21 and an efficiency curve 23 are determined. At a constant speed, the dependence on the conveying work and an efficiency η i on the volume flow i or mass flow at support points is determined.

Um das Verhalten eines Verdichteraggregates 3, 4, 5 zu modellieren, müssen zusätzlich die Betriebsgrenzen, wie z.B. eine Pumpgrenze 36, die durch das Auftreten bestimmter Strömungserscheinungen im Verdichter bedingt sind, in Abhängigkeit von der Drehzahl aufgenommen werden. Aus diesen Stützstellen und den zugehörigen Werten für verschiedene Drehzahlen lassen sich durch geeignete Ansätze, wie z.B. stückweise polynomialer Interpolation oder B-Splines, die Kennfelder 20 als Funktion von Massenfluss i und spezifischer Förderarbeit yi und ihr Definitionsgebiet aufbauen.In order to model the behavior of a compressor unit 3, 4, 5, in addition, the operating limits, such as a surge line 36, which are caused by the occurrence of certain flow phenomena in the compressor, must be recorded as a function of the speed. From these interpolation points and the associated values for different speeds, the maps 20 can be constructed as a function of mass flow i and specific conveying work y i and their domain of definition by means of suitable approaches, such as piecewise polynomial interpolation or B-splines.

Bei in Serie geschalteten Verdichteraggregaten 3, 4, 5 wird die gesamte Förderarbeit auf die einzelnen Verdichteraggregate 3, 4, 5 energieoptimal verteilt, wobei der Massenstrom durch die Verdichter als gleich angenommen wird. Für eine Formulierung eines Minimierungs-Problems, insbesondere bei einer Serienschaltung, gilt Gleichung 2: min = t 0 i = 1 N s i , t y i , t m ˙ g , t η i m ˙ g , t y i , t + δ t > 0 s i , t - s i , t - 1 2

Figure imgb0002
When connected in series compressor units 3, 4, 5, the entire conveying work on the individual compressor units 3, 4, 5 distributed energy optimal, the mass flow is assumed to be the same by the compressors. For a formulation of a minimization problem, in particular in a series connection, equation 2 applies: min = Σ t 0 Σ i = 1 N s i . t y i . t m ˙ G . t η i m ˙ G . t y i . t + δ Σ t > 0 s i . t - s i . t - 1 2
Figure imgb0002

Zur Anwendung einer mathematischen Programmierung wird Gleichung 3 als Gleichungsnebenbedingung betrachtet:

  • Die Serienschaltung resultiert darin, dass die Summe der spezifischen Förderarbeiten der Verdichter jeder Zeit gleich der Förderarbeit der Station sein muss:
y g , t = i = 1 N y i , t , s i , t y i , t min m ˙ g , t y i , t s i , t y i , t max m ˙ g , t
Figure imgb0003
To apply mathematical programming, Equation 3 is considered as an equation constraint:
  • The series connection results in the fact that the sum of the specific conveying operations of the compressors must be equal to the conveying work of the station at all times:
y G . t = Σ i = 1 N y i . t . s i . t y i . t min m ˙ G . t y i . t s i . t y i . t Max m ˙ G . t
Figure imgb0003

Bei parallel geschalteten Verdichtern ist der Gesamtstrom auf die einzelnen Verdichteraggregate 3, 4, 5 zu verteilen, wobei die spezifische Förderarbeit der Verdichtungsanlage für einen Optimierungszyklus R als gegeben gesetzt wird. Für eine Formulierung eines Minimierungs-Problems, insbesondere bei einer Serienschaltung, gilt Gleichung 4: min = t 0 i = 1 N s i , t y i , t m ˙ g , t η i m ˙ g , t y i , t + δ t > 0 s i , t - s i , t - 1 2

Figure imgb0004
In compressors connected in parallel, the total flow to the individual compressor units 3, 4, 5 to distribute, with the specific production work of the compressor for an optimization cycle R is set as given. For a formulation of a minimization problem, in particular in a series connection, equation 4 applies: min = Σ t 0 Σ i = 1 N s i . t y i . t m ˙ G . t η i m ˙ G . t y i . t + δ Σ t > 0 s i . t - s i . t - 1 2
Figure imgb0004

Zur Anwendung einer mathematischen Programmierung wird Gleichung 5 als Gleichungsnebenbedingung betrachtet:

  • Im Falle der Parallelschaltung muss die Summe der Einzelflüsse zu jedem Zeitpunkt gleich dem geforderten Gesamtfluss sein:
m ˙ g , t = i = 1 N m ˙ i , t , s i , t m ˙ i , t min y g , t m ˙ i , t s i , t m ˙ i , t max y g , t
Figure imgb0005
To apply mathematical programming, Equation 5 is considered as an equation constraint:
  • In the case of parallel connection, the sum of the individual flows at all times must be equal to the required total flow:
m ˙ G . t = Σ i = 1 N m ˙ i . t . s i . t m ˙ i . t min y G . t m ˙ i . t s i . t m ˙ i . t Max y G . t
Figure imgb0005

Da der Gesamtenergieverbrauch zu minimieren ist, ergibt sich das Minimierungs-Problem als Summe des Verbrauchs aller Verdichteraggregate 3, 4, 5.Since the total energy consumption is to be minimized, the minimization problem results as the sum of the consumption of all compressor units 3, 4, 5.

Ein weiterer Term ist additiv mit dem Minimierungs-Problem, welches eine Zielfunktion darstellt, verknüpft. Die Kosten des Schaltens, also der Energieverbrauch eines Schaltvorgangs, werden hierdurch berücksichtigt. Bei einem gegebenen Saugdruck PS , einem Enddruck PE , einer Temperatur T und dem Massenfluss lässt sich ein anteiliger Energieverbrauch für einen Schaltvorgang eines Verdichteraggregates 3, 4, 5 aus den Kennfeldern berechnen.Another term is additively linked to the minimization problem, which is an objective function. The costs of switching, ie the energy consumption of a switching operation, are thereby taken into account. At a given suction pressure P S , a final pressure P E , a temperature T and the mass flow can be a proportionate energy consumption for a switching operation of a compressor unit 3, 4, 5 calculated from the maps.

Bei der Optimierung der Zielfunktion werden folgende Ungleichungsnebenbedingungen eingehalten:

  • Ein aktives Verdichtungsaggregat muss, um die Pumpgrenze nicht zu verletzen, einen minimalen Durchfluss, insbesondere einem minimalen Massenfluss m ˙ i , t min ,
    Figure imgb0006
    einhalten. Dieser minimale Durchfluss ist abhängig von der augenblicklichen Förderarbeit der Verdichtungsanlage. Ebenso muss der Massenfluss unter einem maximal zulässigen Wert m ˙ i , t max
    Figure imgb0007
    bleiben.
  • Ganz analog zum Massenfluss gelten im Fall von in Serie geschalteten Verdichtern obere und untere Grenzen für die spezifische Förderarbeit y i , t min
    Figure imgb0008
    und y i , t max .
    Figure imgb0009
When optimizing the objective function, the following inequality constraints are met:
  • An active compaction unit must, in order not to violate the surge line, a minimum flow, in particular a minimum mass flow m ˙ i . t min .
    Figure imgb0006
    comply. This minimum flow rate depends on the current production work of the compaction plant. Similarly, the mass flow must be below a maximum allowable value m ˙ i . t Max
    Figure imgb0007
    stay.
  • Analogous to the mass flow, in the case of compressors connected in series, upper and lower limits apply to the specific conveying work y i . t min
    Figure imgb0008
    and y i . t Max ,
    Figure imgb0009

Die Behandlung von Verdichtungsanlagen mit parallel und seriell geschalteten Aggregaten, wird einheitlich realisiert und erfordert keine gänzlich unterschiedlichen Formulierungen des Minimierungs-Problems. Eine Lösung resultiert direkt aus der mathematischen Formulierung als Optimierungsproblem.The treatment of compression systems with parallel and serially connected aggregates is implemented uniformly and does not require completely different formulations of the minimization problem. A solution results directly from the mathematical formulation as an optimization problem.

Figur 1 zeigt ein Blockschaltbild eines Verfahrens zur Optimierung des Betriebs einer Verdichtungsanlage. Die Verdichtungsanlage ist mit drei Verdichteraggregaten 3, 4 und 5 stark schematisiert dargestellt. Für eine Verschaltung der Verdichteraggregate 3, 4 und 5 wird eine Parallelschaltung angenommen. Die Verdichteraggregate 3, 4 und 5 werden über eine Steuerungseinrichtung 10 gesteuert und geregelt. Die Steuerungseinrichtung 10 umfasst eine Regelung der Steuerungseinrichtung 12, einen ersten Verdichteraggregatsregler 13, einen zweiten Verdichteraggregatsregler 14 und einen dritten Verdichteraggregatsregler 15. Ein Optimierungsmodul 11 steht in bidirektionaler Verbindung mit der Steuerungseinrichtung 10. Mittels des Optimierungsmoduls 11 wird ein nicht lineares gemischt-ganzzahliges Optimierungsproblem gelöst. Eine mathematische Formulierung des Optimierungsproblems ist im Optimierungsmodul 11 implementiert. Unter Verwendung von Gl.4 mit einer Anzahl N = 3 der Verdichteraggregate 3, 4 und 5 und einer Reihe von Eingangsgrößen 33, wird das Optimierungsmodul 11 hinsichtlich eines optimierten Gesamtenergieverbrauches optimierte Ausgangsgrößen 32 der Regelung der Steuerungseinrichtung 12 bereitstellen. Die Eingangsgrößen 33 setzen sich aus einer Modellbibliothek 26, mit einem Modell 24a, 24b, 24c für jedes Verdichteraggregat 3, 4, 5 und Prozessgrößen der Verdichtungsanlage zusammen. FIG. 1 shows a block diagram of a method for optimizing the operation of a compression plant. The compression plant is equipped with three compressor units 3, 4 and 5 shown in a very schematic way. For an interconnection of the compressor units 3, 4 and 5, a parallel connection is assumed. The compressor units 3, 4 and 5 are controlled and regulated by a control device 10. The control device 10 comprises a controller of the control device 12, a first compressor unit controller 13, a second compressor unit controller 14 and a third compressor unit controller 15. An optimization module 11 is in bidirectional communication with the controller 10. By means of the optimization module 11, a nonlinear mixed-integer optimization problem is solved , A mathematical formulation of the optimization problem is implemented in the optimization module 11. Using Gl.4 with a number N = 3 of the compressor units 3, 4 and 5 and a number of input variables 33, the optimization module 11 will provide optimized outputs 32 of the control device 12 for optimized total energy consumption. The input variables 33 are composed of a model library 26, with a model 24a, 24b, 24c for each compressor unit 3, 4, 5 and process variables of the compactor.

Über Istwerte 30 und Sollwerte 31 wird die Regelung der Steuerungseinrichtung 12 mit

  • einer aktuellen Temperatur Tg,A an der Ausgangsseite der Verdichtungsanlage,
  • einer aktuellen Temperatur Tg,E an der Eingangsseite der Verdichtungsanlage,
  • einem aktuellen Enddruck Pg,A an der Ausgangsseite der Verdichtungsanlage,
  • einem aktuellen Saugdruck Pg,E an der Eingangsseite der Verdichtungsanlage,
  • einem aktuellen Volumenstrom i für I = 1...3 mit je einer aktuellen Temperatur für Eingang Ti,E und Ausgang eines Verdichteraggregates Ti,A,
  • einem aktuellen Druck Pi,E und Pi,A ,
der einzelnen Verdichteraggregate 3, 4 und 5, als Istwerte 30 versorgt.About actual values 30 and set points 31, the control of the control device 12 with
  • a current temperature T g, A at the outlet side of the compression plant,
  • a current temperature T g, E at the input side of the compression plant,
  • a current final pressure P g, A at the outlet side of the compression plant,
  • a current suction pressure P g, E at the input side of the compression plant,
  • a current volume flow i for I = 1 ... 3, each with a current temperature for input T i, E and output of a compressor unit T i , A ,
  • a current pressure P i, E and P i, A ,
the individual compressor units 3, 4 and 5, supplied as actual values 30.

Die Sollwerte bzw. Grenzwerte 31 für die Regelung der Steuerungseinrichtung 12 setzen sich aus einer Maximaltemperatur Tg,A,max einem Druck Pg,A(Soll) und einem Volumenstrom g(Soll) an der Ausgangsseite der Verdichtungsanlage sowie einem maximalen Saugdruck P g,E(max) bzw. Pg,A(max) an der Eingangsseite bzw. der Ausgangsseite der Verdichtungsanlage zusammen.The setpoint values or limit values 31 for the control of the control device 12 are made up of a maximum temperature T g, A, max of a pressure P g, A (Should) and a volume flow g (Should) on the output side of the compression system and a maximum suction pressure P g , E (max) and P g, A (max) on the input side and the output side of the compression system together.

Mit den Istwerten 30 als Prozessgrößen und der Grundgleichung G1.1 werden die Eingangsgrößen 33 für das Optimierungsmodul 11 vervollständigt.With the actual values 30 as process variables and the basic equation G1.1, the input variables 33 for the optimization module 11 are completed.

Im Optimierungsmodul 11 wird nun ein minimaler Gesamtenergiebedarf berechnet. Für die parallel angeordneten Verdichteraggregate 3, 4 und 5 wird das Minimierungsproblemmittels eines Branch-and-Bound Algorithmus ( L.A. Wolsey, "Integer programming", John Wiley & Sons, New York, 1998 ) gelöst, der diskrete Variablen in einem binären Baum abläuft. Um nicht alle Zweige des binären Suchbaumes auswerten zu müssen, werden eine untere Grenze G für das Minimum durch das Lösen eines relaxierten Problems mittels Sequential-Quadratic-Programming ( P.E. Gill, W. Murray, M.H. Wright, "Practical Optimization", Academic Press, London, 1995 ) bestimmt.In the optimization module 11, a minimum total energy requirement is now calculated. For the compressor units 3, 4 and 5 arranged in parallel, the minimization problem is solved by means of a branch-and-bound algorithm (FIG. LA Wolsey, Integer Programming, John Wiley & Sons, New York, 1998 ), which runs discrete variables in a binary tree. In order not to have to evaluate all branches of the binary search tree, a lower limit G for the minimum is achieved by solving a relaxed problem by means of sequential quadratic programming (FIG. PE Gill, W. Murray, MH Wright, "Practical Optimization", Academic Press, London, 1995 ) certainly.

Im Optimierungsmodul 11 sind weiterhin spezielle Problemklassen und angepasste Problemformulierungen sowie effiziente Algorithmen implementiert, wie sie in folgender Literatur T. Jenicek, J. Kralik, "Optimized Control of Generalized Compressor Station ";
S. Wright, M. Somani, C. Ditzel, "Compressor Station Optimization", Pipeline Simulation Interest Group, Denver, Colorado, 1998 ;
K. Ehrhardt, M.C. Steinbach, "Nonlinear Optimization in Gas Networks", ZIB-Report 03-46, Berlin, 2003 und
R.G. Carter, "Compressor Station Optimization: Computational Accuracy and Speed", 1996 , zu finden sind.
In the optimization module 11 further special problem classes and adapted problem formulations and efficient algorithms are implemented, as in the following literature T. Jenicek, J. Kralik, "Optimized Control of Generalized Compressor Station ";
S. Wright, M. Somani, C. Ditzel, "Compressor Station Optimization", Pipeline Simulation Interest Group, Denver, Colorado, 1998 ;
K. Ehrhardt, MC Steinbach, "Nonlinear Optimization in Gas Networks", ZIB Report 03-46, Berlin, 2003 and
RG Carter, "Compressor Station Optimization: Computational Accuracy and Speed", 1996 , are to be found.

Ausgehend von einer kontinuierlichen Fahrweise der Verdichtungsanlage werden Arbeitspunkte 22 in Kennfeldern 20, siehe Figur 2, der Verdichteraggregate 3, 4 und 5 in ihrem optimalen Bereich gehalten.Based on a continuous operation of the compression system operating points 22 in maps 20, see FIG. 2 , the compressor units 3, 4 and 5 kept in their optimum range.

Bei Änderung des Volumenstroms g(Soll) der Verdichtungsanlage wird mittels der Optimierungsrechnung im Optimierungsmodul 11 aus einer aktuellen Schaltkonfiguration Si,t-1 der Verdichteraggregate 3, 4 und 5 hinsichtlich eines optimierten Gesamtenergiebedarfs der Verdichtungsanlage eine neue Schaltkonfiguration Si,t berechnet.When changing the volumetric flow g (Should) the compression system is calculated by means of the optimization calculation in the optimization module 11 from a current switching configuration S i, t-1 of the compressor units 3, 4 and 5 with respect to an optimized total energy demand of the compression system, a new switching configuration S i, t .

Eine Herabsetzung des Volumenstroms g(Soll) der Verdichtungsanlage um die Hälfte hat ein Optimierungsrechnungsergebnis zur Folge, welche folgende neue Schaltkonfiguration vorgibt: Das Verdichteraggregat 5 wird durch die Vorgabe S5,t = 0 heruntergefahren. Da der geforderte Volumenstrom der Verdichtungsanlage nunmehr mit zwei von drei Verdichteraggregaten erreicht werden kann, ist das Verdichteraggregat 5 inaktiv geschaltet. Alle in Betrieb befindlichen Verdichteraggregate 3 und 4 werden nun solange kontinuierlich gefahren, bis die Änderung des Volumenstroms oder eine Abweichung von den Sollwerten erneut eine Optimierungsrechnung mit einer geänderter Schaltkonfiguration zum Ergebnis hat. Kontinuierliche Fahrweise bedeutet, die in Betrieb befindlichen Verdichteraggregate werden mit einer optimierten Lastverteilung und mit einer optimierten Einstellung ihrer Arbeitspunkte 22 in den Kennfeldern 20 betrieben. Die Ausgangsgrößen 32 des Optimierungsmoduls 11 enthalten somit neben den momentan einzustellenden Schaltzuständen der Verdichteraggregate auch eine Drehzahl-Sollwertvorgabe λ i für die einzelnen Verdichteraggregate 3, 4 und 5.A reduction in the volume flow g (Should) the compression plant by half results in an optimization calculation result, which specifies the following new switching configuration: The compressor unit 5 is shut down by the default S 5 , t = 0. Since the required volume flow of the compression system can now be achieved with two out of three compressor units, the compressor unit 5 is inactive. All compressor units 3 and 4 in operation are now driven continuously until the change in the volume flow or a deviation from the setpoint values again results in an optimization calculation with a changed switching configuration. Continuous operation means that the compressor units in operation are operated with an optimized load distribution and with an optimized setting of their operating points 22 in the maps 20. The output variables 32 of the optimization module 11 thus also contain, in addition to the switching states of the compressor units currently to be set, a speed setpoint input λ i for the individual compressor units 3, 4 and 5.

Von der untergelagerten Stationsregelung, die höher zyklisch als die Optimierung läuft, werden die Drehzahl-Sollwerte λ i , bevor sie auf die Verdichteraggregatregler gegeben werden, mit einem gemeinsamen Faktor α skaliert, um die Sollwerte einzuregeln. Die Optimierungsrechnung wird mit einem Regelzyklus R im Optimierungsmodul 11 selbst auslösend ausgeführt. Bei der Optimierungsrechnung werden also zyklisch neben der Berechnung einer eventuellen Schaltkonfiguration Si,t die Lastverteilung zwischen den Verdichteraggregaten, d.h. die Wirkungsgrad optimalen Drehzahl-Sollwerte λ i für die einzelnen Verdichteraggregate 3, 4 und 5 zyklisch ausgeführt. Für die Dauer des Regelzyklusses R werden die Drehzahl-Sollwerte λ i und die Schaltkonfiguration Si,t-1 konstant gehalten. Verdoppelt sich nun der Volumenstrom g(Soll) der Gesamtanlage aufgrund von Laständerungen, so wird die Optimierungsrechnung mit dem nächsten Regelzyklus R eine neue Schaltkonfiguration Si,t , eine neue Lastverteilung, und eine neue Lage der wirkungsgradoptimalen Arbeitspunkte 22 vorgeben.From the subordinate station control, which runs higher than the optimization cycle, the speed setpoints λ i , before being applied to the compressor aggregate controllers, scaled by a common factor α to regulate the setpoints. The optimization calculation is executed with a control cycle R in the optimization module 11 itself triggering. In the optimization calculation , the load distribution between the compressor units, ie the efficiency of optimum speed setpoint values λ i for the individual compressor units 3, 4 and 5 are cyclically executed in addition to the calculation of a possible switching configuration S i, t . For the duration of the control cycle R, the desired speed values λ i and the shift configuration S i, t-1 are kept constant. Now doubled the volume flow g (Should) the overall system due to load changes, the optimization calculation with the next control cycle R will specify a new switching configuration S i, t , a new load distribution, and a new location of the efficiency-optimal operating points 22.

Die neue Schaltkonfiguration lautet jetzt drei von drei Verdichteraggregaten zu betreiben. Da das Ergebnis der Optimierungsrechnung noch vor Ende des Regelzyklusses bekannt ist, wird für das dritte anzufahrende Verdichteraggregat 5 eine Aufwärmphase gestartet. Mit Beendigung des Regelzyklus R werden die neuen Werte der Steuerungseinrichtung 10 und insbesondere den Verdichteraggregatsreglern 13, 14, 15 bereitgestellt. Das zuvor mit einer Aufwärmphase vorbereitete Verdichteraggregat 5 kann nunmehr nahtlos für den neuen Regelzyklus R zugeschaltet werden und der optimale Gesamtenergieverbrauch für die geforderte Förderleistung oder den geforderten Volumenstrom g(Soll) ist wieder gegeben.The new switching configuration is now operated by three out of three compressor units. Since the result of the optimization calculation is known before the end of the control cycle, a warm-up phase is started for the third compressor unit 5 to be approached. Upon completion of the control cycle R, the new values of the control device 10 and in particular the compressor unit regulators 13, 14, 15 are provided. The previously prepared with a warm-up compressor unit 5 can now be seamlessly connected to the new control cycle R and the optimal total energy consumption for the required flow rate or the required flow rate V̇ g (Should) is given again.

Figur 2 zeigt ein verdichterspezifisches Kennfeld 20 eines Verdichteraggregates 3. Das Verdichterkennfeld 20 zeigt die drehzahlabhängigen Förderkennlinien 21 und die Wirkungsgradkennlinien 23 des Verdichters in Abhängigkeit des auf der x-Achse aufgetragenen Volumenstromes 3, E am Eingang des Verdichters und der auf der y-Achse aufgetragenen spezifischen Förderarbeit γ3 des Verdichters (V̇ = ṁ/δ,δ = Dichte). FIG. 2 shows a compressor-specific map 20 of a compressor unit 3. The compressor map 20 shows the speed-dependent delivery characteristics 21 and the efficiency curves of the compressor 23 in dependence of the plotted on the x-axis flow rate V̇ 3, E at the input of the compressor and the plotted on the y-axis specific Conveying work γ 3 of the compressor ( V̇ = ṁ / δ, δ = density ).

Zusätzlich ist eine Pumpgrenze 36 eingetragen. Wirkungsgrad optimale Arbeitspunkte 22 liegen nahe der Pumpgrenze 36 auf einer Wirkungsgradkennlinie 23 mit einem hohen Wirkungsgrad η3,max .Für das mit Figur 1 beschriebene Verfahren sind die Kennfelder 20 als mathematische Funktion von einem Massenfluss (oder des Volumenstromes) und einer spezifischen Förderarbeit der einzelnen Verdichtungsaggregate gegeben. Die mathematische Formulierung der Kennfelder 20 als Rechenfunktion ist Bestandteil des Optimierungsmoduls 11 bzw. der Optimierungsrechnung.In addition, a surge limit 36 is entered. Efficiency optimal operating points 22 are close to the pumping limit 36 on an efficiency curve 23 with a high efficiency η 3, max .For that with FIG. 1 described methods are the maps 20 given as a mathematical function of a mass flow (or the volume flow) and a specific production work of the individual compression units. The mathematical formulation of the maps 20 as a calculation function is part of the optimization module 11 or the optimization calculation.

Figur 3 zeigt eine Steuerungseinrichtung 10 zur Steuerung einer Verdichtungsanlage 1. Die durch das Optimierungsmodul 11 ermittelten optimalen Drehzahlsollwerte λ i und die neue Schaltkonfiguration Si,t werden, in Zusammenwirken mit der Steuerungseinrichtung 10, über ein Stellmodul S an den Verdichteraggregaten 3, 4 und 5 eingestellt und/oder geregelt. FIG. 3 shows a control device 10 for controlling a compression system 1. The determined by the optimization module 11 optimal speed setpoints λ i and the new switching configuration S i, t are, in cooperation with the controller 10, via an adjusting module S to the compressor units 3, 4 and 5 set and / or regulated.

Als Regelgröße für eine Regelung der Steuerungseinrichtung 10 wird insbesondere diejenige Größe aus Durchfluss, Saugdruck, Enddruck und Endtemperatur, welche die kleinste positive Regelabweichung aufweist, verwendet. Die Regelung der Steuerungseinrichtung 10 liefert als Ausgang zusammen mit dem Optimierungsmodul die Sollwerte für die einen einzelnen Verdichteraggregat-Regler 13, 14, 15 siehe Fig. 2.As a controlled variable for a control of the control device 10, in particular that variable of flow, suction pressure, discharge pressure and end temperature, which has the smallest positive control deviation, is used. The control of the control device 10 supplies as output together with the optimization module, the setpoint values for a single compressor unit controller 13, 14, 15 see Fig. 2 ,

Figur 4 zeigt ein Ablaufdiagramm der Verfahrensschritte 40, 42, 44 und 46. Ausgehend von einem ersten Verfahrensschritt 40 wird das Optimierungsverfahren zyklisch angestoßen. Mit einem zweiten Verfahrensschritt 42 wird der aktuelle Zustand der Verdichterstation 1 ermittelt. Folgende Werte werden dazu erfasst: Istwerte 30, Sollwerte 31, Grenzwerte und Randbedingungen 37 und Modelle 24a, 24b, und 24c aus der Modellbibliothek 26. Zusätzlich wird erfindungsgemäß der aktuelle Schaltzustand Si,t-1 der Verdichtungsanlage 1 ermittelt. Ein dritter Verfahrensschritt 44 stellt eine Entscheidungsstelle dar. Mit dem dritten Verfahrensschritt 44 wird die Entscheidung getroffen eine Optimierungsrechnung 46 in einem vierten Verfahrensschritt durchzuführen oder das Verfahren zu beenden 48. Aufgrund der vorliegenden Istwerte 30 und Sollwerte 31 kann entschieden werden, ob eine Optimierungsrechnung notwendig ist. Für den Fall, dass der dritte Verfahrensschritt eine Ja-Entscheidung Y ergibt, wird das Verfahren mit dem vierten Verfahrensschritt 46 weiterarbeiten. In dem vierten Verfahrensschritt 46 wird das gemischt-ganzzahlige Optimierungsproblem gelöst. Eingangsgrößen für den vierten Verfahrensschritt 46 sind wiederum Istwerte 30, Sollwerte 31, Grenzwerte und Randbedingungen 37 und die Modelle aus einer Modellbibliothek 26. Als Ergebnis des vierten Verfahrensschrittes 46 werden Drehzahlsollwerte λi und neue Schaltzustände Si,t ausgegeben. Das Verfahren ist beendet 48. Mit dem zyklischen Anstoß aus dem ersten Verfahrensschritt 40 wird das Verfahren erneut durchlaufen. FIG. 4 shows a flowchart of the method steps 40, 42, 44 and 46. Starting from a first method step 40, the optimization process is initiated cyclically. With a second method step 42, the current state of the compressor station 1 is determined. The following values are recorded: actual values 30, setpoints 31, limit values and boundary conditions 37 and models 24a, 24b, and 24c from the model library 26. In addition, according to the invention, the current switching state S i , t-1 of the compression plant 1 is determined. A third method step 44 represents a decision point. The decision is made with the third method step 44 perform an optimization calculation 46 in a fourth method step or end the method 48. On the basis of the present actual values 30 and set values 31, it can be decided whether an optimization calculation is necessary. In the event that the third method step yields a yes decision Y, the method will continue with the fourth method step 46. In the fourth method step 46, the mixed-integer optimization problem is solved. Input variables for the fourth method step 46 are again actual values 30, setpoint values 31, limit values and boundary conditions 37 and the models from a model library 26. As a result of the fourth method step 46, speed setpoint values λ i and new switching states S i, t are output. The method is ended 48. With the cyclical initiation from the first method step 40, the method is run through again.

Claims (26)

  1. Method for controlling a compressor plant (1) having at least two compressor units (i=1, ..., N) which can be connected and/or disconnected separately, having a plurality of devices for changing the operating output of the compressor units (i=1, ..., N) and having a control device (10), characterized in that, in the event that new set points are predefined or there is a change in the current state of the compressor plant (1), by means of an optimization calculation, a new switching configuration (Si,t) is calculated from a current switching configuration (Si,t-1 ) of the compressor units (i=1, ..., N), with regard to an optimized total energy demand (EG) of the compressor plant (1), and in that the new switching configuration (Si,t) is set automatically via the control device (10).
  2. Method according to Claim 1, characterized in that a forecast for at least one future time (t), preferably a plurality of future times (t), is determined by means of the optimization calculation.
  3. Method according to Claim 1 or 2, characterized in that compressor unit-specific data sets and/or compressor unit-specific characteristic maps (20) are evaluated and, for the individual compressor units (i=1, ..., N), working points (22) are determined, which depend on predefined or changed values of the mass flow and a specific delivery work (y), the working points (22) being set in such a way that the total energy demand (EG) of the compressor plant (1) is optimized.
  4. Method according to Claim 3, characterized in that the data sets and/or characteristic maps (20) are provided as a function of a mass flow (i) or a corresponding volume flow (i ) and a specific delivery work (λ i ) of the individual compressor units (i=1, ..., N).
  5. Method according to one of Claims 1 to 4, characterized in that, during the optimization calculation, in addition to the switching configuration (Si,t), a load distribution between the compressor units (i=1, ..., N) is calculated and is changed if necessary.
  6. Method according to one of Claims 1 to 5, characterized in that the optimization calculation is carried out with a control cycle (R), in particular in a self-triggering manner.
  7. Method according to Claim 6, in which, with each control cycle (R), rotational speed set points (λ i ) and/or the new switching configuration (Si,t ) for the control device are provided as output variables (32) from the optimization calculation.
  8. Method according to Claim 7, characterized in that, for the duration of the control cycle (R), which, in particular, is a multiple of a cycle time (Z) of the control action (12) of the control device (10), the rotational speed set points (λ i ) and/or the switching configuration (Si,t ) are kept constant.
  9. Method according to either of Claims 7 and 8, in which the rotational speed set points (λ i ) are scaled with a common factor (α) and used as a set point for a compressor unit controller (13, 14, 15).
  10. Method according to one of Claims 1 to 9, in which the control device (10), using the new switching configuration (Si,t =1), triggers a warm-up phase of the compressor units (i=1, ..., N) for the subsequent connection of a compressor unit (S i,t-1=0) that was previously out of operation, even before the end of the control cycle (R).
  11. Method according to Claim 10, characterized in that, with the end of the warm-up phase, a readiness to be loaded for the next control cycle (R) is communicated to the control device (10).
  12. Method according to one of Claims 1 to 11, in which the following are evaluated as an input (23) for the optimization calculation
    - a model (24) of the individual compressor units (i=1, ..., N) and/or
    - a model library (26) of the entire compressor plant (1) , and/or
    - a current specific delivery work (y i,t-1) of the individual compressor units (i=1, ..., N) and/or
    - a current specific delivery work (y g,t-1) of the compressor plant (1) and/or
    - a current mass flow (ṁ i,t-1 ) through the individual compressor unit (i=1, ..., N), in particular through an individual compressor, and/or
    - a current mass flow ( g,t-1) through the compressor plant (1) and/or
    - the current switching configuration (Si,t-1 ) and/or
    - an intake pressure (Pg,E ) on the inlet side (E) of the compressor plant (1) and/or
    - an intake pressure (pi,E) on the inlet side of the individual compressor unit and/or
    - an end pressure (Pg,A ) on the outlet side (A) of the compressor plant (1) and/or
    - an end pressure (Pi,A ) on the outlet side of the individual compressor unit (i=1, ..., N) and/or
    - a temperature (Tg,A ) on the outlet side (A) of the compressor plant (1) and/or
    - a temperature (Tg,E ) on the inlet side (E) of the compressor plant (1) and/or
    - a temperature (Ti,A ) on the outlet side of the individual compressor units (i=1, ..., N) and/or
    - a temperature (Ti,E ) on the inlet side of the individual compressor units (i=1, ..., N) and/or
    - the current rotational speeds of the compressor units.
  13. Method according to one of Claims 1 to 12, in which the optimization calculation minimizes the total energy demand expected at a later time (t) by means of forecast calculations in accordance with the principle of model-predictive control.
  14. Method according to one of Claims 1 to 13, characterized in that an energy consumption (ES) of a switching operation is taken into account during the optimization calculation.
  15. Method according to Claim 14, characterized in that the energy consumption (ES) of the switching operation is calculated from the data sets and/or the characteristic maps (20) of the compressor units (i=1, ..., N).
  16. Method according to one of Claims 1 to 15, characterized in that the specific delivery work (yg ) of the compressor plant (1) is assumed to be constant for the control cycle (R), in particular when the compressor units (i=1, ..., N) are connected in parallel.
  17. Method according to one of Claims 1 to 15, characterized in that the mass flow (g ) of the compressor plant (1) is assumed to be constant for the control cycle (R), in particular when the compressor units (i=1,..., N) are connected in series.
  18. Method according to one of Claims 1 to 17, in which an active compressor unit (Si =1) is operated at least with a predefinable or predefined minimum flow ( i min).
  19. Method according to one of Claims 1 to 18, in which the optimization calculation is carried out by means of a branch and bound algorithm.
  20. Method according to Claim 19, in which a limit (G) for the branch and bound algorithm is determined by solving a relaxed problem by means of sequential quadratic programming.
  21. Method according to one of Claims 1 to 20, in which the optimization calculation solves partial problems by means of dynamic programming, in particular in the case of series connection.
  22. Control device (10) for controlling a compressor plant (1) having at least two compressor units (i=1, ..., N) which can be connected and/or disconnected separately and having a plurality of devices for changing the operating output of the compressor units (i=1, ..., N), characterized by an
    - optimization module (11), with which, in the event that new set points are predefined or there is a change in the current state of the compressor plant, by means of an optimization calculation, a new switching configuration (Si,t ) can be calculated from a current switching configuration (S i,t-1) of the compressor units (i=1, ..., N), with regard to an optimized total energy demand (EG) of the compressor plant (1), and
    - by an actuating module (S), with which the new switching configuration (Si,t ) can be set automatically.
  23. Control device (10) according to Claim 22, characterized in that the optimization module (11) is arranged at a physical distance, in particular a plurality of km, from the control device (10).
  24. Control device according to one of Claims 22 to 23, characterized in that the optimization module is set up to take into account an energy consumption (ES) of a switching operation.
  25. Control device according to one of Claims 22 to 24, characterized in that the optimization module (11) is set up for the optimization calculation for a plurality of control devices of a plurality of compressor plants.
  26. Computer program product containing software for carrying out a method according to one of Claims 1 to 21.
EP06707973A 2005-02-11 2006-02-02 Method for optimizing the functioning of a plurality of compressor units and corresponding device Active EP1846660B8 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06707973T PL1846660T3 (en) 2005-02-11 2006-02-02 Method for optimizing the functioning of a plurality of compressor units and corresponding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005006410A DE102005006410A1 (en) 2005-02-11 2005-02-11 Method for optimizing the operation of several compressor units and apparatus for this purpose
PCT/EP2006/050612 WO2006084817A1 (en) 2005-02-11 2006-02-02 Method for optimizing the functioning of a plurality of compressor units and corresponding device

Publications (3)

Publication Number Publication Date
EP1846660A1 EP1846660A1 (en) 2007-10-24
EP1846660B1 true EP1846660B1 (en) 2009-04-08
EP1846660B8 EP1846660B8 (en) 2009-11-11

Family

ID=36283270

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06707973A Active EP1846660B8 (en) 2005-02-11 2006-02-02 Method for optimizing the functioning of a plurality of compressor units and corresponding device

Country Status (16)

Country Link
US (1) US7676283B2 (en)
EP (1) EP1846660B8 (en)
CN (1) CN101155995A (en)
AT (1) ATE428055T1 (en)
AU (1) AU2006212264A1 (en)
BR (1) BRPI0606994A2 (en)
CA (1) CA2597519A1 (en)
DE (2) DE102005006410A1 (en)
DK (1) DK1846660T3 (en)
ES (1) ES2321872T3 (en)
MX (1) MX2007009728A (en)
NO (1) NO20074604L (en)
PL (1) PL1846660T3 (en)
RU (1) RU2381386C2 (en)
UA (1) UA88045C2 (en)
WO (1) WO2006084817A1 (en)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128406B2 (en) * 2008-05-26 2019-01-02 Siemens Aktiengesellschaft Method for operating a gas turbine
NO329451B1 (en) * 2008-11-03 2010-10-25 Statoil Asa Procedure for maintaining pressure in the export gas from a well
DE102008064491A1 (en) 2008-12-23 2010-06-24 Kaeser Kompressoren Gmbh Simulation-based method for controlling or regulating compressed air stations
DE102008064490A1 (en) * 2008-12-23 2010-06-24 Kaeser Kompressoren Gmbh Method for controlling a compressor system
DE102009017613A1 (en) * 2009-04-16 2010-10-28 Siemens Aktiengesellschaft Method for operating several machines
GB0919771D0 (en) 2009-11-12 2009-12-30 Rolls Royce Plc Gas compression
BE1019108A3 (en) * 2009-12-02 2012-03-06 Atlas Copco Airpower Nv METHOD FOR CONTROLLING A COMPOSITE DEVICE AND DEVICE IN WHICH THIS METHOD CAN BE APPLIED
DE102010040503B4 (en) * 2010-09-09 2012-05-10 Siemens Aktiengesellschaft Method for controlling a compressor
RU2454569C1 (en) * 2011-02-14 2012-06-27 Общество с ограниченной ответственностью "Вега-ГАЗ" Control method of hydraulic conditions of compressor shop with optimum load distribution between gas compressor units
US9527683B2 (en) 2011-07-25 2016-12-27 Siemens Aktiengesellschaft Method and device for controlling and/or regulating a fluid conveyor for conveying a fluid within a fluid line
DE102011079732B4 (en) * 2011-07-25 2018-12-27 Siemens Aktiengesellschaft A method and apparatus for controlling a fluid conveyor for delivering a fluid within a fluid conduit
DE102013001921A1 (en) * 2013-02-05 2014-08-07 Man Diesel & Turbo Se Method for operating e.g. gas conveyer system, involves opening regulating valve of operating compressor during operating shift, based on control deviation between target and actual values of controller
US10418833B2 (en) 2015-10-08 2019-09-17 Con Edison Battery Storage, Llc Electrical energy storage system with cascaded frequency response optimization
US9436179B1 (en) 2013-03-13 2016-09-06 Johnson Controls Technology Company Systems and methods for energy cost optimization in a building system
US9235657B1 (en) 2013-03-13 2016-01-12 Johnson Controls Technology Company System identification and model development
US9852481B1 (en) 2013-03-13 2017-12-26 Johnson Controls Technology Company Systems and methods for cascaded model predictive control
ES2776004T3 (en) * 2013-03-15 2020-07-28 Kaeser Kompressoren Se Development of a superior model for the control and / or monitoring of a compressor installation
EP4177466A1 (en) * 2013-03-15 2023-05-10 Kaeser Kompressoren SE Measurement value standardisation
US11231037B2 (en) 2013-03-22 2022-01-25 Kaeser Kompressoren Se Measured value standardization
DE102013014542A1 (en) * 2013-09-03 2015-03-05 Stiebel Eltron Gmbh & Co. Kg heat pump device
DE102013111218A1 (en) * 2013-10-10 2015-04-16 Kaeser Kompressoren Se Electronic control device for a component of the compressed air generation, compressed air preparation, compressed air storage and / or compressed air distribution
US9695834B2 (en) 2013-11-25 2017-07-04 Woodward, Inc. Load sharing control for compressors in series
EP2919078A1 (en) * 2014-03-10 2015-09-16 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Navier-Stokes based indoor climate control
US10175681B2 (en) 2014-05-01 2019-01-08 Johnson Controls Technology Company High level central plant optimization
DE102014006828A1 (en) * 2014-05-13 2015-11-19 Wilo Se Method for energy-optimal speed control of a pump set
US20150329289A1 (en) * 2014-05-15 2015-11-19 Ronald R. Mercer Subterranean Sealed Bore Fuel System
US10190789B2 (en) 2015-09-30 2019-01-29 Johnson Controls Technology Company Central plant with coordinated HVAC equipment staging across multiple subplants
US10190793B2 (en) 2015-10-08 2019-01-29 Johnson Controls Technology Company Building management system with electrical energy storage optimization based on statistical estimates of IBDR event probabilities
US10222427B2 (en) 2015-10-08 2019-03-05 Con Edison Battery Storage, Llc Electrical energy storage system with battery power setpoint optimization based on battery degradation costs and expected frequency response revenue
US10186889B2 (en) 2015-10-08 2019-01-22 Taurus Des, Llc Electrical energy storage system with variable state-of-charge frequency response optimization
US10742055B2 (en) 2015-10-08 2020-08-11 Con Edison Battery Storage, Llc Renewable energy system with simultaneous ramp rate control and frequency regulation
US10197632B2 (en) 2015-10-08 2019-02-05 Taurus Des, Llc Electrical energy storage system with battery power setpoint optimization using predicted values of a frequency regulation signal
US10564610B2 (en) 2015-10-08 2020-02-18 Con Edison Battery Storage, Llc Photovoltaic energy system with preemptive ramp rate control
US10418832B2 (en) 2015-10-08 2019-09-17 Con Edison Battery Storage, Llc Electrical energy storage system with constant state-of charge frequency response optimization
US11210617B2 (en) 2015-10-08 2021-12-28 Johnson Controls Technology Company Building management system with electrical energy storage optimization based on benefits and costs of participating in PDBR and IBDR programs
US10700541B2 (en) 2015-10-08 2020-06-30 Con Edison Battery Storage, Llc Power control system with battery power setpoint optimization using one-step-ahead prediction
US10283968B2 (en) 2015-10-08 2019-05-07 Con Edison Battery Storage, Llc Power control system with power setpoint adjustment based on POI power limits
US10250039B2 (en) 2015-10-08 2019-04-02 Con Edison Battery Storage, Llc Energy storage controller with battery life model
US10554170B2 (en) 2015-10-08 2020-02-04 Con Edison Battery Storage, Llc Photovoltaic energy system with solar intensity prediction
US10389136B2 (en) 2015-10-08 2019-08-20 Con Edison Battery Storage, Llc Photovoltaic energy system with value function optimization
EP3374706B1 (en) 2015-11-09 2024-01-10 Carrier Corporation Dual-compressor refrigeration unit
BR112018068330B1 (en) * 2016-03-14 2023-01-17 Bitzer Kühlmaschinenbau Gmbh SYSTEM FOR START-UP OF A REFRIGERANT COMPRESSOR UNIT, AS WELL AS METHOD FOR START-UP OF A REFRIGERANT COMPRESSOR UNIT
US20170292763A1 (en) * 2016-04-06 2017-10-12 Heatcraft Refrigeration Products Llc Control verification for a modular outdoor refrigeration system
US10337669B2 (en) 2016-04-29 2019-07-02 Ocean's NG, LLC Subterranean sealed tank with varying width
DE102016208507A1 (en) * 2016-05-18 2017-11-23 Siemens Aktiengesellschaft Method for determining an optimal strategy
US10778012B2 (en) 2016-07-29 2020-09-15 Con Edison Battery Storage, Llc Battery optimization control system with data fusion systems and methods
US10594153B2 (en) 2016-07-29 2020-03-17 Con Edison Battery Storage, Llc Frequency response optimization control system
EP4365453A2 (en) * 2016-12-30 2024-05-08 Grundfos Holding A/S Method for operating an electronically controlled pump unit
US10838441B2 (en) 2017-11-28 2020-11-17 Johnson Controls Technology Company Multistage HVAC system with modulating device demand control
US10838440B2 (en) 2017-11-28 2020-11-17 Johnson Controls Technology Company Multistage HVAC system with discrete device selection prioritization
US11841025B2 (en) 2018-03-20 2023-12-12 Enersize Oy Method for analyzing, monitoring, optimizing and/or comparing energy efficiency in a multiple compressor system
CN110307144B (en) * 2018-03-20 2021-05-11 恩尔赛思有限公司 Method for analyzing, monitoring, optimizing and/or comparing energy efficiency in a multi-compressor system
CN110307138B (en) * 2018-03-20 2021-05-04 恩尔赛思有限公司 Method for designing, measuring and optimizing multi-compressor system related to energy efficiency
WO2019179997A1 (en) 2018-03-20 2019-09-26 Enersize Oy A method for designing, gauging and optimizing a multilpe compressor system with respect to energy efficiency
US11163271B2 (en) 2018-08-28 2021-11-02 Johnson Controls Technology Company Cloud based building energy optimization system with a dynamically trained load prediction model
US11159022B2 (en) 2018-08-28 2021-10-26 Johnson Controls Tyco IP Holdings LLP Building energy optimization system with a dynamically trained load prediction model
US10837601B2 (en) 2018-10-29 2020-11-17 Ronald R. Mercer Subterranean gas storage assembly
TWI699478B (en) * 2019-05-01 2020-07-21 復盛股份有限公司 Scheduling method for compressor system
US11408418B2 (en) * 2019-08-13 2022-08-09 Rockwell Automation Technologies, Inc. Industrial control system for distributed compressors
US11680684B2 (en) 2021-04-16 2023-06-20 Bedrock Gas Solutions, LLC Small molecule gas storage adapter
CN114656052A (en) * 2022-04-29 2022-06-24 重庆江增船舶重工有限公司 Multistage parallel aeration blower operation method for sewage treatment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665399A (en) * 1969-09-24 1972-05-23 Worthington Corp Monitoring and display system for multi-stage compressor
US4640665A (en) * 1982-09-15 1987-02-03 Compressor Controls Corp. Method for controlling a multicompressor station
JPS62243995A (en) 1986-04-14 1987-10-24 Hitachi Ltd Parallel operation control device for compressor
DE3937152A1 (en) * 1989-11-08 1991-05-16 Gutehoffnungshuette Man METHOD FOR OPTIMIZING OPERATION OF TWO OR SEVERAL COMPRESSORS IN PARALLEL OR SERIES
US5347467A (en) 1992-06-22 1994-09-13 Compressor Controls Corporation Load sharing method and apparatus for controlling a main gas parameter of a compressor station with multiple dynamic compressors
DE4430468C2 (en) * 1994-08-27 1998-05-28 Danfoss As Control device of a cooling device
US5743715A (en) 1995-10-20 1998-04-28 Compressor Controls Corporation Method and apparatus for load balancing among multiple compressors
US5743714A (en) * 1996-04-03 1998-04-28 Dmitry Drob Method and apparatus for minimum work control optimization of multicompressor stations
US20040095237A1 (en) * 1999-01-09 2004-05-20 Chen Kimball C. Electronic message delivery system utilizable in the monitoring and control of remote equipment and method of same
US6535795B1 (en) * 1999-08-09 2003-03-18 Baker Hughes Incorporated Method for chemical addition utilizing adaptive optimization
MY126873A (en) * 2000-01-07 2006-10-31 Vasu Tech Ltd Configurable electronic controller for appliances
US20010045101A1 (en) * 2000-02-11 2001-11-29 Graham Donald E. Locomotive air conditioner control system and related methods
DE10151032A1 (en) 2001-10-16 2003-04-30 Siemens Ag Process for optimizing the operation of several compressor units in a natural gas compression station
DE10208676A1 (en) * 2002-02-28 2003-09-04 Man Turbomasch Ag Ghh Borsig Process for controlling several turbomachines in parallel or in series

Also Published As

Publication number Publication date
NO20074604L (en) 2007-09-11
CA2597519A1 (en) 2006-08-17
WO2006084817A1 (en) 2006-08-17
CN101155995A (en) 2008-04-02
EP1846660A1 (en) 2007-10-24
PL1846660T3 (en) 2010-01-29
DE102005006410A1 (en) 2006-08-17
US20080131258A1 (en) 2008-06-05
DK1846660T3 (en) 2009-07-27
BRPI0606994A2 (en) 2009-07-28
RU2381386C2 (en) 2010-02-10
US7676283B2 (en) 2010-03-09
ES2321872T3 (en) 2009-06-12
DE502006003377D1 (en) 2009-05-20
UA88045C2 (en) 2009-09-10
RU2007133792A (en) 2009-03-20
MX2007009728A (en) 2007-09-26
ATE428055T1 (en) 2009-04-15
AU2006212264A1 (en) 2006-08-17
EP1846660B8 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
EP1846660B1 (en) Method for optimizing the functioning of a plurality of compressor units and corresponding device
EP0431287B1 (en) Process for optimised operation of two or more compressors in parallel or series operation
EP2573400B1 (en) Method for controlling a compressor installation
DE10013098C2 (en) Plant for generating compressed air
EP2394041B1 (en) Internal combustion engine
DE602005002723T2 (en) Method for testing the energy performance of an industrial unit
EP2060788B1 (en) Method for operating a pump assembly and pump assembly
EP1236558B1 (en) Method for fluid supply regulation of an hydraulic actuator
DE2947618A1 (en) CONTROL PROCEDURES FOR A MULTISTAGE CENTRIFUGAL COMPRESSOR PLANT
DE102013014413A1 (en) Pressure control method
EP1716327A1 (en) Conveyor device
EP1436510B1 (en) Method for optimizing the operation of several compressor units in a natural gas compression station
DE3424024A1 (en) METHOD AND DEVICE FOR CONTROLLING THE FLOW RATE OF A MULTI-STAGE COMPRESSOR
EP3330644A1 (en) Refrigeration system and a method for regulating a refrigeration system
DE102014210304B4 (en) A method of operating a system having at least two power components, controller, computer program product, and system
EP2213874A2 (en) Method for operating a wind farm
WO2019016056A1 (en) Method for controlling at least two fans
DE102021212305A1 (en) Electronic control unit for a hydraulic drive, hydraulic drive and method with a hydraulic drive
DE19938623A1 (en) Loss load equivalent minimizing system for drive system, using degree of freedom to vary service point to achieve local minimum
EP1672203B1 (en) Method and device for engine control in a vehicle
WO2005071241A1 (en) Method and device for controlling an electrically driven compressor of an internal combustion engine
EP2443320B1 (en) Method for operating a power station
DE1503568A1 (en) Gas turbine power plant
EP1400696B1 (en) Method for controlling a set of compressors and/or ventilators
DE102015121905A1 (en) Compressor system with stepless regulation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070726

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: METZGER, MICHAEL

Inventor name: LIEPOLD, HELMUT

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: METZGER, MICHAEL

Inventor name: LIEPOLD, HELMUT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006003377

Country of ref document: DE

Date of ref document: 20090520

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2321872

Country of ref document: ES

Kind code of ref document: T3

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20090506

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090908

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090808

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

26N No opposition filed

Effective date: 20100111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20100209

Year of fee payment: 5

Ref country code: IE

Payment date: 20100219

Year of fee payment: 5

Ref country code: RO

Payment date: 20100126

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20100125

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100217

Year of fee payment: 5

Ref country code: TR

Payment date: 20100127

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090709

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100209

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20110228

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110202

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091009

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 428055

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006003377

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220811 AND 20220817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230221

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230221

Year of fee payment: 18

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

Effective date: 20230620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240308

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 19

Ref country code: GB

Payment date: 20240220

Year of fee payment: 19