JPS62243995A - Parallel operation control device for compressor - Google Patents
Parallel operation control device for compressorInfo
- Publication number
- JPS62243995A JPS62243995A JP61084326A JP8432686A JPS62243995A JP S62243995 A JPS62243995 A JP S62243995A JP 61084326 A JP61084326 A JP 61084326A JP 8432686 A JP8432686 A JP 8432686A JP S62243995 A JPS62243995 A JP S62243995A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- compressors
- suction
- flow rate
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 239000000498 cooling water Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000008400 supply water Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
Landscapes
- Control Of Positive-Displacement Air Blowers (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧縮機の並列運転制御装置に係シ。[Detailed description of the invention] [Industrial application field] The present invention relates to a parallel operation control device for compressors.
特に1例えば定態圧制御を必要とする複数台のターボ圧
縮機の省エネルギー運転に好適な、圧縮機の並列運転制
御装置に関するものである。In particular, the present invention relates to a compressor parallel operation control device suitable for energy-saving operation of a plurality of turbo compressors that require steady-state pressure control, for example.
負荷の変動に応じて、容量を異にする複数の圧縮機を組
合わせて自動的に制御する方式として、例えば特公昭5
4−1921号公報記載の手段が知られている。For example, as a method for automatically controlling multiple compressors with different capacities in response to load fluctuations,
4-1921 is known.
当該技術は、複数の圧縮機の運転順を負荷容量によって
変更するもので、小容量圧縮機は、負荷の変動に対処す
べく順次動作するが、大容量圧縮機は、起動指令の後に
独立して全負荷状態に移行するか、あるいは停止指令の
後に独立して徐々に停止させるように運転するもので、
起動停止が頻繁に行われることなく、効率の高い全負荷
状態で運転されるものである。This technology changes the operating order of multiple compressors depending on load capacity. Small-capacity compressors operate sequentially to cope with load fluctuations, but large-capacity compressors operate independently after a startup command. The system operates in such a way that it either moves to full load state or gradually stops independently after a stop command is issued.
It is operated under highly efficient full load conditions without frequent starting and stopping.
一般に、従来、複数台のターボ圧縮機の台数制御運転に
際し、各圧縮機の共通吐出管路の定態圧制御を行うには
、あらかじめ負荷配分器で一定の相関関係による各圧縮
機の負荷配分を設定しておき、運転時には共通吐出管路
に設けである風量変動検出器で風量を検出し、前記負荷
配分に従った流量制御信号を各圧縮機の吸込容量制御手
段に与えて運転制御を行うようになっていた。Generally, when controlling the number of turbo compressors, conventionally, in order to perform steady pressure control of the common discharge line of each compressor, a load distribution device is used to distribute the load of each compressor based on a certain correlation. is set, and during operation, the air volume is detected by an air volume variation detector installed in the common discharge pipe, and a flow rate control signal according to the load distribution is given to the suction capacity control means of each compressor to control the operation. I was supposed to do it.
上記従来技術では、複数台のターボ圧縮機の並列運転は
、一定の負荷配分で各圧縮機の吸込容量が制御され、各
圧縮機の個々の性能について配慮されていなかった。し
たがって、各圧縮機の合計消費動力が最小となるような
運転制御はできなかった。In the above-mentioned conventional technology, when a plurality of turbo compressors are operated in parallel, the suction capacity of each compressor is controlled with a fixed load distribution, and the individual performance of each compressor is not considered. Therefore, it was not possible to control the operation so that the total power consumption of each compressor was minimized.
本発明は、上記従来技術の問題点を解決するためになさ
れたもので、性能の異なる複数の圧縮機の容量制御を常
に最小動力となるように、省エネルギー制御を可能とす
る。圧縮機の並列運転制御装置の提供を、その目的とし
ている。The present invention has been made to solve the problems of the prior art described above, and enables energy-saving control of the capacity of a plurality of compressors with different performances so that the power is always minimized. Its purpose is to provide a parallel operation control device for compressors.
上記目的を達成するために、本発明に係る圧縮機の並列
運転制御装置の構成は、容量を異にする複数の圧縮機の
各吸込側に吸込容量制御手段を備え、各吐出側を共通吐
出管路に接続し、負荷に応じて容量制御を行う圧縮機の
並列運転制御装置において、複数の各圧縮機の各吸込管
路に温度検出器、各吐出管路に流量検出器、上記共通吐
出管路に流量変動検出器、および各圧縮機の冷却部に対
する共通給水管路に温度検出器をそれぞれ設け。In order to achieve the above object, the configuration of the compressor parallel operation control device according to the present invention includes a suction capacity control means on each suction side of a plurality of compressors having different capacities, and a common discharge side on each discharge side. In a compressor parallel operation control device that is connected to a pipeline and performs capacity control according to the load, a temperature detector is installed in each suction pipeline of each of the plurality of compressors, a flow rate detector is installed in each discharge pipeline, and the common discharge A flow rate fluctuation detector is installed in the pipeline, and a temperature detector is installed in the common water supply pipeline to the cooling section of each compressor.
さらに、前記各圧縮機の吸込温度および給水温度の複数
の設定条件下における前記各圧縮機の合計容量9合計消
費動力の最適制御テーブルを予め記憶させ、前記各圧縮
機の各吸込管路の温度検出器。Further, an optimal control table for the total capacity 9 total power consumption of each compressor under a plurality of setting conditions of the suction temperature and feed water temperature of each compressor is stored in advance, and the temperature of each suction pipe of each compressor is stored in advance. Detector.
前記共通給水管路の温度検出器、前記各圧縮機の各吐出
管路における流量検出器、および上記共通吐出管路にお
ける流量変動検出器の各検出データを入力して、これら
データから、予め記憶してある前記最適制御テーブルの
前記複数の設定条件のうち最も近い条件下にある最適制
御テーブルを選択し、負荷容量の変動の方向を確かめ、
前記各圧縮機の吸込容量制御手段に制御指令信号を出力
する演算制御装置を設けたものである。Detection data of the temperature detector of the common water supply pipe, the flow rate detector of each discharge pipe of each compressor, and the flow rate fluctuation detector of the common discharge pipe are input, and from these data, the data is stored in advance. selecting the optimal control table under the closest conditions among the plurality of setting conditions of the optimal control table set, and checking the direction of variation in load capacity;
The compressor is provided with an arithmetic and control device that outputs a control command signal to the suction capacity control means of each of the compressors.
なお付記すると1本発明は、マイクロコンピュータを使
用し、各圧縮機の性能特性を考慮し、各圧縮機の合計消
費動力が最小となるように各圧縮機の運転を制御して省
エネルギーを達成するものである。In addition, 1. The present invention uses a microcomputer, takes into account the performance characteristics of each compressor, and controls the operation of each compressor so that the total power consumption of each compressor is minimized, thereby achieving energy saving. It is something.
マイクロコンピュータには、あらかじめ各圧縮機の性能
特性により、各圧縮機の合計風量に対して各圧縮機の合
計消費動力が最小となるように。The microcomputer uses the performance characteristics of each compressor in advance to minimize the total power consumption of each compressor relative to the total air volume of each compressor.
各圧縮機の制御順位および負荷配分を記憶させておくも
のとする。すなわち、圧縮機の動力に大きな影響を与え
る吸込温度および冷却水給水温度の複数の条件に係る数
種類の組合わせについて、各圧縮機の合計風量と合計消
費動力の最適制御テーブルを、あらかじめマイクロコン
ピュータに記憶させる。The control order and load distribution of each compressor shall be stored. In other words, optimal control tables for the total air volume and total power consumption of each compressor are stored in advance in a microcomputer for several combinations of multiple conditions of suction temperature and cooling water supply temperature, which have a large effect on compressor power. Make me remember.
そして、共通吐出管路に設けた風量変動検出器の信号に
より、風量の変化が増量かまたは減量かを求め、各圧縮
機の吐出管路に設けた流量検出器から風量を求め、マイ
クロコンピュータによシ合計風量を算出する。また、吸
込管路に設けた温度検出器により吸込温度を、冷却水給
水管路に設けた温度検出器により給水温度をそれぞれ求
め、マイクロコンピュータに記憶してある吸込温度と冷
却水給水温度との組合せ条件の最も近いデータを選択し
、合計風量および風量変動検出器の信号により、各圧縮
機の吸込容量制御手段にマイクロコンピュータのデータ
に従って風量の増または減の指令信号を与えて制御する
。Then, based on the signal from the air volume fluctuation detector installed in the common discharge pipe, it is determined whether the change in air volume is an increase or decrease, and the air volume is determined from the flow rate detector installed in the discharge pipe of each compressor, and then Calculate the total air volume. In addition, the suction temperature is determined by a temperature detector installed in the suction pipe, and the supply water temperature is determined by a temperature detector installed in the cooling water supply pipe, and the suction temperature and the cooling water supply temperature stored in the microcomputer are calculated. The data closest to the combination conditions is selected, and a command signal to increase or decrease the air volume is given to the suction capacity control means of each compressor in accordance with the data from the microcomputer, using the total air volume and the signal from the air volume variation detector, to control the air volume.
以下1本発明の一実施例を第1図ないし第4図を参照し
て説明する。An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.
第1図は、本発明の一実施例に係るターボ圧縮機の並列
運転制御装置の機器構成を示す系統図。FIG. 1 is a system diagram showing the equipment configuration of a parallel operation control device for turbo compressors according to an embodiment of the present invention.
第2図は、容量の異なる圧縮機の性能曲線図、第3図は
、第2図の各圧縮機の性能を考慮した最適制御テーブル
を示す図、第4図は、マイクロコンピュータによる制御
のフローチャート図である。Figure 2 is a performance curve diagram of compressors with different capacities, Figure 3 is a diagram showing an optimal control table that takes into account the performance of each compressor in Figure 2, and Figure 4 is a flowchart of control by a microcomputer. It is a diagram.
第1図において、IA、IB、ICは、容量を異にする
3台のターボ圧縮機(以下単に圧縮機という)、2A、
2B、2Cは、前記3台の圧縮機LA、IB、ICのそ
れぞれの吸込管路を示す。In FIG. 1, IA, IB, and IC are three turbo compressors with different capacities (hereinafter simply referred to as compressors), 2A,
2B and 2C indicate the respective suction pipes of the three compressors LA, IB, and IC.
これら吸込管路2A、2B、2Cには、それぞれ、各圧
縮機の吸込容量制御手段に係る吸込風量制御弁3A、3
B、3Cが設けられ、また、これら吸込管路2A、2B
、2Cには、それぞれ温度検出器に係る温度計9A、9
B、9Cが設けられている。These suction pipes 2A, 2B, 2C are provided with suction air volume control valves 3A, 3, respectively, which are associated with the suction capacity control means of each compressor.
B, 3C are provided, and these suction pipes 2A, 2B
, 2C are thermometers 9A and 9 related to temperature detectors, respectively.
B and 9C are provided.
4A、4B、4Cは、前記3台の圧縮機IA。4A, 4B, and 4C are the three compressors IA.
IB、ICのそれぞれの吐出管路、5は、これら各吐出
管路を連通ずる共通吐出管路を示す。6A。The respective discharge pipes 5 of IB and IC indicate a common discharge pipe that communicates these respective discharge pipes. 6A.
6B、6Cは、各圧縮機IA、IB、ICのそれぞれに
備わった冷却器、7は、これら冷却器6A。6B and 6C are coolers provided for each of the compressors IA, IB, and IC, and 7 is the cooler 6A.
6B、6Cに冷却水を供給するための共通給水管路、8
は、前記各冷却器からの水を排出する共通排水管路であ
る。Common water supply pipe for supplying cooling water to 6B and 6C, 8
is a common drain line for discharging water from each of the coolers.
10は、共通給水管路7に設けた温度検出器に係る温度
計、IIA、IIB、IICは、前記各圧縮機の吐出管
路4A、4B、4Cに設けた流量検出器に係る流量計、
12は、共通吐出管路5に設けた流量変動検出器に係る
風量変動検出器である。10 is a thermometer related to a temperature detector provided in the common water supply pipe 7; IIA, IIB, and IIC are flow meters related to flow rate detectors provided in the discharge pipes 4A, 4B, and 4C of each of the compressors;
Reference numeral 12 denotes an air volume variation detector related to the flow rate variation detector provided in the common discharge pipe line 5.
13は、各圧縮機の運転状態の各信号を入力し。13 inputs each signal indicating the operating status of each compressor.
各圧縮機の吸込容量制御手段に係る吸込風量制御弁3A
、3B、3Cへ制御指令信号を出力するための演算制御
手段に係るマイクロコンピュータ(以下マイコンという
)であり、マイコン13に対する入力、出力の各信号の
系統は破線矢印をもって示している。Suction air volume control valve 3A related to suction capacity control means of each compressor
, 3B, and 3C, and is a microcomputer (hereinafter referred to as a microcomputer) related to an arithmetic control means for outputting control command signals to the microcomputer 13. The systems of input and output signals to the microcomputer 13 are indicated by dashed arrows.
容量の異なる各圧縮機IA、IB、ICのそれぞれの性
能を示したものが第2図であり、第2図の(a)図は圧
縮機IA、(b)図は圧縮機IB、(c)図は圧縮機I
Cの性能曲線図である。これら各図は。Figure 2 shows the performance of compressors IA, IB, and IC with different capacities. In Figure 2, (a) shows compressor IA, (b) shows compressor IB, and (c ) The figure shows compressor I
It is a performance curve diagram of C. Each of these figures.
温度計9A、9B、9Cで計測した吸込温度が300、
温度計10で計測した冷却水温が25tZ’における。The suction temperature measured with thermometers 9A, 9B, and 9C is 300,
The cooling water temperature measured by the thermometer 10 is 25tZ'.
風量Nm”/H(横軸)と動力KW(縦軸)との関係を
表わしたものである。It shows the relationship between air volume Nm''/H (horizontal axis) and power KW (vertical axis).
第2図(a)に示す圧縮機IAの性能は、最大風量30
00ONm”/Hの効率が3台中で1番高く1図中の太
い実線から明らかなように、容量制御運転に係る減量運
転時効率は25000 Nd/Hまでは効率の低下がな
(,25000Nm’/H以下では少し効率低下が生じ
る。The performance of the compressor IA shown in Fig. 2 (a) is the maximum air volume of 30
As is clear from the thick solid line in Figure 1, the efficiency at 00ONm''/H is the highest among the three units, and as is clear from the thick solid line in Figure 1, there is no decrease in efficiency during capacity control operation up to 25000Nd/H. /H or less, efficiency slightly decreases.
第2図(b)に示す圧縮機IBの性能は、最大風量28
000 Nn?/Hでの効率は3台中2番目であるが、
減量運転時効率は2500ONTF?/Hで最高効率と
なり、22000 Nrl/Hで最大風量点の効率と同
一となシ、22000 Nn?/H以下では効率低下が
増大する。The performance of the compressor IB shown in Fig. 2(b) is the maximum air volume of 28
000 Nn? /H efficiency is second out of three,
Efficiency during reduced operation is 2500ONTF? /H has the highest efficiency, and 22000 Nrl/H is the same as the efficiency at the maximum air volume point, 22000 Nn? /H or less, the efficiency decrease increases.
第2図(C)に示す圧縮機ICの性能は、最大風量12
000 Nm”/Hでの効率は3番目で、減量運転時効
率も低下が大きい。The performance of the compressor IC shown in Fig. 2 (C) is the maximum air volume of 12
The efficiency at 000 Nm''/H was the third, and the efficiency during reduced operation also decreased significantly.
第3図は、第2図に示した各圧縮機IA、IB。FIG. 3 shows the compressors IA and IB shown in FIG. 2.
ICの合計風量と合計消費動力との関係が最適になる、
すなわち消費動力が最小となるように求めたものである
。このときの合計風量と各圧縮機IA、IB、ICの運
転状態および制御順序などを表示した最適制御テーブル
を、あらかじめマイコン13に記憶させておく。この合
計風量と各圧縮機IA、IB、ICの運転状態の関係は
、吸込温度および冷却水給水温度の複数の条件、すなわ
ち数種類の組合わせKついてあらかじめ求めておき、マ
イコン13に記憶させるものである。The relationship between the IC's total air volume and total power consumption is optimized.
In other words, it is determined so that the power consumption is minimized. The microcomputer 13 stores in advance an optimum control table displaying the total air volume at this time, the operating status and control order of each compressor IA, IB, and IC. The relationship between this total air volume and the operating status of each compressor IA, IB, and IC is determined in advance for multiple conditions of suction temperature and cooling water supply temperature, that is, several types of combinations K, and is stored in the microcomputer 13. be.
次に1本実施例の圧縮機の並列運転制御装置の制御動作
について、第1図、第3図に合わせて第4図のフローチ
ャートを参照して説明する。Next, the control operation of the compressor parallel operation control device of this embodiment will be explained with reference to the flowchart of FIG. 4 in conjunction with FIGS. 1 and 3.
第1図のように配設された3台の圧縮機IA。Three compressors IA are arranged as shown in Figure 1.
IB、ICが、吸込温度30C,冷却水給水温度25C
の条件下で、各圧縮機IA、 IB、 1.C共。IB and IC have a suction temperature of 30C and a cooling water supply temperature of 25C.
Under the conditions of each compressor IA, IB, 1. Both C.
最大風量(合計風量70000 Nrl/H)で運転さ
れているものとする。It is assumed that the system is operated at the maximum air volume (total air volume 70,000 Nrl/H).
まず、マイコ、ン13は、各圧縮機IA、IB。First, the microcontroller 13 is connected to each compressor IA and IB.
1Cの吸込管路2A、2B、2Cに設けた温度計9A、
9B、9Cから吸込温度の検出データを読み込み、また
、共通給水管路7に設けた温度計10から給水温度の検
出データを読み込んで(第4図のステップ■)、あらか
じめ記憶されている制御データの吸込@度と給水温度の
組合せ条件の最も近い最適制御テーブルを選択しくステ
ップ■)、圧縮機に対する制御可能状態にする。Thermometers 9A installed in the suction pipes 2A, 2B, and 2C of 1C,
The detection data of the suction temperature is read from 9B and 9C, and the detection data of the supply water temperature is read from the thermometer 10 installed in the common water supply pipe 7 (step ■ in Fig. 4), and the control data stored in advance is read. Select the optimal control table that has the closest combination of suction temperature and feed water temperature (step ①) to enable control of the compressor.
ここで、共通吐出管路5における圧送風量が減少した場
合、共通吐出管路5に設けた風量変動検出器12により
検出し、マイコン13に風量域の信号が与えられる(ス
テップ■)。Here, if the pressurized air volume in the common discharge pipe 5 decreases, it is detected by the air volume fluctuation detector 12 provided in the common discharge pipe 5, and a signal in the air volume range is given to the microcomputer 13 (step 2).
マイコン13は、各圧縮機IA、IB、ICの各吐出管
路4A、4B、4Cに設けた流量計11人。The microcomputer 13 has 11 flow meters installed in each discharge pipe 4A, 4B, and 4C of each compressor IA, IB, and IC.
11B、IICの検出した風量データを読み込み、合計
風量を算出する(ステップ■)と同時に、第3図に示し
た最適制御テーブルの制御データと比較判断して、まず
圧縮機IBの吸込風量制御弁3Bに風量域の信号を出力
して制御する。11B reads the air volume data detected by IIC and calculates the total air volume (step ■), and at the same time compares it with the control data in the optimal control table shown in Fig. 3 and first sets the suction air volume control valve of compressor IB. It is controlled by outputting the air volume range signal to 3B.
ここで、共通吐出管路5に設けた風量変動検出器12か
らの減量信号が合計風量6700ONm/Hまでの間で
ストップすれば圧縮機IBのみの容量制御となる(ステ
ップ■)。さらに減量する場合は、圧縮機IBの吸込風
量制御弁3Bへの信号を合計風量67000 Nm’/
Hでストップすると同時に、圧縮機IAの吸込風量制御
弁3Aに風量域の信号を出力し減量制御を行う。合計風
量6700ONゼ/Hから62000 Nd/Hまでは
圧縮機IAにて制御を行う(ステップ■)。合計風量6
200ON trl / Hから59000 Nゴ/H
の制御は、圧縮機IAの吸込風量制御弁3Aへの信号を
合計風量62000 Nm’/Hでストップし、圧縮機
IBの吸込風量制御弁3Bに制御信号を出力して制御を
行う(ステップ■)。Here, if the reduction signal from the air volume variation detector 12 provided in the common discharge pipe 5 stops before the total air volume reaches 6700 ONm/H, the capacity of only the compressor IB is controlled (step 2). If you wish to further reduce the amount, the signal to the suction air volume control valve 3B of the compressor IB will be changed to a total air volume of 67,000 Nm'/
At the same time as stopping at H, a signal in the air volume range is output to the suction air volume control valve 3A of the compressor IA to perform reduction control. The total air volume from 6,700 ONze/H to 62,000 Nd/H is controlled by the compressor IA (Step 2). Total air volume 6
200ON trl/H to 59000Ngo/H
The control is performed by stopping the signal to the suction air volume control valve 3A of the compressor IA at a total air volume of 62000 Nm'/H, and outputting a control signal to the suction air volume control valve 3B of the compressor IB (step 2). ).
このような制御を行うことにより、3台の圧縮機IA、
IB、ICの合計動力が最小となるよう常に制御される
ことになる(ステップ■)。By performing such control, three compressors IA,
The total power of IB and IC is always controlled to be the minimum (step ■).
本実施例によれば、容量を異にする3台のターボ圧縮機
を、各圧縮機の共通吐出管路の急激な流量変動に速やか
に追従応答して、各圧縮機の合計消費動力が常に最小動
力となるよう容量制御することができる。According to this embodiment, three turbo compressors with different capacities can quickly follow and respond to rapid flow rate fluctuations in the common discharge pipe of each compressor, so that the total power consumption of each compressor can be maintained at all times. Capacity can be controlled to minimize power.
なお、前述の実施例では、第2図に示したように性能の
異なる3台のターボ圧縮機を並列運転する例を説明した
が、本発明はこの実施例に限定されるものではなく、性
能の異なる複数台の圧縮機に汎用的に適用できるもので
ある。In addition, in the above-mentioned embodiment, an example was explained in which three turbo compressors with different performances are operated in parallel as shown in FIG. 2, but the present invention is not limited to this embodiment. It can be universally applied to multiple compressors with different values.
以上述べたように1本発明によれば、性能の異なる複数
の圧縮機の容量制御を常に最小動力となるように、省エ
ネルギー制御を可能とする圧縮機の並列運転制御装置を
提供することができる。As described above, according to the present invention, it is possible to provide a compressor parallel operation control device that enables energy-saving control by controlling the capacity of a plurality of compressors with different performances so that the power is always minimized. .
第1図は1本発明の一実施例に係るターボ圧縮機の並列
運転制御装置の機器構成を示す系統図。
第2図は、容量の異なる圧縮機の性能曲線図、第3図は
、第2図の各圧縮機の性能を考慮した最適制御テーブル
を示す図、第4図は、マイクロコンピュータによる制御
のフローチャート図である。
IA、 IB、 IC・・・圧縮機、2A、2B、2
C・・・吸込管路、3A、3B、3C・・・吸込風量制
御弁。
4A、4B、4C・・・吐出管路、5・・・共通吐出管
路、6A、6B、6C・・・冷却器、7・・・共通給水
管路。
9A、9B、90.10・・・温度計、11A、IIB
。
11C・・・流量計、12・・・風量変動検出器、13
・・・、¥ 2 日
風量N−ん・″
茅4 固FIG. 1 is a system diagram showing the equipment configuration of a parallel operation control device for turbo compressors according to an embodiment of the present invention. Figure 2 is a performance curve diagram of compressors with different capacities, Figure 3 is a diagram showing an optimal control table that takes into account the performance of each compressor in Figure 2, and Figure 4 is a flowchart of control by a microcomputer. It is a diagram. IA, IB, IC...Compressor, 2A, 2B, 2
C... Suction pipe line, 3A, 3B, 3C... Suction air volume control valve. 4A, 4B, 4C...Discharge pipe line, 5...Common discharge pipe line, 6A, 6B, 6C...Cooler, 7...Common water supply pipe line. 9A, 9B, 90.10...Thermometer, 11A, IIB
. 11C...flow meter, 12...air volume fluctuation detector, 13
..., ¥ 2 daily air volume N-n・″ 4 hard
Claims (1)
制御手段を備え、各吐出側を共通吐出管路に接続し、負
荷に応じて容量制御を行う圧縮機の並列運転制御装置に
おいて、複数の各圧縮機の各吸込管路に温度検出器、各
吐出管路に流量検出器、上記共通吐出管路に流量変動検
出器、および各圧縮機の冷却部に対する共通給水管路に
温度検出器をそれぞれ設け、さらに、前記各圧縮機の吸
込温度および給水温度の複数の設定条件下における前記
各圧縮機の合計容量、合計消費動力の最適制御テーブル
を予め記憶させ、前記各圧縮機の各吸込管路の温度検出
器、前記共通給水管路の温度検出器、前記各圧縮機の各
吐出管路における流量検出器、および上記共通吐出管路
における流量変動検出器の各検出データを入力して、こ
れらデータから、予め記憶してある前記最適制御テーブ
ルの前記複数の設定条件のうち最も近い条件下にある最
適制御テーブルを選択し、負荷容量の変動の方向を確か
め、前記各圧縮機の吸込容量制御手段に制御指令信号を
出力する演算制御装置を設けたことを特徴とする圧縮機
の並列運転制御装置。1. A parallel operation control device for compressors that is equipped with a suction capacity control means on each suction side of a plurality of compressors with different capacities, connects each discharge side to a common discharge pipe, and controls the capacity according to the load. , a temperature detector is installed in each suction pipe of each of the plurality of compressors, a flow rate detector is installed in each discharge pipe, a flow rate fluctuation detector is installed in the common discharge pipe, and a common water supply pipe for the cooling section of each compressor is provided. A temperature detector is provided for each of the compressors, and an optimal control table for the total capacity and total power consumption of each of the compressors under a plurality of setting conditions of the suction temperature and feed water temperature of each of the compressors is stored in advance. each detection data of the temperature detector of each suction pipe, the temperature detector of the common water supply pipe, the flow rate detector in each discharge pipe of each of the compressors, and the flow rate fluctuation detector in the common discharge pipe. From these data, select the optimum control table that has the closest conditions among the plurality of setting conditions of the optimum control table stored in advance, check the direction of variation in load capacity, and 1. A parallel operation control device for a compressor, comprising an arithmetic control device that outputs a control command signal to a suction capacity control means of the compressor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61084326A JPS62243995A (en) | 1986-04-14 | 1986-04-14 | Parallel operation control device for compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61084326A JPS62243995A (en) | 1986-04-14 | 1986-04-14 | Parallel operation control device for compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62243995A true JPS62243995A (en) | 1987-10-24 |
Family
ID=13827391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61084326A Pending JPS62243995A (en) | 1986-04-14 | 1986-04-14 | Parallel operation control device for compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62243995A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0560077A (en) * | 1991-08-30 | 1993-03-09 | Ishikawajima Harima Heavy Ind Co Ltd | Control method for number of compressor in operation |
JP2006242491A (en) * | 2005-03-04 | 2006-09-14 | Mitsubishi Electric Corp | Refrigerating cycle device |
JP2008075477A (en) * | 2006-09-19 | 2008-04-03 | Nippon Steel Corp | Method for operating gas supply compressor |
US7676283B2 (en) | 2005-02-11 | 2010-03-09 | Siemens Aktiengesellschaft | Method for optimizing the functioning of a plurality of compressor units and corresponding device |
-
1986
- 1986-04-14 JP JP61084326A patent/JPS62243995A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0560077A (en) * | 1991-08-30 | 1993-03-09 | Ishikawajima Harima Heavy Ind Co Ltd | Control method for number of compressor in operation |
US7676283B2 (en) | 2005-02-11 | 2010-03-09 | Siemens Aktiengesellschaft | Method for optimizing the functioning of a plurality of compressor units and corresponding device |
JP2006242491A (en) * | 2005-03-04 | 2006-09-14 | Mitsubishi Electric Corp | Refrigerating cycle device |
JP2008075477A (en) * | 2006-09-19 | 2008-04-03 | Nippon Steel Corp | Method for operating gas supply compressor |
JP4746505B2 (en) * | 2006-09-19 | 2011-08-10 | 新日本製鐵株式会社 | Operation method of compressor for gas supply |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI295340B (en) | Operation method of energy-saving fluid transporting machineries in parallel array with constant pressure | |
JP4594276B2 (en) | Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor | |
US6718779B1 (en) | Method to optimize chiller plant operation | |
CN110793173B (en) | Water pump frequency conversion control method based on dynamic change of worst air conditioner tail end | |
CN102341760A (en) | Fluid control apparatus fluid control apparatus | |
EP2558799A1 (en) | Retro-fit energy exchange system for transparent incorporation into a plurality of existing energy transfer systems | |
CN101865496A (en) | Chilled water direct supply system and method | |
US8290633B2 (en) | Method for operating a fluidic pipeline system | |
JP2017129340A (en) | Heat source control system, control method and control device | |
JP2002098358A (en) | Primary pump type heat source flow variable system | |
JP2003139372A (en) | Optimal restraint control system for air-conditioning/ heat source equipment | |
JP4440147B2 (en) | Operation control method for two-pump heat source equipment | |
JPS62243995A (en) | Parallel operation control device for compressor | |
JP2001241735A (en) | Air conditioning system and its controlling method | |
JP5422366B2 (en) | Coordinated control device and coordinated control method for heat source system | |
JPH05204466A (en) | Control method for flow rate control valve | |
CN114484948A (en) | Energy-saving variable-frequency linkage system of multi-stage pump | |
JP2696267B2 (en) | Boiler parallel operation controller | |
JPH08232883A (en) | Water supply quantity control method and control device in multi-layer floor water supply piping system | |
JPH08271066A (en) | Number-of-refrigerators controller for refrigerator | |
CN114877421B (en) | Air conditioner water system, control method and air conditioner unit | |
JP2003207190A (en) | Air conditioning system | |
JPH05264072A (en) | Device for heating or cooling | |
US4716740A (en) | Controller apparatus and method for heat exchange system | |
JPS6353449B2 (en) |