JPS6353449B2 - - Google Patents

Info

Publication number
JPS6353449B2
JPS6353449B2 JP56110146A JP11014681A JPS6353449B2 JP S6353449 B2 JPS6353449 B2 JP S6353449B2 JP 56110146 A JP56110146 A JP 56110146A JP 11014681 A JP11014681 A JP 11014681A JP S6353449 B2 JPS6353449 B2 JP S6353449B2
Authority
JP
Japan
Prior art keywords
air conditioner
opening
centrifugal pump
air
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56110146A
Other languages
Japanese (ja)
Other versions
JPS5811341A (en
Inventor
Yoji Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP56110146A priority Critical patent/JPS5811341A/en
Publication of JPS5811341A publication Critical patent/JPS5811341A/en
Publication of JPS6353449B2 publication Critical patent/JPS6353449B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 本発明は空気調和装置に関し、特に空調器と熱
源機とを連結した閉回路内で遠心式ポンプにより
媒体を循環し、空調器の負荷に応じて媒体流量を
流量制御弁で制御するようにした空気調和装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner, and more particularly, a medium is circulated by a centrifugal pump in a closed circuit connecting an air conditioner and a heat source device, and the flow rate of the medium is controlled according to the load of the air conditioner. The present invention relates to an air conditioner controlled by a valve.

従来からの空気調和装置において、媒体流量を
空調器の負荷に応じて開度が制御される流量制御
弁によつて制御する場合には、前記負荷が小さく
なると流量制御弁の開度が小となり、媒体流量が
減少する。そのため遠心式ポンプの回転数も前記
負荷に応じて制御することが省電力化のために望
ましい。ところが一般的にはこの遠心式ポンプの
回転数制御を行なつていない場合が多い。また回
転数制御を行なう先行技術としては、遠心式ポン
プの吐出圧力を検出し、それに応じて回転する制
御を行なつている。
In a conventional air conditioner, when the medium flow rate is controlled by a flow control valve whose opening degree is controlled according to the load of the air conditioner, when the load becomes smaller, the opening degree of the flow control valve becomes smaller. , the medium flow rate decreases. Therefore, it is desirable to control the rotational speed of the centrifugal pump according to the load in order to save power. However, in general, the rotational speed of this centrifugal pump is not controlled in many cases. Further, as a prior art for controlling the rotation speed, the discharge pressure of a centrifugal pump is detected and the rotation is controlled in accordance with the detected discharge pressure.

このような先行技術において、遠心式ポンプの
特性曲線は第1図のように表わされる。第1図に
おいて実線で示す曲線1,2,3,4は遠心式ポ
ンプの特性曲線をそれぞれ示し、特性曲線1は定
格時の特性曲線を表わし、下方に進すにつれて回
転数が減少したときの特性曲線をそれぞれ示す。
また破線で示す曲線5,6は管路の抵抗曲線をそ
れぞれ示し、抵抗曲線5は流量制御弁が全開時に
おける管路抵抗を示す曲線であり、抵抗曲線6は
流量制御弁の開度が全開時よりも小となつたとき
の抵抗を示す曲線である。すなわち流量制御弁の
開度が全開であり、遠心式ポンプが定格値で駆動
されている場合には特性曲線1と抵抗曲線5との
交点P1によつて定格時の状態が表わされる。
In such prior art, the characteristic curve of a centrifugal pump is expressed as shown in FIG. Curves 1, 2, 3, and 4 indicated by solid lines in Fig. 1 represent the characteristic curves of centrifugal pumps, and characteristic curve 1 represents the characteristic curve at the rated state. The characteristic curves are shown respectively.
In addition, curves 5 and 6 shown by broken lines indicate the resistance curves of the pipeline, respectively.Resistance curve 5 is a curve showing the pipeline resistance when the flow control valve is fully open, and resistance curve 6 is a curve when the flow control valve is fully open. This is a curve showing the resistance when the resistance becomes smaller than the time. That is, when the flow rate control valve is fully opened and the centrifugal pump is driven at the rated value, the rated state is represented by the intersection P1 between the characteristic curve 1 and the resistance curve 5.

流量制御弁の開度が小となり、管路の抵抗曲線
が参照符6で表わされるようになつたとき、遠心
式ポンプの回転数を制御しなければ、遠心式ポン
プは特性曲線1と抵抗曲線6との交点P2で運転
されることになる。そのため点P1から点P2ま
での圧力上昇分は、音や振動のエネルギーとして
無駄に放散されてしまう。そこで吐出圧力が点P
1と同じになるように、遠心式ポンプの回転速度
を特性曲線2で示される値まで低下すると、遠心
式ポンプは特性曲線2と抵抗曲線6との交点P3
で運転され、ある程度の省電力が可能となる。こ
こで、吐出圧力をある程度一定にするために、極
端な場合として流量制御弁が全閉すなわち媒体流
量が零になつたとき、第1図においては特性曲線
3までは遠心式ポンプの回転数を低下させること
ができる。ところがそれ以下たとえば特性曲線4
までは回転数を低下させられないので省電力化は
充分とは言いがたい。
When the opening degree of the flow control valve becomes small and the resistance curve of the pipeline becomes as shown by reference 6, if the rotation speed of the centrifugal pump is not controlled, the centrifugal pump will have the characteristic curve 1 and the resistance curve. It will be operated at the intersection P2 with 6. Therefore, the pressure increase from point P1 to point P2 is wastefully dissipated as sound and vibration energy. Then the discharge pressure is at point P
1, when the rotational speed of the centrifugal pump is reduced to the value shown by characteristic curve 2, the centrifugal pump reaches the intersection point P3 of characteristic curve 2 and resistance curve 6.
It is possible to save a certain amount of power. In order to keep the discharge pressure constant to some extent, in the extreme case when the flow control valve is fully closed, that is, the medium flow rate is zero, the rotation speed of the centrifugal pump is reduced up to characteristic curve 3 in Fig. 1. can be lowered. However, below that, for example, characteristic curve 4
Since it is not possible to reduce the rotation speed up to this point, power saving cannot be said to be sufficient.

本発明は上述の技術的課題を解決し、充分な省
電力化を達成することができる空気調和装置を提
供することを目的とする。
An object of the present invention is to provide an air conditioner that can solve the above-mentioned technical problems and achieve sufficient power saving.

本発明は、空調器と熱源機との間で遠心式ポン
プにより媒体を循環し、空調器の負荷に応じて媒
体流量を流量制御弁で制御するようにした空気調
和装置において、 空調器よりの吹出空気温度を検出する手段と、 空調器よりの吹出空気の検出された温度に応じ
て流量制御弁の開度を制御する手段と、 流量制御弁の開度を検出する開度検出器と、 検出された開度を全開値付近の予め定めた値と
比較する手段と、 比較の結果、検出された開度の方が小のとき遠
心式ポンプの供給電力の周波数を低下させる手段
とを備えたことを特徴とする空気調和装置であ
る。
The present invention provides an air conditioner in which a centrifugal pump circulates a medium between an air conditioner and a heat source device, and the flow rate of the medium is controlled by a flow control valve according to the load of the air conditioner. means for detecting the temperature of the blown air; means for controlling the opening of the flow control valve according to the detected temperature of the air blown from the air conditioner; and an opening detector for detecting the opening of the flow control valve; A means for comparing the detected degree of opening with a predetermined value near the fully open value, and a means for lowering the frequency of power supplied to the centrifugal pump when the detected degree of opening is smaller as a result of the comparison. This air conditioner is characterized by:

また本発明は、複数の空調器と、それらの空調
器に共通な単一の熱源機との間で遠心式ポンプに
より媒体を循環し、各空調器の負荷に応じて媒体
流量を、各空調器毎に設けた流量制御弁で制御す
るようにした空気調和装置において、 各空調器よりの吹出空気温度をそれぞれ検出す
る温度検出器と、 空調器よりの吹出空気の検出された各温度に応
じて、対応する空調器に設けてある前記流量制御
弁の開度をそれぞれ制御する手段と、 各流量制御弁の開度をそれぞれ検出する開度検
出器と、 検出された各開度のうち最大の開度値を選択す
る信号選択器と、 信号選択器によつて選択された最大開度値を、
全開値付近の予め定めた値と比較する手段と、 比較の結果、検出された開度の方が小のとき遠
心式ポンプの供給電力の周波数を低下させる手段
とを備えたことを特徴とする空気調和装置であ
る。
In addition, the present invention circulates a medium between a plurality of air conditioners and a single heat source unit common to those air conditioners using a centrifugal pump, and adjusts the medium flow rate to each air conditioner according to the load of each air conditioner. In an air conditioner that is controlled by a flow control valve provided for each air conditioner, there is a temperature detector that detects the temperature of the air blown out from each air conditioner, and a temperature detector that detects the temperature of the air blown out from each air conditioner. means for controlling the opening degrees of the flow control valves provided in the corresponding air conditioners, an opening detector for detecting the opening degrees of each flow control valve, and a maximum of each of the detected opening degrees. A signal selector that selects the opening value of , and a maximum opening value selected by the signal selector.
The invention is characterized by comprising means for comparing with a predetermined value near the full opening value, and means for lowering the frequency of the power supplied to the centrifugal pump when the detected opening is smaller as a result of the comparison. It is an air conditioner.

以下、図面によつて本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明の一実施例の系統図である。空
調器10,11には熱源機12から熱媒体たとえ
ば温水が並列にそれぞれ供給されており、これら
の空調器10,11の負荷に応じて流量制御弁1
3,14の開度が制御される。各流量制御弁1
3,14の開度は開度検出器15,16によつて
それぞれ検出されており、各開度検出器15,1
6による開度信号は、信号選択器17に入力され
る。この信号選択器17においては、入力された
信号の内、大きい方の開度値を選択して比例調節
器18に入力する。比例調節器18では、信号選
択器17から入力された開度値が全開値付近の予
め設定した値たとえば95%になるように、内燃機
関19の燃料供給量を制御する。それによつて発
電機20の周波数が変化し、それに応じて遠心式
ポンプ21の回転数が変化する。
FIG. 2 is a system diagram of one embodiment of the present invention. A heat medium such as hot water is supplied in parallel from a heat source device 12 to the air conditioners 10 and 11, and the flow rate control valve 1 is activated depending on the load of these air conditioners 10 and 11.
3 and 14 are controlled. Each flow control valve 1
The opening degrees of 3 and 14 are detected by opening degree detectors 15 and 16, respectively.
6 is input to the signal selector 17. The signal selector 17 selects the larger opening degree value among the input signals and inputs it to the proportional regulator 18 . The proportional regulator 18 controls the amount of fuel supplied to the internal combustion engine 19 so that the opening value input from the signal selector 17 becomes a preset value near the fully open value, for example 95%. As a result, the frequency of the generator 20 changes, and the rotational speed of the centrifugal pump 21 changes accordingly.

熱源機12は、たとえばガス吸収式冷暖房機で
あつて、その出口は管路22を介してヘツダ23
に連結される。ヘツダ23は遠心式ポンプたとえ
ばうず巻きポンプ21を備える管路24を介し
て、管路25,26に共通に連結される。管路2
5,26は流量制御弁13,14をそれぞれ備
え、空調器10,11の入口にそれぞれ連結され
る。空調器10,11の出口は管路27,28を
介して管路29に共通に接続され、この管路29
はヘツダ30に接続される。ヘツダ30と熱源機
12の入口とは、ポンプ31を備える管路32に
よつて相互に連結される。ヘツダ23,30は、
バイパス弁33を備えるバイパス管路34によつ
て相互に連結される。
The heat source device 12 is, for example, a gas absorption type air-conditioning device, and its outlet is connected to a header 23 via a pipe line 22.
connected to. The header 23 is commonly connected to the lines 25, 26 via a line 24 which includes a centrifugal pump, for example a centrifugal pump 21. Conduit 2
5 and 26 are provided with flow control valves 13 and 14, respectively, and are connected to the inlets of air conditioners 10 and 11, respectively. The outlets of the air conditioners 10 and 11 are commonly connected to a conduit 29 via conduits 27 and 28, and this conduit 29
is connected to header 30. The header 30 and the inlet of the heat source device 12 are interconnected by a conduit 32 provided with a pump 31. The headers 23 and 30 are
They are interconnected by a bypass line 34 with a bypass valve 33.

空調器10,11の冷風あるいは温風の吹き出
し口には温度検出器35,36がそれぞれ設けら
れており、これらの温度検出器35,36によつ
て検出された温度は温度調節器37,38に入力
される。温度調節器37,38は、入力される各
温度検出値に応じて、前記冷風あるいは温風の温
度が予め設定した温度となるように流量制御弁1
3,14の開度を制御する。各流量制御弁13,
14の開度はたとえばポテンシヨメータを用いた
開度検出器15,16によつてそれぞれ検出され
ており、これらの開度検出器15,16によつて
検出された開度信号は、信号選択器17に入力さ
れる。
Temperature detectors 35 and 36 are provided at the cold air or hot air outlets of the air conditioners 10 and 11, respectively, and the temperatures detected by these temperature detectors 35 and 36 are sent to temperature controllers 37 and 38. is input. The temperature regulators 37 and 38 control the flow rate control valve 1 so that the temperature of the cold air or hot air becomes a preset temperature according to each input temperature detection value.
Controls the opening degrees of 3 and 14. Each flow control valve 13,
The opening degrees of 14 are detected by opening degree detectors 15 and 16 using potentiometers, respectively, and the opening degree signals detected by these opening degree detectors 15 and 16 are detected by signal selection. The signal is input to the device 17.

うず巻きポンプ21は発電機20から供給され
る電力によつて駆動され、発電機20は内燃機関
19によつて駆動される。信号選択器17におい
ては、各開度検出器15,16からの信号のうち
開度が大きい方の信号を選択して調節器18に入
力する。調節器18は、流量制御弁13,14の
全開付近の予め定めた開度値たとえば95%の開度
に応じた信号が予め設定されており、信号選択器
17から入力される信号が前記設定開度よりも小
であれば、内燃機関19の回転速度を低下し、そ
れとは逆に設定開度よりも大であれば内燃機関1
9の回転速度を増加する。
The centrifugal pump 21 is driven by electric power supplied from a generator 20, and the generator 20 is driven by the internal combustion engine 19. The signal selector 17 selects the signal with a larger opening among the signals from the opening detectors 15 and 16 and inputs it to the regulator 18 . The regulator 18 is preset with a signal corresponding to a predetermined opening value near full open of the flow rate control valves 13 and 14, for example, 95%, and the signal input from the signal selector 17 is set in advance. If the opening is smaller than the set opening, the rotational speed of the internal combustion engine 19 is reduced; conversely, if the opening is larger than the set opening, the internal combustion engine 1 is rotated.
Increase the rotation speed of 9.

このような空気調和装置において、空調器1
0,11の負荷が低くなり、流量制御弁13,1
4の開度が小となつた場合には内燃機関19の回
転速度が低くなるように制御される。それに応じ
て発電機20から遠心式ポンプ21に供給される
電力の周波数および電圧が低減し、うず巻きポン
プ21の回転速度が低下する。それによつて、う
ず巻きポンプ21の吐出圧力が低下し、空調器1
0,11に流れる媒体流量が負荷に比べて下がり
すぎた場合には各流量制御弁13,14が大にな
ることにより、内燃機関19の回転速度に応じて
うず巻きポンプ21の回転速度が増加する。した
がつて全体の制御系が最適な点でつり合いを保つ
ことができる。上述とは逆に空調器10,11の
負荷が増大した場合においても同様に最適制御が
行なわれる。
In such an air conditioner, the air conditioner 1
The load on flow control valves 13, 1 becomes lower.
4 becomes small, the rotational speed of the internal combustion engine 19 is controlled to be low. Correspondingly, the frequency and voltage of the electric power supplied from the generator 20 to the centrifugal pump 21 are reduced, and the rotational speed of the centrifugal pump 21 is reduced. As a result, the discharge pressure of the centrifugal pump 21 decreases, and the air conditioner 1
When the flow rate of the medium flowing through the pumps 0 and 11 becomes too low compared to the load, the flow rate control valves 13 and 14 become larger, thereby increasing the rotation speed of the centrifugal pump 21 in accordance with the rotation speed of the internal combustion engine 19. . Therefore, the entire control system can be balanced at an optimal point. Contrary to the above, optimal control is similarly performed even when the load on the air conditioners 10, 11 increases.

第3図を参照して本件空気調和装置におけるう
ず巻きポンプ21の特性を説明する。第3図にお
いて実線で示す曲線40,41,42はうず巻き
ポンプ21の特性曲線をそれぞれ示し、特性曲線
40は定格時を示す。また破線で示す曲線43,
44,45は抵抗曲線をそれぞれ示し、抵抗曲線
43は流量制御弁13,14が全開の状態を示
す。
The characteristics of the centrifugal pump 21 in the present air conditioner will be explained with reference to FIG. Curves 40, 41, and 42 shown as solid lines in FIG. 3 indicate the characteristic curves of the centrifugal pump 21, and the characteristic curve 40 indicates the rated state. Also, a curve 43 indicated by a broken line,
Reference numerals 44 and 45 indicate resistance curves, and resistance curve 43 indicates a state in which the flow rate control valves 13 and 14 are fully open.

空調器10,11の負荷の変動がほぼ同じ理想
状態においては、流量制御弁13,14の開度は
ほぼ全開近くで保たれるので、抵抗曲線はほぼ参
照符43のままとなり、負荷が減少するにつれて
うず巻きポンプ21の特性曲線が参照符40から
41および42に移動し、それに応じて運転状態
が点P5からP6あるいはP7に移動する。この
ような運転状態の推移は空調器が単一の場合でも
同様である。ところが実際には、第2図で示すよ
うに空調器10,11が複数台ある場合には、そ
れらの空調器10,11の負荷が多少ばらつくの
で、抵抗曲線が参照符44で示すように抵抗曲線
43からわずかにずれる。したがつて運転状態も
P8,P9で示す位置のようになる。このように
して、吐出圧力を定格時における運転状態、すな
わち点P5で示す位置と同じ圧力に保つ必要がな
いので、曲線42で示すようにうず巻きポンプ2
1の回転速度したがつて動力を低減することがで
き、充分な省電力化を達成することが可能であ
る。
In an ideal state in which the load fluctuations of the air conditioners 10 and 11 are almost the same, the opening degrees of the flow control valves 13 and 14 are maintained close to fully open, so the resistance curve remains approximately at reference 43, and the load decreases. As a result, the characteristic curve of the centrifugal pump 21 moves from reference numeral 40 to 41 and 42, and the operating state moves accordingly from point P5 to P6 or P7. Such changes in operating conditions are the same even when there is a single air conditioner. However, in reality, when there are multiple air conditioners 10 and 11 as shown in FIG. It deviates slightly from curve 43. Therefore, the operating state is also as shown in the positions P8 and P9. In this way, it is not necessary to maintain the discharge pressure at the same pressure as the operating state at the rated time, that is, the position shown by point P5, so that the centrifugal pump 2
Accordingly, the power can be reduced and sufficient power savings can be achieved.

なお空調器が複数であつて、しかも各空調器の
負荷が大きく変動する場合には、抵抗曲線45で
示すように各流量制御弁の開度が大きくずれるこ
ともある。この場合の動作点は点P10,P11
で示す位置になる。このときに極端な場合には、
前記複数の空調器のいずれかが負荷100%で運転
されていれば、その空調器のみ点P5で示した位
置と同じ吐出圧力が必要となるので点P10で運
転することになる。この場合には、先行技術の吐
出圧制御と同等であるが、その最大負荷の空調器
の負荷が少しでも低減されれば点P11に近づく
のでさらに省電力化を図ることができる。
Note that when there are a plurality of air conditioners and the load on each air conditioner varies greatly, the opening degree of each flow control valve may vary greatly as shown by the resistance curve 45. The operating points in this case are points P10 and P11
It will be in the position shown. In extreme cases,
If any one of the plurality of air conditioners is operated at 100% load, only that air conditioner requires the same discharge pressure as the position shown at point P5, so it will be operated at point P10. In this case, it is equivalent to the discharge pressure control of the prior art, but if the load of the air conditioner with the maximum load is reduced even a little, the point P11 is approached, so that further power saving can be achieved.

上述の実施例では、空調器10,11を2台と
して説明したが3台以上の空調器であつてもよ
く、また1台であつてもよい。なお空調器が1台
である場合には信号選択器17を省略することが
できる。さらに内燃機関19および発電機に代え
て、商用電源およびインバータを用いてもよい。
In the above-described embodiment, the air conditioners 10 and 11 are described as two units, but there may be three or more air conditioners, or there may be one air conditioner. Note that when there is only one air conditioner, the signal selector 17 can be omitted. Furthermore, a commercial power source and an inverter may be used instead of the internal combustion engine 19 and the generator.

上述のごとく本発明によれば、流量制御弁の開
度を全開値付近に保つたままで遠心式ポンプの回
転数を調節するようにしたので、空調器の負荷に
応じて消費される電力を最適値に制御することが
でき、充分な省電力化を達成することができる。
As described above, according to the present invention, the rotation speed of the centrifugal pump is adjusted while keeping the opening degree of the flow control valve close to the fully open value, so that the power consumed can be optimized depending on the load of the air conditioner. It is possible to achieve sufficient power saving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は先行技術における遠心式ポンプの特性
曲線を示す図、第2図は本発明の一実施例の系統
図、第3図は第2図のうず巻きポンプの特性曲線
を示す図である。 10,11…空調器、12…熱源機、13,1
4…流量制御弁、15,16…開度検出器、17
…信号選択器、18…調節器、21…うず巻きポ
ンプ。
FIG. 1 is a diagram showing a characteristic curve of a centrifugal pump in the prior art, FIG. 2 is a system diagram of an embodiment of the present invention, and FIG. 3 is a diagram showing a characteristic curve of the centrifugal pump of FIG. 2. 10, 11... Air conditioner, 12... Heat source machine, 13, 1
4...Flow rate control valve, 15, 16...Opening degree detector, 17
...signal selector, 18...regulator, 21...centrifugal pump.

Claims (1)

【特許請求の範囲】 1 空調器と熱源機との間で遠心式ポンプにより
媒体を循環し、空調器の負荷に応じて媒体流量を
流量制御弁で制御するようにした空気調和装置に
おいて、 空調器よりの吹出空気温度を検出する手段と、 空調器よりの吹出空気の検出された温度に応じ
て流量制御弁の開度を制御する手段と、 流量制御弁の開度を検出する開度検出器と、 検出された開度を全開値付近の予め定めた値と
比較する手段と、 比較の結果、検出された開度の方が小のとき遠
心式ポンプの供給電力の周波数を低下させる手段
とを備えたことを特徴とする空気調和装置。 2 複数の空調器と、それらの空調器に共通な単
一の熱源機との間で遠心式ポンプにより媒体を循
環し、各空調器の負荷に応じて媒体流量を、各空
調器毎に設けた流量制御弁で制御するようにした
空気調和装置において、 各空調器よりの吹出空気温度をそれぞれ検出す
る温度検出器と、 空調器よりの吹出空気の検出された各温度に応
じて、対応する空調器に設けてある前記流量制御
弁の開度をそれぞれ制御する手段と、 各流量制御弁の開度をそれぞれ検出する開度検
出器と、 検出された各開度のうち最大の開度値を選択す
る信号選択器と、 信号選択器によつて選択された最大開度値を、
全開値付近の予め定めた値と比較する手段と、 比較の結果、検出された開度の方が小のとき遠
心式ポンプの供給電力の周波数を低下させる手段
とを備えたことを特徴とする空気調和装置。
[Scope of Claims] 1. An air conditioner in which a centrifugal pump circulates a medium between an air conditioner and a heat source device, and the flow rate of the medium is controlled by a flow control valve according to the load of the air conditioner, comprising: means for detecting the temperature of the air blown from the air conditioner; means for controlling the opening degree of the flow control valve according to the detected temperature of the air blown from the air conditioner; and an opening detection means for detecting the opening degree of the flow control valve. means for comparing the detected degree of opening with a predetermined value near the fully open value; and means for reducing the frequency of power supplied to the centrifugal pump when the detected degree of opening is smaller as a result of the comparison. An air conditioner characterized by comprising: 2 A centrifugal pump circulates the medium between multiple air conditioners and a single heat source device common to those air conditioners, and the medium flow rate is set for each air conditioner according to the load of each air conditioner. In an air conditioner that is controlled by a flow rate control valve, there is a temperature detector that detects the temperature of the air blown out from each air conditioner, and a temperature sensor that detects the temperature of the air blown out from the air conditioner. means for controlling the opening degrees of the flow control valves provided in the air conditioner; an opening detector for detecting the opening degrees of each flow control valve; and a maximum opening value among the detected opening degrees. A signal selector that selects the maximum opening value selected by the signal selector,
The invention is characterized by comprising means for comparing with a predetermined value near the full opening value, and means for lowering the frequency of the power supplied to the centrifugal pump when the detected opening is smaller as a result of the comparison. Air conditioner.
JP56110146A 1981-07-14 1981-07-14 Air-conditioning apparatus Granted JPS5811341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56110146A JPS5811341A (en) 1981-07-14 1981-07-14 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56110146A JPS5811341A (en) 1981-07-14 1981-07-14 Air-conditioning apparatus

Publications (2)

Publication Number Publication Date
JPS5811341A JPS5811341A (en) 1983-01-22
JPS6353449B2 true JPS6353449B2 (en) 1988-10-24

Family

ID=14528204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56110146A Granted JPS5811341A (en) 1981-07-14 1981-07-14 Air-conditioning apparatus

Country Status (1)

Country Link
JP (1) JPS5811341A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225237A (en) * 1983-06-07 1984-12-18 Kajima Corp Operation controlling system of air conditioner secondary cooling water pump
JP4594276B2 (en) * 2006-05-26 2010-12-08 東洋熱工業株式会社 Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor
JP5422366B2 (en) * 2009-12-21 2014-02-19 株式会社日立製作所 Coordinated control device and coordinated control method for heat source system
WO2015075995A1 (en) 2013-11-22 2015-05-28 三菱重工業株式会社 Traveling bogie and vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131754U (en) * 1978-03-06 1979-09-12

Also Published As

Publication number Publication date
JPS5811341A (en) 1983-01-22

Similar Documents

Publication Publication Date Title
US4754919A (en) Air conditioning apparatus
KR900008514B1 (en) Air conditioner
US5931227A (en) Conversion of constant volume heating/air conditioning systems
JPS6353449B2 (en)
CN110030777B (en) Control method for realizing optimal condensation pressure
US3540525A (en) Pneumatic control apparatus
JPH0131877Y2 (en)
JPS6016283A (en) Controller for quantity of transformation in refrigerator
JP2003207190A (en) Air conditioning system
JP3142267B2 (en) Pump device
JPH0229533A (en) Control method for outdoor air intake in vav control system
JPS6332224A (en) Heat supply system
JP3539046B2 (en) Gas water heater of bypass mixing type and water temperature sensitive type constant flow valve for bypass mixing used therein
JPS6327204Y2 (en)
JPS60233439A (en) Controlling method on multi-chamber separation type air conditioner
JPS62243995A (en) Parallel operation control device for compressor
JP2916381B2 (en) Separate heat pump
JP2505121Y2 (en) Heat medium controller for heating and cooling heat source plant
JPS59225237A (en) Operation controlling system of air conditioner secondary cooling water pump
JP3420646B2 (en) Refrigerant heating type air conditioner
JPH04198646A (en) Flow rate sensing device for air conditioning device
JP3074334B2 (en) How to operate the pump
CN115325679A (en) Dual-working-condition self-adaptive balance valve and control method thereof
JPH04103954A (en) Air volume controller of duct type air conditioner
JPH08233396A (en) Engine-driven type heat pump air compressor with hot water feed function