JP3074334B2 - How to operate the pump - Google Patents

How to operate the pump

Info

Publication number
JP3074334B2
JP3074334B2 JP03165803A JP16580391A JP3074334B2 JP 3074334 B2 JP3074334 B2 JP 3074334B2 JP 03165803 A JP03165803 A JP 03165803A JP 16580391 A JP16580391 A JP 16580391A JP 3074334 B2 JP3074334 B2 JP 3074334B2
Authority
JP
Japan
Prior art keywords
flow control
pump
control valves
differential pressure
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03165803A
Other languages
Japanese (ja)
Other versions
JPH05215092A (en
Inventor
秀男 池田
五朗 牛場
義明 松井
靖弘 吉留
透 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP03165803A priority Critical patent/JP3074334B2/en
Publication of JPH05215092A publication Critical patent/JPH05215092A/en
Application granted granted Critical
Publication of JP3074334B2 publication Critical patent/JP3074334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Flow Control (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、たとえば空調設備な
どのポンプ運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pump operating method for, for example, an air conditioner.

【0002】[0002]

【従来の技術】図2は、ビル、工場などの空調設備の管
路の1例を示している。
2. Description of the Related Art FIG. 2 shows an example of a pipeline of an air conditioner such as a building or a factory.

【0003】この管路には、熱源としてのヒートポンプ
(1) 、ポンプ(2) 、各室に設けられた複数の熱交換器コ
イル(3a)(3b)(3c)(3d)および自動流量制御弁(4a)(4b)(4
c)(4d)が設けられている。
A heat pump as a heat source is provided in this pipeline.
(1), pump (2), multiple heat exchanger coils (3a) (3b) (3c) (3d) provided in each chamber, and automatic flow control valves (4a) (4b) (4
c) (4d) is provided.

【0004】ヒートポンプ(1) の出口(1b)にポンプ(2)
の吸込口(2a)が接続され、ポンプ(2) の吐出口(2b)とヒ
ートポンプ(1) の入口(1a)との間に、コイル(3a)〜(3d)
と流量制御弁(4a)〜(4d)が1つずつ直列接続されたもの
が複数組並列に接続されている。
A pump (2) is connected to an outlet (1b) of the heat pump (1).
Coils (3a) to (3d) are connected between the discharge port (2b) of the pump (2) and the inlet (1a) of the heat pump (1).
And a plurality of flow control valves (4a) to (4d) connected in series one by one are connected in parallel.

【0005】ヒートポンプ(1) とポンプ(2) は、ビルの
空調機械室などに設けられている。ポンプ(2) は駆動用
インバータ(5) に接続され、インバータ(5) はポンプ制
御器(6) に接続されている。また、ポンプ(2) の吐出口
(2b)側に圧力計(7) が設けられ、その出力がポンプ制御
器(6) に入力する。
[0005] The heat pump (1) and the pump (2) are provided in an air-conditioning machine room of a building or the like. The pump (2) is connected to a driving inverter (5), and the inverter (5) is connected to a pump controller (6). Also, the discharge port of the pump (2)
A pressure gauge (7) is provided on the (2b) side, and its output is input to the pump controller (6).

【0006】コイル(3a)〜(3d)と流量制御弁(4a)〜(4d)
は空調を行なう室などに1組ずつ設けられており、これ
らの各室には、また、温度計(8a)(8b)(8c)(8d)と調節計
(9a)(9b)(9c)(9d)が設けられている。
The coils (3a) to (3d) and the flow control valves (4a) to (4d)
Are provided in a room for air conditioning, etc., and each room has a thermometer (8a) (8b) (8c) (8d) and a controller.
(9a), (9b), (9c), and (9d) are provided.

【0007】水などの作動流体が、ポンプ(2) により、
各組のコイル(3a)〜(3d)および流量制御弁(4a)〜(4d)な
らびにヒートポンプ(1) を通って循環させられ、コイル
(3a)〜(3d)を流れる流体によって各室の空調が行なわれ
る。そして、各室において、調節計(9a)〜(9d)が温度計
(8a)〜(8d)で検出した室温に基いて流量制御弁(4a)〜(4
d)の開度を制御することにより、コイル(3a)〜(3d)を流
れる流量が制御され、これによって室温が調節される。
また、このとき、ポンプ制御器(6) により、圧力計(7)
で検出したポンプ(2) の出口圧力が一定になるように、
インバータ(5)を介してポンプ(2) の回転数が制御され
ている。
[0007] A working fluid such as water is pumped by a pump (2).
Each set of coils (3a) to (3d) and flow control valves (4a) to (4d) and a heat pump (1)
Each room is air-conditioned by the fluid flowing through (3a) to (3d). In each room, the controllers (9a) to (9d) are thermometers.
Flow control valves (4a) to (4a) based on the room temperature detected in (8a) to (8d)
By controlling the opening degree of d), the flow rate flowing through the coils (3a) to (3d) is controlled, whereby the room temperature is adjusted.
At this time, the pressure gauge (7) is controlled by the pump controller (6).
So that the outlet pressure of the pump (2) detected in
The rotation speed of the pump (2) is controlled via the inverter (5).

【0008】[0008]

【発明が解決しようとする課題】ところが、上記の従来
の空調設備の場合、ポンプ(2) の出口圧力が一定になる
ようにその回転数を制御しているので、とくに負荷が小
さい場合や大きい場合に次のような問題がある。
However, in the case of the above-mentioned conventional air-conditioning equipment, the number of revolutions is controlled so that the outlet pressure of the pump (2) becomes constant. In such a case, there are the following problems.

【0009】すなわち、まず、負荷が小さくなって管路
全体の流量が低下すると、空調機のコイル(3a)〜(3d)お
よびヒートポンプ(1) 内の圧損が流量の二乗に比例して
低下するため、ポンプ(2) の出口圧力を一定に制御する
と、流量制御弁(4a)〜(4d)でほとんど圧力を消費するこ
とになる。この場合、流量制御弁(4a)〜(4d)はほとんど
全閉に近い位置で制御されるため、ハンチングを起こし
やすい。また、エネルギ的にも大きな無駄をしているこ
とになる。
That is, first, when the load decreases and the flow rate of the entire pipeline decreases, the pressure loss in the coils (3a) to (3d) and the heat pump (1) of the air conditioner decreases in proportion to the square of the flow rate. Therefore, when the outlet pressure of the pump (2) is controlled to be constant, the pressure is almost consumed by the flow control valves (4a) to (4d). In this case, since the flow control valves (4a) to (4d) are controlled at positions almost completely closed, hunting is likely to occur. In addition, energy is wasted.

【0010】逆に、負荷が大きくて流量が多い場合は、
ポンプ(2) の出口圧力一定の制御では、出口圧力の設定
が低すぎると、ポンプ(2) より遠い場所の熱交換器コイ
ル(3a)〜(3d)には流量制御弁(4a)〜(4d)が全開になって
も必要な水量が流れない。
Conversely, when the load is large and the flow rate is large,
In the control of the outlet pressure of the pump (2), if the outlet pressure is set too low, the flow control valves (4a) to (4a) to (3a) to (3d) located farther from the pump (2) Even if 4d) is fully opened, the required amount of water does not flow.

【0011】さらに、このような管路を設計する場合、
設計水量で流量制御弁(4a)〜(4d)の差圧が適正な値(た
とえば0.2〜0.6kg/cm2 )になるように、流量制
御弁(4a)〜(4d)のサイズと全管路の圧損によりポンプ
(2) を選定するが、各部の水量は負荷に応じて変動する
ため、流量制御弁(4a)〜(4d)では差圧は大きく変化す
る。上記のようにポンプ(2) の出口圧力を一定にするこ
とにより、この差圧の変化をある程度小さくできるが、
それでも十分ではない。
Further, when designing such a pipeline,
The size of the flow control valves (4a) to (4d) is set so that the pressure difference between the flow control valves (4a) to (4d) becomes an appropriate value (for example, 0.2 to 0.6 kg / cm 2 ) at the designed water volume. And pump due to pressure loss in all pipelines
(2) is selected, but the water pressure in each part varies according to the load, so that the differential pressure greatly changes in the flow control valves (4a) to (4d). By making the outlet pressure of the pump (2) constant as described above, the change in this differential pressure can be reduced to some extent.
Still not enough.

【0012】この発明の目的は、上記の問題を解決し、
流量制御弁の差圧が過度に大きくなったり、流量が不足
したりすることがなく、ポンプを最小の能力で運転でき
る効率的な方法を提供することにある。
An object of the present invention is to solve the above problems,
It is an object of the present invention to provide an efficient method for operating a pump with a minimum capacity without excessively increasing a pressure difference of a flow control valve or insufficient flow rate.

【0013】[0013]

【課題を解決するための手段】この発明によるポンプの
運転方法は、流量制御手段によりそれぞれ自動制御され
る複数の自動流量制御弁が並列に接続された管路に流体
を供給するポンプを運転する方法であって、各流量制御
弁の差圧を検出し、全ての流量制御弁の差圧が所定の上
限値以上であれば、ポンプの回転数または台数を減じ、
いずれかの流量制御弁の差圧が所定の下限値以下であれ
ば、ポンプの回転数または台数を増加することを特徴と
するものである。
A method of operating a pump according to the present invention operates a pump for supplying a fluid to a pipe line in which a plurality of automatic flow control valves automatically controlled by flow control means are connected in parallel. A method, wherein the differential pressure of each flow control valve is detected, and if the differential pressures of all the flow control valves are equal to or higher than a predetermined upper limit, the number of rotations or the number of pumps is reduced,
If the differential pressure of any one of the flow control valves is equal to or less than a predetermined lower limit, the number of rotations or the number of pumps is increased.

【0014】[0014]

【作用】全ての流量制御弁の差圧が所定の上限値以上で
あれば、ポンプの回転数または台数を減じるので、流量
制御弁の差圧が下がる。逆に、いずれかの流量制御弁の
差圧が所定の下限値以下であれば、ポンプの回転数また
は台数を増加するので、流量制御弁の差圧が上がる。こ
のため、流量制御弁の差圧が所定の範囲内に保持され
る。したがって、負荷が小さいときでも、流量制御弁の
部分で不必要に大きい差圧をつけなくてよく、流量制御
弁が全開になっても流量が不足するようなことがなく、
ポンプを最小の能力で運転することができる。
If the differential pressures of all the flow control valves are equal to or higher than the predetermined upper limit, the number of rotations or the number of pumps is reduced, so that the differential pressures of the flow control valves decrease. Conversely, if the differential pressure of any one of the flow control valves is equal to or lower than a predetermined lower limit, the number of rotations or the number of pumps is increased, so that the differential pressure of the flow control valve increases. For this reason, the differential pressure of the flow control valve is kept within a predetermined range. Therefore, even when the load is small, it is not necessary to apply an unnecessarily large differential pressure at the flow control valve portion, and the flow is not insufficient even when the flow control valve is fully opened,
The pump can be operated with minimal capacity.

【0015】流量制御弁の差圧が適正な範囲内に保たれ
るので、ハンチングが生じることがなく、制御性能が向
上する。
Since the differential pressure of the flow control valve is kept within an appropriate range, hunting does not occur and control performance is improved.

【0016】[0016]

【実施例】以下、図面を参照して、この発明の実施例に
ついて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は従来例と同様のビル、工場などの空
調設備の管路の1例を示しており、従来例と同じ部分に
は同一の符号を付している。
FIG. 1 shows an example of a pipeline of an air conditioner such as a building or a factory, which is the same as the conventional example, and the same parts as those of the conventional example are denoted by the same reference numerals.

【0018】各室には、流量制御手段として従来例の調
節計(9a)〜(9d)のかわりに小型ボードコンピュータ(C
PU)を用いた流量制御装置(10a)(10b)(10c)(10d)が設
けられており、これにより、室温に基いて流量制御弁(4
a)〜(4d)の開度が制御される。
In each room, a small board computer (C) is used as a flow control means instead of the conventional controllers (9a) to (9d).
PU) using a flow control device (10a) (10b) (10c) (10d), whereby the flow control valve (4
The openings a) to (4d) are controlled.

【0019】各室の流量制御弁(4a)〜(4d)の前後に圧力
計(11a)(11b)(11c)(11d)(12a)(12b)(12c)(12d)が設けら
れており、これらの出力が流量制御装置(10a) 〜(10d)
に入力する。そして、流量制御装置(10a) 〜(10d) は、
前後の圧力計(11a) 〜(11d)(12a)〜(12d) の出力から流
量制御弁(4a)〜(4d)の部分の差圧を求め、この差圧の大
小によって次のような接点出力をポンプ制御器(6) に出
力する。すなわち、差圧が所定の上限値(たとえば0.
5kg/cm2 )以上であれば差圧過大信号を、所定の下限
値(たとえば0.2kg/cm2 )以下であれば差圧過小信
号を、上記上限値と下限値の間であれば差圧適正信号を
出力する。
Pressure gauges (11a) (11b) (11c) (11d) (12a) (12b) (12c) (12d) are provided before and after the flow control valves (4a) to (4d) in each chamber. , These outputs are flow control devices (10a) to (10d)
To enter. And the flow control devices (10a) to (10d)
From the outputs of the front and rear pressure gauges (11a) to (11d), (12a) to (12d), the differential pressure of the flow control valves (4a) to (4d) is obtained. Output the output to the pump controller (6). That is, the differential pressure is a predetermined upper limit value (for example, 0.
5 kg / cm 2 ) or greater, a differential pressure excess signal, a lower limit value (eg, 0.2 kg / cm 2 ) or less, a differential pressure under signal, and a difference between the upper and lower limits. Outputs an appropriate pressure signal.

【0020】ポンプ制御器(6) は、一定時間間隔で全て
の室の流量制御装置(10a) 〜(10d)の上記接点信号を監
視しており、全ての流量制御装置(10a) 〜(10d) から差
圧過大信号が出力されていれば、ポンプの回転数を下
げ、流量制御装置(10a) 〜(10d) のいずれか1つからで
も差圧過小信号が出力されていれば、ポンプの回転数を
上げ、これらのいずれでもなければ、ポンプ(2) の回転
数を現状維持する。これにより、全ての流量制御弁(4a)
〜(4d)の差圧が上限値以上であれば、ポンプの回転数が
下がり、いずれか1つの流量制御弁(4a)〜(4d)でも差圧
が下限値以下であれば、ポンプの回転数が上がり、流量
制御弁(4a)〜(4d)の差圧が適正な範囲内に保たれる。
The pump controller (6) monitors the above-mentioned contact signals of the flow control devices (10a) to (10d) in all the chambers at fixed time intervals, and all the flow control devices (10a) to (10d) ), The rotation speed of the pump is reduced.If any of the flow control devices (10a) to (10d) outputs the differential pressure Increase the number of rotations, and if none of these, maintain the current number of rotations of pump (2). As a result, all the flow control valves (4a)
If the differential pressure of (4d) to (4d) is equal to or higher than the upper limit, the rotation speed of the pump decreases.If the differential pressure of any one of the flow control valves (4a) to (4d) is equal to or lower than the lower limit, the rotation of the pump is The number increases, and the pressure difference between the flow control valves (4a) to (4d) is maintained within an appropriate range.

【0021】上記実施例では、ポンプ制御器(6) が各室
の流量制御装置(10a) 〜(10d) から接点信号を受けてポ
ンプ駆動用インバータ(5) を制御するようになっている
が、たとえば、ポンプ制御器(6) をコンピュータで構成
し、ポンプ制御器(6) が各流量制御弁(4a)〜(4d)の前後
の圧力計(11a) 〜(11d)(12a)〜(12d) の出力から差圧を
求めてインバータ(5) を制御するようにしてもよい。
In the above embodiment, the pump controller (6) receives the contact signals from the flow rate control devices (10a) to (10d) in each chamber and controls the pump driving inverter (5). For example, the pump controller (6) is constituted by a computer, and the pump controller (6) is connected to the pressure gauges (11a) to (11d) (12a) to (11a) before and after each of the flow control valves (4a) to (4d). The inverter (5) may be controlled by obtaining a differential pressure from the output of 12d).

【0022】上記実施例では、流量制御弁(4a)〜(4d)の
差圧に基づいてポンプ(2) の回転数を制御しているが、
ポンプの運転台数を制御するようにしてもよい。また、
ポンプの回転数の制御と運転台数の制御を組合わせても
よい。
In the above embodiment, the rotation speed of the pump (2) is controlled based on the pressure difference between the flow control valves (4a) to (4d).
The number of operating pumps may be controlled. Also,
Control of the number of rotations of the pump and control of the number of operating units may be combined.

【0023】上記実施例では、流量制御弁(4a)〜(4d)の
前後の圧力を流量制御装置(10a) 〜(10d) に出力し、流
量制御装置(10a) 〜(10d) で差圧を求めているが、流量
制御弁(4a)〜(4d)の部分の差圧を検出して流量制御装置
(10a) 〜(10d) に出力するようにしてもよい。
In the above embodiment, the pressures before and after the flow control valves (4a) to (4d) are output to the flow control devices (10a) to (10d), and the differential pressure is output by the flow control devices (10a) to (10d). However, the differential pressure of the flow control valves (4a) to (4d) is detected
(10a) to (10d) may be output.

【0024】[0024]

【発明の効果】この発明のポンプの制御方法によれば、
上述のように、流量制御弁の差圧を適正な範囲内に保つ
ことができ、負荷が小さくなっても流量制御弁の部分で
不必要に大きい差圧をつけなくてよく、流量制御弁が全
開になっても流量が不足するようなことがなく、ポンプ
を最小の能力で運転することができ、さらに流量制御弁
にハンチングが生じることがなく、制御性能が向上す
る。
According to the pump control method of the present invention,
As described above, the differential pressure of the flow control valve can be maintained within an appropriate range, and even when the load is reduced, it is not necessary to apply an unnecessary large differential pressure at the flow control valve portion. Even when the valve is fully opened, the flow rate does not become insufficient, the pump can be operated with the minimum capacity, and hunting does not occur in the flow rate control valve, thereby improving the control performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す空調設備の管系統図で
ある。
FIG. 1 is a pipe system diagram of an air conditioner showing an embodiment of the present invention.

【図2】従来例を示す空調設備の管系統図である。FIG. 2 is a pipe system diagram of an air conditioner showing a conventional example.

【符号の説明】[Explanation of symbols]

(1) ヒートポンプ (2) ポンプ (4a)(4b)(4c)(4d) 流量制御弁 (5) インバータ (6) ポンプ制御器 (8a)(8b)(8c)(8d) 温度計 (10a)(10b)(10c)(10d) 流量制御装置 (11a)(11b)(11c)(11d) 圧力計 (12a)(12b)(12c)(12d) 圧力計 (1) Heat pump (2) Pump (4a) (4b) (4c) (4d) Flow control valve (5) Inverter (6) Pump controller (8a) (8b) (8c) (8d) Thermometer (10a) (10b) (10c) (10d) Flow controller (11a) (11b) (11c) (11d) Pressure gauge (12a) (12b) (12c) (12d) Pressure gauge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松井 義明 東京都新宿区西新宿2丁目6番1号 株 式会社大氣社内 (72)発明者 吉留 靖弘 東京都新宿区西新宿2丁目6番1号 株 式会社大氣社内 (72)発明者 北川 透 東京都新宿区西新宿2丁目6番1号 株 式会社大氣社内 (56)参考文献 特開 昭60−216095(JP,A) 特開 昭58−222989(JP,A) 実開 昭59−120308(JP,U) (58)調査した分野(Int.Cl.7,DB名) F04B 49/00 - 51/00 F04D 15/00 - 15/02 G05D 7/06 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshiaki Matsui 2-6-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo In-house Co., Ltd. (72) Inventor Yasuhiro Yoshidome 2-6-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo In-house Co., Ltd. (72) Inventor Toru Kitagawa 2-6-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo In-house Co., Ltd. (56) References JP-A-60-216095 (JP, A) JP-A-58- 222989 (JP, A) Fully open sho 59-120308 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F04B 49/00-51/00 F04D 15/00-15/02 G05D 7/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流量制御手段によりそれぞれ自動制御さ
れる複数の自動流量制御弁が並列に接続された管路に流
体を供給するポンプを運転する方法であって、 各流量制御弁の差圧を検出し、全ての流量制御弁の差圧
が所定の上限値以上であれば、ポンプの回転数または台
数を減じ、いずれかの流量制御弁の差圧が所定の下限値
以下であれば、ポンプの回転数または台数を増加するこ
とを特徴とするポンプの運転方法。
1. A method of operating a pump for supplying a fluid to a pipeline in which a plurality of automatic flow control valves automatically controlled by flow control means are connected in parallel, wherein a differential pressure of each flow control valve is controlled. If the differential pressure of all the flow control valves is detected to be equal to or higher than a predetermined upper limit value, the number of rotations or the number of pumps is reduced. Operating method of a pump characterized by increasing the number of revolutions or the number of pumps.
JP03165803A 1991-07-05 1991-07-05 How to operate the pump Expired - Fee Related JP3074334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03165803A JP3074334B2 (en) 1991-07-05 1991-07-05 How to operate the pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03165803A JP3074334B2 (en) 1991-07-05 1991-07-05 How to operate the pump

Publications (2)

Publication Number Publication Date
JPH05215092A JPH05215092A (en) 1993-08-24
JP3074334B2 true JP3074334B2 (en) 2000-08-07

Family

ID=15819293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03165803A Expired - Fee Related JP3074334B2 (en) 1991-07-05 1991-07-05 How to operate the pump

Country Status (1)

Country Link
JP (1) JP3074334B2 (en)

Also Published As

Publication number Publication date
JPH05215092A (en) 1993-08-24

Similar Documents

Publication Publication Date Title
US5522707A (en) Variable frequency drive system for fluid delivery system
US6126540A (en) Staged power exhaust for HVAC air handling units
US9057532B2 (en) Return fan control system and method
US4836096A (en) Variable air volume air distribution system
US6155790A (en) Method and equipment for controlling a pipe network
US5823004A (en) Outdoor fan control for part load efficiency
JP2004514870A (en) Pressure distribution and pressure regulation system and method for heating / air conditioning unit, and skyscraper using the same
JP2023161037A (en) Heat source system, heat source machine and control device
Ma et al. Energy-efficient static pressure reset in VAV systems
JP3074334B2 (en) How to operate the pump
CA2488509C (en) Fluid flow balancing system
JP2819476B2 (en) Air-conditioner delivery pressure control method
JPH05204466A (en) Control method for flow rate control valve
JPH0131877Y2 (en)
JPS59153046A (en) Concentrated suction/exhaust air device
US3130908A (en) Thermodynamically balanced heat regain system
JP3142267B2 (en) Pump device
KR102409922B1 (en) Inverter for pumps applying sensorless algorithm
US20230184456A1 (en) Fan unit
JPS6353449B2 (en)
JPH04359725A (en) Control for flow rate control valve in air conditioning device
JPS61180315A (en) Control method of water supply pressure
JPS6327204Y2 (en)
JP2806840B2 (en) Centrifugal pump with controlled discharge characteristics
CN116034236A (en) Fan unit and air treatment system comprising same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000411

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees