EP1837946A1 - Richtkoppler - Google Patents

Richtkoppler Download PDF

Info

Publication number
EP1837946A1
EP1837946A1 EP06006202A EP06006202A EP1837946A1 EP 1837946 A1 EP1837946 A1 EP 1837946A1 EP 06006202 A EP06006202 A EP 06006202A EP 06006202 A EP06006202 A EP 06006202A EP 1837946 A1 EP1837946 A1 EP 1837946A1
Authority
EP
European Patent Office
Prior art keywords
directional coupler
coupling
line
ground
coupler according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06006202A
Other languages
English (en)
French (fr)
Other versions
EP1837946B1 (de
Inventor
Daniel Krausse
Christoph Gerhardt
Peter Riessle
Thomas Kirchmeier
Erich Dr. Pivit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trumpf Huettinger GmbH and Co KG
Original Assignee
Huettinger Elektronik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huettinger Elektronik GmbH and Co KG filed Critical Huettinger Elektronik GmbH and Co KG
Priority to EP06006202A priority Critical patent/EP1837946B1/de
Priority to US11/689,043 priority patent/US7755451B2/en
Publication of EP1837946A1 publication Critical patent/EP1837946A1/de
Application granted granted Critical
Publication of EP1837946B1 publication Critical patent/EP1837946B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/185Edge coupled lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/187Broadside coupled lines

Definitions

  • RF plasma process excitation arrangements include an RF generator that provides RF power to a plasma process.
  • the RF power is typically supplied to the plasma process in a narrow band frequency range, particularly around the industrial frequencies of 13.56 MHz and 27.12 MHz.
  • Measuring devices may be provided to measure the power supplied to the plasma process. For accurate control and / or control of the power, it is necessary to accurately detect the delivered power.
  • a directional coupler can determine the forward power P i and the reflected power P r .
  • Directional couplers couple out a portion of the power that passes through a through-conductor of the directional coupler.
  • Known directional couplers are designed for much higher frequencies (1 GHz and higher), where line theory plays an essential role.
  • a coupling line runs parallel to the feedthrough line.
  • a small part of the power is decoupled from the transmission line, in which the power of the generator flows to the load, to the coupling line by electrical and magnetic coupling.
  • a power proportional to the reflected power can be tapped at the other end, and a power proportional to the forward power at the other end. It has also been proposed to use a coupling line for the forward power and a coupling line for the reflected power.
  • a measured signal can be generated from the tapped services, which can be fed to a controller.
  • the object of the present invention is to provide a directional coupler, with which a more accurate power measurement is made possible.
  • each coupling line has a predetermined and set characteristic impedance and the terminating resistors have a resistance value of the characteristic impedance of the associated coupling line with a tolerance ⁇ 10%, in particular ⁇ 5%, preferably ⁇ 1%.
  • the coupling lines extend at least in sections parallel to the passage line.
  • a first ground reference potential in particular a first ground plane
  • the first and second coupling line are arranged at a predetermined distance from the ground potential.
  • the characteristic impedance can be set very accurately. Due to the fixed reference potential, a fixed characteristic impedance can be specified with high accuracy and reliability and with high repeat accuracy.
  • a common wave impedance is set in the industry. For example, a 50 ohm or 75 ohm characteristic impedance is very common. In order to realize the characteristic impedance, in addition the length and / or width of the coupling lines can be suitably specified.
  • two ground reference potentials can be provided and the coupling lines can be arranged between the ground reference potentials, wherein the distance to at least one, preferably two ground reference potentials is predetermined or can be predetermined.
  • the predetermined characteristic impedance can be set precisely, and with the second ground reference potential, the electrical coupling between the feedthrough line and the coupling lines can be set precisely.
  • the coupling lines can be arranged between two ground planes.
  • the coupling lines can be embedded between insulating materials, such as printed circuit boards, which carry the ground planes.
  • the passage line is arranged in the same plane as a ground plane, but is isolated from it.
  • the coupling according to the line theory is negligible. Rather, there is a coupling by electric and magnetic fields.
  • the electrical and magnetic coupling must be balanced.
  • the magnetic Coupling results from the magnetic field line course in the range of the route in which the coupling lines are guided in the immediate vicinity of the feedthrough line. Short lines mean little magnetic coupling. For the balance, a low electrical coupling is necessary.
  • the electrical coupling results from the electrical field line course between the transmission line and the respective coupling line, as well as from the surface of the respective coupling line.
  • the field line profile can be deflected by a ground plane on the same plane as the transmission line and thus deflected away from the coupling lines.
  • the electrical coupling of the transmission line to the coupling lines can be reduced.
  • the field lines of the electric field can be deflected in order to reduce the electrical coupling between the through-line and the coupling lines.
  • the power can be coupled out at the other end.
  • matched termination is meant that the termination resistance is the same as the characteristic impedance of the directional coupler. Reflections resulting from the measurement thus end up in the terminating resistor at the other end of the coupling line, do not lead to any further reflections and do not contribute to a measuring error on the other coupling line.
  • the terminator can be made adjustable, then tolerances can be compensated in the directional coupler.
  • the parallel sections of the lines have a length ⁇ / 4, in particular ⁇ ⁇ / 8, preferably ⁇ ⁇ / 10 exhibit.
  • the dimensions of the directional coupler can be kept small.
  • the forward power and the reflected power or these descriptive variables can be coupled out with different coupling factors.
  • the reflected power is usually smaller than the forward power. If it can be coupled out with a larger coupling factor, the signal-to-noise ratio at the input of the evaluation device detecting the power increases because the dynamics of the evaluation device detecting the power are advantageously utilized. The reflected power can be measured more accurately.
  • the coupling lines are arranged offset from one another. As a result, a coupling between the coupling lines and thus an impairment of the measurement results can be avoided.
  • the distance between the lines can be adjusted precisely and reproducibly if the lines are spaced apart by an electrically insulating material, in particular printed circuit board material.
  • the directional coupler is particularly suitable for operation in RF plasma process excitation arrangements, if it is designed for operation at frequencies ⁇ 200 MHz, in particular ⁇ 40 MHz.
  • the invention also includes an RF plasma process excitation arrangement with a directional coupler as described above.
  • a large part of the return flow in particular more than 90% of the return flow, flows from a plasma load to an HF generator via a ground plane of the directional coupler. On the ground surface should a large part, if possible, the entire return flow. This ensures that builds up the electric field, which is necessary for the electrical coupling of the passage line to the coupling lines.
  • the HF resistance for the return current between the output terminal of the RF plasma process excitation arrangement and a ground potential of the directional coupler is smaller than the HF resistance of a housing between the output terminal and ground potential of the housing.
  • the output is designed as a coaxial plug, on the outer conductor of the return current flows.
  • the outer conductor is mechanically and electrically usually connected to the ground of the housing.
  • the mass of the HF generator is usually connected at several points or over a large area with the mass of the housing. In general, therefore, even if a ground reference potential is provided on the directional coupler, here not the full flow, but a large part of the current will flow through the housing directly to the ground of the RF generator.
  • the current will be corresponding to the resistances of the divide different current paths to ground. According to the invention, it is now ensured that as far as possible the entire current flows over the ground reference surface of the directional coupler.
  • a very low DC resistance as a conventional package in any case, can be increased when inductors are introduced into the current path.
  • the current path via the ground reference potential of the directional coupler to the ground of the RF generator can be constructed particularly low inductance.
  • the fastening screws of the output terminal have a direct, short and large-area connection to the ground surface of the directional coupler.
  • the connection of the ground reference surface of the directional coupler to the mass of the generator can be constructed as short, and low inductance.
  • the RF plasma process excitation arrangement 1 comprises an HF generator 2 which is connected to a plasma load 4 via a directional coupler 3.
  • the directional coupler 3 is used to decouple signals or quantities that are related to the forward power output by the RF generator 2 and the power reflected by the plasma load 4.
  • a first measuring device 5 for measuring the forward power
  • a second measuring device 6 for measuring the reflected power
  • the measuring devices 5, 6 are in turn connected to an evaluation device 7, which can control the HF generator 2 and thus the forward power output due to the measured powers.
  • FIG. 2 shows a cross section through the directional coupler 3.
  • a through-line 11 is arranged electrically insulated. Via the through-line 11, the forward power is transmitted from the RF generator to the load.
  • the ground plane 10 and the through-line 11 are in a plane according to this embodiment. They are arranged on an electrical insulator 12 designed as a printed circuit board.
  • an electrical insulator 12 designed as a printed circuit board.
  • a first coupling line 13 is arranged for coupling out the reflected power.
  • the first coupling line 13 is on a circuit board trained electrical insulator 14 applied.
  • the first coupling line 13 is arranged at a predetermined vertical distance and slightly offset from the passage line 11.
  • the second coupling line 15 for coupling the forward power is arranged at a greater distance from the passage line 11.
  • the second coupling line 15 is arranged on an insulator 16 designed as a printed circuit board. Due to the greater distance of the second coupling line 15 to the through-line 11, power is coupled out by the second coupling line 15 with a lower coupling factor.
  • the distance between the second coupling line 15 and the passage line 11 is also predetermined.
  • the coupling line 15 is arranged offset to the passage line 11 and does not overlap the first coupling line 13. This ensures a decoupling of the two coupling lines 13, 15.
  • a second ground plane 17 is provided.
  • the ground planes 10, 17 may be connected to a plurality of vias (not shown) to ensure the homogeneity of the current in the ground planes 10, 17.
  • the coupling lines 13, 15 have a defined distance from the ground plane 17. In this way, the characteristic impedance of the coupling lines 13, 15 is precisely determined.
  • the characteristic impedance is further determined by the length and width of the coupling lines 13, 15. The length, width of the coupling lines and the distance to the ground surface 17 are thus matched to each other in order to achieve a defined, predetermined characteristic impedance for each coupling line 13, 15.
  • the coupling factors are also influenced by the length and width of the coupling lines 13, 15. Another influence on the Coupling factor has the position of the coupling lines 13, 15 with respect to the passage line 11 and the width and length of the passage line eleventh
  • the electric field in the vicinity of the passage line 11 is influenced.
  • the electrical coupling between the through-conductor 11 and the coupling lines 13, 15 can be influenced and adjusted.
  • FIG 3a is a plan view of the ground surface 10 and the passage line 11 is shown.
  • the passage line 11 is completely embedded in the ground plane 10 and thus also shielded from this.
  • FIG. 3b shows a plan view of the insulator 14, on which the first coupling line 13 is arranged. Outside the coupling region 22, in which the first coupling line 13 extends parallel to the through-line 11, the coupling line 13 is angled, so that the terminals 23, 24 are located away from the through-line 11. At the terminal 23, only a resistor 25 is connected, whose resistance value corresponds to the characteristic impedance of the first coupling line 13.
  • the connection 24 can be connected to a measuring device to which a variable describing the reflected power P r is output.
  • FIG. 3 c shows a plan view of the insulator 16 on which the second coupling line 15 is arranged. Outside the coupling region 22, in which the second coupling line 15 extends parallel to the through-line 11, is angled the coupling line 15, so that the terminals 26, 27 of the through-line 11 and the terminals 23, 24 of the first coupling line 13 are removed. At the terminal 26, only a resistor 28 is connected, whose resistance value corresponds to the characteristic impedance of the second coupling line 15.
  • the connection 27 can be connected to a measuring device to which a variable describing the forward power P i is output.
  • FIG. 4 shows that the HF generator 2 and the directional coupler 3 are arranged in a housing 30, wherein the housing 30 is connected to a ground potential.
  • An output terminal 31 of the HF generator 2 is connected via a line 32 to the transmission line 11 of the directional coupler 3.
  • the passage line 11 of the directional coupler 3 is in turn connected to the inner conductor 33 of a designed as a plug, in particular coax connector, output terminal 34.
  • the outer conductor 35 of the output terminal 34 is connected over a large area via fastening means 36 to the housing 30. In particular, the current conducted back on the outer conductor 35 from the plasma load passes via the outer conductor 35 to the housing 30.
  • the ground surface 17 is further connected via a short line 38 to the RF generator 2, in particular to its ground potential.
  • the connecting lines 37, 38 are preferably made of copper or silver. These metals have a high electrical conductivity.
  • the length of the connecting lines 37, 38 ⁇ 10 mm and the width ⁇ 5 mm, in particular ⁇ 10mm. Due to the flat, short design of the connecting lines 37, 38, a low-inductance connection between the outer conductor 35 and the ground of the HF generator 2 via the ground surface 17 is realized.
  • measures can be taken on the housing 30 in order to increase the resistance for the recirculated HF current and to ensure in this way that the return current flows substantially across the ground surface 17.
  • Such measures can be, for example: connecting elements between housing and ground of the HF generator provided with ferrite rings, or fasteners made of materials with a high ⁇ r use because a high ⁇ r increases the skin effect, thus leading to a deteriorated RF power line.
  • the electric and magnetic fields can form, which are necessary for a good coupling of the coupling lines 13, 15 with the passage line 11.

Landscapes

  • Plasma Technology (AREA)

Abstract

Ein Richtkoppler (3), insbesondere für eine HF-Plasmaprozessanregungsanordnung (1), umfasst: a. Eine Durchgangsleitung (11) mit einem Eingangsanschluss (20) und einem Ausgangsanschluss (21); b. Eine von der Durchgangsleitung (11) beabstandete erste Koppelleitung (13) zur Erfassung von reflektierter Leistung (P r ), die zumindest an einem Ende mit einem Abschlusswiderstand (25) abgeschlossen ist; c. Eine von der Durchgangsleitung (11) beabstandete zweite Koppelleitung (15) zur Erfassung von Vorwärtsleistung (P i ), die zumindest an einem Ende mit einem Abschlusswiderstand (28) abgeschlossen ist. Jede Koppelleitung (13, 15) weist einen vorgegebenen und eingestellten Wellenwiderstand auf und die Abschlusswiderstände (25, 28) weisen einen Widerstandswert auf, der dem Wellenwiderstand der zugeordneten Koppelleitung (13, 15) mit einer Toleranz < ±10%, insbesondere <±5%, vorzugsweise < ±1% entspricht. Dadurch lassen sich Vorwärts- und Rückwärtsleistung genau erfassen.

Description

  • Die Erfindung betrifft einen Richtkoppler, insbesondere für eine HF-Plasmaprozessanregungsanordnung, umfassend:
    1. a. Eine Durchgangsleitung mit einem Eingangsanschluss und einem Ausgangsanschluss;
    2. b. Eine von der Durchgangsleitung beabstandete erste Koppelleitung zur Erfassung von reflektierter Leistung, die zumindest an einem Ende mit einem Abschlusswiderstand abgeschlossen ist;
    3. c. Eine von der Durchgangsleitung beabstandete zweite Koppelleitung zur Erfassung von Vorwärtsleistung, die zumindest an einem Ende mit einem Abschlusswiderstand abgeschlossen ist.
  • HF-Plasmaprozessanregungsanordnungen weisen einen HF-Generator auf, der HF-Leistung an einen Plasmaprozess liefert. Die HF-Leistung wird in der Regel in einem schmalbandigen Frequenzbereich, insbesondere um die Industriefrequenzen 13,56 MHz und 27,12 MHz, an den Plasmaprozess geliefert. Zur Messung der in den Plasmaprozess gelieferten Leistung können Messeinrichtungen vorgesehen sein. Für eine genaue Regelung und/oder Steuerung der Leistung ist es notwendig, die gelieferte Leistung genau zu erfassen.
  • Es gibt unterschiedliche Möglichkeiten, die in die Last gelieferte Leistung eines HF-Plasmaprozessanregungssystems zu bestimmen. Eine häufig verwendete ist die Messung mittels eines Richtkopplers. Ein Richtkoppler kann die Vorwärtsleistung Pi und die reflektierte Leistung Pr bestimmen. Richtkoppler koppeln einen Teil der Leistung, die durch eine Durchgangsleitung des Richtkopplers geführt wird, aus.
  • Es existiert eine Vielzahl von Anwendungen von Richtkopplern in Streifenleitungstechnik, die die Länge eines Viertels der zur Frequenz gehörenden Wellenlänge λ besitzen. Solche Längen sind bei einem System, das im Bereich von 10 bis 30MHz arbeitet, nicht realistisch.
  • Die aus dem Stand der Technik, z.B. DE 10 2004 021 535 A1 , US 2005/0212617 A1 , bekannten Richtkoppler sind für deutlich höhere Frequenzen (1 GHz und höher), wo die Leitungstheorie eine wesentliche Rolle spielt, ausgelegt. Bei den bekannten Richtkopplern verläuft eine Koppelleitung parallel zu der Durchführungsleitung. Ein geringer Teil der Leistung wird von der Durchgangsleitung, in der die Leistung des Generators zur Last fließt, auf die Koppelleitung durch elektrische und magnetische Kopplung ausgekoppelt. An einem Ende der Koppelleitung kann eine der reflektierten Leistung proportionale Leistung abgriffen werden, am anderen Ende eine der Vorwärtsleistung proportionale Leistung. Es wurde auch schon vorgeschlagen, jeweils eine Koppelleitung für die Vorwärtsleistung und eine Koppelleitung für die reflektierte Leistung zu verwenden.
  • Durch eine zusätzliche Beschaltung, die zumeist aus einem Tiefpassfilter, und einer Bürde besteht, kann aus den abgegriffenen Leistungen ein Messsignal generiert werden, das einer Steuerung zugeführt werden kann.
  • Bei bekannten Richtkoppleranordnungen ist es nachteilig, dass jede Störung, die von der Beschaltung zurück in die Koppelleitung kommt, sei es durch eine Fehlanpassung der Beschaltung gegenüber dem Richtkoppler oder sei es durch eine Filterung, zu Messwertverfätschungen, sowohl bei der Messung der Vorwärtsleistung als auch der reflektierten Leistung führt.
  • Aufgabe der vorliegenden Erfindung ist es, einen Richtkoppler bereitzustellen, mit dem eine genauere Leistungsmessung ermöglicht wird.
  • Diese Aufgabe wird erfindungsgemäß durch einen Richtkoppler der eingangs genannten Art dadurch gelöst, dass jede Koppelleitung einen vorgegebenen und eingestellten Wellenwiderstand aufweist und die Abschlusswiderstände einen Widerstandswert aufweisen, der dem Wellenwiderstand der zugeordneten Koppelleitung mit einer Toleranz < ±10%, insbesondere <±5%, vorzugsweise < ±1% entspricht. Durch die genaue Anpassung der Abschlusswiderstände auf die Wellenwiderstände können Reflexionen aufgrund von Fehlanpassung an dieser Stelle vermieden werden. Dadurch kann eine sehr viel genauere Messung der Leistungen erfolgen. Die Verwendung von zwei Koppelleitungen hat den Vorteil, dass die Vorwärtsleistung und die reflektierte Leistung entkoppelt voneinander gemessen werden können. An den Koppelleitungen kann die Leistung oder eine diese beschreibende Größe abgegriffen werden. Wenn bei der Beschaltung, beispielsweise der Filterung der abgegriffenen Leistung, Reflexionen entstehen, werden diese im Abschlusswiderstand der jeweiligen Koppelleitung absorbiert und tragen nicht zu einem Messfehler auf der anderen Koppelleitung bei. Vorzugsweise verlaufen die Koppelleitungen zumindest abschnittsweise parallel zur Durchgangsleitung.
  • Bei einer besonders bevorzugten Ausführungsform kann vorgesehen sein, dass ein erstes Massebezugspotential, insbesondere eine erste Massefläche, vorgesehen ist und die erste und zweite Koppelleitung in einem vorgegebenen Abstand zu dem Massepotential angeordnet sind. Durch die Wahl beziehungsweise Vorgabe der Abstände können die Wellenwiderstände der Koppelleitungen sehr genau eingestellt werden. Durch das feste Bezugspotenzial kann ein fester Wellenwiderstand hoch genau und zuverlässig und mit hoher Wiederholgenauigkeit vorgegeben werden. Vorteilhafterweise wird ein in der Industrie gängiger Wellenwiderstand eingestellt. Sehr gängig ist z.B. ein 50 Ohm oder auch 75 Ohm Wellenwiderstand. Um den Wellenwiderstand zu realisieren, kann zusätzlich die Länge und/oder Breite der Koppelleitungen geeignet vorgegeben werden.
  • Bei einer vorteilhaften Ausführungsform können zwei Massebezugspotentiale vorgesehen sein und die Koppelleitungen können zwischen den Massebezugspotentialen angeordnet sein, wobei der Abstand zu zumindest einem, vorzugsweise beiden Massebezugspotentialen vorgegeben oder vorgebbar ist. Mit dem einen Massebezugspotential lässt sich der vorgegebene Wellenwiderstand präzise einstellen und mit dem zweiten Massebezugspotential lässt sich die elektrische Kopplung zwischen der Durchgangsleitung und den Koppelleitungen genau einstellen.
  • Bei einer bevorzugten Weiterbildung können die Koppelleitungen zwischen zwei Masseflächen angeordnet sein. Die Koppelleitungen können zwischen isolierende Materialien, beispielsweise Leiterplatten eingebettet sein, die die Masseflächen tragen. Dadurch lässt sich der Richtkoppler besonders einfach, kostengünstig und mit einer hohen Präzision herstellen.
  • Weitere Vorteile ergeben sich, wenn die Durchgangsleitung in derselben Ebene wie eine Massefläche angeordnet, davon jedoch isoliert ist. Bei relativ kurzen Leitungen, insbesondere kürzer als λ/4, ist die Kopplung gemäß der Leitungstheorie vernachlässigbar. Es findet vielmehr eine Kopplung durch elektrische und magnetische Felder statt. Die elektrische und die magnetische Kopplung müssen ausgewogen sein. Die magnetische Kopplung ergibt sich durch den magnetischen Feldlinienverlauf im Bereich der Strecke, in der die Koppelleitungen in unmittelbarer Nähe zur Durchführungsleitung geführt sind. Kurze Leitungen bedeuten eine geringe magnetische Kopplung. Für die Ausgewogenheit ist auch eine geringe elektrische Kopplung notwendig. Die elektrische Kopplung ergibt sich durch den elektrischen Feldlinienverlauf zwischen der Durchgangsleitung und der jeweiligen Koppelleitung, sowie aus der Fläche der jeweiligen Koppelleitung. Der Feldlinienverlauf kann durch eine Massefläche auf der gleichen Ebene wie die Durchgangsleitung abgelenkt und somit von den Koppelleitungen weg gelenkt werden. Damit kann die elektrische Kopplung der Durchgangsleitung mit den Koppelleitungen verringert werden.
  • Auch wenn zwischen der Durchgangsleitung und einem Massepotential, insbesondere einer Massefläche, keine Koppelleitung angeordnet ist, können die Feldlinien des elektrischen Feldes umgelenkt werden, um die elektrische Kopplung zwischen Durchgangsleitung und Koppelleitungen zu verringern.
  • Wenn die Koppelleitungen an einem Ende ausschließlich einen Abschlusswiderstand aufweisen, der vorzugsweise angepasst ist, kann die Leistung am jeweils anderen Ende ausgekoppelt werden. Mit "angepasster Abschlusswiderstand" ist gemeint, dass der Abschlusswiderstand gleich ist, wie der Wellenwiderstand des Richtkopplers. Reflexionen, die durch die Messung entstehen, landen so im Abschlusswiderstand am anderen Ende der Koppelleitung, führen zu keinen erneuten Reflexionen und tragen nicht zu einem Messfehler auf der jeweils anderen Koppelleitung bei. Der Abschlusswiderstand kann einstellbar ausgeführt sein, dann lassen sich Toleranzen im Richtkoppler ausgleichen.
  • Besonders bevorzugt ist es, wenn die parallel verlaufenden Abschnitte der Leitungen eine Länge <λ/4, insbesondere ≤λ/8, vorzugsweise ≤λ/10 aufweisen. Dadurch können die Abmessungen des Richtkopplers klein gehalten werden.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass die Vorwärtsleistung und die reflektierte Leistung oder diese beschreibende Größen mit unterschiedlichen Koppelfaktoren auskoppelbar sind. Die reflektierte Leistung ist üblicherweise kleiner als die Vorwärtsleistung. Wenn sie mit einem größeren Koppelfaktor ausgekoppelt werden kann, erhöht sich der Signal - Rauschabstand am Eingang der die Leistung detektierenden Auswerteeinrichtung, weil die Dynamik der die Leistung detektierenden Auswerteeinrichtung vorteilhaft ausgenutzt wird. Die reflektierte Leistung kann dadurch genauer gemessen werden.
  • Auf besonders einfache Art und Weise lassen sich unterschiedliche Koppelfaktoren realisieren, wenn die erste und zweite Koppelleitung in unterschiedlichen Abständen zur Durchgangsleitung angeordnet sind.
  • Unterschiedlichen Koppelfaktoren können bei einfacher, präziser und kostengünstiger Herstellung des Richtkopplers realisiert werden, wenn die Durchgangsleitung, die erste und die zweite Koppelleitung in unterschiedlichen Ebenen angeordnet sind.
  • Vorteilhafterweise sind die Koppelleitungen versetzt zueinander angeordnet. Dadurch kann eine Kopplung zwischen den Koppelleitungen und damit eine Beeinträchtigung der Messergebnisse vermieden werden.
  • Der Abstand zwischen den Leitungen lässt sich präzise und reproduzierbar einstellen, wenn die Leitungen durch ein elektrisch isolierendes Material, insbesondere Leiterplattenmaterial, voneinander beabstandet sind.
  • Der Richtkoppler ist insbesondere geeignet für den Betrieb in HF-Plasmaprozessanregungsanordnungen, wenn er für einen Betrieb bei Frequenzen < 200MHz, insbesondere < 40MHz ausgelegt ist.
  • In den Rahmen der Erfindung fällt außerdem eine HF-Plasmaprozessanregungsanordnung mit einem Richtkoppler, wie er im Vorhergehenden beschrieben wurde.
  • Besonders bevorzugt ist es, wenn ein Großteil des Rückstroms, insbesondere mehr als 90% des Rückstroms, von einer Plasmalast zu einem HF-Generator über eine Massefläche des Richtkopplers fließt. Auf der Massefläche sollte ein Großteil, möglichst der gesamte Rückstrom fließen. Dadurch wird sichergestellt, dass sich das elektrische Feld, das zur elektrischen Kopplung der Durchgangsleitung mit den Koppelleitungen notwendig ist, aufbaut.
  • Vorteile ergeben sich, wenn der HF-Widerstand für den Rückstrom zwischen Ausgangsanschluss der HF-Plasmaprozessanregungsanordnung und einem Massepotential des Richtkopplers kleiner ist als der HF-Widerstand eines Gehäuses zwischen Ausgangsanschluss und Massepotential des Gehäuses. Vorzugsweise ist der Ausgang als koaxialer Stecker ausgebildet, auf dessen Außenleiter der Rückstrom fließt. Bei bekannten HF-Plasmaprozessanregungsanordnungen ist der Außenleiter mechanisch und elektrisch in der Regel mit der Masse des Gehäuses verbunden. Auch die Masse des HF-Generators ist in der Regel an mehreren Stellen oder großflächig mit der Masse des Gehäuses verbunden. In der Regel wird also auch dann, wenn ein Massebezugspotential am Richtkoppler vorgesehen ist, hier gar nicht der vollständige Strom fließen, sondern ein Großteil des Stromes wird über das Gehäuse direkt zur Masse des HF-Generators fließen. Der Strom wird sich dazu entsprechend den Widerständen der unterschiedlichen Strompfade zu Masse aufteilen. Erfindungsgemäß wird nun sichergestellt, dass möglichst der ganze Strom über die Massebezugsfläche des Richtkopplers fließt. Ein sehr geringer Widerstand für Gleichstrom, wie es ein herkömmliches Gehäuse auf jeden Fall darstellt, kann beispielsweise erhöht werden, wenn Induktivitäten in den Strompfad eingebracht werden. Alternativ oder zusätzlich kann der Strompfad über das Massebezugspotential des Richtkopplers zur Masse des HF-Generators besonders induktivitätsarm aufgebaut werden. Dazu kann beispielsweise vorgesehen sein, dass die Befestigungsschrauben des Ausgangsanschlusses eine direkte, kurze und großflächige Verbindung zu der Massefläche des Richtkopplers aufweisen. Zusätzlich oder alternativ kann die Verbindung von der Massebezugsfläche des Richtkopplers zur Masse des Generators ebenso kurz, und induktivitätsarm aufgebaut sein.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, anhand der Figuren der Zeichnung, die erfindungswesentliche Einzelheiten zeigen, und aus den Ansprüchen. Die einzelnen Merkmale können je einzeln für sich oder zu mehreren in beliebiger Kombination bei einer Variante der Erfindung verwirklicht sein.
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in der Zeichnung schematisch dargestellt und werden nachfolgend mit Bezug zu den Figuren der Zeichnung näher erläutert. Es zeigt:
  • Fig. 1
    eine schematische Darstellung einer HF-Plasmaprozessanregungsanordnung;
    Fig. 2
    eine Schnittdarstellung durch einen erfindungsgemäßen Richtkoppler;
    Fig. 3a - 3c
    eine Draufsicht auf die unterschiedlichen Ebenen des Richtkopplers der Fig. 2; und
    Fig. 4
    eine schematische Darstellung der Anordnung eines Richtkopplers in einem Gehäuse einer HF-Plasmaprozessanregungsanordnung.
  • In der Figur 1 ist eine HF-Plasmaprozessanregungsanordnung 1 schematisch dargestellt. Die HF-Plasmaprozessanregungsanordnung 1 umfasst einen HF-Generator 2, der über einen Richtkoppler 3 mit einer Plasmalast 4 verbunden ist. Der Richtkoppler 3 dient zur Auskopplung von Signalen oder Größen, die mit der von dem HF-Generator 2 abgegebenen Vorwärtsleistung und der von der Plasmalast 4 reflektierten Leistung in Beziehung stehen. Zu diesem Zweck ist eine erste Messeinrichtung 5 (Beschaltung) zur Messung der Vorwärtsleistung und eine zweite Messeinrichtung 6 (Beschaltung) zur Messung der reflektierten Leistung vorgesehen. Die Messeinrichtungen 5, 6 sind wiederum mit einer Auswerteeinrichtung 7 verbunden, die aufgrund der gemessenen Leistungen den HF-Generator 2 und damit die abgegebenen Vorwärtsleistung steuern kann.
  • In der Figur 2 ist ein Querschnitt durch den Richtkoppler 3 gezeigt. In derselben Ebene wie eine Massefläche 10 ist eine Durchgangsleitung 11 elektrisch isoliert angeordnet. Über die Durchgangsleitung 11 wird die Vorwärtsleistung von dem HF-Generator zu der Last übertragen. Die Massefläche 10 und die Durchgangsleitung 11 liegen gemäß diesem Ausführungsbeispiel in einer Ebene. Sie sind auf einem als Leiterplatte ausgebildeten elektrischen Isolator 12 angeordnet. In der Ebene darunter ist eine erste Koppelleitung 13 zur Auskopplung der reflektierten Leistung angeordnet. Auch die erste Koppelleitung 13 ist auf einem als Leiterplatte ausgebildeten elektrischen Isolator 14 aufgebracht. Die erste Koppelleitung 13 ist in einem vorgegebenen vertikalen Abstand und leicht versetzt zur Durchgangsleitung 11 angeordnet.
  • Die zweite Koppelleitung 15 zur Auskopplung der Vorwärtsleistung ist in einem größeren Abstand zur Durchgangsleitung 11 angeordnet. Auch die zweite Koppelleitung 15 ist auf einem als Leiterplatte ausgebildeten Isolator 16 angeordnet. Aufgrund des größeren Abstands der zweiten Koppelleitung 15 zur Durchgangsleitung 11 wird durch die zweite Koppelleitung 15 Leistung mit einem geringeren Koppelfaktor ausgekoppelt. Der Abstand zwischen der zweiten Koppelleitung 15 und der Durchgangsleitung 11 ist ebenfalls vorgegeben. Die Koppelleitung 15 ist versetzt zur Durchgangsleitung 11 angeordnet und überlappt die erste Koppelleitung 13 nicht. Dadurch wird eine Entkoppelung der beiden Koppelleitungen 13, 15 sichergestellt.
  • In einer weiteren Ebene ist eine zweite Massefläche 17 vorgesehen. Die Masseflächen 10, 17 können mit mehreren Durchkontaktierungen (nicht gezeigt) verbunden sein, um die Homogenität des Stroms in den Masseflächen 10, 17 sicherzustellen. Die Koppelleitungen 13, 15 haben einen definierten Abstand zur Massefläche 17. Auf diese Weise wird der Wellenwiderstand der Koppelleitungen 13, 15 genau festgelegt. Der Wellenwiderstand wird weiterhin durch die Länge und Breite der Koppelleitungen 13, 15 festgelegt. Die Länge, Breite der Koppelleitungen und der Abstand zu der Massefläche 17 werden somit aufeinander abgestimmt, um einen definierten, vorgegebenen Wellenwiderstand für jede Koppelleitung 13, 15 zu erzielen.
  • Die Koppelfaktoren werden ebenfalls durch die Länge und Breite der Koppelleitungen 13, 15 beeinflusst. Einen weiteren Einfluss auf den Koppelfaktor hat die Position der Koppelleitungen 13, 15 in Bezug zur Durchgangsleitung 11 sowie die Breite und Länge der Durchgangsleitung 11.
  • Durch die erste Massefläche 10, die in einem anderen, nicht dargestellten Ausführungsbeispiel auch oberhalb der Durchgangsleitung 11 angeordnet sein könnte, wird das elektrische Feld in der Umgebung der Durchgangsleitung 11 beeinflusst. Durch diese Maßnahme kann die elektrische Kopplung zwischen der Durchgangsleitung 11 und den Koppelleitungen 13, 15 beeinflusst und eingestellt werden.
  • In der Figur 3a ist eine Draufsicht auf die Massefläche 10 und die Durchgangsleitung 11 gezeigt. Hier wird deutlich, dass die Durchgangsleitung 11 vollständig in die Massefläche 10 eingebettet ist und somit von dieser auch abgeschirmt wird. Gezeigt sind auch ein Eingangsanschluss 21 zur Verbindung mit dem HF-Generator sowie ein Ausgangsanschluss 20 zu Verbindung mit der Plasmalast.
  • Die Figur 3b zeigt eine Draufsicht auf den Isolator 14, auf dem die erste Koppelleitung 13 angeordnet ist. Außerhalb des Koppelbereichs 22, in dem die erste Koppelleitung 13 parallel zur Durchgangsleitung 11 verläuft, ist die Koppelleitung 13 abgewinkelt, so dass die Anschlüsse 23, 24 von der Durchgangsleitung 11 entfernt liegen. An dem Anschluss 23 ist ausschließlich ein Widerstand 25 angeschlossen, dessen Widerstandswert dem Wellenwiderstand der ersten Koppelleitung 13 entspricht. Der Anschluss 24 kann an eine Messeinrichtung angeschlossen werden, an die eine die reflektierte Leistung Pr beschreibende Größe ausgegeben wird.
  • Die Figur 3c zeigt eine Draufsicht auf den Isolator 16, auf dem die zweite Koppelleitung 15 angeordnet ist. Außerhalb des Koppelbereichs 22, in dem die zweite Koppelleitung 15 parallel zur Durchgangsleitung 11 verläuft, ist die Koppelleitung 15 abgewinkelt, so dass die Anschlüsse 26, 27 von der Durchgangsleitung 11 und den Anschlüssen 23, 24 der ersten Koppelleitung 13 entfernt liegen. An dem Anschluss 26 ist ausschließlich ein Widerstand 28 angeschlossen, dessen Widerstandswert dem Wellenwiderstand der zweiten Koppelleitung 15 entspricht. Der Anschluss 27 kann an eine Messeinrichtung angeschlossen werden, an die eine die Vorwärtsleistung Pi beschreibende Größe ausgegeben wird.
  • In der Figur 4 ist gezeigt, dass der HF-Generator 2 und der Richtkoppler 3 in einem Gehäuse 30 angeordnet sind, wobei das Gehäuse 30 mit einem Massepotential verbunden ist. Ein Ausgangsanschluss 31 des HF-Generators 2 ist über eine Leitung 32 mit der Durchgangsleitung 11 des Richtkopplers 3 verbunden. Die Durchgangsleitung 11 des Richtkopplers 3 ist wiederum mit dem Innenleiter 33 eines als Stecker, insbesondere Koax-Stecker, ausgebildeten Ausgangsanschluss 34 verbunden. Der Außenleiter 35 des Ausgangsanschlusses 34 ist großflächig über Befestigungsmittel 36 mit dem Gehäuse 30 verbunden. Insbesondere gelangt der auf dem Außenleiter 35 von der Plasmalast zurückgeführte Strom über den Außenleiter 35 an das Gehäuse 30. Um sicherzustellen, dass ein wesentlicher Anteil des Rückstroms über die Massefläche 17 und nicht über das Gehäuse 30 verläuft, ist eine kurze Verbindungsleitung 37 zwischen der Massefläche 17 und dem Ausgangsanschluss 34 vorgesehen. Die Massefläche 17 ist weiterhin über eine kurze Leitung 38 mit dem HF-Generator 2, insbesondere mit dessen Massepotential, verbunden. Die Verbindungsleitungen 37, 38 sind vorzugsweise aus Kupfer oder Silber hergestellt. Diese Metalle weisen eine hohe elektrische Leitfähigkeit auf. Vorzugsweise ist die Länge der Verbindungsleitungen 37, 38 ≤ 10 mm und die Breite ≥ 5 mm insbesondere ≥ 10mm. Durch die flächige, kurze Ausgestaltung der Verbindungsleitungen 37, 38 wird eine induktionsarme Verbindung zwischen dem Außenleiter 35 und der Masse des HF-Generators 2 über die Massefläche 17 realisiert.
  • Weiterhin können Maßnahmen am Gehäuse 30 ergriffen werden, um den Widerstand für den zurückgeführten HF-Strom zu erhöhen und auf diese Weise sicher zu stellen, dass der Rückstrom im Wesentlichen über die Massefläche 17 fließt. Solche Maßnahmen können beispielsweise sein: Verbindungselemente zwischen Gehäuse und Masse des HF-Generators mit Ferritringen versehen, oder Verbindungselemente aus Materialien mit einem hohen µr verwenden da ein hohes µr den Skineffekt erhöht und so zu einer verschlechterten HF-Stromleitung führt. Durch diese Maßnahme können sich die elektrischen und magnetischen Felder ausbilden, die für eine gute Kopplung der Koppelleitungen 13, 15 mit der Durchgangsleitung 11 notwendig sind.

Claims (17)

  1. Richtkoppler (3), insbesondere für eine HF-Plasmaprozessanregungsanordnung (1), umfassend:
    a. Eine Durchgangsleitung (11) mit einem Eingangsanschluss (20) und einem Ausgangsanschluss (21);
    b. Eine von der Durchgangsleitung (11) beabstandete erste Koppelleitung (13) zur Erfassung von reflektierter Leistung (Pr), die zumindest an einem Ende mit einem Abschlusswiderstand (25) abgeschlossen ist;
    c. Eine von der Durchgangsleitung (11) beabstandete zweite Koppelleitung (15) zur Erfassung von Vorwärtsleistung (Pi), die zumindest an einem Ende mit einem Abschlusswiderstand (28) abgeschlossen ist,
    dadurch gekennzeichnet, dass jede Koppelleitung (13, 15) einen vorgegebenen und eingestellten Wellenwiderstand aufweist und die Abschlusswiderstände (25, 28) einen Widerstandswert aufweisen, der dem Wellenwiderstand der zugeordneten Koppelleitung (13, 15) mit einer Toleranz < ±10%, insbesondere <±5%, vorzugsweise < ±1% entspricht.
  2. Richtkoppler nach Anspruch 1, dadurch gekennzeichnet, dass ein erstes Massebezugspotential, insbesondere eine erste Massefläche 10, 17), vorgesehen ist und die erste und zweite Koppelleitung (13, 15) in einem vorgegebene Abstand zu dem Massepotential angeordnet sind.
  3. Richtkoppler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwei Massebezugspotentiale vorgesehen sind und die Koppelleitungen (13, 15) zwischen den Massebezugspotentialen angeordnet sind, wobei der Abstand zu zumindest einem, vorzugsweise beiden Massebezugspotentialen vorgegeben oder vorgebbar ist.
  4. Richtkoppler nach Anspruch 3, dadurch gekennzeichnet, dass die Koppelleitungen (13, 15) zwischen zwei Masseflächen (10, 17) angeordnet sind.
  5. Richtkoppler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Durchgangsleitung (11) in derselben Ebene wie eine Massefläche (10) angeordnet, davon jedoch isoliert ist.
  6. Richtkoppler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen der Durchgangsleitung (11) und einem Massepotential, insbesondere einer Massefläche, keine Koppelleitung (13, 15) angeordnet ist.
  7. Richtkoppler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Koppelleitungen (13, 15) an einem Ende ausschließlich einen Abschlusswiderstand (25, 28) aufweisen.
  8. Richtkoppler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die parallel verlaufenden Abschnitte der Leitungen (11, 13, 15) eine Länge <λ/4, insbesondere ≤λ/8, vorzugsweise ≤λ/10 aufweisen.
  9. Richtkoppler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorwärtsleistung (Pi) und die reflektierte Leistung (Pr) oder diese beschreibende Größen mit unterschiedlichen Koppelfaktoren auskoppelbar sind.
  10. Richtkoppler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste und zweite Koppelleitung (13, 15) in unterschiedlichen Abständen zur Durchgangsleitung (11) angeordnet sind.
  11. Richtkoppler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Durchgangsleitung (11), die erste und die zweite Koppelleitung (13, 15) in unterschiedlichen Ebenen angeordnet sind.
  12. Richtkoppler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Koppelleitungen (13, 15) versetzt zueinander angeordnet sind.
  13. Richtkoppler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leitungen (11, 13, 15) durch ein elektrisch isolierendes Material, insbesondere Leiterplattenmaterial, voneinander beabstandet sind.
  14. Richtkoppler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass er für einen Betrieb bei Frequenzen < 200MHz, insbesondere < 40MHz, ausgelegt ist.
  15. HF-Plasmaprozessanregungsanordnung (1) mit einem Richtkoppler (3) nach einem der vorhergehenden Ansprüche.
  16. HF-Plasmaanregungsanordnung nach Anspruch 15, dadurch gekennzeichnet, dass ein Großteil des Rückstroms, insbesondere mehr als 90% des Rückstroms von einer Plasmalast (4) zu einem HF-Generator (2) über eine Massefläche (10, 17) des Richtkopplers (3) fließt.
  17. HF-Plasmaanregungsanordnung nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass der HF-Widerstand für den Rückstrom zwischen Ausgangsanschluss (34) der HF-Plasmaanregungsanordnung und einem Massepotential des Richtkopplers (3) kleiner ist als der HF-Widerstand eines Gehäuses (30) zwischen Ausgangsanschluss (34) und Massepotential des Gehäuses (30).
EP06006202A 2006-03-25 2006-03-25 Richtkoppler Not-in-force EP1837946B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06006202A EP1837946B1 (de) 2006-03-25 2006-03-25 Richtkoppler
US11/689,043 US7755451B2 (en) 2006-03-25 2007-03-21 Directional coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06006202A EP1837946B1 (de) 2006-03-25 2006-03-25 Richtkoppler

Publications (2)

Publication Number Publication Date
EP1837946A1 true EP1837946A1 (de) 2007-09-26
EP1837946B1 EP1837946B1 (de) 2012-07-11

Family

ID=36809163

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06006202A Not-in-force EP1837946B1 (de) 2006-03-25 2006-03-25 Richtkoppler

Country Status (2)

Country Link
US (1) US7755451B2 (de)
EP (1) EP1837946B1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106422691A (zh) * 2016-08-25 2017-02-22 北京航天环境工程有限公司 用于有机废气等离子体处理装置中的高频电源电路
WO2019185425A1 (de) 2018-03-26 2019-10-03 TRUMPF Hüttinger GmbH + Co. KG Hochfrequenzleistungsmessvorrichtung
WO2019185424A1 (de) 2018-03-26 2019-10-03 TRUMPF Hüttinger GmbH + Co. KG Richtkoppler

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777687B (zh) * 2010-03-23 2013-01-09 南通大学 一种具有任意功率分配比的反相微波功分器
GB2542057B (en) 2014-06-12 2021-09-29 Skyworks Solutions Inc Devices and methods related to directional couplers
US9553617B2 (en) 2014-07-24 2017-01-24 Skyworks Solutions, Inc. Apparatus and methods for reconfigurable directional couplers in an RF transceiver with controllable capacitive coupling
US9386680B2 (en) 2014-09-25 2016-07-05 Applied Materials, Inc. Detecting plasma arcs by monitoring RF reflected power in a plasma processing chamber
DE102015212184A1 (de) * 2015-06-30 2017-01-05 TRUMPF Hüttinger GmbH + Co. KG Richtkoppler
US9866244B2 (en) 2015-09-10 2018-01-09 Skyworks Solutions, Inc. Electromagnetic couplers for multi-frequency power detection
TWI716539B (zh) 2016-02-05 2021-01-21 美商天工方案公司 具有多波段濾波的電磁耦合器
TWI720128B (zh) 2016-02-29 2021-03-01 美商天工方案公司 整合式濾波器及定向耦合器總成
US9953938B2 (en) 2016-03-30 2018-04-24 Skyworks Solutions, Inc. Tunable active silicon for coupler linearity improvement and reconfiguration
CN109314298B (zh) * 2016-04-29 2023-05-02 天工方案公司 补偿电磁耦合器
US10249930B2 (en) 2016-04-29 2019-04-02 Skyworks Solutions, Inc. Tunable electromagnetic coupler and modules and devices using same
TW201740608A (zh) 2016-05-09 2017-11-16 天工方案公司 具有自動頻率偵測的自動調整電磁耦合器
US10164681B2 (en) 2016-06-06 2018-12-25 Skyworks Solutions, Inc. Isolating noise sources and coupling fields in RF chips
WO2017223141A1 (en) 2016-06-22 2017-12-28 Skyworks Solutions, Inc. Electromagnetic coupler arrangements for multi-frequency power detection, and devices including same
JP2018088640A (ja) * 2016-11-29 2018-06-07 株式会社東芝 方向性結合器の製造方法
US10742189B2 (en) 2017-06-06 2020-08-11 Skyworks Solutions, Inc. Switched multi-coupler apparatus and modules and devices using same
US10680308B2 (en) * 2017-12-07 2020-06-09 At&T Intellectual Property I, L.P. Methods and apparatus for bidirectional exchange of electromagnetic waves

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3601716A (en) * 1969-12-24 1971-08-24 Ibm Stripline directional coupling device
JPH0514019A (ja) * 1991-07-01 1993-01-22 Taisee:Kk 方向性結合器
US5424694A (en) 1994-06-30 1995-06-13 Alliedsignal Inc. Miniature directional coupler
JPH07153599A (ja) * 1993-11-29 1995-06-16 Nisshin Denki Seisakusho:Kk プラズマ発生用マイクロ波回路の自動チューニング方法及び装置
JPH08203692A (ja) 1995-01-25 1996-08-09 Hitachi Ltd 誘導結合プラズマ発生装置
US5625328A (en) * 1995-09-15 1997-04-29 E-Systems, Inc. Stripline directional coupler tolerant of substrate variations
US5767753A (en) * 1995-04-28 1998-06-16 Motorola, Inc. Multi-layered bi-directional coupler utilizing a segmented coupling structure
EP1014472A1 (de) 1998-12-17 2000-06-28 Rohde & Schwarz GmbH & Co. KG Richtkoppler
US20020050486A1 (en) * 2000-10-13 2002-05-02 Nobuo Ishii Plasma processing apparatus
US20020113667A1 (en) 2000-06-06 2002-08-22 Yukihiro Tahara Directional coupler
DE102004021535A1 (de) 2003-12-30 2005-07-28 Robert Bosch Gmbh Richtkoppler in Streifenleitertechnik mit breitem Koppelspalt
US20050212617A1 (en) 2004-01-02 2005-09-29 Lu Chen Directional coupler
WO2006105847A1 (de) 2005-04-07 2006-10-12 Kathrein-Werke Kg HOCHFREQUENZKOPPLER ODER LEISTUNGSTEILER, INSBESONDERE SCHMALBANDIGER UND/ODER 3dB-KOPPLER ODER LEISTUNGSTEILER

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4809356A (en) * 1988-02-08 1989-02-28 Motorola, Inc. Three-way power splitter using directional couplers
US5006821A (en) * 1989-09-14 1991-04-09 Astec International, Ltd. RF coupler having non-overlapping off-set coupling lines
ATE358340T1 (de) * 2000-11-22 2007-04-15 Ericsson Telefon Ab L M Rf-antennenschalter

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3601716A (en) * 1969-12-24 1971-08-24 Ibm Stripline directional coupling device
JPH0514019A (ja) * 1991-07-01 1993-01-22 Taisee:Kk 方向性結合器
JPH07153599A (ja) * 1993-11-29 1995-06-16 Nisshin Denki Seisakusho:Kk プラズマ発生用マイクロ波回路の自動チューニング方法及び装置
US5424694A (en) 1994-06-30 1995-06-13 Alliedsignal Inc. Miniature directional coupler
JPH08203692A (ja) 1995-01-25 1996-08-09 Hitachi Ltd 誘導結合プラズマ発生装置
US5767753A (en) * 1995-04-28 1998-06-16 Motorola, Inc. Multi-layered bi-directional coupler utilizing a segmented coupling structure
US5625328A (en) * 1995-09-15 1997-04-29 E-Systems, Inc. Stripline directional coupler tolerant of substrate variations
EP1014472A1 (de) 1998-12-17 2000-06-28 Rohde & Schwarz GmbH & Co. KG Richtkoppler
US20020113667A1 (en) 2000-06-06 2002-08-22 Yukihiro Tahara Directional coupler
US20020050486A1 (en) * 2000-10-13 2002-05-02 Nobuo Ishii Plasma processing apparatus
DE102004021535A1 (de) 2003-12-30 2005-07-28 Robert Bosch Gmbh Richtkoppler in Streifenleitertechnik mit breitem Koppelspalt
US20050212617A1 (en) 2004-01-02 2005-09-29 Lu Chen Directional coupler
WO2006105847A1 (de) 2005-04-07 2006-10-12 Kathrein-Werke Kg HOCHFREQUENZKOPPLER ODER LEISTUNGSTEILER, INSBESONDERE SCHMALBANDIGER UND/ODER 3dB-KOPPLER ODER LEISTUNGSTEILER

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106422691A (zh) * 2016-08-25 2017-02-22 北京航天环境工程有限公司 用于有机废气等离子体处理装置中的高频电源电路
WO2019185425A1 (de) 2018-03-26 2019-10-03 TRUMPF Hüttinger GmbH + Co. KG Hochfrequenzleistungsmessvorrichtung
WO2019185424A1 (de) 2018-03-26 2019-10-03 TRUMPF Hüttinger GmbH + Co. KG Richtkoppler

Also Published As

Publication number Publication date
EP1837946B1 (de) 2012-07-11
US7755451B2 (en) 2010-07-13
US20080036554A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
EP1837946B1 (de) Richtkoppler
EP1774616B1 (de) Vorrichtung zur übertragung von breitbandigen hochfrequenzsignalen
EP3126852B1 (de) Kontaktieranordnung, insbesondere hf-messspitze
EP3449226A1 (de) Koppelelement für ein kapazitives füllstansdmesgerät
DE102013204586A1 (de) Sensor und Verfahren zur Ermittlung einer dielektrischen Eigenschaft eines Mediums
EP0568889A2 (de) Verfahren zum Kalibrieren eines Netzwerkanalysators
WO2011076328A1 (de) Breitbandrichtkoppler
EP1743396B1 (de) Breitbandiger symmetrierübertrager
DE112013004185B4 (de) Richtkoppler
WO2013149930A1 (de) Breitbandrichtkoppler
DE19809890C1 (de) Vorrichtung zur Messung der Kapazität von elektrischen Adern
DE10316047B4 (de) Richtkoppler in koplanarer Wellenleitertechnik
EP2137788A1 (de) Wellenleiter-system mit differenziellem wellenleiter
WO2013143537A1 (de) Richtkoppler mit geringer elektrischer kopplung
EP1407508B1 (de) Richtkoppler
WO2013164453A2 (de) Ultrabreitbandige messbrücke
EP2438645B1 (de) Vorwärtskoppler mit bandleitern
EP2068391A2 (de) Einrichtung mit überkreutzter Streifenleitung
DE4404046C2 (de) Verfahren zum Kalibrieren eines zwei Meßtore aufweisenden Netzwerk-Analysators
DE102021209675B4 (de) Abstimmbare Mikrowellen-Brückenschaltung mittels Phasenschieber und Abschwächer zur Trennung eines Sendesignals von einem Empfangssignal ohne Zirkulator und ESR-Spektrometer
DE202011051371U1 (de) Richtkoppler mit reduziertem Crosstalk
DE102019134174A1 (de) Richtkoppler
EP2438646B1 (de) Messkoppler in bandleitertechnik
EP3444575A1 (de) Sensoranordnung zur potentiometrischen messung einer füllstandshöhe in einem behälter
DE202018101683U1 (de) Richtkoppler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080229

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090723

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 566527

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006011698

Country of ref document: DE

Effective date: 20120906

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120711

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121111

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121012

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121112

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121022

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

26N No opposition filed

Effective date: 20130412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121011

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006011698

Country of ref document: DE

Representative=s name: KOHLER SCHMID MOEBUS PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006011698

Country of ref document: DE

Effective date: 20130412

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: TRUMPF HUETTINGER GMBH + CO. KG, DE

Free format text: FORMER OWNER: HUETTINGER ELEKTRONIK GMBH + CO. KG, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006011698

Country of ref document: DE

Representative=s name: KOHLER SCHMID MOEBUS PATENTANWAELTE, DE

Effective date: 20130801

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006011698

Country of ref document: DE

Representative=s name: KOHLER SCHMID MOEBUS PATENTANWAELTE PARTNERSCH, DE

Effective date: 20130801

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006011698

Country of ref document: DE

Owner name: TRUMPF HUETTINGER GMBH + CO. KG, DE

Free format text: FORMER OWNER: HUETTINGER ELEKTRONIK GMBH + CO. KG, 79111 FREIBURG, DE

Effective date: 20130801

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006011698

Country of ref document: DE

Owner name: TRUMPF HUETTINGER GMBH + CO. KG, DE

Free format text: FORMER OWNER: HUETTINGER ELEKTRONIK GMBH + CO. KG, 79111 FREIBURG, DE

Effective date: 20120712

BERE Be: lapsed

Owner name: HUTTINGER ELEKTRONIK G.M.B.H. + CO. KG

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130325

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 566527

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130325

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150320

Year of fee payment: 10

Ref country code: CH

Payment date: 20150325

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150324

Year of fee payment: 10

Ref country code: FR

Payment date: 20150319

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060325

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130325

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006011698

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160325

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160325

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331