EP1834219B1 - Beurteilungsvorrichtung für steuersysteme, verfahren zur beurteilung des steuersystems und dafür verwendetes computerprogramm - Google Patents

Beurteilungsvorrichtung für steuersysteme, verfahren zur beurteilung des steuersystems und dafür verwendetes computerprogramm Download PDF

Info

Publication number
EP1834219B1
EP1834219B1 EP05844576A EP05844576A EP1834219B1 EP 1834219 B1 EP1834219 B1 EP 1834219B1 EP 05844576 A EP05844576 A EP 05844576A EP 05844576 A EP05844576 A EP 05844576A EP 1834219 B1 EP1834219 B1 EP 1834219B1
Authority
EP
European Patent Office
Prior art keywords
state quantity
model
presumption
evaluation target
target model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05844576A
Other languages
English (en)
French (fr)
Other versions
EP1834219A1 (de
Inventor
Koichiro TOYOTA JIDOSHA KABUSHIKI KAISHA FUKUDA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of EP1834219A1 publication Critical patent/EP1834219A1/de
Application granted granted Critical
Publication of EP1834219B1 publication Critical patent/EP1834219B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/26Functional testing
    • G06F11/263Generation of test inputs, e.g. test vectors, patterns or sequences ; with adaptation of the tested hardware for testability with external testers

Definitions

  • the present invention relates to a device and a method for evaluating a control system of a physical device such as an engine, and a computer program used therein.
  • a device which is configured to combine a control model having a control algorithm to be implemented in the control system and an engine model modeling an actual engine in a predetermined method, import a physical quantity (e.g., amount of intake air) having an effect on an operating condition set in the engine model to the control model from the engine model while imaginarily making the engine model operate in a predetermined input condition, calculate a manipulated variable of a controlled equipment, such as a fuel injection valve based on the imported physical quantity, provide the manipulated variable to the engine model to confirm control efficiency of the control algorithm (e.g., see Japanese Patent Application Laid-Open (JP-A) No. 4-159439 ). Additionally, there exists JP-A Nos. 2003-108697 and 7-28505 as prior art documents related to the present invention.
  • JP-A Japanese Patent Application Laid-Open
  • the above conventional device simply changes input conditions of the engine model and confirm its control efficiency.
  • manufacturing tolerances exist in controlled equipments. Accordingly, the actual manipulated variable differs from the instructed value of manipulated variable and, with those differences, the operating state of the engine may be changed.
  • various physical quantities such as amount of intake air or purification rate of an exhaust purification catalyst which are considered by the engine model, variation occurs in the actual engine in accordance with manufacturing tolerance, or differences in various parameters such as atmosphere temperature, fuel physical characteristics of engine components or the like, which detect or determines the physical quantities.
  • prediction of control efficiency in consideration of the above described differences in manipulated variables or variations in physical quantities cannot be provided.
  • An object of the present invention is to provide an evaluation device, an evaluation method and the like in order to reduce efforts regarding evaluation of control system prepared for controlling a physical device of an engine or the like.
  • an evaluation device for a control system of a physical device comprising: an evaluation target model which operates according to a control algorithm to be implemented in the control system, and which outputs a manipulated variable of a predetermined controlled equipment included in the physical device in correspondence with a predetermined input condition; a state quantity presumption model which presumes a state quantity of the physical device subjected to an influence of an operation of the controlled equipment in correspondence with a predetermined state quantity presumption condition, and which outputs the presumed state quantity; and a model control device which provides the input condition to the evaluation target model so that the manipulated variable is output therefrom and which provides, as the state quantity presumption condition, an error regarding at least one parameter to be referred in a presumption of the state quantity, which is not considered by the evaluation target model, in addition to the input condition provided to the evaluation target model and the manipulated variable output from the evaluation target model, to the state quantity presumption model so that a state
  • the evaluation target model outputs the manipulated variable of the controlled equipment in correspondence with the input condition provided thereto.
  • an error regarding a parameter used in a presumption of the state quantity is provided in addition to the input condition provided to the evaluation target model and the manipulated variable output from the evaluation target model as the state quantity presumption condition.
  • a state quantity in which the influence of the error is added to the state quantity corresponding to the manipulated variable output from the evaluation target model is output from the state quantity presumption model. Accordingly, it is possible to predict the capability of the control system such as robustness thereof in consideration of the influence of the error, and thus effort regarding the evaluation of the control system can be reduced.
  • the model control device may provide the error for a parameter included in the input condition or the manipulated variable output from the evaluation target model. According to this embodiment, it is possible to predict a change of the state quantity in the case where an error exists in the input condition provided to the evaluation target model or in the manipulated variable provided to the state quantity presumption model from the evaluation target model, and is possible to evaluate the robustness or the like of the control system against the error.
  • the evaluation target model may presume a state quantity to be controlled by an operation of the controlled equipment and reflect a presumption result to control of the state quantity, and the state quantity presumption model may presume and output a state quantity which is the same kind of the state quantity presumed by the evaluation target model.
  • the state quantity presumption model presumes the state quantity reflecting the error.
  • the evaluation target model may reflect a difference between the state quantity presumed by the evaluation target model and the state quantity presumed by the state quantity presumption model to a presumption of the state quantity in the evaluation target model. According to this embodiment, it is possible to evaluate whether or not the evaluation target model detects a presumption error of the state quantity and can properly reflect the detection result to the presumption of the state quantity.
  • the evaluation device may further comprise an analyzing device which quantifies an influence of the error on control of the state quantity of the evaluation target model based on at least one of degree or frequency for the case where the state quantity output from the state quantity presumption model exceeds an allowable region. According to this embodiment, it is possible to quantitatively and objectively recognize the degree or the frequency for the case where the state quantity exceeds the predetermined allowable region to evaluate the control system.
  • the evaluation device may further comprise an analyzing device which quantifies an influence of the error on control of the state quantity of the evaluation target model based on a difference of state quantities presumed in the evaluation target model and the state quantity presumption model respectively.
  • an analyzing device which quantifies an influence of the error on control of the state quantity of the evaluation target model based on a difference of state quantities presumed in the evaluation target model and the state quantity presumption model respectively.
  • the analyzing device may quantify the influence of the error on the control of the state quantity by the evaluation target model, further taking at least one of degree or frequency for a case where the state quantity output from the state quantitypresumption model exceeds a predetermined allowable region into account. Consequently, it is possible to further take the degree or the frequency for the case where the state quantity exceeds the predetermined allowable region into account to evaluate the control system.
  • the evaluation device may further comprise an analyzing result displaying device which displays an analyzing result quantified by the analyzing device on a predetermined display device.
  • the analyzing result displaying device may perform a predetermined highlighting display when the analyzing result excesses a predetermined allowable region. With such a highlighting display, the user can easily recognize a problem of the control system.
  • the physical device may be an automobile engine
  • the control algorithm may be implementable to an engine control unit as a computer to be combined with the engine
  • the input condition may include a parameter group for determining an operation condition or an environment conditionof the engine
  • the controlled equipment may be an equipment of the engine, which is operated for controlling the engine.
  • an evaluation method for evaluating a control system of a physical device comprising the steps of: making an evaluation target model having a control algorithm to be implemented in the control system output a manipulated variable of a predetermined controlled equipment included in the physical device in correspondence with a predetermined input condition by providing the input condition to the evaluation target model to make the evaluation target model operate; and making a state quantity presumption model, which is configured to presume a state quantity of the physical device subjected to an influence of an operation of the controlled equipment, presume and output the state quantity of the physical device subjected to the influence of the operation of the controlled equipment in correspondence with a predetermined state quantity presumption condition by providing the state quantity presumption model with an error regarding at least one parameter to be referred in a presumption of the state quantity, which is not considered by the evaluation target model, as a state quantity presumption condition, in addition to the input condition provided to the evaluation target model and the manipulated variable output from
  • the evaluating method it is possible to make the evaluation target model output the state quantity of the controlled equipment in correspondence with the input condition, while making the state quantity presumption model output the state quantity in which the influence of the error is added to the state quantity corresponding to the manipulated variable output from the evaluation target model. Consequently, the capability such as robustness of the control system can be presumed in consideration of the influence of the error and the effort regarding evaluation of control system can be reduced.
  • a computer program configured to make a computer serve as: an evaluation target model which operates according to a control algorithm to be implemented in the control system, and which outputs a manipulated variable of a predetermined controlled equipment included in the physical device in correspondence with a predetermined input condition; a state quantity presumption model which presumes a state quantity of the physical device subjected to an influence of an operation of the controlled equipment in correspondence with a predetermined state quantity presumption condition, and which outputs the presumed state quantity; and a model control device which provides the input condition to the evaluation target model so that the manipulated variable is output therefrom and which provides, as the state quantity presumption condition, an error regarding at least one parameter to be referred in a presumption of the state quantity, which is not considered by the evaluation target model, in addition to the input condition provided to the evaluation target model and the manipulated variable output from the evaluation target model, to the state quantity presumption model so that a state
  • the state quantity reflecting the influence of the error which is not considered in the evaluation target model can be output from the state quantity presumption model, the presumption of the control effect of the control system including the influence of the error can be achieved.
  • effort regarding the evaluation of the control system can be reduced so that development period of the control system can be shortened and costs for development can be reduced.
  • FIG. 1 is a diagram showing a hardware structure of an evaluation device according to one embodiment of the present invention
  • FIG. 2 is a diagram showing an example of an automobile engine as a physical device having a control system to be evaluated by the evaluation device.
  • An engine 1 shown in FIG. 2 is provided as a cylinder injection type internal combustion engine in which air is introduced from an intake passage 2 to cylinders 4 via an intake throttle valve 3, fuel is injected to the cylinders 4 from fuel injection valves 5 to generate air-fuel mixture, and the air-fuel mixture is compressed and ignited.
  • Air discharged from the cylinders 4 is lead into an exhaust passage 6, purified by an exhaust purification catalyst 7 and then discharged to atmosphere.
  • a fuel addition valve 8 is provided to add fuel into the exhaust gas in upper stream than the exhaust purification catalyst 7 in order to regenerate the exhaust purification catalyst 7.
  • an engine control unit (ECU) 11 as a computer unit for controlling its operational status is provided.
  • the ECU 11 imports, as input information, various physical quantities such as the intake air amount detected by an air flow meter 12, the catalyst temperature detected by a catalyst temperature sensor 13 and the like, and operates various engine equipments (controlled equipments) such as the fuel injection valve 5, the fuel addition valve 8 and the like according to a predetermined engine control program so that the engine 1 is controlled to be in a target operation status.
  • a combination of the ECU 11 for executing engine control program, input equipments such as the air flow meter 12 and the catalyst temperature sensor 13, equipments to be controlled by the ECU 11 such as the fuel injection valve 5 and the like corresponds to a control system to be evaluated.
  • the air flow meter 12 and the catalyst temperature sensor 13 are shown as input equipments for the ECU 11 and the fuel injection valve 5 and the fuel addition valve 8 are shown as controlled equipments, however, it is noted that they are shown as examples.
  • input equipments a water temperature sensor, an accelerator opening degree sensor, a crank angle sensor and the like are also provided, and, as controlled equipments, a fuel pressure control valve, an ERG valve and the like are also provided. Here, they are not shown in the drawing.
  • an evaluation device 21 includes a calculation device 22, a key board 23 and a mouse 24 as input devices for the calculation device 22, and, a monitor 25 and a printer 26 as output devices.
  • the calculation device 22 is provided as a computer unit having a microprocessor and peripheral equipments, for example, a main memory device (RAM and ROM) and the like used for the operation of the microprocessor.
  • a personal computer or a work station may be employed, for example.
  • the calculation device 22 reads out a program and data recorded in an external memory device which is not shown and carries out predetermined processing.
  • an ECU-equivalent model 31 and the state quantity presumption model 32 are respectively generated in a single calculation device 22.
  • an ECU simulator 27 may be connected with the calculation device 22 via an 10 board 28 and the ECU-equivalent model 31 may be provided in the ECU simulator 27 so that the evaluation device 21 is generated in used of so called HILS (Hardware In the Loop Simulation) method.
  • the input devices and output devices are shown as examples and they may be changed accordingly.
  • the simulation controller 33 serves as a model control device or means and the analyzer 34 serves as an analyzing device or means. Further, a combination of the state quantity presumption model 32, the simulation controller 33 and the analyzer 34 serves as a validation device of the present invention.
  • the ECU-equivalent model 31 is a logical model having a function equivalent to the ECU 11, and corresponds to an evaluation target model to be evaluated by the evaluation device 21.
  • the ECU-equivalent model 31 operates according to a control algorithm of an engine control program to be implemented in the ECU 11, calculates a manipulated variable of an equipment to be controlled by the ECU 11 and various state quantities related to the engine 1 corresponding to input condition provided to the ECU 11 from the simulation controller 33, and outputs the manipulated variable and the state quantities which are calculated. That is, the ECU-equivalent model 31 includes a manipulated variable determination function for determining manipulated variables of the controlled equipments and a state quantity presumption function for presuming state quantities of the engine 1 relevant to the manipulated variables.
  • the input condition provided to the ECU-equivalent model 31 is determined in relation to an operation condition of the engine 1 and an environmental condition of the engine 1.
  • a parameter group constituting the input condition which includes an engine speed, speed of vehicle, acceleration opening degree, amount of intake air, air-fuel ratio (A/F), common rail pressure (fuel injection pressure), intake manifold pressure (intake pressure), water temperature, fuel temperature, atmosphere temperature, catalyst inlet gas temperature, catalyst outlet gas temperature and the like.
  • manipulated variables determined by the ECU-equivalent model 31 there exists amount of intake air, charging pressure, amount of cylinder injection, timing for injection, amount of fuel added to exhaust gas, and the like of the engine 1.
  • manipulated variables may be actual manipulated variables of the controlled equipments or physical quantities corresponding to the operation of the controlled equipments.
  • the manipulated variable may be determined as the time for opening the fuel injection valve 5 for determining fuel amount injected to the cylinder 4 of the engine 1 or on-duty ratio of the fuel injection valve 5 or the like equivalent thereto. Further, the manipulated variable may be determined as fuel amount injected to the cylinder 4.
  • the ECU-equivalent model 31 presumes, as state quantities, various physical quantities indicating the operation state of the engine 1, such as exhaust gas temperature, catalyst bed temperature.
  • the state quantity presumption model 32 is a virtual engine model provided in order to presume influences of operations of equipments controlled by the ECU 11.
  • the state quantity presumption model 32 presumes the state quantity of the engine 1 corresponding to the manipulated variable output from the ECU-equivalent model 31 and outputs the presumption results, according to the state quantity presumption condition provided from the simulation controller 33.
  • the presumed state quantity is the same kind of the state quantity presumed by the ECU-equivalent model 31.
  • the physical quantities of exhaust gas temperature, catalyst bed temperature or the like are also presumed in the state quantity presumption model.
  • various conventional methods may be employed for the modeling of the engine 1.
  • the state quantity presumption model 32 may be a model that presumes state quantities in the same degree of accuracy with the ECU-equivalent model 31 or may be a model that presumes state quantities with higher degree of accuracy than that of ECU-equivalent model 31.
  • State quantity presumption condition includes, as parameters, the group of parameters constituting the input condition provided to the ECU-equivalent model 31 (see FIG. 3 ), the manipulated variable output from the ECU-equivalent model 31, and the error which is not considered when the ECU-equivalent model 31 presumes the state quantity.
  • the error may be added to a parameter included in the input condition or may be added to the manipulated variable output from the ECU-equivalent model 31. Further, the error may be added to an internal parameter to which the state quantity presumption model refers when presuming the state quantity.
  • errors may be provided to amount of fuel cylinder injection, air flow amount detected by the air flow meter 12 (AFM detection air amount), amount of fuel added to exhaust gas, catalyst heat capacity, fuel deposit rate, fuel evaporative rate, catalyst purification rate, and HC lower calorific value, respectively.
  • the amount of cylinder injection and the amount of fuel added to the exhaust gas are manipulated variables output from the ECU-equivalent model 31 and the AFM detection air amount is a parameter included in the input condition provided to the ECU-equivalent model 31.
  • the catalyst heat capacity, the fuel deposit rate, the fuel evaporative rate, the catalyst purification rate, and the HC lower calorific value are internal parameters used when the state quantity presumption model 32 presumes the state quantity of the bed temperature or the like.
  • Those internal parameters may be provided to the ECU-equivalent model 31 as internal parameters, or may not be provided to the ECU-equivalent model 31 as internal parameters. That is, the state quantity presumption model 32 may presume the state quantity with reference to more internal parameters than the ECU-equivalent model 31 and the errors given to the state quantity presumption model 32 may be added to the internal parameters to which only the state quantity presumption model 32 refers.
  • the simulation controller 33 works total control of the simulation such as generation of input signals to the models 31 and 32, operation control of the models 31 and 32, import of outputs (manipulated variables or state quantities) from the models 31 and 32, control of analyzing operation of the analyzer 34, and provision of an interface to a user.
  • the simulation controller 33 sets the input condition and the state quantity presumption condition according to the user's operation to the input device and provides each condition to the ECU-equivalent model 31 and the state quantity presumption model 32 to make them operate.
  • the simulation controller 33 receives state quantities output from the models 31 and 32, transfers themto the analyzer 34, receives an analyzing result from the analyzer 34, and outputs it to the monitor 25 or the like.
  • the simulation controller 33 makes the monitor 25 display a screen page for setting the input condition shown in FIG. 3 and the errors shown in FIG. 4 to thereby provide an environment in that the user can set the conditions.
  • setting of the input condition and the errors may automatically be carried out by the calculation device 22.
  • the analyzer 34 receives, from the simulation controller 33, the state quantities output from the models 31 and 32 as the simulation result, analyzes the simulation result with a predetermined analyzing method and outputs the analyzing result to the simulation controller 33.
  • a predetermined analyzing method for example, an FMEA method is employed. An example of analysis using the FMEA method will be described later.
  • the analyzer 34 is shown separately from the simulation controller 33, however, the analyzer 34 may be included in the simulation controller 33.
  • the simulation controller 33 can be achieved, for example, by combining simulation tool software such as MATLAB/Simulink (registered trademark) to a computer unit as hardware.
  • FIG. 5 is a block diagram showing inputs and outputs to and from the ECU-equivalent model 31 and the state quantity presumption model 32 and internal processing in the models 31 and 32 in case of evaluating the bed temperature control function.
  • the engine speed and amount of fuel injection are provided to the ECU-equivalent model 31 as a part of parameter group required for the bed temperature presumption. These parameters constitute a part of the input condition. Other parameters constituting the input condition are not shown in the drawing.
  • an exhaust temperature presumption unit 41 presumes an exhaust temperature corresponding to the given engine speed and amount of fuel injection with reference to an exhaust gas presumption map or the like.
  • the presumed exhaust temperature is provided to a fuel addition unit 42.
  • the fuel addition unit 42 seeks for a target bed temperature based on the given exhaust temperature and amount of fuel injection and calculates an amount of fuel addition to be provided from the fuel addition valve 8 as a manipulated variable for the fuel addition valve 8 to control the temperature of the catalyst 7 to be the target bed temperature.
  • the calculated amount of fuel addition is provided to a bed temperature presumption unit 43.
  • the bed temperature presumption unit 43 presumes a bed temperature corresponding to the given amount of fuel addition based on the predetermined bed temperature presumption logic. For the presumption of bed temperature, for example, an internal parameter such as the catalyst heat capacity is referred, however, it is not shown in the drawing.
  • the bed temperature presumed by the bad temperature presumption unit 43 is output from the ECU-equivalent model 31 as the state quantity related to the engine 1.
  • the bed temperature presumed by the bed temperature presumption unit 43 is fed back to the fuel addition unit 42.
  • the fuel addition unit 42 studies the difference between the presumed bed temperature fed back thereto and the target bed temperature determined based on the exhaust temperature to make changes the control algorithm for determining the additive amount accordingly. As a result, the bed temperature presumed by the bed temperature presumption unit 43 is reflected to the control of catalyst bed temperature through the operation of the fuel addition valve 8.
  • the engine speed and amount of fuel injection are provided to the state quantity presumption model 32 as a part of the state quantity presumption condition.
  • the engine speed is set to the same value as the value provided to the ECU-equivalent model 31.
  • a value in which a predetermined error is added to the value provided to the ECU-equivalent model 31 is provided to the state quantity presumption model 32.
  • an exhaust temperature presumption unit 51 presumes an exhaust temperature corresponding to the given engine speed and the amount of fuel injection (here, the value including an error) with reference to an exhaust temperature presumption map or the like.
  • the exhaust temperature presumed by the exhaust temperature presumption unit 51 is provided to a bed temperature presumption unit 52 as a part of a parameter group required for the bed temperature presumption.
  • the amount of fuel addition calculated by the fuel addition unit 42 of the ECU-equivalent model 31 is further provided to the bed temperature presumption unit 52 as a part of a parameter group required for the bed temperature presumption. That is, the amount of fuel addition determined by the ECU-equivalent model 31 is provided to the state quantity presumption model 32 as a parameter constituting the state quantity presumption condition.
  • the bed temperature presumption unit 52 presumes a bed temperature corresponding to the given exhaust temperature and the amount of fuel addition, according to a predetermined bed temperature presumption logic. For the presumption of bed temperature, for example, an internal parameter such as catalyst heat capacity is referred, however, it is not shown in the drawings.
  • the bed temperature presumed by the bed temperature presumption unit 52 is output from the state quantity presumption model 32 as the state quantity of the engine 1.
  • the bed temperature presumed by the bed temperature presumption unit 52 is fed back to the ECU-equivalent model 31.
  • a difference between the bed temperature provided from the state quantity presumption model 32 and the bed temperature presumed by the bed temperature presumption unit 43 of the ECU-equivalent model 31 is detected and the difference is fed back to the bed temperature presumption unit 43.
  • the bed temperature presumption unit 43 studies the fed back difference of bed temperature and makes changes to the control algorithm (bed temperature presumption logic) for presumption of bed temperature.
  • a bed temperature presumption value with no error in the amount of fuel injection is output from the ECU-equivalent model 31 and a bed temperature presumption value with an error in the amount of fuel injection is output from the state quantity presumption model 32.
  • the ECU-equivalent model 31 can detect an influence on the bed temperature control exerted by the deviation of recognition in the ECU 11 with respect to the amount of fuel injection, and therefore, the robustness (tenacity) of the bed temperature control function of the control system for the error of the fuel injection amount can be judged.
  • the control algorithm of the ECU-equivalent model 31 is not detecting the influence of an error of the fuel injection amount, and accordingly, the robustness of the control system for the error of the fuel injection amount should be evaluated relatively in low level.
  • the robustness should be evaluated relatively in low level if the frequency of differences generated in the bed temperature presumption value in a predetermined period of time is greater. Further, the robustness should be evaluated relatively in low level if the absolute value of the bed temperature presumed by the state quantity presumption model 32 is higher.
  • an error in the amount of fuel injection there is set an error in the amount of fuel injection, however, as shown with dashed lines in the drawing, an error related to the internal parameter of the exhaust temperature presumption unit 51 or the bed temperature presumption unit 52 of the state quantity presumptionmodel 32, or an error in the amount of fuel addition provided to the state quantity presumption model 32 from the ECU-equivalent model 31 may be provided to evaluate the robustness of the control system for that error.
  • the presumption accuracy levels of the respective exhaust temperature presumption unit 51 and the bed temperature presumption unit 52 may be the same as or higher than those of the exhaust temperature presumption unit 41 and the bed temperature presumption unit 43 of the ECU-equivalent model 31.
  • the amount of fuel injection is input from outside the ECU-equivalent model 31, however, the ECU-equivalent model 31 may calculate the amount of fuel injection based on the input condition and provide it to the exhaust temperature presumption units 41 and 51, respectively.
  • FIG. 6 is a flow chart showing a bed temperature control function evaluating routine executed by the simulation controller 33 in order to carry out the above processing related to the evaluation of the bed temperature control function.
  • the simulation controller 33 inputs initial condition to the ECU-equivalent model 31 and the state quantity presumption unit 32 in the first step S1 and makes the ECU-equivalent model 31 and the state quantity presumption model 32 operate according to the input condition in the following step S2.
  • the input condition shown in FIG. 3 is provided to the ECU-equivalent model 31 and the input condition and the error shown in FIG. 4 is provided to the state quantity presumption model 32.
  • the simulation controller 33 obtains the amount of fuel addition from the ECU-equivalent model 31 as a manipulated variable, and in the next step S4, the simulation controller 33 provides the manipulated variable to the status quantity presumption model 32.
  • the error may be added in step S4 in place of step S1.
  • step S5 the simulation controller 33 obtains the bed temperature presumption values output from the respective models 31 and 32.
  • step S6 the simulation controller 33 feeds back the bed temperature presumption value output from the state quantity presumption model 32 to the ECU-equivalent model 31, and further in the step S7, the simulation controller 33 transfers the simulation results, in this case the bed temperature presumption values output from the respective models 31 and 32, to the analyzer 34. Further in step S8, it is determined whether or not the simulation is completed, that is, whether or not the simulation has already been continued for a predetermined period of time.
  • step S9 the processing is forwarded to step S9 and the input condition to each model is updated by reflecting the manipulated variable of the ECU-equivalent model 31 and the state quantity of the state quantity presumption model 32 at that point of time, and then the processing goes back to step S3. If it is determined that the simulation is completed, the models are stopped and the routine is finished.
  • FIG. 7 shows an example of a simulation result analyzing routine based on the FMEA method executed by the analyzer 34.
  • This routine is repeatedly executed in a predetermined sampling period.
  • the simulation result analyzer 34 monitors the bed temperature presumption values output from the state quantity presumption model 32, obtains the peak value thereof and stores it in the first step S11.
  • the risk of the bed temperature peak value is evaluated and the evaluation result is stored in an internal memory of the calculation device 22 in the following step 12.
  • the bed temperature is classified into five levels of 1 to 5 according to the temperature regions and the degree of risk is quantitatively evaluated according to the temperature region to which the acquired bed temperature peak value belongs. For example, when the bed temperature peak value is 720 °C, the degree of risk is evaluated as "2".
  • step S13 it is evaluated whether or not an over temperature (OT) condition, in which the bed temperature peak value obtained in step S11 exceeds the predetermined temperature set as a threshold temperature of the catalyst 7 (700 °C, in this example), occurs.
  • OT over temperature
  • an OT frequency is evaluated based on the value of the OT number counter and the evaluation result is stored.
  • the value (number) of the OT counter is classified into five levels of 1 to 5 and the OT frequency is quantitatively evaluated according to the region to which the current OT counter value belongs. For example, when the value of the OT number counter is "5", its OT frequency is evaluated as "3". Going back to FIG. 7 , in the following step 16, a difference between the bed temperature presumption values output from the respective models 31 and 32 is obtained as a bed temperature presumption error.
  • a value of taking the bed temperature presumption value of the state quantity presumption model 32 from the bed temperature presumption value of the ECU-equivalent model 31 is used as the bed temperature presumption error.
  • the degree of detection of the bed temperature presumption error is evaluated and the evaluation result is stored in the internal memory of the calculation device 22.
  • the bed temperature presumption error is, as shown in FIG. 10 , classified into five levels of 1 to 5 according to the temperature regions and the degree of detection is quantitatively evaluated based on the region to which the error obtained in step S16 belongs. For example, the bed temperature presumption error is -28 °C, the degree of detection is evaluated as "3".
  • step S18 it is determined whether or not the simulation is completed, and if the simulation is not completed, the routine for this time is finished. If it is determined that the simulation is completed, the processing is forwarded to step S19 and an RPN (Risk Priority Number) is calculated by multiplying the values of the degree of risk obtained in step S12, the frequency obtained in step S14, and the degree of detection obtained in step S17, and the calculated result is output to the simulation controller 33. The routine is finished with this RPN calculation.
  • RPN Record Priority Number
  • the simulation controller 33 outputs the degree of risk calculated by the analyzer 34, the OT frequency, the degree of detection, the RPN in a predetermined format to the monitor 25 or the like.
  • FIG. 11 shows an example of displaying the simulation results.
  • the case where any error is given to the state quantity presumption model 32 is set as a central condition simulations are carried out according to Conditions 1 to 5 with different combinations of errors and the bed temperature peak value (bed temperature MAX), degree of risk, OT number, frequency, presumption error, degree of detection, and RPN are displayed corresponding to the respective conditions.
  • Condition 1 and Condition 2 errors of “1 mm 3 /ST (one stroke)", “-1 mm 3 /ST” are given to the amount of fuel cylinder injection, respectively in the order.
  • an error of "+5%” is given to the detection value of the amount of intake air.
  • an error of "1 mm 3 /ST” is given to the amount of fuel cylinder injection and an error of "+6%” is given to the detection value of the amount of intake air.
  • an error of "-10%” is given to the amount of catalyst heat capacity and an error of "+20%” is given to the catalyst purification rate.
  • the items provided with errors may be displayed in different way with different color, blinking, or the like.
  • RPN is shown “36" in Condition 2 and "12" in Condition 5 and it is found that the robustness of the control system is low in these conditions.
  • These RPNs with low robustness may be displayed in different way. For example, conditions having RPN which is beyond an allowable range may be abstracted by the simulation controller 33 and those conditions may be highlighted.
  • the influence on the bed temperature control of the ECU-equivalent model 31 exerted by the error in the amount of fuel injection may be quantified with three point of views of the absolute value of bed temperature, the frequency of over temperature, and the error of presuming bed temperature, and the robustness against the error of the amount of fuel injection in the control system expressed by the ECU-equivalent model 31 can be objectively evaluated. It can be found, from the simulation results, that the bed temperature control function of the control system needs to be reexamined for the conditions having low robustness. In the example shown in FIG. 11 , it is found, with the simulation result in Condition 2, that the control function needs to be improved for the case where a lower amount of fuel cylinder injection appears.
  • the control accuracy for the amount of fuel cylinder injection is required to be reexamined.
  • measures such as to improve accuracy of algorithm related to the control of the amount of fuel cylinder injection, to reexamine the tolerance in manufacturing hardware such as a pressure regulator for controlling the fuel injection valve 5 or the fuel injection pressure, or to add a detection unit for detecting the error of the amount of fuel cylinder injection and a feedback control for controlling according to the detection results, can be considered.
  • measures such as to reexamine the tolerance in manufacturing the catalyst 7, to improve quality of the catalyst 7 or the like is considered.
  • the present invention is not limited to the above embodiment and can be carried out in various conformations.
  • the state quantity such as the bed temperature is also presumed in the ECU-equivalent model 31 and the presumed value is compared with the value presumed by the state quantity estimation model 32 to evaluate the robustness, however, the present invention can be applied even in the case where the ECU-equivalent model does not have a function for presuming state quantity, as long as a relationship in which the ECU-equivalent model outputs manipulated variables and the state quantity presumption model presumes state quantity corresponding to the manipulated variable from the ECU-equipment model.
  • the frequency of over temperature and the amount of excess of the bed temperature from the allowable region or the like may be obtained based on the bed temperature output from the state quantity presumption model to thereby evaluate the suitability of the bed temperature control function.
  • the ECU-equivalent model is a model of so called open-loop controlling type which does not have a feedback control function of state quantity of bed temperature or the like, it is able to obtain the frequency of over temperature and amount of excess of the temperature from the allowable region based on the state quantity presumed by the state quantity presumption model, in the same way of the above, and to determine the need for adding feedback controls based on the result.
  • Analysis of the simulation result should not be limited to the FMEA method and various methods may be employed.
  • control system in an automobile engine an example of a control system in an automobile engine is described, however, the present invention may be applied for evaluation of control systems in various physical devices without limitation to an engine.
  • the present invention may be applied to control system for ABS, chassis control, attitude control or the like for automobiles.
  • the physical device is not limited to a device employed in an automobile and the present invention may be used in various devices for airplanes, ships, robots, machine tools, plant facilities, power generation plants or the like.

Claims (12)

  1. Bewertungsvorrichtung für ein Steuerungssystem einer physikalischen Vorrichtung, mit:
    einem Bewertungszielmodell, das gemäß einem in dem Steuerungssystem zu implementierenden Steuerungsalgorithmus arbeitet, und das eine Stellgröße einer vorbestimmten, von der physikalischen Vorrichtung umfassten, gesteuerten Einrichtung in Übereinstimmung mit einer vorbestimmten Eingabebedingung ausgibt;
    einem Zustandsgrößenannahmemodell, das eine Zustandsgröße der physikalischen Vorrichtung, die einem Einfluss einer Operation der gesteuerten Einrichtung ausgesetzt ist, in Übereinstimmung mit einer vorbestimmten Zustandsgrößenannahmebedingung annimmt, und die die angenommene Zustandsgröße ausgibt;
    gekennzeichnet durch
    eine Modellsteuerungsvorrichtung, die dem Bewertungszielmodell die Eingabebedingung derart zur Verfügung stellt, dass die Stellgröße davon ausgegeben wird, und die dem Zustandsgrößenannahmemodell zusätzlich zu der dem Bewertungszielmodell bereitgestellten Eingabebedingung und zu der von dem Bewertungszielmodell ausgegebenen Stellgröße einen durch das Bewertungszielmodell nicht berücksichtigten Fehler hinsichtlich zumindest eines Parameters, auf den in einer Annahme der Zustandsgröße Bezug genommen ist, als die Zustandsgrößenannahmebedingung derart bereitstellt, dass eine Zustandsgröße, die einen Einfluss des Fehlers auf eine Zustandsgröße in Übereinstimmung mit der von dem Bewertungszielmodell ausgegebenen Stellgröße wiedergibt, von dem Zustandsgrößenannahmemodell ausgegeben wird.
  2. Bewertungsvorrichtung gemäß Anspruch 1, wobei die Modellsteuerungsvorrichtung den Fehler für einen Parameter bereitstellt, der in der Eingabebedingung oder der von dem Bewertungszielmodell ausgegebenen Stellgröße umfasst ist.
  3. Bewertungsvorrichtung gemäß Anspruch 1, wobei das Bewertungszielmodell eine durch eine Operation der gesteuerten Einrichtung gesteuerte Zustandsgröße annimmt, und ein Annahmeergebnis zur Steuerung der Zustandsgröße wiedergibt, und wobei das Zustandsgrößenannahmemodell eine Zustandsgröße annimmt und ausgibt, die von der selben Art ist wie die durch das Bewertungszielmodell angenommene Zustandsgröße.
  4. Bewertungsvorrichtung gemäß Anspruch 3, wobei das Bewertungszielmodell einen Unterschied zwischen der durch das Bewertungszielmodell angenommenen Zustandsgröße und der durch das Zustandsgrößenannahmemodell angenommenen Zustandsgröße zu einer Annahme der Zustandsgröße in dem Bewertungszielmodell wiedergibt.
  5. Bewertungsvorrichtung gemäß Anspruch 1, ferner mit einer Analysevorrichtung, die, für den Fall in dem die von dem Zustandgrößenannahmemodell ausgegebene Zustandsgröße einen zulässigen Bereich überschreitet, einen Einfluss des Fehlers auf die Steuerung der Zustandsgröße des Bewertungszielmodells basierend auf zumindest einem aus Ausmaß oder Frequenz quantifiziert.
  6. Bewertungsvorrichtung gemäß Anspruch 3 oder 4, ferner mit einer Analysevorrichtung, die einen Einfluss des Fehlers auf die Steuerung der Zustandsgröße des Bewertungszielmodells basierend auf einem Unterschied von Zustandsgrößen quantifiziert, die in dem Bewertungszielmodell beziehungsweise dem Zustandsgrößenannahmemodell angenommen sind.
  7. Bewertungsvorrichtung gemäß Anspruch 6, wobei die Analysevorrichtung den Einfluss des Fehlers auf die Steuerung der Zustandsgröße durch das Bewertungszielmodell quantifiziert, wobei sie ferner zumindest eines aus Ausmaß oder Frequenz in Betracht zieht, für einen Fall in dem die von dem Zustandsgrößenannahmemodell ausgegebene Zustandsgröße einen vorbestimmten zulässigen Bereich überschreitet.
  8. Bewertungsvorrichtung gemäß einem der Ansprüche 5 bis 7, ferner mit einer Analyseergebnisanzeigevorrichtung, die ein durch die Analysevorrichtung quantifiziertes Analyseergebnis auf einer vorbestimmten Anzeigevorrichtung anzeigt.
  9. Bewertungsvorrichtung gemäß Anspruch 8, wobei die Analyseergebnisanzeigevorrichtung ein vorbestimmtes hervorhebendes Anzeigen durchführt, wenn das Analyseergebnis einen vorbestimmten zulässigen Bereich überschreitet.
  10. Bewertungsvorrichtung gemäß einem der Ansprüche 1 bis 9, wobei die physikalische Vorrichtung ein Automobilmotor ist, der Steuerungsalgorithmus in eine Motorsteuerungseinheit, als ein mit dem Motor zu verbindender Computer, implementierbar ist, die Eingabebedingung eine Parametergruppe zur Bestimmung einer Operationsbedingung oder einer Umweltbedingung des Motors umfasst und die gesteuerte Einrichtung eine Einrichtung des Motors ist, die zur Steuerung des Motors betrieben wird.
  11. Bewertungsverfahren zum Bewerten eines Steuerungssystems einer physikalischen Vorrichtung, mit den Schritten:
    Veranlassen eines Bewertungszielmodells mit einem in das Steuerungssystem zu implementierenden Steuerungsalgorithmus zum Ausgeben einer Stellgröße einer vorbestimmten, von der physikalischen Vorrichtung umfassten, gesteuerten Einrichtung in Übereinstimmung mit einer vorbestimmten Eingabebedingung durch zur Verfügung stellen der Eingabebedingung an das Bewertungszielmodell, um das Bewertungszielmodell zum Arbeiten zu veranlassen; und
    Veranlassen eines Zustandsgrößenannahmemodells, das eingerichtet ist, um eine Zustandsgröße der physikalischen Vorrichtung anzunehmen, die einem Einfluss einer Operation der gesteuerten Einrichtung ausgesetzt ist, zum Annehmen und Ausgeben der Zustandsgröße der physikalischen Vorrichtung, die dem Einfluss der Operation der gesteuerten Einrichtung ausgesetzt ist, in Übereinstimmung mit einer vorbestimmten Zustandsgrößenannahmebedingung,
    gekennzeichnet durch
    Bereitstellen eines durch das Bewertungszielmodell nicht berücksichtigten Fehlers hinsichtlich zumindest eines Parameters, auf den in einer Annahme der Zustandsgröße Bezug genommen ist, an das Zustandsgrößenannahmemodell als die Zustandsgrößenannahmebedingung, zusätzlich zu der dem Bewertungszielmodell bereitgestellten Eingabebedingung und der von dem Bewertungszielmodell ausgegebenen Stellgröße, um das Zustandsgrößenannahmemodell zum Arbeiten zu veranlassen.
  12. Computerprogramm, das eingerichtet ist um einen Computer zu veranlassen, um zu dienen als
    ein Bewertungszielmodell, das gemäß einem in dem Steuerungssystem zu implementierenden Steuerungsalgorithmus arbeitet, und das eine Stellgröße einer vorbestimmten, von der physikalischen Vorrichtung umfassten, gesteuerten Einrichtung in Übereinstimmung mit einer vorbestimmten Eingabebedingung ausgibt;
    ein Zustandsgrößenannahmemodell, das eine Zustandsgröße der physikalischen Vorrichtung, die einem Einfluss einer Operation der gesteuerten Einrichtung ausgesetzt ist, in Übereinstimmung mit einer vorbestimmten Zustandsgrößenannahmebedingung annimmt, und die die angenommene Zustandsgröße ausgibt;
    gekennzeichnet durch
    eine Modellsteuerungsvorrichtung, die dem Bewertungszielmodell die Eingabebedingung derart zur Verfügung stellt, dass die Stellgröße davon ausgegeben wird, und die dem Zustandsgrößenannahmemodell zusätzlich zu der dem Bewertungszielmodell bereitgestellten Eingabebedingung und der von dem Bewertungszielmodell ausgegebenen Stellgröße einen durch das Bewertungszielmodell nicht berücksichtigten Fehler hinsichtlich zumindest eines Parameters, auf den in einer Annahme der Zustandsgröße Bezug genommen ist, als die Zustandsgrößenannahmebedingung derart bereitstellt, dass eine Zustandsgröße, die einen Einfluss des Fehlers auf eine Zustandsgröße in Übereinstimmung mit der von dem Bewertungszielmodell ausgegebenen Stellgröße wiedergibt, von dem Zustandsgrößenannahmemodell ausgegeben wird.
EP05844576A 2005-01-07 2005-12-21 Beurteilungsvorrichtung für steuersysteme, verfahren zur beurteilung des steuersystems und dafür verwendetes computerprogramm Expired - Fee Related EP1834219B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005002123A JP4379336B2 (ja) 2005-01-07 2005-01-07 制御システムの評価装置、その評価装置に用いられる検証装置、制御システムの評価方法、及びそれらに用いるコンピュータプログラム
PCT/JP2005/024016 WO2006073103A1 (en) 2005-01-07 2005-12-21 Evaluation device for control system, validation device used in evaluation device, method for evaluating control system, and computer program used therein

Publications (2)

Publication Number Publication Date
EP1834219A1 EP1834219A1 (de) 2007-09-19
EP1834219B1 true EP1834219B1 (de) 2009-12-02

Family

ID=36097062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05844576A Expired - Fee Related EP1834219B1 (de) 2005-01-07 2005-12-21 Beurteilungsvorrichtung für steuersysteme, verfahren zur beurteilung des steuersystems und dafür verwendetes computerprogramm

Country Status (7)

Country Link
US (1) US7962228B2 (de)
EP (1) EP1834219B1 (de)
JP (1) JP4379336B2 (de)
KR (1) KR100872753B1 (de)
CN (1) CN100472374C (de)
DE (1) DE602005018106D1 (de)
WO (1) WO2006073103A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885639B2 (ja) * 2006-07-28 2012-02-29 東芝情報システム株式会社 Hils装置
JP4720671B2 (ja) * 2006-08-14 2011-07-13 トヨタ自動車株式会社 コンピュータユニットのシミュレーションシステム及びシミュレーション用外部回路
JP5137367B2 (ja) * 2006-09-21 2013-02-06 東芝情報システム株式会社 モデルベース開発補助ブロック、シミュレーションシステム及び自動コード生成方法
JP5059017B2 (ja) * 2006-09-27 2012-10-24 富士通テン株式会社 シミュレーション装置
US8155941B2 (en) * 2006-09-29 2012-04-10 Fujitsu Ten Limited Simulation apparatus, simulation system, and simulation method
JP4657229B2 (ja) * 2007-03-01 2011-03-23 富士通テン株式会社 シミュレーション装置
AT9467U3 (de) * 2007-06-14 2008-07-15 Avl List Gmbh Vorrichtung und verfahren zur simulation einer entwicklungsanlage
AT10759U3 (de) * 2009-04-23 2010-07-15 Avl List Gmbh Verfahren und vorrichtung zur verifizierung eines automatisierungssystems
KR101230902B1 (ko) * 2010-12-02 2013-02-07 현대자동차주식회사 차량 시뮬레이터를 이용한 차량 장치의 자동 평가 시스템
EP2770434B1 (de) * 2013-02-21 2016-09-14 dSPACE digital signal processing and control engineering GmbH Verfahren zur Durchführung einer Inventarisierung der an ein Steuergeräte-Testsystem angeschlossenen Hardware-Komponenten
EP2770389B1 (de) * 2013-02-21 2019-05-08 dSPACE digital signal processing and control engineering GmbH Verfahren zur Durchführung einer Konfiguration eines Steuergeräte-Testsystems
CN104678775A (zh) * 2013-11-27 2015-06-03 联创汽车电子有限公司 Hils系统及其同步纠偏方法
KR101592288B1 (ko) 2014-12-05 2016-02-15 주식회사 현대케피코 Ecu 로직 연산 시점을 반영한 샘플링 데이터 추출방법
CN104778359A (zh) * 2015-04-10 2015-07-15 中国科学院植物研究所 一种评价红树林健康状况和人工修复效果的方法及其应用
TW201738435A (zh) * 2016-01-18 2017-11-01 Nec Corp 顯示控制裝置、安全率之顯示方法以及電腦程式產品
CN110233832A (zh) * 2019-05-22 2019-09-13 中国电子科技集团公司第二十八研究所 韧性信息服务云环境试验评估系统及其使用方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04159439A (ja) 1990-10-24 1992-06-02 Hitachi Ltd 制御効果推定方法および装置
JP3286077B2 (ja) 1993-05-14 2002-05-27 マツダ株式会社 機器の制御装置
US5539638A (en) * 1993-08-05 1996-07-23 Pavilion Technologies, Inc. Virtual emissions monitor for automobile
JP2929259B2 (ja) 1993-12-27 1999-08-03 株式会社山武 コントローラ
JP3370783B2 (ja) 1994-06-27 2003-01-27 マツダ株式会社 機器の制御装置および制御方法
US5535128A (en) 1995-02-09 1996-07-09 The United States Of America As Represented By The Secretary Of The Air Force Hierarchical feedback control of pulsed laser deposition
JP3060923B2 (ja) 1995-11-24 2000-07-10 トヨタ自動車株式会社 車両状態推定装置
US5877954A (en) * 1996-05-03 1999-03-02 Aspen Technology, Inc. Hybrid linear-neural network process control
JPH11353007A (ja) 1998-06-04 1999-12-24 Ishikawajima Harima Heavy Ind Co Ltd 制御機器の模擬試験方法
US6826521B1 (en) * 2000-04-06 2004-11-30 Abb Automation Inc. System and methodology and adaptive, linear model predictive control based on rigorous, nonlinear process model
US6757569B2 (en) 2000-04-19 2004-06-29 American Gnc Corporation Filtering process for stable and accurate estimation
CN1274522C (zh) * 2001-02-26 2006-09-13 丰田自动车株式会社 用于估计轮胎状态的装置和用于判定轮胎的异常状态的装置
ATE538418T1 (de) * 2001-04-20 2012-01-15 Honda Motor Co Ltd Anordnung zur steuerung von apparatur
JP4400003B2 (ja) * 2001-04-23 2010-01-20 トヨタ自動車株式会社 エンジンの空燃比制御方法
JP2003108697A (ja) 2001-09-27 2003-04-11 Seiko Instruments Inc 店舗案内システム
JP4222816B2 (ja) * 2001-12-06 2009-02-12 本田技研工業株式会社 周波数整形応答指定型制御を用いたプラント制御装置
US6805095B2 (en) 2002-11-05 2004-10-19 Ford Global Technologies, Llc System and method for estimating and controlling cylinder air charge in a direct injection internal combustion engine
JP3760911B2 (ja) * 2002-11-27 2006-03-29 トヨタ自動車株式会社 モデル作成方法、モデル作成プログラム及びシミュレーション装置

Also Published As

Publication number Publication date
CN100472374C (zh) 2009-03-25
KR20070015165A (ko) 2007-02-01
US7962228B2 (en) 2011-06-14
US20070255482A1 (en) 2007-11-01
KR100872753B1 (ko) 2008-12-08
CN1942837A (zh) 2007-04-04
JP4379336B2 (ja) 2009-12-09
EP1834219A1 (de) 2007-09-19
DE602005018106D1 (de) 2010-01-14
WO2006073103A1 (en) 2006-07-13
JP2006190131A (ja) 2006-07-20

Similar Documents

Publication Publication Date Title
EP1834219B1 (de) Beurteilungsvorrichtung für steuersysteme, verfahren zur beurteilung des steuersystems und dafür verwendetes computerprogramm
US11506138B2 (en) Engine system with inferential sensor
CN100575688C (zh) 控制内燃机中的燃烧以及预测性能和排放物的方法
US8793004B2 (en) Virtual sensor system and method for generating output parameters
Atkinson et al. Dynamic model-based calibration optimization: An introduction and application to diesel engines
EP3018541B1 (de) Konfigurierbarer inferenzieller Sensor für Fahrzeugsteuerungssysteme
Isermann et al. Design of computer controlled combustion engines
CN107956575B (zh) 设备控制装置
Lee et al. Scalable mean value modeling for real-time engine simulations with improved consistency and adaptability
Lee et al. X-in-the-Loop-basierte Kalibrierung: HiL Simulation eines virtuellen Dieselantriebsstrangs
CN112257276A (zh) 一种发动机实时虚拟标定系统及其仿真建模方法
Arsie et al. Functional testing of measurement-based control systems: An application to automotive
US20090192774A1 (en) Engine transition test instrument and method
Schlosser et al. Accelerated powertrain development through model based calibration
KR101205247B1 (ko) Hils 시스템 기반 하이브리드 상용차의 연료소모량 및 배출가스 산출시스템
Kouba et al. Sensorless control strategy enabled by a sophisticated tool chain
Benz Model-based optimal emission control of diesel engines
Dorey et al. Rapid prototyping for the development of powertrain control systems
Balluchi et al. Hybrid systems in automotive electronics design
Stockar et al. A Model Predictive Approach for the Coordination of Powertrain Control Systems
Chica et al. Simulation NMPC in 2-HIL to design ECU
Aran et al. Diesel engine airpath controller via data driven disturbance observer
Philipp et al. Zero-dimensional combustion simulation in real time
Huber et al. Simulation of diesel engine emissions by coupling 1-D with data-based models
CN117295885A (zh) 用于发动机空气系统控制的方法和系统

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB SE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB SE

17Q First examination report despatched

Effective date: 20080926

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: EVALUATION DEVICE FOR CONTROL SYSTEM, METHOD FOR EVALUATING CONTROL SYSTEM, AND COMPUTER PROGRAM USED THEREIN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005018106

Country of ref document: DE

Date of ref document: 20100114

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100903

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20120918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602005018106

Country of ref document: DE

Effective date: 20120924

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161111

Year of fee payment: 12

Ref country code: GB

Payment date: 20161221

Year of fee payment: 12

Ref country code: DE

Payment date: 20161213

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20161213

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005018106

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171222

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171221