EP1834073A1 - Verfahren zum betrieb einer brennkraftmaschine - Google Patents

Verfahren zum betrieb einer brennkraftmaschine

Info

Publication number
EP1834073A1
EP1834073A1 EP05811168A EP05811168A EP1834073A1 EP 1834073 A1 EP1834073 A1 EP 1834073A1 EP 05811168 A EP05811168 A EP 05811168A EP 05811168 A EP05811168 A EP 05811168A EP 1834073 A1 EP1834073 A1 EP 1834073A1
Authority
EP
European Patent Office
Prior art keywords
booster
current
value
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05811168A
Other languages
English (en)
French (fr)
Other versions
EP1834073B1 (de
Inventor
Helerson Kemmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1834073A1 publication Critical patent/EP1834073A1/de
Application granted granted Critical
Publication of EP1834073B1 publication Critical patent/EP1834073B1/de
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2006Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2017Output circuits, e.g. for controlling currents in command coils using means for creating a boost current or using reference switching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems

Definitions

  • the present invention relates to an internal combustion engine and a method for its operation.
  • a booster phase is required in which the flow through the high pressure injection valve is limited to values such as, for example, 12 A increases.
  • the high current is generated by connecting the high-pressure injection valve to a booster capacitor which supplies energy under a voltage of e.g. Stores 65V and supplies it to the high pressure injector during the booster phase.
  • the energy taken during the booster phase is re-supplied to the booster capacitor through a recharge circuit until the next booster phase.
  • the size of this recharge circuit and the booster capacitor depends i.a. from the boost pressure required by the Hoch horrein- injection valve, which in turn depends on the need for opening the high-pressure injection valve booster.
  • the height of the booster current is determined mainly by the maximum system pressure against which the high pressure injector must open and the static flow.
  • the highest system pressure in normal operation with gasoline direct injection is achieved by opening a pressure tion valve determined.
  • the opening pressure of the pressure relief valve is achieved in two cases of normal operation. The first case is the hot start, ie a start after a shutdown with pressure increase in the high pressure fuel system due to the heating of the
  • the heating of the fuel in the fuel system is carried out by the heat transfer of a previously driven at full load and therefore strongly heated engine.
  • the second case is the reinstatement of the injections after a coasting operation
  • the object of the invention is therefore to provide a method which is a safe injection in the extreme cases reinstating the injections after a coasting operation and starting after a shutdown with pressure increase in the high-pressure fuel system due to
  • a method for operating an internal combustion engine having an injection valve which is opened and closed electrically wherein a booster capacitor serves to increase the current intensity when the injection valve is opened, wherein the current profile of the booster terstrom in certain operating states of the internal combustion engine is switched from a standard value to an increased value and / or to a longer duration and reset to the default value and the standard duration upon termination of the specific operating state.
  • the current profile of the booster current is preferably switched during a starting operation of the internal combustion engine and / or resuming the injection after a coasting operation from the default value to the increased value and / or from the standard duration of the booster phase to the extended booster phase and with termination of the starting process and after resets after a coasting operation to the default value or to the standard duration of the booster phase.
  • the current profile of the booster current is preferably switched over to a generally longer duration by multiple booster, ie repeated switching on of the booster current for a short period of time.
  • the opening pressure of the high-pressure injection valves is increased by the change of the booster current for the two cases mentioned above.
  • the change in the booster current must be reversed quickly when lowering the fuel pressure to avoid a deep discharge of the booster capacitor.
  • Booster current the discharge of the booster capacitor is minimal, so that further injections are ensured.
  • the recharging circuit and the booster capacitor can be dimensioned for normal operation. Their oversizing for hot start and reinsertion after overrun fuel cutoff is not necessary.
  • the opening force of the high-pressure injection valve can be increased (by, for example, increasing the static flow of the valve) without having to change the hardware. With a larger static flow can eg a charged variant of an engine series are operated and / or the power loss in the control unit, for example by reducing the injection window can be reduced. With greater static flow, the behavior of the start at low temperatures is also improved.
  • the current profile is generally changed at startup, so that the opening of the high-pressure injection valves is ensured up to the opening pressure of the pressure relief valve.
  • the current profile is reactivated for normal operation.
  • the Nachladeschalt Vietnamese can sufficiently recharge the booster capacitor due to the low speed in the boot process with increased Boosterenergy pack the changed power profile. If the system pressure exceeds a certain pressure threshold in overrun mode, the current profile is changed for the subsequent restart phase. The first injections of the re-insertion phase will then require an increased booster energy demand.
  • the switching between standard value and increased value preferably takes place within one injection cycle.
  • the current profile of the booster current is preferably switched from the increased value to the standard value or from the extended duration to the standard duration when the rail pressure falls below a threshold.
  • the current profile of the booster current is switched from the increased value to the standard value or from the extended duration to the standard duration when the number of injections with the increased value of the booster current exceeds a maximum value.
  • the current profile of the booster current is switched from the increased value to the standard value or from the extended duration to the standard duration as soon as the voltage of the booster capacitor falls below a lower threshold.
  • an internal combustion engine having an injection valve which can be opened and closed electrically, wherein a switchable booster capacitor serves to increase the current intensity when the injection valve is opened, characterized in that the current profile of the booster current rises from a standard value an increased value and / or switchable to a longer duration.
  • the booster capacitor is preferably charged by a recharging circuit.
  • Figure 1 is a schematic representation of a cylinder of an internal combustion engine with fuel supply system.
  • Fig. 2 is a circuit diagram with control unit and injectors.
  • FIG. 1 shows a schematic representation of a cylinder of an internal combustion engine with associated components of the fuel supply system. Shown is an internal combustion engine with direct injection (gasoline direct injection BDE) with a fuel tank 11 to which an electric fuel pump (EKP) 12, a fuel filter 13 and a low pressure regulator 14 are arranged. From the fuel tank 11, a fuel line 15 leads to a high-pressure pump 16. The high-pressure pump 16 is adjoined by a storage space 17. On the storage chamber 17 injection valves 18 are arranged, which are preferably assigned directly combustion chambers 26 of the internal combustion engine. In internal combustion engines with direct injection, each combustion chamber 26 is assigned at least one injection valve 18, but it is also possible here to provide a plurality of injection valves 18 for each combustion chamber 26.
  • the fuel is conveyed by the electric fuel pump 12 from the fuel tank 11 via the fuel filter 13 and the fuel line 15 to the high-pressure pump 16.
  • the fuel filter 13 has the task of removing foreign particles from the fuel.
  • the fuel pressure in a low-pressure region of the fuel supply system is regulated to a predetermined value, which is generally of the order of about 4 to 5 bar.
  • FIG. 1 shows, by way of example, a combustion chamber 26 of an internal combustion engine with direct injection; in general, the internal combustion engine has a plurality of cylinders, each with a combustion chamber 26.
  • the internal combustion engine has a plurality of cylinders, each with a combustion chamber 26.
  • At the combustion chamber 26 is at least one injection valve 18, we- at least one spark plug 24, at least one inlet valve 27, at least one outlet valve 28 is arranged.
  • the combustion chamber is limited by a piston 29, which can slide up and down in the cylinder. Fresh air is sucked from an intake tract 36 into the combustion chamber 26 via the inlet valve 27.
  • the injection valve 18 With the aid of the injection valve 18, the fuel is injected directly into the combustion chamber 26 of the internal combustion engine.
  • With the spark plug 24, the fuel-air mixture is ignited. Due to the expansion of the ignited fuel-air mixture, the piston 29 is driven.
  • the movement of the piston 29 is transmitted via a connecting rod 37 to a crankshaft 35.
  • a segment disc 34 is arranged, which is scanned by a speed sensor 30.
  • the speed sensor 30 generates a signal that characterizes the rotational movement of the crankshaft 35.
  • the resulting during combustion exhaust gases pass through the exhaust valve 28 from the combustion chamber 26 to an exhaust pipe 33, in which a temperature sensor 31 and a lambda probe 32 are arranged. With the aid of the temperature sensor 31, the temperature and with the help of the lambda probe 32, the oxygen content of the exhaust gases is detected.
  • a pressure sensor 21 and a pressure control valve 19 are connected to the storage space 17.
  • the pressure control valve 19 is connected on the input side to the storage space 17.
  • a return line 20 leads to the fuel line 15.
  • a throttle valve 38 is arranged, the rotational position via a signal line 39 and an associated, not shown here, electric actuator by the controller 25 is adjustable.
  • a quantity control valve in the fuel supply system 10 can also be used for men.
  • the actual value of the fuel pressure in the storage space 17 is detected and fed to a control unit 25.
  • the control unit 25 By the control unit 25, a drive signal is formed on the basis of the detected actual value of the fuel pressure with which the pressure control valve is actuated.
  • the electrical actuation of the injection valves 18 is not shown in FIG. 1, as can be seen in FIG. 2.
  • the various actuators and sensors are connected to the control unit 25 via control signal lines 22.
  • various functions that serve to control the internal combustion engine implemented. In modern control units, these functions are programmed on a computer and then stored in a memory of the control unit 25.
  • the stored in the memory functions are activated in response to the requirements of the internal combustion engine, in particular strict requirements are placed on the real-time capability of the control unit 25.
  • a pure hardware realization of the control of the internal combustion engine is possible as an alternative to a software implementation.
  • FIG. 2 the wiring of the injectors, these are referred to here as HPIV 11 and HPIV 12, shown with the control unit 25.
  • HPIV 11 and HPIV 12 the wiring of the injectors, these are referred to here as HPIV 11 and HPIV 12, shown with the control unit 25.
  • the indices of the three-fold outputs BATTX, BOOSTX, SPOX, SHSX, DLSX1 and DLSX2 are suppressed in the following diagram.
  • the sketch shows an example of a four-cylinder engine with two banks, referred to here as Bank 1 and Bank 2, with only Bank 1 is shown in more detail.
  • the control unit 25 here comprises an output stage 40 for triggering the injection valves HPIV 11 and HPIV 12 and a microcontroller 41 for controlling the functions of the control unit 25.
  • the injection valves HPIV 11 and HPIV 12 are controlled such that the output stage 40 receives the signals BOOSTx_l to BOOSTx_3 to SBOx_l to SBOx_3 in the Switches on the booster phase and switches DLSX1_1 to DLSX1_3 on to drive HPIVIl to ground. As a result, a high current flows through HPIVIl.
  • the necessary booster current is taken from the inputs BOOSTX_1 etc. to a booster capacitor BK.
  • the booster capacitor BK is discharged during each opening operation of one of the injection valves and in the meantime via a Nachladedrossel NLD, which is connected to a battery voltage supply BS, recharged.
  • a reload transistor NLT is used to control the reloading process.
  • a higher current for opening the respective injection valve in the booster phase is necessary. This is achieved by an extension of the booster phase, be it by increasing the booster current level to be achieved or by multiple booster, ie the connection between BOOSTx_l to BOOSTx_3 and SBOx_l to SBOx_3 is switched on and off a few times.
  • the power amplifier 40 switches the signals
  • a lower current in the hold phase flows through HPIVIl.
  • the output SHSX supplies a basic voltage for opening the valve.
  • the booster current level can be adjusted stepwise by the microcontroller 31, for example between 8.5 and 12 amperes in 0.5 amp steps. If the booster current level is set so high that the booster voltage in the booster capacitor BK can not be maintained permanently by recharging, the booster capacitor is completely discharged within a few injection cycles. In order to avoid a discharge of the booster capacitor BK, the operation with a longer booster phase is limited to a few injections limited. For this purpose, the voltage of the booster capacitor BK can be used, on reaching a lower limit is switched back to normal operation. Switching to normal operation can also be done by falling below a pressure threshold. Alternatively, after a certain number of injections, wherein the number of the operating state of the internal combustion engine, such as speed, load and the like may be dependent, be switched to normal operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Verfahren zum Betrieb einer Brennkraftmaschine mit einem Einspritzventil (18), das elektrisch geöffnet und geschlössen wird, wobei ein Boosterkondensator (BK) der Erhöhung der Stromstärke bei Öffnen des Einspritzventiles (18) dient. Eine sichere Einspritzung wird auch in den Extremfällen Wiedereinsetzen der Einspritzungen nach einem Schubbetrieb sowie Startvorgang nach einer Abstellphase mit Druckerhöhung im Kraftstoffhochdrucksystem auf Grund der Aufheizung des Kraftstoffs bei für den Normalbetrieb ausgelegten Boosterkondensatoren gewährleistet, indem das Stromprofil des Boosterstroms in bestimmten Betriebszuständen der Brennkraftmaschine von einem Standardwert auf einen erhöhten Wert und/oder auf eine längere Dauer umgeschaltet und mit Beendigung des bestimmten Betriebszustandes auf den Standardwert sowie die Standarddauer zurückgesetzt wird.

Description

Verfahren zum Betrieb einer Brennkraftmaschine
Stand der Technik
Die vorliegende Erfindung betrifft eine Brennkraftmaschine sowie ein Verfahren zu deren Betrieb.
Für das Öffnen eines innen öffnenden Hochdruckeinspritzmagnetventils bei Benzin-Direkteinspritzung ist auf Grund des hohen Systemdrucks eine Boosterphase notwendig, in der der durch das Hochdruckeinspritzventil fließende Strom bis auf Werte wie z.B. 12 A ansteigt. Der hohe Strom wird durch das Zuschalten des Hochdruckeinspritzventils auf einen Boosterkondensator erzeugt, welcher Energie unter einer Spannung von z.B. 65 V speichert und sie dem Hochdruckeinspritzventil während der Boosterphase liefert. Die in der Boosterphase entnommene Energie wird durch einen Nachladeschaltkreis bis zur nächsten Boosterphase dem Boosterkondensator wieder nachgeliefert. Die Größe dieses Nachladeschaltkreises sowie des Boosterkondensators hängt u.a. von der vom Hochdruckein- spritzventil benötigten Boosterenergie ab, welche wiederum von dem für das Öffnen des Hochdruckeinspritzventils benötigten Boosterstrom abhängt. Die Höhe des Boosterstroms wird hauptsächlich durch den maximalen Systemdruck, gegen den das Hochdruckeinspritzventil öffnen muss, und den statischen Durchfluss bestimmt.
Probleme des Standes der Technik
Der höchste Systemdruck im Normalbetrieb bei Benzin- Direkteinspritzung wird durch das Öffnen eines Druckbegren- zungsventils bestimmt. Der Öffnungsdruck des Druckbegrenzungsventils wird in zwei Fällen des Normalbetriebs erreicht. Den ersten Fall stellt der Heißstart dar, d.h. ein Startvorgang nach einer Abstellphase mit Druckerhöhung im Kraftstoffhochdrucksystem auf Grund der Aufheizung des
Kraftstoffs. Die Aufheizung des Kraftstoffs im Kraftstoffsystem erfolgt durch die Wärmeübertragung eines vorher in Volllast gefahrenen und deshalb stark aufgeheizten Motors. Den zweiten Fall stellt das Wiedereinsetzen der Einspritzun- gen nach einem Schubbetrieb dar. Im Schubbetrieb wird das
Einspritzen des Kraftstoffs eingestellt, und eine Druckerhöhung im Kraftstoffhochdrucksystem findet wegen dem oben genannten Grund statt. In beiden Fällen wird der Druck im Kraftstoffhochdrucksystem nach einigen Einspritzungen bis auf normales, geringeres Druckniveau abgesenkt. Der Boosterstrom wird aber nach dem maximal erreichbaren Druck ausgelegt, nämlich nach dem Öffnungsdruck des Druckbegrenzungsventils. Der Nachladekreis und der Nachladekondensator sind für den Normalbetrieb dann überdimensioniert.
Aufgabe der Erfindung ist es daher, den ein Verfahren anzugeben, das eine sichere Einspritzung auch in den Extremfällen Wiedereinsetzen der Einspritzungen nach einem Schubbetrieb sowie Startvorgang nach einer Abstellphase mit Druckerhöhung im Kraftstoffhochdrucksystem auf Grund der
Aufheizung des Kraftstoffs bei für den Normalbetrieb ausgelegten Boosterkondensatoren gewährleistet.
Vorteile der Erfindung
Dieses Problem wird gelöst durch ein Verfahren zum Betrieb einer Brennkraftmaschine mit einem Einspritzventil, das elektrisch geöffnet und geschlossen wird, wobei ein Boosterkondensator der Erhöhung der Stromstärke bei Öffnen des Einspritzventiles dient, wobei das Stromprofil des Boos- terstroms in bestimmten Betriebszuständen der Brennkraftmaschine von einem Standardwert auf einen erhöhten Wert und/oder auf eine längere Dauer umgeschaltet und mit Beendigung des bestimmten Betriebszustandes auf den Standard- wert sowie die Standarddauer zurückgesetzt wird. Das Stromprofil des Boosterstroms wird vorzugsweise während eines Startvorganges der Brennkraftmaschine und/oder beim Wiedereinsetzen der Einspritzung nach einem Schubbetrieb von dem Standardwert auf den erhöhten Wert und/oder von der Stan- darddauer der Boosterphase auf die verlängerte Boosterphase umgeschaltet und mit Beendigung des Startvorganges und nach einigen Einspritzungen beim Wiedereinsetzen nach einem Schubbetrieb auf den Standardwert bzw. auf die Standarddauer der Boosterphase zurückgesetzt. Das Stromprofil des Boos- terstroms wird vorzugsweise durch Mehrfachboosterung, d.h. ein wiederholtes Einschalten des Boosterstromes für jeweils eine kurze Zeitdauer, auf eine insgesamt längere Dauer umgeschaltet.
Der Öffnungsdruck der Hochdruckeinspritzventile wird durch die Änderung des Boosterstroms für die zwei oben erwähnten Fälle erhöht. Die Änderung des Boosterstroms muss bei Absenkung des Kraftstoffdruckes schnell wieder rückgängig gemacht werden, um eine tiefe Entladung des Boosterkondensators zu vermeiden. Durch die wenigen Einspritzungen mit geändertem
Boosterstrom ist die Entladung des Boosterkondensators minimal, so dass weitere Einspritzungen sichergestellt werden. Ein weiterer Vorteil ist, dass der Nachladeschaltkreis und der Boosterkondensator für den Normalbetrieb dimensioniert werden können. Ihre Überdimensionierung für den Heißstart und Wiedereinsetzen nach Schubabschalten ist nicht notwendig. Ferner kann die Öffnungskraft des Hochdruckeinspritzventils erhöht werden (durch z.B. die Erhöhung des statischen Durchflusses des Ventils), ohne die Hardware ändern zu müssen. Mit einem größeren statischen Durchfluss kann z.B. eine aufgeladene Variante einer Motorbaureihe bedient werden und/oder die Verlustleistung im Steuergerät, z.B. durch Verkleinerung des Einspritzfensters, reduziert werden. Mit größerem statischen Durchfluss wird auch das Verhalten des Starts bei Tieftemperaturen verbessert.
Das Stromprofil wird beim Start generell geändert, so dass das Öffnen der Hochdruckeinspritzventile bis zum Öffnungsdruck des Druckbegrenzungsventils sichergestellt ist. Am En- de des Startvorgangs wird das Stromprofil für den Normalbetrieb wieder aktiviert. Der Nachladeschaltkreis kann den Boosterkondensator auf Grund der geringen Drehzahl im Startvorgang auch mit erhöhtem Boosterenergiebedarf des geänderten Stromprofils ausreichend nachladen. Überschreitet der Systemdruck eine bestimmte Druckschwelle im Schubbetrieb, wird das Stromprofil für die darauf folgende Wiedereinsetzphase geändert. Die ersten Einspritzungen der Wiedereinsetzphase werden dann einen erhöhten Boosterenergiebedarf beanspruchen.
Die Umschaltung zwischen Standardwert und erhöhtem Wert erfolgt vorzugsweise innerhalb eines Einspritzzyklus.
Das Stromprofil des Boosterstroms wird von dem erhöhten Wert auf den Standardwert oder von der verlängerten Dauer auf die Standarddauer vorzugsweise umgeschaltet wenn der Raildruck eine Schwelle unterschreitet. Alternativ oder zusätzlich kann vorgesehen sein, dass das Stromprofil des Boosterstroms von dem erhöhten Wert auf den Standardwert oder von der verlängerten Dauer auf die Standarddauer umgeschaltet wird wenn die Anzahl der Einspritzungen mit dem erhöhten Wert des Boosterstroms einen Maximalwert überschreitet. Alternativ oder zusätzlich kann des Weiteren vorgesehen sein, dass das Stromprofil des Boosterstroms von dem erhöhten Wert auf den Standardwert oder von der verlängerten Dauer auf die Standarddauer umgeschaltet wird, sobald die Spannung des Boosterkondensators eine untere Schwelle unterschreitet.
Sobald der Systemdruck die Druckschwelle also wieder unterschreitet oder die Anzahl von abgesetzten Einspritzungen mit geändertem Stromprofil eine bestimmte Schwelle überschreitet, wird das Stromprofil auf originalles, geringeres Niveau rasch zurückgesetzt. Somit wird es verhindert, dass der Boosterkondensator tief entladen wird, was zu Einspritzaussetzungen führen könnte.
Das Eingangs genannte Problem wird auch gelöst durch eine Brennkraftmaschine mit einem Einspritzventil, das elektrisch geöffnet und geschlossen werden kann, wobei ein zuschaltbarer Boosterkondensator der Erhöhung der Stromstär- ke bei Öffnen des Einspritzventiles dient, dadurch gekennzeichnet, dass das Stromprofil des Boosterstroms von einem Standardwert auf einen erhöhten Wert und/oder auf eine längere Dauer umschaltbar ist. Der Boosterkondensator wird dabei vorzugsweise von einem Nachladekreis geladen.
Zeichnungen
Nachfolgend wird ein Ausführungsbeispiel der vorliegenden Erfindung anhand der beiliegenden Zeichnung näher erläutert. Dabei zeigen:
Fig. 1 eine schematische Darstellung eines Zylinders einer Brennkraftmaschine mit Kraftstoffversorgungs- System; Fig. 2 eine Schaltskizze mit Steuergerät und Einspritzdüsen.
Fig. 1 zeigt eine schematische Darstellung eines Zylinders einer Brennkraftmaschine mit zugehörigen Komponenten des Kraft- stoffversorgungssystems . Dargestellt ist eine Brennkraftmaschine mit Direkteinspritzung (Benzindirekteinspritzung BDE) mit einem Kraftstofftank 11, an dem eine Elektrokraftstoffpumpe (EKP) 12, ein Kraftstofffilter 13 und ein Niederdruckregler 14 angeordnet sind. Vom Kraftstofftank 11 führt eine Kraftstoff- leitung 15 zu einer Hochdruckpumpe 16. An die Hochdruckpumpe 16 schließt sich ein Speicherraum 17 an. Am Speicherraum 17 sind Einspritzventile 18 angeordnet, die vorzugsweise direkt Brenn- räumen 26 der Brennkraftmaschine zugeordnet sind. Bei Brennkraftmaschinen mit Direkteinspritzung ist jedem Brennraum 26 wenigstens ein Einspritzventil 18 zugeordnet, es können hier aber auch mehrere Einspritzventile 18 für jeden Brennraum 26 vorgesehen sein. Der Kraftstoff wird durch die Elektrokraft- stoffpumpe 12 aus dem Kraftstofftank 11 über den Kraftstofffilter 13 und die Kraftstoffleitung 15 zur Hochdruckpumpe 16 gefördert. Der Kraftstofffilter 13 hat die Aufgabe, Fremdpartikel aus dem Kraftstoff zu entfernen. Mit Hilfe des Niederdruckreglers 14 wird der Kraftstoffdruck in einem Niederdruckbereich des Kraftstoffversorgungssystems auf einen vorbestimmten Wert, der meist in der Größenordnung von etwa 4 bis 5 bar liegt, geregelt. Die Hochdruckpumpe 16, die vorzugsweise direkt von der Brennkraftmaschine angetrieben wird, verdichtet den Kraftstoff und fördert ihn den Speicherraum 17. Der Kraftstoffdruck er- reicht hierbei Werte von bis zu etwa 150 bar. In Fig. 1 ist beispielhaft ein Brennraum 26 einer Brennkraftmaschine mit Direkteinspritzung dargestellt, im Allgemeinen weist die Brennkraftmaschine mehrere Zylinder mit je einem Brennraum 26 auf. An dem Brennraum 26 ist wenigstens ein Einspritzventil 18, we- nigstens eine Zündkerze 24, wenigstens ein Einlassventil 27, wenigstens ein Auslassventil 28 angeordnet. Der Brennraum wird von einem Kolben 29, der in dem Zylinder auf- und abgleiten kann, begrenzt. Über das Einlassventil 27 wird Frischluft aus einem Ansaugtrakt 36 in den Brennraum 26 angesaugt. Mit Hilfe des Einspritzventils 18 wird der Kraftstoff direkt in den Brennraum 26 der Brennkraftmaschine gespritzt. Mit der Zündkerze 24 wird das Kraftstoff-Luft-Gemisch entzündet. Durch die Ausdehnung des entzündeten Kraftstoff-Luft-Gemisches wird der Kolben 29 angetrieben. Die Bewegung des Kolbens 29 wird über eine Pleuelstange 37 auf eine Kurbelwelle 35 übertragen. An der Kurbelwelle 35 ist eine Segmentscheibe 34 angeordnet, die von einem Drehzahlsensor 30 abgetastet wird. Der Drehzahlsensor 30 erzeugt ein Signal, das die Drehbewegung der Kurbelwelle 35 charakterisiert.
Die bei der Verbrennung entstehenden Abgase gelangen über das Auslassventil 28 aus dem Brennraum 26 zu einem Abgasrohr 33, in dem ein Temperatursensor 31 und eine Lambdasonde 32 angeordnet sind. Mit Hilfe des Temperatursensors 31 wird die Temperatur und mit Hilfe der Lambdasonde 32 der Sauerstoffgehalt der Abgase erfasst.
Ein Drucksensor 21 und ein Drucksteuerventil 19 sind am Spei- cherraum 17 angeschlossen. Das Drucksteuerventil 19 ist ein- gangsseitig mit dem Speicherraum 17 verbunden. Ausgangsseitig führt eine Rückflussleitung 20 zur Kraftstoffleitung 15. In dem Ansaugtrakt 36 ist eine Drosselklappe 38 angeordnet, deren Drehstellung über eine Signalleitung 39 und einen zugehörigen, hier nicht dargestellten elektrischen Aktuator durch das Steuergerät 25 einstellbar ist.
Anstatt einem Drucksteuerventil 19 kann auch ein Mengensteuerventil in dem Kraftstoffversorgungssystem 10 zur Anwendung kom- men. Mit Hilfe des Drucksensors 21 wird der Istwert des Kraftstoffdrucks im Speicherraum 17 erfasst und einem Steuergerät 25 zugeführt. Durch das Steuergerät 25 wird auf der Basis des er- fassten Istwertes des Kraftstoffdrucks ein Ansteuersignal ge- bildet, mit dem das Drucksteuerventil angesteuert wird. Die e- lektrische Ansteuerung der Einspritzventile 18 ist in Fig. 1 nicht dargestellt, diese ergibt sich aus Fig. 2. Über Steuerungssignalleitungen 22 sind die verschiedenen Aktuatoren und Sensoren mit dem Steuergerät 25 verbunden. Im Steuergerät 25 sind verschiedene Funktionen, die zur Steuerung der Brennkraftmaschinen dienen, implementiert. In modernen Steuergeräten werden diese Funktionen auf einem Rechner programmiert und anschließend in einem Speicher des Steuergerätes 25 abgelegt. Die im Speicher abgelegten Funktionen werden in Abhängigkeit der Anforderungen an die Brennkraftmaschine aktiviert, hierbei werden insbesondere strenge Anforderungen an die Echtzeitfähigkeit des Steuergerätes 25 gestellt. Prinzipiell ist eine reine Hardwarerealisierung der Steuerung der Brennkraftmaschine alternativ zu einer Softwarerealisierung möglich.
In Fig. 2 ist die Beschaltung der Einspritzventile, diese sind hier als HPIV 11 sowie HPIV 12 bezeichnet, mit dem Steuergerät 25 dargestellt. Der Einfachheit halber sind in der nachfolgenden Darstellung die Indizes der jeweils drei- fach vorhandenen Ausgänge BATTX, BOOSTX, SPOX, SHSX, DLSXl sowie DLSX2 unterdrückt. Die Skizze zeigt beispielhaft einen Vierzylindermotor mit zwei Bänken, hier als Bank 1 und als Bank 2 bezeichnet, wobei nur Bank 1 näher dargestellt ist. Das Steuergerät 25 umfasst hier eine Endstufe 40 zur Ansteu- erung der Einspritzventile HPIV 11 und HPIV 12 sowie einen MikroController 41 zur Steuerung der Funktionen des Steuergerätes 25. Die Ansteuerung der Einspritzventile HPIV 11 sowie HPIV 12 erfolgt dergestalt, dass die Endstufe 40 die Signale BOOSTx_l bis BOOSTx_3 zu SBOx_l bis SBOx_3 in der Boosterphase zuschaltet, und DLSX1_1 bis DLSX1_3 für die Ansteuerung von HPIVIl zur Masse zuschaltet. Dadurch fließt ein hoher Strom durch HPIVIl. Der notwendige Boosterstrom wird über die Eingänge BOOSTX_1 usw. einem Boosterkondensa- tor BK entnommen. Der Boosterkondensator BK wird dabei bei jedem Öffnungsvorgang eines der Einspritzventile entladen und in der Zwischenzeit über eine Nachladedrossel NLD, der an eine Batteriespannungsversorgung BS angeschlossen ist, nachgeladen. Ein Nachladetransistor NLT dient der Steuerung des Nachladevorgangs. In bestimmten Betriebssituationen, zum Beispiel beim Start der Brennkraftmaschine oder zur Beendigung des Schubbetriebes, ist ein höherer Strom zur Öffnung des jeweiligen Einspritzventils in der Boosterphase notwendig. Der wird erreicht durch eine Verlängerung der Booster- phase, sei es durch eine Erhöhung des zu erreichenden Boosterstromniveaus oder durch eine Mehrfachboosterung, d.h. die Zuschaltung zwischen BOOSTx_l bis BOOSTx_3 und SBOx_l bis SBOx_3 wird ein paar mal zu- und abgeschaltet.
Nach der Boosterphase schaltet die Endstufe 40 die Signale
BATTx_l bis BATTx_3 zu SHSx_l bis SHSx_3 zu, und DLSX1_1 bis DLSX1_3 für die Ansteuerung von HPIVIl zur Masse. Somit fließt ein geringerer Strom in der Haltephase durch HPIVIl. Der Ausgang SHSX liefert dabei eine Grundspannung zum Öffnen des Ventils.
Das Boosterstromniveau lässt sich durch den MikroController 31 schrittweise einstellen, beispielsweise zwischen 8,5 und 12 Ampere in 0,5 Ampereschritten. Wird das Boosterstromni- veau so hoch eingestellt, dass die Boosterspannung im Boosterkondensator BK auf Dauer durch Nachladen nicht aufrecherhalten werden kann, wird der Boosterkondensator innerhalb einiger Einspritzzyklen vollständig entladen. Um eine Entladung des Boosterkondensators BK zu vermeiden wird der Be- trieb mit längerer Boosterphase auf einige Einspritzungen begrenzt. Dazu kann die Spannung des Boosterkondensators BK herangezogen werden, bei Erreichen einer unteren Grenze wird wieder auf Normalbetrieb umgeschaltet. Die Umschaltung auf Normalbetrieb kann auch durch Unterschreiten einer Druckschwelle erfolgen. Alternativ kann nach einer bestimmten Anzahl von Einspritzungen, wobei die Anzahl vom Betriebszustand der Brennkraftmaschine, z.B. Drehzahl, Last und dergleichen abhängig sein kann, auf Normalbetrieb umgeschaltet werden.

Claims

Ansprüche
1. Verfahren zum Betrieb einer Brennkraftmaschine mit ei- nem Einspritzventil (18) , das elektrisch geöffnet und geschlossen wird, wobei ein Boosterkondensator (BK) der Erhöhung der Stromstärke bei Öffnen des Einspritzventiles (18) dient, dadurch gekennzeichnet, dass das Stromprofil des Boosterstroms in bestimmten Betriebszuständen der Brennkraftmaschine von einem Standardwert auf einen erhöhten Wert und/oder auf eine längere Dauer umgeschaltet und mit Beendigung des bestimmten Betriebszustandes auf den Standardwert sowie die Standarddauer zurückgesetzt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Stromprofil des Boosterstroms während eines Startvorganges der Brennkraftmaschine von dem Standardwert auf den erhöhten Wert und/oder auf eine längere Dauer umgeschaltet und mit Übergang in den Normalbetrieb auf den Standardwert zurückgesetzt wird.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Stromprofil des Boosterstroms bei Beendigung eines Schubbetriebes von dem Stan- dardwert auf den erhöhten Wert und/oder auf eine längere Dauer umgeschaltet und mit Übergang in den Normalbetrieb auf den Standardwert zurückgesetzt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, da- durch gekennzeichnet, dass das Stromprofil des Boosterstroms durch Mehrfachboosterung auf eine längere Dauer umgeschaltet wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, da- durch gekennzeichnet, dass die Umschaltung zwischen Stan- dardwert und erhöhtem Wert innerhalb eines Einspritzzyklus geschieht.
6. Verfahren nach einem der vorhergehenden Ansprüche, da- durch gekennzeichnet, dass das Stromprofil des Boosterstroms von dem erhöhten Wert oder von der längeren Dauer auf den Standardwert und die Standarddauer umgeschaltet wird wenn der Raildruck eine untere Schwelle unterschreitet.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Stromprofil des Boosterstroms von dem erhöhten Wert oder von der längeren Dauer auf den Standardwert und die Standarddauer umgeschaltet wird wenn die Anzahl der Einspritzungen mit dem erhöhten Wert des Boosterstroms einen Maximalwert überschreitet
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Stromprofil des Booster- Stroms von dem erhöhten Wert oder von der längeren Dauer auf den Standardwert und -Dauer umgeschaltet wird, sobald die Spannung des Boosterkondensators (BK) eine untere Schwelle unterschreitet.
9. Brennkraftmaschine mit einem Einspritzventil (18), das elektrisch geöffnet und geschlossen werden kann, wobei ein zuschaltbarer Boosterkondensator (BK) der Erhöhung der Stromstärke bei Öffnen des Einspritzventiles (18) dient, dadurch gekennzeichnet, dass das Stromprofil des Booster- Stroms von einem Standardwert auf einen erhöhten Wert und/oder auf eine längere Dauer umschaltbar ist.
10. Brennkraftmaschine nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Boosterkondensator (BK) von einem Nachladekreis (NLK) geladen wird.
EP05811168A 2004-12-28 2005-11-17 Verfahren zum betrieb einer brennkraftmaschine Ceased EP1834073B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004063079A DE102004063079A1 (de) 2004-12-28 2004-12-28 Verfahren zum Betrieb einer Brennkraftmaschine
PCT/EP2005/056033 WO2006069848A1 (de) 2004-12-28 2005-11-17 Verfahren zum betrieb einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1834073A1 true EP1834073A1 (de) 2007-09-19
EP1834073B1 EP1834073B1 (de) 2009-06-03

Family

ID=35707268

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05811168A Ceased EP1834073B1 (de) 2004-12-28 2005-11-17 Verfahren zum betrieb einer brennkraftmaschine

Country Status (5)

Country Link
US (1) US7497206B2 (de)
EP (1) EP1834073B1 (de)
JP (1) JP4373474B2 (de)
DE (2) DE102004063079A1 (de)
WO (1) WO2006069848A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014117921A1 (de) * 2013-01-29 2014-08-07 Mtu Friedrichshafen Gmbh Verfahren zum betreiben einer brennkraftmaschine sowie entsprechende brennkraftmaschine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4483770B2 (ja) * 2005-11-18 2010-06-16 株式会社デンソー 電磁弁異常診断方法
DE102008012630A1 (de) 2008-01-29 2009-07-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Schaltdruckberechnung bei einem Dosierventil
JP4776651B2 (ja) * 2008-03-28 2011-09-21 日立オートモティブシステムズ株式会社 内燃機関制御装置
WO2009144830A1 (ja) * 2008-05-26 2009-12-03 トヨタ自動車株式会社 内燃機関の始動装置
JP4815502B2 (ja) * 2009-03-26 2011-11-16 日立オートモティブシステムズ株式会社 内燃機関の制御装置
DE102016208086A1 (de) * 2016-05-11 2017-11-16 Robert Bosch Gmbh Verfahren zur Regelung eines Injektors zur Einspritzung von Kraftstoff

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729056A (en) * 1986-10-02 1988-03-01 Motorola, Inc. Solenoid driver control circuit with initial boost voltage
US6031707A (en) * 1998-02-23 2000-02-29 Cummins Engine Company, Inc. Method and apparatus for control of current rise time during multiple fuel injection events
DE19813138A1 (de) * 1998-03-25 1999-09-30 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DE19833830A1 (de) * 1998-07-28 2000-02-03 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung wenigstens eines Magnetventils
JP3932474B2 (ja) * 1999-07-28 2007-06-20 株式会社日立製作所 電磁式燃料噴射装置及び内燃機関
DE10014228A1 (de) * 2000-03-22 2001-09-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung eines Kraftstoffeinspritzventils
DE10140093A1 (de) * 2001-08-16 2003-02-27 Bosch Gmbh Robert Verfahren und Vorrichtung zum Ansteuern eines Magnetventils
JP2004092573A (ja) 2002-09-03 2004-03-25 Hitachi Ltd 燃料噴射装置および制御方法
US7252072B2 (en) * 2003-03-12 2007-08-07 Cummins Inc. Methods and systems of diagnosing fuel injection system error
DE602004004664T2 (de) * 2004-10-08 2007-11-08 C.R.F. S.C.P.A. Vorrichtung zum Steuern der Elektroeinspritzventile und Elektroventile einer Brennkraftmaschine und eine Methode dafür
DE102004062020A1 (de) * 2004-12-23 2006-07-13 Robert Bosch Gmbh Verfahren zum Betrieb einer Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006069848A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014117921A1 (de) * 2013-01-29 2014-08-07 Mtu Friedrichshafen Gmbh Verfahren zum betreiben einer brennkraftmaschine sowie entsprechende brennkraftmaschine

Also Published As

Publication number Publication date
DE502005007438D1 (de) 2009-07-16
EP1834073B1 (de) 2009-06-03
JP4373474B2 (ja) 2009-11-25
US7497206B2 (en) 2009-03-03
DE102004063079A1 (de) 2006-07-06
WO2006069848A1 (de) 2006-07-06
US20070157906A1 (en) 2007-07-12
JP2008525715A (ja) 2008-07-17

Similar Documents

Publication Publication Date Title
EP1834073B1 (de) Verfahren zum betrieb einer brennkraftmaschine
DE102013213697B4 (de) Verfahren zum Betreiben einer quantitätsgeregelten Brennkraftmaschine und quantitätsgeregelte Brennkraftmaschine
DE102006033481A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102015120576A1 (de) Optimierung einer intermittierenden Kraftstoffpumpensteuerung
DE102004059656A1 (de) Stellantriebssystem und Treibstoffeinspritzsystem
WO2009092466A1 (de) Verfahren zum start einer brennkraftmaschine mit start-stopp-funktion
EP1068435B1 (de) Kraftstoffversorgungssystem für eine brennkraftmaschine insbesondere eines kraftfahrzeugs
EP1149239B1 (de) Kraftstoffversorgungssystem für eine brennkraftmaschine insbesondere eines kraftfahrzeugs
DE10240069A1 (de) Kraftstoffeinspritzsammelsystem, das das Startvermögen einer Kraftmaschine gewährleistet
DE102010038779A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit mehreren Brennräumen und Brennkraftmaschine mit mehreren Brennräumen
EP1122424B1 (de) Verfahren und Einrichtung zum ansteuern eines elektromagnetischen Mengensteuerventils
EP1339961B1 (de) Verfahren, computerprogramm und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine
EP1831526B1 (de) Verfahren zum betrieb einer brennkraftmaschine
DE10245135A1 (de) Piezobetätigungsglied-Antriebsschaltung
DE102007050304A1 (de) Verfahren zur Steuerung eines Kraftstoffversorgungssystems einer Brennkraftmaschine
EP1436495B1 (de) Verfahren, computerprogramm und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine mit direkteinspritzung
DE10038565C2 (de) Kraftstoffversorgungssystem für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs
EP1154142B1 (de) Verfahren und Vorrichtung zur Steuerung der Kraftstoffeinspritzung
DE10314036A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit Kraftstoff-Direkteinspritzung
DE10331495B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1126150B1 (de) Verfahren und Vorrichtung zur Laufruheregelung einer Brennkraftmaschine
DE102018220708A1 (de) Verfahren zur Überwachung einer elektrischen Eigenschaft eines elektrischen Systems
DE102008057928A1 (de) Verfahren zur Steuerung einer direkteinspritzenden Otto-Brennkraftmaschine
WO2004022958A1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE102005019352A1 (de) Vorrichtung zur Steuerung beziehungsweise Regelung der Zündung einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070730

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20071010

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005007438

Country of ref document: DE

Date of ref document: 20090716

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100304

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171124

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20171122

Year of fee payment: 13

Ref country code: GB

Payment date: 20171124

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180125

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005007438

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181117

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181117