EP1818528A2 - Verfahren zur Abschätzung einer eingespritzten Kraftstoffmenge - Google Patents

Verfahren zur Abschätzung einer eingespritzten Kraftstoffmenge Download PDF

Info

Publication number
EP1818528A2
EP1818528A2 EP07101727A EP07101727A EP1818528A2 EP 1818528 A2 EP1818528 A2 EP 1818528A2 EP 07101727 A EP07101727 A EP 07101727A EP 07101727 A EP07101727 A EP 07101727A EP 1818528 A2 EP1818528 A2 EP 1818528A2
Authority
EP
European Patent Office
Prior art keywords
test
injection
internal combustion
fuel
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07101727A
Other languages
English (en)
French (fr)
Other versions
EP1818528A3 (de
Inventor
Ralf Böhnig
Michael Dr. Hardt
Peter Russe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1818528A2 publication Critical patent/EP1818528A2/de
Publication of EP1818528A3 publication Critical patent/EP1818528A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions

Definitions

  • the present invention relates to a method for estimating an injected fuel quantity, in particular an isolated injection, in an internal combustion engine having a plurality of cylinders.
  • the estimation of injected fuel quantities is necessary in order to be able to correctly identify the injection parameters of an injection system of an internal combustion engine and to be able to draw conclusions about the correct functioning of the injection system.
  • the consistent and reliable injection of a requested amount of fuel is crucial to meet the new European emission regulations for motor vehicles.
  • the undesirable emissions of internal combustion engines are due in particular to the inaccurate calibration of injection parameters in the range of small fuel masses.
  • crankshaft sensor that detects the angular velocity of the crankshaft. This variable provides an excellent source for deriving dynamic quantities derivable from individual cylinder burns.
  • Previous technical arrangements use a high-resolution noise measurement in the engine with the aid of one or more microphones or knock sensors. These are attached to the engine block near the cylinder.
  • cylinder pressure measurements are carried out with the aid of a cylinder pressure sensor. Cylinder pressure sensors may be located at various positions within the cylinder.
  • both approaches have the disadvantage that they are not installed as standard in motor vehicles and therefore substantially increase the manufacturing cost of the motor vehicle.
  • DE 199 45 618 A1 discloses, for example, the use of a crankshaft sensor to derive the injected injection from the injection system from the rotational nonuniformity caused by combustion nonuniformity.
  • DE 198 09 173 A1 discloses a timed fuel metering system with which small amounts of fuel are metered before the actual injection. With these small amounts of fuel, tolerances and errors noticeably affect, so that they can be taken into account in later injection operations.
  • the above methods have the disadvantage that they allow the verification of injection parameters only with limited accuracy and high equipment cost. It is therefore the object of the present invention to provide a more reliable compared to the prior art method, which ensures the use of the normal equipment of a motor vehicle inspection and adjustment of injection parameters.
  • the present invention discloses a method for estimating an amount of fuel injected into an engine having a plurality of cylinders, comprising the steps of injecting and combusting a test amount of fuel in a cylinder of the engine during a phase of cut off fuel supply, determining a segment time T (k) of the internal combustion engine from signals from a crankshaft sensor, calculating a generated by burning the test quantity test torque C (k) from a numerically determined second time derivative of the segment time T (k) and determining a magnitude of Test set from the calculated test torque C (k) based on a test amount test torque map.
  • the present method utilizes the signals provided by a crankshaft sensor, which is now standard on today's motor vehicles. With the help of known crankshaft sensors, the combustion cycles taking place in the individual cylinders of the internal combustion engine can be evaluated. According to the number of cylinders of the internal combustion engine, the total cycle of the internal combustion engine comprising 720 ° is divided into individual segments which can be used to describe the combustion in the individual cylinders. If the internal combustion engine is in a phase of disconnected fuel supply, ie the driver does not request torque via the accelerator pedal, individual test quantities are injected and ignited into individual cylinders of the internal combustion engine during coasting of the motor vehicle.
  • test quantities are small in comparison to injected fuel quantities of normal coasting phases of the motor vehicle, the burning of these test quantities does not adversely affect the driving behavior of the motor vehicle, such as, for example, jerking. Nevertheless, the injected test quantities produce by their combustion a thrust moment or test torque, which can be recognized and evaluated with the aid of the crankshaft sensor.
  • the injection and burning of a test quantity has an immediate effect on the segment time T (k) determined by the crankshaft sensor. This change in the segment time T (k), which varies to varying degrees depending on the size of the injected test quantity, is in the present method for checking the injection parameters and thus the Functionality of the injection system used.
  • the second time derivative of the segment time of the respectively considered cylinder of the internal combustion engine is numerically formed from the measured values of the ball-shaft sensor. In this way, for example, the influence of different engine speed ranges of the internal combustion engine is excluded, so that any phases of disconnected fuel supply can be used together to estimate the injected fuel quantity.
  • the numerical second time derivative of the segment time T (k) represents the test torque C (k) generated by the combustion of the test amount and the amount of the torque contribution by the combustion of the test amount, respectively.
  • test torque C (k) it is determined by means of a test quantity test torque map, which actual size of the test quantity corresponds to the determined test torque C (k).
  • the determined on the basis of the map actual size of the test amount provides information about the extent to which the injection system of the internal combustion engine actually injects the requested amount of fuel or errors in the injection parameters are present. With this knowledge, it is possible to constantly calibrate an apparatus change of the injection system, in order to ensure in this way an optimal emission behavior of the internal combustion engine.
  • the test torque is calculated as a difference between the test torque after the injection of the test quantity and the test torque before the injection of the test quantity, ie a phase of disconnected fuel supply without isolated injection.
  • the disclosed method is for estimating and verifying the magnitude of injected amounts of fuel injected into one or more cylinders of an internal combustion engine, respectively. In this way, it is determined whether an injection system still fulfills the assumed injection parameters, so that optimum emission values of the internal combustion engine are achieved.
  • a phase of cut-off fuel supply of the internal combustion engine designates a period of time in which neither fuel injection is requested from the driver nor from other units of the internal combustion engine. In these phases, ideally, there is a linear decrease in rotational speed over time, as exemplified in FIG. 1A.
  • the linear decrease of the engine speed according to FIG. 1A corresponds to the unchanged moment of inertia of the crankshaft within this phase. If, for example, the transmission ratio G is changed via a transmission of the motor vehicle or if the crankshaft experiences disturbing forces due to poor road conditions, there is a sudden change in the moment of inertia on the crankshaft, so that the linear drop of FIG. 1A changes abruptly. Such events would normally adversely affect an evaluation algorithm based on the engine speed.
  • a significant advantage of the present invention is that it is independent of the linear drop in engine speed and also less susceptible to isolated changes in speed drop.
  • the above identification of a phase of cut off fuel supply corresponds to the first step of the flowchart in Figure 2, which schematically shows a Embodiment of the method represents.
  • the segment time T (k) for a multi-cylinder engine refers to the duration of one cylinder rotation when the total time for one complete cycle of the engine is divided by the number of cylinders of the engine.
  • the segment T (k) can be determined with the aid of the signals of the crankshaft sensor of the internal combustion engine. For example, if the crankshaft sensor includes 60 teeth and the engine has four cylinders, one complete cycle of the engine is divided into four segments of 30 teeth of the crankshaft sensor.
  • FIG. 1B A typical course of the segment time T (k) as a function of time during a phase of cut-off fuel supply is shown in FIG. 1B. Again, the speed of the internal combustion engine during the phase shut off fuel supply decreases linearly with time, as shown by way of example in Figure 1A.
  • the method for estimating the quantity of injected fuel quantities or injected test quantities is based on the second numerical time derivative the segment time T (k).
  • a characteristic value determination method cf., FIG. 3
  • the final magnitude represents an average of the applied torque during the injections of the test amount produced by the force produced by the combustion of the isolated injected fuel test amount during the segment time T (k). This final quantity is referred to below as combustion statistics or test moment C (k).
  • Equation (2) contains the assumption that the actually required time term (t 2 -t 1 ) in the denominator according to a known time derivative experimentally corresponds approximately to the segment time T (k). This assumption considerably simplifies the further calculations. It is also conceivable to approximate the time term (t 2 -t 1 ) by the mean value 1/2 * (T (k) -T (k-1)).
  • the second derivative formation removes the local quadratic shape of the segment time data as shown in FIG. 1B. Therefore, the result of this operation is located approximately around the zero point.
  • quadratic increase in the segment time T (k) "lost" as a function of the decrease in the speed of the internal combustion engine with the second time derivative, the dependence of the segment time T (k) is essentially removed from the speed of the internal combustion engine.
  • T ⁇ f (T, ⁇ )
  • the goal of estimating the amount of fuel of isolated injection is changed to estimate the resultant force experienced by the crankshaft system due to isolated injection.
  • this force is transmitted to the size of the injected fuel quantity with the aid of a test quantity test torque map.
  • This map was previously determined experimentally specifically for the internal combustion engine.
  • the magnitude of this force is calculated as the norm of the differential equation f (T, T) over a short period of time after isolated injection.
  • test torque C (k) already introduced above is discretely approximated in the context of the present method by means of a weighted linear combination of A (k).
  • a (k) is scaled over a time interval by means of a function of the gear ratio G and the engine speed N.
  • C k 1 b G k .
  • N k ⁇ i k k - NO CYL - 1 a j ⁇ A j . a j ⁇ R ,
  • FIG. 2 shows by way of example the second numerical time derivative of the segment time, which is influenced by the event of a representative isolated injection of a test amount of fuel.
  • the calculation of the test torque T (k) is represented by the hatched area below the curve.
  • the curve itself is formed by the function A (k) (see above).
  • the points also represented represent sampled events during the engine cycle.
  • the combustion statistics or the test torque T (k) has approximately the mean value zero, if no injection and ignition of a test amount takes place in the context of the fuel cut-off phase.
  • the variance of the test torque C (k) is estimated in phases where no injection takes place. In this way, the expected variability of the test torque C (k) is determined.
  • essential key variables of the system are taken into account, such as the engine speed and different moments of inertia on the crankshaft.
  • the estimated data dispersion is for detecting a system whose hardware is in a state outside an acceptable range. Furthermore, unacceptable operating conditions for the above evaluation, such as bad road conditions, can be recognized via the data scattering.
  • equation (5) is applied over several segments of the engine cycle in a phase of cutoff fueling. Since in this phase initially no test quantities are injected or no isolated injection is carried out, the variance of the characteristic values can be determined as a function of the determined C (k) Determine the operating state of the internal combustion engine and / or the motor vehicle. If the variance is below a predetermined threshold, the process continues. Otherwise, the measurement is repeated or another phase of shut off fuel supply is awaited under other operating conditions of the motor vehicle and then the measurement is repeated.
  • a test amount is injected into a selected cylinder as part of an injection cycle of the internal combustion engine.
  • the injection cycle is arranged between a given number of reference cycles in which no test quantities are injected.
  • comparison possibilities are provided in the further process.
  • the isolated injection of a test set or a series of test set injections is made with identical control parameters for the injector to achieve comparability over a plurality of isolated injections.
  • the corresponding test torques C (k) are determined and collected or stored according to equation (5).
  • injection or engine cycles are alternated with injection of a test quantity with injection or engine cycles without injection of a test quantity.
  • an expectation interval is defined. If the measurement of C (k) of the reference cycle, ie without test quantity injection, is outside the expected interval, the measured values of the following test quantity injection are not evaluated. Otherwise, a corresponding evaluation of the test quantity injection takes place.
  • the application of the expectation interval ensures that the data from the reference cycles can actually be used to evaluate the test moments C (k). For example, drives the motor vehicle during a reference measurement by a pothole, a bad road or otherwise unpredictably changes the moment of inertia at the crankshaft, unexceptable fluctuations in C (k) of the reference cycle are generated. This prevents a reliable later evaluation.
  • outliers are preferably removed from the collected C (k) values and an average of the collected C (k) values is made within each series of isolated injections. These steps improve the accuracy and robustness of the final estimate of the actual amount of fuel injected. For each series of isolated injections, an average and a variance of the results are calculated. Using this computed data, the outliers are removed based on the assumption that the data dispersion obeys a Gaussian distribution.
  • var C ⁇ k C 2 k - n i ⁇ C i ⁇ 2 / n i - 1
  • Each series of injected test quantities or isolated injections can be determined in different phases of cut off fuel supply. The averages of each series are collected until a sufficient number n T of evaluated injection events have been collected. The number of injection events is sufficient if a reliable estimation of the test torque generated by the isolated injections is possible with respect to the injection parameters which are the same everywhere. Of course, the accuracy of this estimation also affects the later determination of the actually injected test set based on the test set test torque map.
  • the essential advantage of the present invention is that, despite the sporadic repeatability and duration of the periods of fuel cut-off, results are achieved with high accuracy and low susceptibility to external disturbances and changes in boundary conditions.
  • the averaging over a plurality of series of isolated injections and the recursive updating of the specific test moments makes it possible for even a slight change in the injection conditions to be taken into account in the control of the injection parameters for a great variety of reasons. On this basis, it is ensured that strict emission requirements are met.
  • the actually injected quantities of the test quantities are derived from the test quantity test torque characteristic field.
  • the knowledge of the actual quantities of the test quantities then in turn makes it possible to calibrate the control parameters, for example an injection system, and to adapt them to the requirements of the respective internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Die Erfindung offenbart ein Verfahren zur Abschätzung einer eingespritzten Kraftstoffmenge einer isolierten Einspritzung. Die Segmentzeit des Zylinders, in dem die isolierte Einspritzung erfolgt, wird numerisch durch Bildung der zweiten zeitlichen Ableitung ausgewertet. Mit Hilfe der zweiten zeitlichen Ableitung der Segmentzeit erfolgt eine Aktualisierung der Einspritzparameter mit Hilfe eines Testmenge-Testmoment-Kennfelds.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Abschätzung einer eingespritzten Kraftstoffmenge, insbesondere eine isolierte Einspritzung, in eine Brennkraftmaschine mit mehreren Zylindern.
  • Die Abschätzung eingespritzter Kraftstoffmengen ist erforderlich, um die Einspritzparameter einer Einspritzanlage einer Brennkraftmaschine korrekt zu identifizieren und Rückschlüsse auf die korrekte Funktionsweise der Einspritzanlage ziehen zu können. Das konsistente und verlässliche Einspritzen einer angeforderten Kraftstoffmenge ist entscheidend, um die neuen europäischen Emissionsvorschriften für Kraftfahrzeuge zu erfüllen. Die unerwünschten Emissionen von Brennkraftmaschinen sind insbesondere auf die ungenaue Kalibrierung von Einspritzparametern im Bereich kleiner Kraftstoffmassen zurückzuführen.
  • Die meisten Kraftfahrzeuge besitzen einen Kurbelwellensensor, der die Winkelgeschwindigkeit der Kurbelwelle erfasst. Diese Variable stellt eine ausgezeichnete Quelle für die Herleitung dynamischer Größen bereit, die aus einzelnen Verbrennungen im Zylinder ableitbar sind. Bisherige technische Anordnungen verwenden eine hochauflösende Rauschmessung im Motor mit Hilfe von einem oder mehreren Mikrofonen oder Klopfsensoren. Diese sind am Motorblock nahe der Zylinder befestigt. Gemäß einer weiteren Alternative werden Zylinderdruckmessungen mit Hilfe eines Zylinderdrucksensors durchgeführt. Zylinderdrucksensoren können an verschiedenen Positionen innerhalb des Zylinders angeordnet sein. Beide Ansätze haben jedoch den Nachteil, dass sie nicht standardmäßig in Kraftfahrzeugen installiert sind und daher wesentlich die Herstellungskosten des Kraftfahrzeugs steigern.
  • DE 199 45 618 A1 offenbart beispielsweise die Verwendung eines Kurbelwellensensors, um aus der durch eine Verbrennungsungleichförmigkeit verursachten Drehzahlungleichförmigkeit die erfolgte Einspritzung durch die Einspritzanlage ableiten zu können. DE 198 09 173 A1 offenbart ein zeitgesteuertes Kraftstoffzumesssystem, mit dem geringe Kraftstoffmengen vor der eigentlichen Einspritzung zugemessen werden. Bei diesen kleinen Kraftstoffmengen wirken sich Toleranzen und Fehler erkennbar aus, so dass diese bei späteren Einspritzvorgängen berücksichtigt werden können.
  • Andere Ansätze beschreiben die Anpassung der der Piezoeinspritzanlagen zugeführten Energie an Stelle des Betätigungszeitpunkts der Einspritzanlage, um die Einspritzparameter zu identifizieren und zu korrigieren.
  • Obige Verfahren haben den Nachteil, dass sie nur mit begrenzter Genauigkeit und hohem apparativen Aufwand die Überprüfung von Einspritzparametern gestatten. Es ist daher die Aufgabe der vorliegenden Erfindung, ein im Vergleich zum Stand der Technik verlässlicheres Verfahren bereitzustellen, das mit Hilfe der normalen apparativen Ausstattung eines Kraftfahrzeugs die Überprüfung und Anpassung von Einspritzparametern gewährleistet.
  • Die obige Aufgabe wird durch ein Verfahren gemäß dem unabhängigen Patentanspruch 1 gelöst. Weiterentwicklungen und Ausgestaltungen des vorliegenden Verfahrens gehen aus der folgenden Beschreibung, den Zeichnungen und den anhängenden Ansprüchen hervor.
  • Die vorliegende Erfindung offenbart ein Verfahren zur Abschätzung einer in eine Brennkraftmaschine mit mehreren Zylindern eingespritzten Kraftstoffmenge, das die folgenden Schritte aufweist: Einspritzen und Verbrennen einer Testmenge an Kraftstoff in einem Zylinder der Brennkraftmaschine während einer Phase abgeschalteter Kraftstoffzufuhr, Bestimmen einer Segmentzeit T(k) der Brennkraftmaschine aus Signalen eines Kurbelwellensensors, Berechnen eines durch das Verbrennen der Testmenge erzeugten Testmoments C(k) aus einer numerisch bestimmten zweiten zeitlichen Ableitung der Segmentzeit T(k) und Ermitteln einer Größe der Testmenge aus dem berechneten Testmoment C(k) auf der Grundlage eines Testmenge-Testmoment-Kennfelds.
  • Das vorliegende Verfahren nutzt die durch einen Kurbelwellensensor bereitgestellten Signale, der mittlerweile zur Standardausstattung von heutigen Kraftfahrzeugen gehört. Mit Hilfe bekannter Kurbelwellensensoren sind die in den einzelnen Zylindern der Brennkraftmaschine ablaufenden Verbrennungszyklen auswertbar. Entsprechend der Zylinderzahl der Brennkraftmaschine wird der 720° umfassende Gesamtzyklus der Brennkraftmaschine in einzelne Segmente unterteilt, die zur Beschreibung der Verbrennung in den einzelnen Zylindern genutzt werden können. Befindet sich die Brennkraftmaschine in einer Phase abgeschalteter Kraftstoffzufuhr, d.h. der Fahrer fordert über das Gaspedal kein Drehmoment an, werden während des Ausrollens des Kraftfahrzeugs einzelne Testmengen in einzelne Zylinder der Brennkraftmaschine eingespritzt und gezündet. Da diese Testmengen klein im Vergleich zu eingespritzten Kraftstoffmengen normaler Schubphasen des Kraftfahrzeugs sind, wirkt sich das Verbrennen dieser Testmengen nicht negativ auf das Fahrverhalten des Kraftfahrzeugs aus, wie beispielsweise durch ein Ruckeln. Trotzdem erzeugen die eingespritzten Testmengen durch ihre Verbrennung ein Schubmoment bzw. Testmoment, das mit Hilfe des Kurbelwellensensors erkennbar und auswertbar ist. Das Einspritzen und Verbrennen einer Testmenge wirkt sich unmittelbar auf die durch den Kurbelwellensensor bestimmte Segmentzeit T(k) aus. Diese Änderung in der Segmentzeit T(k), die unterschiedlich stark in Abhängigkeit von der Größe der eingespritzten Testmenge ausfällt, wird im vorliegenden Verfahren zur Überprüfung der Einspritzparameter und somit der Funktionsfähigkeit der Einspritzanlage verwendet. Um unabhängig vom Bewegungszustand des Kraftfahrzeugs die Phasen abgeschalteter Kraftstoffzufuhr zur Überprüfung der eingespritzten Kraftstoffmenge nutzen zu können, wird aus den Messwerten des Kugelwellensensors numerisch die zweite zeitliche Ableitung der Segmentzeit des jeweils betrachteten Zylinders der Brennkraftmaschine gebildet. Auf diese Weise wird beispielsweise der Einfluss unterschiedlicher Drehzahlbereiche der Brennkraftmaschine ausgeschlossen, so dass beliebige Phasen abgeschalteter Kraftstoffzufuhr zur Abschätzung der eingespritzten Kraftstoffmenge gemeinsam nutzbar sind. Die numerische zweite zeitliche Ableitung der Segmentzeit T(k) repräsentiert das durch die Verbrennung der Testmenge erzeugte Testmoment C(k) bzw. den Betrag des Drehmomentenbeitrags durch die Verbrennung der Testmenge. Sobald das Testmoment C(k) ermittelt worden ist, wird mit Hilfe eines Testmenge-Testmoment-Kennfelds festgestellt, welcher tatsächlichen Größe der Testmenge das ermittelte Testmoment C(k) entspricht. Die an Hand des Kennfelds ermittelte tatsächliche Größe der Testmenge gibt Auskunft darüber, in wieweit die Einspritzanlage der Brennkraftmaschine tatsächlich die angeforderte Kraftstoffmenge einspritzt oder Fehler in den Einspritzparametern vorhanden sind. Mit dieser Kenntnis ist es möglich, eine apparative Veränderung der Einspritzanlage ständig zu kalibrieren, um auf diese Weise ein optimales Emissionsverhalten der Brennkraftmaschine sicherzustellen.
  • Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung erfolgt ein Einspritzen und Verbrennen einer Serie von Testmengen in einer oder einer Mehrzahl von Phasen unterbrochener Kraftstoffzufuhr der Brennkraftmaschine und ein Berechnen eines Mittelwerts des Testmoments C(k) aus den Testmomenten, die pro eingespritzte Testmenge ermittelt worden sind.
  • Gemäß einer weiteren Ausführungsform wird das Testmoment als eine Differenz aus dem Testmoment nach dem Einspritzen der Testmenge und dem Testmoment vor dem Einspritzen der Testmenge, also eine Phase abgeschalteter Kraftstoffzufuhr ohne isolierte Einspritzung, berechnet.
  • Es ist des Weiteren bevorzugt, ein rekursives Aktualisieren des Mittelwerts des Testmoments mit jeder weiteren Serie eingespritzter Testmengen durchzuführen. Das Aktualisieren des Mittelwerts mit jeder Serie zeichnet sich dadurch aus, dass die Messwerte mehrerer Serien basierend auf wenigen Testeinspritzungen zusammen eine Kraftstoffschätzung bilden, ohne dass auf eine Serie mit einer viel größeren Anzahl an Testeinspritzungen oder auf eine ausreichend lange Serie gewartet werden muss. Dadurch wird die Effektivität des vorliegenden Verfahrens im Vergleich zum Stand der Technik gesteigert.
  • Die vorliegende Erfindung und ihre bevorzugten Ausführungsformen werden im Folgenden unter Bezugnahme auf die begleitende Zeichnung näher erläutert. Es zeigen:
    • Figur 1A enthält ein Beispiel für den Abfall der Drehzahl der Brennkraftmaschine in einer Phase mit abgeschalteter Kraftstoffzufuhr.
    • Figur 1B zeigt exemplarisch die Zunahme der Segmentzeit T(k) in Abhängigkeit von der Zeit in einer Phase abgeschalteter Kraftstoffzufuhr.
    • Figur 2 zeigt die aus den Messpunkten des Kurbelwellensensors numerisch berechnete zweite Ableitung der Segmentzeit T(k).
    • Figur 3 zeigt ein beispielhaftes Flussdiagramm des vorliegenden Verfahrens.
  • Das offenbarte Verfahren dient dem Abschätzen und Überprüfen der Größe eingespritzter Kraftstoffmengen, die jeweils in einen oder mehrere Zylinder einer Brennkraftmaschine eingespritzt werden. Auf diese Weise wird festgestellt, ob eine Einspritzanlage noch die angenommenen Einspritzparameter erfüllt, so dass optimale Emissionswerte der Brennkraftmaschine erzielt werden.
  • Im Rahmen des Verfahrens werden in einer Phase abgeschalteter Kraftstoffzufuhr Kraftstoff-Testmengen bzw. isolierte Einspritzungen in die einzelnen Zylinder eingespritzt und verbrannt. Eine Phase abgeschalteter Kraftstoffzufuhr der Brennkraftmaschine bezeichnet einen Zeitabschnitt, in dem weder durch den Fahrer noch durch andere Aggregate der Brennkraftmaschine eine Kraftstoffeinspritzung angefordert wird. In diesen Phasen kommt es idealer Weise zu einem linearen Abfall der Drehzahl mit der Zeit, wie er beispielgebend in Figur 1A dargestellt ist.
  • Der lineare Abfall der Motordrehzahl gemäß Figur 1A entspricht dem unveränderten Trägheitsmoment der Kurbelwelle innerhalb dieser Phase. Wird beispielsweise das Übersetzungsverhältnis G über ein Getriebe des Kraftfahrzeugs geändert oder erfährt die Kurbelwelle Störkräfte aufgrund schlechter Straßenverhältnisse, ergibt sich eine sprunghafte Änderung des Trägheitsmoments an der Kurbelwelle, so dass sich der lineare Abfall aus Figur 1A abrupt ändert. Derartige Ereignisse würden sich normalerweise negativ auf einen Auswertealgorithmus basierend auf der Drehzahl der Brennkraftmaschine auswirken. Ein wesentlicher Vorteil der vorliegenden Erfindung besteht jedoch darin, dass sie unabhängig vom linearen Abfall der Motordrehzahl und zudem wenig anfällig gegenüber isolierten Änderungen im Drehzahlabfall ist.
  • Die obige Identifikation einer Phase abgeschalteter Kraftstoffzufuhr entspricht dem ersten Schritt des Flussdiagramms in Figur 2, das schematisch eine Ausführungsform des Verfahrens darstellt. Die Segmentzeit T(k) für eine Brennkraftmaschine mit mehreren Zylindern bezeichnet die Dauer einer Drehung eines Zylinders, wenn die Gesamtzeit für einen vollständigen Zyklus der Brennkraftmaschine durch die Anzahl der Zylinder der Brennkraftmaschine geteilt wird. Die Segment T(k) lässt sich mit Hilfe der Signale des Kurbelwellensensors der Brennkraftmaschine ermitteln. Umfasst der Kurbelwellensensor beispielsweise 60 Zähne und die Brennkraftmaschine vier Zylinder, unterteilt sich ein vollständiger Zyklus der Brennkraftmaschine in vier Segmente ä 30 Zähne des Kurbelwellensensors. Da diese Zähne durch den Kurbelwellensensor einzeln erfasst werden, lässt sich auf diese Weise die Zeit für jedes Segment in Abhängigkeit von der Drehzahl N der Brennkraftmaschine bestimmen. Da zudem die Abtastrate des Kurbelwellensensors der Drehzahl der Brennkraftmaschine variiert, ist sie jeweils an eine ausreichende Erfassung der Segmentzeit T(k) angepasst. Wird die Segmentzeit T(k) in Sekunden beschrieben und bezeichnet NR_CYL die Anzahl der Zylinder der Brennkraftmaschine und N die Drehzahl der Brennkraftmaschine in Umin-1, berechnet sich die Segmentzeit T(k) im Segment mit der Nummer k gemäß: T Kuk = 120 N k NR_CYL .
    Figure imgb0001
  • Einen typischen Verlauf der Segmentzeit T(k) in Abhängigkeit von der Zeit während einer Phase abgeschalteter Kraftstoffzufuhr zeigt Figur 1B. Auch hier nimmt die Drehzahl der Brennkraftmaschine während der Phase abgeschalteter Kraftstoffzufuhr linear mit der Zeit ab, wie es beispielgebend in Figur 1A dargestellt ist.
  • Das Verfahren zur Abschätzung der Größe eingespritzter Kraftstoffmengen bzw. eingespritzter Testmengen, das auch als Verfahren zur Kennwertermittlung bezeichnet wird (vgl. Figur 3), basiert auf der zweiten numerischen zeitlichen Ableitung der Segmentzeit T(k). Bildet man direkt die numerische Ableitung der Segmentzeit T(k), nutzt man den rechnerischen Vorteil weniger Multiplikationen und Divisionen, um zu einer Größe proportional zur eingespritzten Testmenge an Kraftstoff zu gelangen. Auf diese Weise werden Rundungsfehler reduziert und der numerische Bereich wesentlich vergrößert, wenn man die Rechnungen mit Hilfe der Festpunktarithmetik durchführt. Die abschließende Größe stellt einen Mittelwert des aufgebrachten Moments während der Einspritzvorgänge der Testmenge dar, das durch die Kraft produziert durch die Verbrennung der isoliert eingespritzten Kraftstoff-Testmenge während der Segmentzeit T(k) erzeugt wird. Diese abschließende Größe wird im Weiteren als Verbrennungsstatistik oder Testmoment C(k) bezeichnet.
  • Wendet man die numerische zeitliche Ableitung D[x(k)] auf die Funktion x(k) an, ergibt sich D x k = x k - x k - 1 T k
    Figure imgb0002
  • Gleichung (2) enthält die Annahme, dass der eigentlich erforderliche Zeitterm (t2-t1) im Nenner gemäß einer bekannten zeitlichen Ableitung experimentell etwa der Segmentzeit T(k) entspricht. Mit dieser Annahme werden erheblich die weiteren Rechnungen vereinfacht. Es ist ebenfalls denkbar, den Zeitterm (t2-t1) durch den Mittelwert 1/2·(T(k) - T (k - 1)) anzunähern.
  • Bildet man in Anlehnung an die Gleichung (2) die zweite zeitliche Ableitung D[D[T(k)]] der Segmentzeit T(k), erhält man A k = D D T k = T k T k - 2 - T 2 k - 1 T 2 k T k - 1
    Figure imgb0003
  • Die Bildung der zweiten Ableitung entfernt die lokale quadratische Form der Daten der Segmentzeit, wie sie in Figur 1B dargestellt ist. Daher ist das Ergebnis dieser Operation ungefähr um den Nullpunkt angeordnet. Dadurch, dass das quadratische Anwachsen in der Segmentzeit T(k) in Abhängigkeit vom Abfall der Drehzahl der Brennkraftmaschine mit der zweiten zeitlichen Ableitung "verloren geht", wird im Wesentlichen die Abhängigkeit der Segmentzeit T(k) von der Drehzahl der Brennkraftmaschine entfernt.
  • Die Bewegung des Kurbelwellensystems wird hier durch eine Differentialgleichung zweiter Ordnung T̈=f(T,Ṫ) modelliert. Dabei wird das Ziel, die Kraftstoffmenge einer isolierten Einspritzung abzuschätzen, dahingehend geändert, dass die resultierende Kraft abgeschätzt wird, die das Kurbelwellensystem aufgrund einer isolierten Einspritzung erfährt. Nach Abschluss der Auswertung der experimentellen Daten wird diese Kraft mit Hilfe eines Testmenge-Testmoment-Kennfelds in die Größe der eingespritzten Kraftstoffmenge übertragen. Dieses Kennfeld wurde zuvor spezifisch für die Brennkraftmaschine experimentell ermittelt. Die Größe dieser Kraft wird als die Norm der Differentialgleichung f(T,T) über einen kurzen Zeitraum nach erfolgter isolierter Einspritzung berechnet. Die entsprechende Formel für diese Berechnung lautet C = 1 h t t + h f T T ˙ d t .
    Figure imgb0004
  • Das bereits oben eingeführte Testmoment C(k) wird im Rahmen des vorliegenden Verfahrens mit Hilfe einer gewichteten Linearkombination von A(k) diskret angenähert. Im Rahmen dieser diskreten Näherung wird A(k) über einen Zeitintervall mittels einer Funktion des Übersetzungsverhältnis G und der Drehzahl N der Brennkraftmaschine skaliert. Für die diskrete Näherung des Testmoments C(k) ergibt sich daher C k = 1 b G k , N k i = k k - NR CYL - 1 a j A j , a j .
    Figure imgb0005
  • Figur 2 zeigt exemplarisch die zweite numerische zeitliche Ableitung der Segmentzeit, die durch das Ereignis einer repräsentativen isolierten Einspritzung einer Testmenge von Kraftstoff beeinflusst wird. Die Berechnung des Testmoments T(k) wird durch die schraffierte Fläche unterhalb der Kurve repräsentiert. Die Kurve selbst wird durch die Funktion A(k) gebildet (siehe oben). Die ebenfalls dargestellten Punkte repräsentieren abgetastete Ereignisse während des Motorzyklus.
  • Die Verbrennungsstatistik bzw. das Testmoment T(k) hat annähernd den Mittelwert Null, wenn im Rahmen der Phase abgeschalteter Kraftstoffzufuhr keine Einspritzung und Zündung einer Testmenge stattfindet. Die Varianz des Testmoments C(k) wird in Phasen abgeschätzt, in denen keine Einspritzung stattfindet. Auf diese Weise wird die zu erwartende Veränderlichkeit des Testmoments C(k) bestimmt. In diesem Zusammenhang werden wesentliche Schlüsselvariablen des Systems berücksichtigt, wie beispielsweise die Drehzahl der Brennkraftmaschine und unterschiedliche Trägheitsmomente an der Kurbelwelle. Die abgeschätzte Datenstreuung dient dem Erkennen eines Systems, dessen Hardware sich in einem Zustand außerhalb eines akzeptablen Bereichs befindet. Des Weiteren erkennt man über die Datenstreuung inakzeptable Betriebsbedingungen für die obige Auswertung, wie beispielsweise schlechte Straßenverhältnisse.
  • Die Kennwertermittlung bzw. die Schritte zur Abschätzung der Größe der Kraftstoffmenge einer isolierten Einspritzung sind in Figur 3 dargestellt. Parallel dazu sind Schritte für die Robustheit des Abschätzungsverfahrens bzw. für die Akzeptanz der Messungen dargestellt. Zunächst wird im dritten Schritt des Flussdiagramms der Figur 3 Gleichung (5) über mehrere Segmente des Motorzyklus in einer Phase abgeschalteter Kraftstoffzufuhr angewandt. Da in dieser Phase zunächst keine Testmengen eingespritzt werden bzw. keine isolierte Einspritzung vorgenommen wird, lässt sich aus dem ermittelten C(k) die Varianz der Kennwerte in Abhängigkeit vom Betriebszustand der Brennkraftmaschine und/oder des Kraftfahrzeugs bestimmen. Liegt die Varianz unterhalb eines zuvor festgelegten Schwellenwerts, wird das Verfahren fortgesetzt. Anderenfalls wird die Messung wiederholt oder eine andere Phase abgeschalteter Kraftstoffzufuhr unter anderen Betriebsbedingungen des Kraftfahrzeugs abgewartet und dann die Messung wiederholt.
  • Bei Fortsetzung der Messung wird eine Testmenge in einen ausgewählten Zylinder im Rahmen eines Einspritzzyklus der Brennkraftmaschine eingespritzt. Der Einspritzzyklus ist zwischen einer gegebenen Anzahl von Referenzzyklen angeordnet, in denen keine Testmengen eingespritzt werden. Mit Hilfe der Messung von Einspritzzyklen und Referenzzyklen werden Vergleichsmöglichkeiten im weiteren Verfahren bereitgestellt. Die isolierte Einspritzung einer Testmenge oder einer Serie von Testmengen-Einspritzungen wird mit identischen Steuerparametern für die Einspritzvorrichtung vorgenommen, um Vergleichbarkeit über eine Mehrzahl von isolierten Einspritzungen zu erzielen. Die entsprechenden Testmomente C(k) werden gemäß Gleichung (5) ermittelt und gesammelt bzw. gespeichert. Im Sinne der bereits oben erwähnten Vergleichbarkeit werden Einspritz- bzw. Motorzyklen mit Einspritzung einer Testmenge mit Einspritz- oder Motorzyklen ohne Einspritzung einer Testmenge abgewechselt.
  • Mit Hilfe der bereits oben ermittelten Varianz von C(k) der Einspritzzyklen ohne Testmengen-Einspritzung wird ein Erwartungsintervall definiert. Befindet sich die Messung von C(k) des Referenzzyklus, also ohne Testmengen-Einspritzung, außerhalb des Erwartungsintervalls, werden die Messwerte der folgenden Testmengen-Einspritzung nicht ausgewertet. Anderenfalls erfolgt eine entsprechende Auswertung der Testmengen-Ein-spritzung. Die Anwendung des Erwartungsintervalls gewährleistet, dass die Daten aus den Referenzzyklen tatsächlich zur Auswertung der Testmomente C(k) genutzt werden können. Fährt beispielsweise das Kraftfahrzeug während einer Referenzmessung durch ein Schlagloch, über eine schlechte Strasse oder ändert sich anderweitig unvorhersehbar das Trägheitsmoment an der Kurbelwelle, werden nicht auswertbare Schwankungen in C(k) des Referenzzyklus erzeugt. Dies verhindert eine verlässliche spätere Auswertung.
  • Befindet sich das C(k) der Referenzmessung im Erwartungsintervall, wird die Größe des Testmoments C(k) als Differenz des Testmoments Cafter_inj(k) nach der Verbrennung einer isolierten Einspritzung und des Testmoments Cbefore_inj(k-NR_CYL) vor der Verbrennung einer isolierten Einspritzung berechnet. Dies ist ebenfalls in der folgenden Gleichung 6 dargestellt. C k = C after_ini k - C before_ini k - NR_CYL
    Figure imgb0006
  • Auf diese Weise ist es nicht erforderlich, allein aus der isolierten Einspritzung die erzeugte Kraft zu bestimmen. Des Weiteren wirken sich Fehler bei der Bestimmung der Segmentzeit mit Hilfe des Kurbelwellensensors nicht mehr aus.
  • Im weiteren Verfahren werden bevorzugt Ausreißer aus den gesammelten C(k)-Werten entfernt und es wird eine Mittelung über die gesammelten C(k)-Werte innerhalb jeder Serie von isolierten Einspritzungen durchgeführt. Diese Schritte verbessern die Genauigkeit und die Robustheit der abschließenden Abschätzung der tatsächlich eingespritzten Kraftstoffmenge. Für jede Serie i isolierten Einspritzungen wird ein Mittelwert und eine Varianz der Ergebnisse berechnet. Mit Hilfe dieser berechneten Daten findet das Entfernen der Ausreißer basierend auf der Annahme statt, dass die Datenstreuung einer Gaußschen Verteilung gehorcht. Der Mittelwert Ci einer jeden Serie i und die Varianz var(C)i einer jeden Serie I berechnet sich aus c i = 1 n i k C k , var C = k C 2 k - n i C i 2 / n i - 1
    Figure imgb0007
  • Jede Serie von eingespritzten Testmengen bzw. isolierter Einspritzungen kann in unterschiedlichen Phasen abgeschalteter Kraftstoffzufuhr bestimmt werden. Die Mittelwerte jeder Serie werden gesammelt, bis eine ausreichende Anzahl nT von ausgewerteten Einspritzereignissen gesammelt worden ist. Die Anzahl der Anspritzereignisse ist dann ausreichend, wenn eine verlässliche Abschätzung des durch die isolierten Einspritzungen erzeugten Testmoments bezüglich der überall gleichen Einspritzparameter möglich ist. Die Genauigkeit dieser Abschätzung wirkt sich natürlich auch auf die spätere Bestimmung der tatsächlich eingespritzten Testmenge anhand des Testmenge-Testmoment-Kennfelds aus.
  • Das abschließende mittlere Testmoment C und die Varianz var(C) der Testergebnisse werden mit jeder Serie i von isolierten Einspritzungen rekursiv aktualisiert. Dies ist in den nachfolgenden Gleichungen (8) dargestellt. C = n T C + n i C i n T + n i , var C = n T - 1 var C + n i - 1 var C i n T + n i - 1 n T = n T + n i
    Figure imgb0008
  • Der wesentliche Vorteil der vorliegenden Erfindung besteht darin, dass trotz der sporadischen Wiederholbarkeit und Dauer der Phasen abgeschalteter Kraftstoffzufuhr Ergebnisse mit hoher Genauigkeit und geringer Anfälligkeit gegenüber äußeren Störungen und Änderungen der Randbedingungen erzielt werden. Die Mittelung über eine Mehrzahl von Serien von isolierten Einspritzungen und die rekursive Aktualisierung der bestimmten Testmomente macht es möglich, dass auch eine leichte Veränderung der Einspritzbedingungen aus den verschiedensten Gründen bei der Steuerung der Einspritzparameter Berücksichtigung findet. Auf dieser Grundlage wird gewährleistet, dass strenge Emissionsanforderungen erfüllt werden.
  • Ausgehend von den gemittelten und rekursiv aktualisierten Testmomenten werden aus dem Testmenge-Testmoment-Kennfeld die tatsächlich eingespritzten Größen der Testmengen abgeleitet. Die Kenntnis der tatsächlichen Größen der Testmengen ermöglicht dann wiederum, die Steuerparameter, beispielsweise einer Einspritzanlage, zu kalibrieren und an die Erfordernisse der jeweiligen Brennkraftmaschine anzupassen.

Claims (4)

  1. Verfahren zur Abschätzung einer eingespritzten Kraftstoffmenge in eine Brennkraftmaschine mit mehreren Zylindern, das die folgenden Schritte aufweist:
    a. Einspritzen und Verbrennen einer Testmenge an Kraftstoff in einem Zylinder der Brennkraftmaschine während einer Phase abgeschalteter Kraftstoffzufuhr,
    b. Bestimmen einer Segmentzeit T(k) der Brennkraftmaschine aus Signalen eines Kurbelwellensensors,
    c. Berechnen eines durch das Verbrennen der Testmenge erzeugten Testmoments C(k) aus einer numerisch bestimmten zweiten zeitlichen Ableitung der Segmentzeit T(k) und
    d. Ermitteln einer Größe der Testmenge aus dem berechneten Testmoment C(k) auf Grundlage eines Testmenge-Testmoment-Kennfelds.
  2. Verfahren gemäß Anspruch 1, mit dem weiteren Schritt:
    Einspritzen und Verbrennen einer Serie von Testmengen in einer oder einer Mehrzahl von Phasen unterbrochener Kraftstoffzufuhr der Brennkraftmaschine und
    Berechnen eines Mittelwerts des Testmoments C(k) aus den Testmomenten, die pro eingespritzte Testmenge ermittelt worden sind.
  3. Verfahren gemäß einem der vorhergehenden Ansprüche, mit dem weiteren Schritt:
    Berechnen des Testmoments als eine Differenz aus dem Testmoment nach dem Einspritzen der Testmenge und dem Testmoment vor dem Einspritzen der Testmenge berechnet.
  4. Verfahren gemäß Anspruch 2 oder 3, mit dem weiteren Schritt:
    Rekursives Aktualisieren des Mittelwerts des Testmoments mit jeder weiteren Serie eingespritzter Testmengen.
EP07101727A 2006-02-10 2007-02-05 Verfahren zur Abschätzung einer eingespritzten Kraftstoffmenge Withdrawn EP1818528A3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006006303A DE102006006303B3 (de) 2006-02-10 2006-02-10 Verfahren zur Abschätzung einer eingespritzten Kraftstoffmenge

Publications (2)

Publication Number Publication Date
EP1818528A2 true EP1818528A2 (de) 2007-08-15
EP1818528A3 EP1818528A3 (de) 2010-11-17

Family

ID=38068562

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07101727A Withdrawn EP1818528A3 (de) 2006-02-10 2007-02-05 Verfahren zur Abschätzung einer eingespritzten Kraftstoffmenge

Country Status (3)

Country Link
US (1) US7333886B2 (de)
EP (1) EP1818528A3 (de)
DE (1) DE102006006303B3 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4487874B2 (ja) * 2005-07-12 2010-06-23 株式会社デンソー 内燃機関の燃料噴射制御装置
DE102006007076A1 (de) 2006-02-15 2007-08-16 Siemens Ag Einspritzanlage für eine Brennkraftmaschine und Brennkraftmaschine
JP4858345B2 (ja) * 2007-07-25 2012-01-18 株式会社デンソー 燃料噴射制御装置およびそれを用いた燃料噴射システム
DE102007042994A1 (de) * 2007-09-10 2009-03-12 Robert Bosch Gmbh Verfahren zum Beurteilen einer Funktionsweise eines Einspritzventils bei Anlegen einer Ansteuerspannung und entsprechende Auswertevorrichtung
JP4442670B2 (ja) * 2007-09-19 2010-03-31 株式会社デンソー 内燃機関の燃料噴射制御装置
ES2418431T3 (es) * 2007-11-12 2013-08-13 Iveco Motorenforschung Ag Proceso para la determinación del caudal de combustible correcto para el motor de un vehículo para llevar a cabo pruebas de diagnóstico
DE102007054650B3 (de) * 2007-11-15 2009-07-09 Continental Automotive Gmbh Ermittlung der Kraftstoffqualität bei einer selbstzündenden Brennkraftmaschine
JP2010261334A (ja) 2009-04-30 2010-11-18 Denso Corp 燃料噴射制御装置
DE102010022269B4 (de) 2010-05-31 2019-08-01 Continental Automotive Gmbh Adaptionsverfahren eines positionsgeregelten Injektors
DE102010038630B4 (de) * 2010-07-29 2020-07-09 Man Energy Solutions Se Kalibrierverfahren für eine Brennkraftmaschine und gemäß diesem kalibrierbare Brennkraftmaschine
DE102011089296B4 (de) * 2011-12-20 2024-05-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Kalibrierung eines Kraftstoffzumesssystems eines Kraftfahrzeugs
US10012161B2 (en) * 2016-06-02 2018-07-03 Tula Technology, Inc. Torque estimation in a skip fire engine control system
DE102014220367A1 (de) * 2014-10-08 2016-04-14 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US9933334B2 (en) * 2015-06-22 2018-04-03 General Electric Company Cylinder head acceleration measurement for valve train diagnostics system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4138765A1 (de) * 1991-01-10 1992-07-16 Bosch Gmbh Robert Verfahren und vorrichtung zum bestimmen eines laufunruhewertes einer brennkraftmaschine
DE4122139A1 (de) * 1991-07-04 1993-01-07 Bosch Gmbh Robert Verfahren zur zylindergleichstellung bezueglich der kraftstoff-einspritzmengen bei einer brennkraftmaschine
EP0534813A1 (de) * 1991-09-27 1993-03-31 Automobiles Peugeot Verfahren zur Korrektur von Steuerparametern einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE10257686A1 (de) * 2002-12-10 2004-07-15 Siemens Ag Verfahren zum Anpassen der Charakteristik eines Einspritzventils
DE102004053347A1 (de) * 2003-11-05 2005-08-04 Denso Corp., Kariya Einspritzsteuersystem für eine Brennkraftmaschine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4319677C2 (de) * 1993-06-14 2002-08-01 Bosch Gmbh Robert Verfahren und Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine
DE19809173A1 (de) * 1998-03-04 1999-09-09 Bosch Gmbh Robert Verfahren und Vorrichtung zum Steuern der Kraftstoffeinspritzung
DE19945618B4 (de) * 1999-09-23 2017-06-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Kraftstoffzumeßsystems einer Brennkraftmaschine
US6705294B2 (en) * 2001-09-04 2004-03-16 Caterpiller Inc Adaptive control of fuel quantity limiting maps in an electronically controlled engine
US6732577B2 (en) * 2001-09-04 2004-05-11 Caterpillar Inc Method of determining fuel injector performance in-chassis and electronic control module using the same
US6892569B2 (en) * 2001-12-20 2005-05-17 Caterpillar Inc. In-chassis engine compression release brake diagnostic test and electronic control module using the same
US6748928B2 (en) * 2002-04-26 2004-06-15 Caterpillar Inc In-chassis determination of fuel injector performance
DE10252988B3 (de) * 2002-11-14 2004-06-09 Siemens Ag Verfahren zur Ermittlung der Einspritzmenge einer Brennkraftmaschine
DE10254477B3 (de) * 2002-11-21 2004-06-24 Siemens Ag Prüfverfahren für einen Abgaskatalysator und eine entsprechende Prüfeinrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4138765A1 (de) * 1991-01-10 1992-07-16 Bosch Gmbh Robert Verfahren und vorrichtung zum bestimmen eines laufunruhewertes einer brennkraftmaschine
DE4122139A1 (de) * 1991-07-04 1993-01-07 Bosch Gmbh Robert Verfahren zur zylindergleichstellung bezueglich der kraftstoff-einspritzmengen bei einer brennkraftmaschine
EP0534813A1 (de) * 1991-09-27 1993-03-31 Automobiles Peugeot Verfahren zur Korrektur von Steuerparametern einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE10257686A1 (de) * 2002-12-10 2004-07-15 Siemens Ag Verfahren zum Anpassen der Charakteristik eines Einspritzventils
DE102004053347A1 (de) * 2003-11-05 2005-08-04 Denso Corp., Kariya Einspritzsteuersystem für eine Brennkraftmaschine

Also Published As

Publication number Publication date
EP1818528A3 (de) 2010-11-17
DE102006006303B3 (de) 2007-06-28
US7333886B2 (en) 2008-02-19
US20070192019A1 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
DE102006006303B3 (de) Verfahren zur Abschätzung einer eingespritzten Kraftstoffmenge
DE102007037629B4 (de) Verfahren und System zum Schätzen des Luftdrucks in einem Hybridfahrzeug
DE102007028900A1 (de) Verfahren und Vorrichtung zur Diagnose eines mit einer Kraftstoffverteilerleiste in Verbindung stehenden Einspritzventils einer Brennkraftmaschine
DE102013220589B3 (de) Verfahren zum Betrieb einer Brennkraftmaschine sowie Einrichtung zum Steuern und Regeln einer Brennkraftmaschine, Einspritzsystem und Brennkraftmaschine
DE102014107151B4 (de) Verfahren und Vorrichtung zur Fehlzündung-Erfassung eines Motors
WO2008064659A2 (de) Verfahren und vorrichtung zur steuerung der betriebsweise einer brennkraftmaschine
DE102012218176A1 (de) Verfahren zum Betreiben eines Kraftstoffeinspritzsystems
DE102016200190A1 (de) Verfahren und Funktionsüberwachungsvorrichtung zur Funktionsüberwachung einer Vorrichtung zur variablen Einstellung einer Zylinderverdichtung bei einem Hubkolben-Verbrennungsmotor
EP2796690A1 (de) Steuerung für ein Common-Rail-Einspritzsystem
DE102005056519A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
EP2071165A2 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
EP1963652A1 (de) Verfahren zur dosierung von kraftstoff in brennräume eines verbrennungsmotors
EP3143270A1 (de) Verfahren und vorrichtung zur kalibrierung von nacheinspritzungen einer brennkraftmaschine
DE102019213092A1 (de) Verfahren zur Diagnostik von Verbrennungsaussetzern einer Verbrennungskraftmaschine
DE102009007365A1 (de) Fehleranalyseverfahren und Fehleranalysevorrichtung für einen Verbrennungsmotor
DE10227466B4 (de) Verfahren zum Bestimmen der Zylinderbeladung bei einer Brennkraftmaschine
DE102007015654B4 (de) Verfahren und Vorrichtung zum Abgleichen eines Einspritzsystems einer Brennkraftmaschine
EP2699783B1 (de) Verfahren und vorrichtung zur kalibrierung eines kraftstoffzumesssystems eines kraftfahrzeugs
EP2019195B1 (de) Verfahren zur Bestimmung der eingespritzten Kraftstoffmenge
DE102012105131B4 (de) System und Verfahren zum Steuern der Kraftstoffeinspritzung
DE102013221229B4 (de) Verfahren zur Ermittlung von mindestens einem tatsächlichen Einspritzparameter mindestens eines Injektors einer Brennkraftmaschine und Brennkraftmaschine
DE102016214286A1 (de) Verfahren zur Nullmengenkalibrierung von mittels Injektoren zugemessenem Kraftstoff in einer Brennkraftmaschine
DE102011086613A1 (de) Verfahren zum Betrieb einer Brennkraftmaschine
DE102008008383B4 (de) Verfahren zur Zylindergleichstellung von Zylindern einer Brennkraftmaschine
DE102012222101A1 (de) Verfahren zur Steuerung einer Verbrennungskraftmaschine mit Direkteinspritzung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/22 20060101ALN20070608BHEP

Ipc: F02D 41/12 20060101ALN20070608BHEP

Ipc: F02D 41/14 20060101ALI20101008BHEP

Ipc: F02D 41/24 20060101ALI20101008BHEP

Ipc: F02D 41/36 20060101AFI20070608BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20110207