EP1814651A2 - Verfahren und vorrichtung zur herstellung feinteiliger flüssig-flüssig formulierungen sowie verwendungen dergestalter flüssig-flüssig formulierungen - Google Patents

Verfahren und vorrichtung zur herstellung feinteiliger flüssig-flüssig formulierungen sowie verwendungen dergestalter flüssig-flüssig formulierungen

Info

Publication number
EP1814651A2
EP1814651A2 EP05806385A EP05806385A EP1814651A2 EP 1814651 A2 EP1814651 A2 EP 1814651A2 EP 05806385 A EP05806385 A EP 05806385A EP 05806385 A EP05806385 A EP 05806385A EP 1814651 A2 EP1814651 A2 EP 1814651A2
Authority
EP
European Patent Office
Prior art keywords
liquid
diaphragm
finely divided
static mixer
baffle plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05806385A
Other languages
English (en)
French (fr)
Other versions
EP1814651B1 (de
Inventor
Thomas Danner
Rainer Dyllick-Brenzinger
Markus Schmid
Andreas Bauder
Wolfgang Kanther
Chrys FECHTENKÖTTER
Andreas Brockmeyer
Matthias HÖNE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35539579&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1814651(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Publication of EP1814651A2 publication Critical patent/EP1814651A2/de
Application granted granted Critical
Publication of EP1814651B1 publication Critical patent/EP1814651B1/de
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/16Sizing or water-repelling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/4105Methods of emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/414Emulsifying characterised by the internal structure of the emulsion
    • B01F23/4143Microemulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/414Emulsifying characterised by the internal structure of the emulsion
    • B01F23/4145Emulsions of oils, e.g. fuel, and water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/06Mixing of food ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/21Mixing of ingredients for cosmetic or perfume compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/22Mixing of ingredients for pharmaceutical or medical compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/47Mixing of ingredients for making paper pulp, e.g. wood fibres or wood pulp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/14Carboxylic acids; Derivatives thereof
    • D21H17/15Polycarboxylic acids, e.g. maleic acid
    • D21H17/16Addition products thereof with hydrocarbons
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/17Ketenes, e.g. ketene dimers

Definitions

  • the invention relates to a process for the preparation of finely divided liquid-liquid formulations and to an apparatus for producing the same.
  • Liquid-liquid formulations within the meaning of the invention are all biphasic and multiphase systems, such as dispersions and emulsions.
  • water-in-water (W / O) emulsions are also suitable.
  • Multiphase systems, so-called multiple emulsions are, for example, oil-in-water-in-oil (O / W / O) emulsions and water-in-oil-in (W / O / W) water emulsions.
  • EP 1 008 380 B1 describes a process for mixing or dispersing liquids with a special mixing device. This consists of one or more inlet nozzles, a turbulence chamber and one or more outlet nozzles, wherein the nozzles are arranged axially to each other and the inlet nozzle (s) has a smaller bore diameter than the outlet nozzle (s).
  • Emulsions prepared in this way are important, for example, in the pharmaceutical, food and cosmetics industries but also in other industries such as paper, textile and leather as well as in the building materials industry.
  • the present invention therefore an object of the invention to provide an alternative method for producing finely divided liquid-liquid formulations.
  • the object was achieved by a method for producing finely divided liquid-liquid formulations with a mixing device, the a) consists of a diaphragm with at least one inlet nozzle and a diaphragm with at least one outlet nozzle, wherein a static mixer is located in the intermediate space between the diaphragms and if appropriate additional mechanical energy input takes place or
  • b) consists of a diaphragm with at least one inlet nozzle and a baffle plate, which is where appropriate in the space between the diaphragm and the baffle plate a static mixer and / or mechanical Energy Electronbrin ⁇ supply.
  • the present invention is also an apparatus for producing finely divided liquid-liquid formulations, the
  • a) consists of a diaphragm with at least one inlet nozzle and a diaphragm with at least one outlet nozzle, wherein in the space between the
  • Blenden is a static mixer and, where appropriate, additional mechanical energy input takes place or
  • b) consists of a diaphragm with at least one inlet nozzle and a baffle plate, which is where appropriate in the space between the diaphragm and the baffle plate a static mixer and / or mechanical Energy Electronbrin ⁇ supply.
  • liquid-liquid formulations can be prepared by the process according to the invention. As already described, it is liquid-liquid
  • Formulations within the meaning of the present invention to all two- and multi-phase systems such as dispersions and emulsions.
  • water-in-water (W / W) emulsions are also suitable.
  • Multiphase systems so-called multiple emulsions, are, for example, oil-in-water-in-oil (O / W / O) emulsions and water-in-oil-in-water (W / O / W) emulsions.
  • the liquid-liquid formulations may also contain solid and gaseous components.
  • particle size is to be understood in the following, the size of the liquid droplets emulsified in the continuous phase.
  • the process according to the invention produces a finely divided emulsion from a crude emulsion in which a mixing device as described above is used.
  • the process is based on a crude emulsion, which is preferably produced in a stirred tank.
  • a crude emulsion is an emulsion in which the constituents of the emulsion have undergone a first thorough mixing.
  • a fine emulsion or finely divided emulsion in the sense of the present invention is understood as meaning an emulsion whose particle size distribution ranges from 20 nm to 100 .mu.m, preferably from 50 nm to 50 .mu.m and more preferably from 100 nm is up to 20 microns.
  • the particles may be laser diffracted (e.g., Malvern Mastersizer 2000 or Beckman Coulter LS 13320) and / or dynamic light scattering, e.g. be measured by means of photon correlation spectroscopy.
  • the mixing device for producing the finely divided emulsion consists either of a diaphragm with at least one inlet nozzle and a diaphragm with at least one outlet nozzle, wherein the nozzles are arranged axially to one another.
  • a static mixer In the space between the panels is a static mixer.
  • the diaphragms employable by the method according to the invention have at least one opening, i. at least one nozzle.
  • the two diaphragms can each have any desired number of openings, but preferably not more than 5 openings each, more preferably no more than three openings each, very particularly preferably no more than two openings each and particularly preferably no more than one each Opening.
  • Both diaphragms can have a different or the same number of openings, preferably both diaphragms have the same number of openings.
  • the apertures are perforated plates with at least one opening each.
  • the second orifice is replaced by a sieve, i. the second diaphragm has a multiplicity of openings or nozzles.
  • the sieves which can be used can span a large range of pore sizes, as a rule the pore sizes are between 0.1 and 250 ⁇ m, preferably between 0.2 and 200 ⁇ m, more preferably between 0.3 and 150 ⁇ m, and in particular between 0.5 and 100 microns. With a sieve whose pore size is 60 .mu.m, particle sizes of the finely divided emulsion of up to 200 nm can be produced, depending on the further experimental conditions.
  • the openings or nozzles can have any conceivable geometric shape; they can be, for example, circular, oval, angular with any number of corners, which may optionally also be rounded, or else star-shaped. Preferably, the openings have a circular shape.
  • the openings have in the rule a diameter of 0.05 mm to 1 cm, preferably from 0.08 mm to 0.8 mm, particularly preferably from 0.1 to 0.5 mm and in particular from 0.2 up to 0.4 mm.
  • the two panels are preferably constructed so that the openings or nozzles are arranged axially to each other.
  • the term "axial arrangement" is to be understood as meaning that the flow direction generated by the geometry of the nozzle opening is identical for two diaphragms.
  • the opening directions of the inlet and outlet nozzles do not have to lie on a line, they can also be displaced in parallel, as can be seen from the above explanations.
  • the panels are aligned in parallel.
  • the thickness of the panels can be arbitrary.
  • the apertures preferably have a thickness in the range from 0.1 to 100 mm, preferably from 0.5 to 30 mm and particularly preferably from 1 to 10 mm.
  • the thickness (I) of the diaphragms is selected such that the quotient of diameter (d) of the openings and thickness (I) is in the range of 1: 1, preferably 1: 1, 5 and particularly preferably 1: 2.
  • the gap between the two panels can be of any desired length, as a rule the length of the intermediate space is 1 to 500 mm, preferably 10 to 300 mm and particularly preferably 20 to 100 mm.
  • a static mixer In the space between the diaphragms is a static mixer according to the invention, which can fill the route between the two panels completely or partially.
  • the static mixer preferably extends over the entire length of the intermediate space between the two diaphragms.
  • Static mixers are known in the art. It may be, for example, a valve mixer or a static mixer with holes, one of corrugated fins or intermeshing webs. Furthermore, it may be a static mixer in helical form or in N-form or such with heatable or coolable Misch ⁇ elements
  • the properties of emulsions such as stability and theological behavior are particularly influenced by the particle size distribution in the emulsion.
  • the stability of, for example, two-phase emulsions increases with narrowing particle size distribution.
  • Particular attention in the production of emulsions is accordingly on the particle size distribution and consequently on the average particle size diameter.
  • the incorporation of a static mixer into the intermediate space between the two diaphragms considerably improves the stability of the particles of the finely divided emulsion obtained.
  • a mechanical energy input can still take place in the intermediate space between the two diaphragms.
  • the energy can be introduced for example in the form of mechanical vibrations, ultrasound or Rotations ⁇ energy.
  • a turbulent flow is generated, which has the effect that the particles do not agglomerate in the intermediate space.
  • the mixing device may consist of a diaphragm with at least one inlet nozzle and a baffle plate, wherein optionally a static mixer is located in the intermediate space between the diaphragm and the baffle plate.
  • a static mixer is located in the intermediate space between the diaphragm and the baffle plate.
  • a mechanical energy input can take place in the intermediate space.
  • the second panel is replaced by a baffle plate.
  • the baffle plate usually has a diameter which is 0.5 to 20%, preferably 1 to 10% smaller than the pipe diameter at the point at which the baffle plate is installed.
  • the baffle plate can have any geometric shape, preferably in the form of a round disc, so that an annular gap can be seen in frontal supervision.
  • the shape of a slit or a channel is also conceivable, for example.
  • the finely divided emulsions obtained according to this variant generally have mean particle size diameters of about 150 nm.
  • the baffle plate can be mounted at different distances to the first panel analogous to the second panel in the variant described above.
  • the space between the diaphragm and the baffle plate is arbitrarily long, as a rule the length of the intermediate space is 1 to 500 mm, preferably 10 to 300 mm and particularly preferably 20 to 100 mm.
  • particle size distributions of from 20 nm to 100 ⁇ m, preferably from 50 nm to 50 ⁇ m and particularly preferably from 100 nm to 20 ⁇ m, are obtainable by the process according to the invention, irrespective of the variant chosen.
  • the particles can be detected by laser light diffraction (eg Malvern Mastersizer 2000 or Beckmann Coulter LS 13320) and / or the dynamic see light scattering, for example measured by means of photon correlation spectroscopy.
  • the process according to the invention has several advantages over the processes known from the prior art, since particularly finely divided emulsions are obtained, which exhibit excellent stability.
  • the emulsions must pass through the homogenizing unit several times, so that a particularly finely divided dispersion is obtained.
  • the crude emulsion passes through the homogenizing unit only once. In this way, emulsions are obtained which are particularly finely divided and have the desired particle size.
  • the temperature at which the emulsification of the crude emulsion to finely divided emulsion by the process according to the invention is, as a rule, -50 to 350 0 C, preferably, 0 to 300 0 C 1, more preferably 20 to 200 0 C and most preferably be ⁇ preferred 50 to 150 0 C. in this case, all in the homogenization device used siersburgen be temperature.
  • the homogenization or emulsification is usually carried out at pressures above atmospheric pressure, i. > 1 bar performed. However, the pressures do not exceed a value of 10,000 bar, so that preferably homogenization pressures of> 1 bar to 10,000 bar, preferably 5 to 2,000 bar and particularly preferably from 10 to 1500 bar are set
  • the finely divided liquid-liquid formulations obtained by the process according to the invention have viscosities of from 0.01 mPas to 100,000 mPas, preferably from 0.1 mPas to 10,000 mPas, measured using a Brookfield viscometer at a temperature of 20 ° C.
  • the liquid-liquid formulations contain disperse phase proportions of from 0.1 to 95% by weight, based on the total weight of the formulation.
  • the present process is generally suitable for a wide variety of industrially relevant emulsions.
  • These are typically biphasic emulsions, such as oil-in-water emulsions, in which oils, organic and inorganic melts are dispersed in aqueous solution.
  • water-in-oil emulsions are widely used, above all in the pharmaceutical, foodstuffs and cosmetics industries, but also in other industries, for example in the paper, textile and leather, building materials, crop protection or photographic industries. Therefore, no restriction on the emulsion should be made at this point.
  • the emulsion may also contain different components, in particular surface-stabilizing compounds such as emulsifiers, surfactants and / or protective colloids. These are known to the person skilled in the art.
  • the further components in particular the surface-active compounds, can be added to the liquid-liquid formulations, in particular emulsions, at any time and then to any desired location.
  • such components can at least partially also be metered into the intermediate space.
  • the method according to the invention can before the aperture with the inlet nozzle and after the aperture with the outlet nozzle further mixing elements, for. As filters, membranes, etc. are located.
  • the mixing device according to the invention can also be repeatedly lined up, so that several intermediate spaces according to the invention result.
  • the present invention likewise relates to the device for producing the finely divided liquid-liquid formulations.
  • the device is not localized due to their practical handling. That the emulsification of the components can also be carried out directly at their place of use (so-called on-site emulsification). This is particularly advantageous if, over long distances, an emulsion with a high liquid content (for example water) has to be transported. In this case, for example, the component to be emulsified can also be transported as a solid and emulsified directly on site. This will be explained in more detail below using an example case.
  • a high liquid content for example water
  • aqueous reactive size dispersions have only a relatively low solids content (about 25% by weight), which is why it is necessary to transport large quantities of water to the end user.
  • Such reactive sizes are selected for example from the group of C 14 - to C 22 alkyldiketenes (AKD, Alkenyldiketene), the C 2 - to C 30 -
  • Alkyl succinic anhydrides ASA
  • Ci 2 - to C 30 -Alkenylbernsteinklaanhydride or mixtures of the compounds mentioned.
  • fatty alkyldiketenes are tetradecyldiketene, oleyldiketen, palmityldiketen, stearyldiketen and Behenyldiketen.
  • diketenes with different alkyl groups for example stearyl palmityl diketene, behenylstearyldiketene, behenylenyldiketene or palmitylbehenyldike.
  • stearyl diketene Preferably used on stearyl diketene, palmityldiketen, behenyldiketen and Mixtures of these diketenes, as well as stearyl palmitate diketene, behenyl stearyl diketene and palmityl behenyl diketene.
  • succinic anhydrides substituted by long-chain alkyl or alkenyl groups as engine sizing agents for paper is also known (EP 0 609 879 A, EP 0 593 075 A, US 3,102,064).
  • Alkenylsuccinic anhydrides contain in the alkenyl group an alkylene radical having at least 6 C atoms, preferably a Cu to C 24 - ⁇ -olefin radical.
  • substituted succinic anhydrides are decenylsuccinic anhydride, octenylsuccinic anhydride, dodecenylsuccinic anhydride and n-hexadecenylsuccinic anhydride.
  • the substituted succinic anhydrides which are suitable as sizing agents for paper are preferably emulsified with cationic starch as protective colloid in water.
  • Aqueous, anionically adjusted dispersions of reactive sizes preferably based on AKD
  • the anionic dispersants are, for example, condensation products
  • the anionic dispersants may be present in the form of the free acids, the alkali, alkaline earth and / or ammonium salts.
  • the ammonium salts can be derived both in the form of ammonia and from primary, secondary and tertiary amines, for example the ammonium salts of dimethylamine, trimethylamine, hexylamine, cyclohexylamine, dicyclohexylamine, ethanolamine, diethanolamine and triethanolamine are suitable.
  • the condensation products described above are known and commercially available. They are prepared by condensing the constituents mentioned, it being possible to use the corresponding alkali metal, alkaline earth metal and / or ammonium salts instead of the free acids.
  • Suitable catalysts for the condensation are, for example, acids such as sulfuric acid, p-toluenesulfonic acid and phosphoric acid.
  • Naphthalenesulfonic acid or its alkali metal salts are condensed with formaldehyde preferably in a molar ratio of 1: 0.1 to 1: 2 and usually in a molar ratio of 1: 0.5 to 1: 1.
  • the molar ratio for the condensation of phenol, phenol sulfonic acid and formaldehyde is also in the range indicated above, any mixtures of phenol and phenolsulfonic acid instead of naphthalenesulfonic acid with formaldehyde is used.
  • phenolsulfonic acid it is also possible to use the alkali metal and ammonium salts of phenolsulfonic acid.
  • condensation of the abovementioned starting materials may additionally be carried out in the presence of urea.
  • the condensation products mentioned generally have molar masses in the range of 800 to 100,000 g / mol, preferably 1,000 to 30,000 g / mol and in particular 4,000 to 25,000 g / mol.
  • the anionic dispersants used are preferably salts which are obtained, for example, by neutralization of the condensation products with alkali metal hydroxides, such as sodium hydroxide or potassium hydroxide, or with ammonia.
  • ethoxylated fatty acids having carbon chains between 10 and 20 carbon atoms and 3 to 30 EO groups.
  • lignosulfonic acid and its salts such as sodium lignosulfonate, potassium or calcium lignosulfonate.
  • a solution of the anionic dispersant is initially introduced, a reactive sizing agent based on AKD is melted, emulsified into a crude emulsion and emulsified on site in the device according to the invention to give a fine-colored emulsion.
  • the particular advantage of the process according to the invention in the production of AKD emulsions is that the crude emulsion only has to pass through the homogenizing unit once in order to be processed into a finely divided emulsion. This is particularly important in the case of emulsions of reactive substances such as AKD, since in this case the AKD can not be abreacted before it is used as a sizing agent.
  • Emulsion As a liquid-liquid formulation is a soybean oil-in-water were used Emulsion (Disperspha- phase fraction 30 wt .-%), which BASF Aktiengesellschaft was added as an emulsifier with 3 wt .-%, based on the total emulsion, Lutensol ® TO 10th
  • This emulsion was homogenized according to various variants of the method according to the invention. As a comparative example, the emulsion was also homogenized according to EP 1 008 380 B1.
  • FIG. 1 shows the Sauter diameter of the particle size distribution of various liquid-liquid formulations produced by the process according to the invention Dependence on pressure loss.
  • the Sauter diameter is a mean diameter which has the same volume-to-surface ratio as the droplet collector under consideration.
  • the resulting miniemulsion after passage had an average droplet size of 202 nm (median value of a measurement with a High Performance Particle Sizer from Malvern) and after the second passage an average droplet size of 171 nm.
  • the miniemulsion was storage-stable for several days ,
  • the resulting miniemulsion had an average droplet size after the first passage of 133 nm and after the second passage of 104 nm (median value of a measurement with Coulter 230LS, Beckmann).
  • an automated plant consisting of a melting vessel (1) (300 L) with mechanical stirrer and electrically heated jacket, a melt metering pump (2), a pump (3) and heater (4) for demineralized water, a metering pump (5) for aids such as Emulsifiers, protective colloids, dissolved polymers or polymer dispersions, an eccentric screw pump (6), a high-pressure pump (7) with a downstream perforated diaphragm, a pumped circulation circuit (8), a plate heat exchanger (9) for cooling and a dispersion storage tank (10)
  • Example 4.1 Anionically charged AKD dispersion
  • the mean particle size distribution was 0.9 ⁇ m (dynamic light scattering, Coulter LS 130).
  • the electrophoretic mobility at pH 8 was +3.0 ( ⁇ m / s) / (V / cm), the zeta potential of the AKD particles was 38.4 mV (pH 8).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Colloid Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Paper (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Disintegrating Or Milling (AREA)

Description

Verfahren zur Herstellung feinteiliger flüssig-flüssig Formulierungen und Vorrichtung zur Herstellung feinteiliger flüssig-flüssig Formulierungen
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung feinteiliger flüssig-flüssig Formulie¬ rungen sowie eine Vorrichtung zur Herstellung derselben.
Flüssig-flüssig Formulierungen im Sinne der Erfindung sind alle zwei- und mehrphasi- gen Systeme wie Dispersionen und Emulsionen. Neben den bekannten Öl-in-Wasser- (OΛ/V) sowie Wasser-in-ÖI- (W/O) Emulsionen kommen auch Wasser-in-Wasser- (W/W) Emulsionen in Frage. Mehrphasige Systeme, sog. multiple Emulsionen, sind beispielsweise Öl-in-Wasser-in-ÖI- (O/W/O) Emulsionen sowie Wasser-in-ÖI-in- (W/O/W) Wasser-Emulsionen.
In der Literatur sind zahlreiche Systeme zum Mischen und Dispergieren von Flüssigkei¬ ten bekannt. Prinzipiell unterscheidet man zwischen Rotor-Stator-Maschinen, Hochdruckhomogenisatoren, Ultraschallhomogenisatoren und Membranemulgierver¬ fahren. Diese konventionellen Emulgierverfahren beruhen auf einer Tröpfchengrößen- Zerkleinerung.
Aus der DE 195 42 499 A1 ist ein Verfahren und eine Vorrichtung zur Herstellung einer parenteralen Arzneistoffzubereitung bekannt. Diese Arzneistoffzubereitung wird durch eine Dispersion erhalten, welche durch eine Homogenisierdüse gepumpt wird.
EP 1 008 380 B1 beschreibt ein Verfahren zum Mischen oder Dispergieren von Flüs¬ sigkeiten mit einer speziellen Mischvorrichtung. Diese besteht aus ein oder mehreren Eintrittsdüsen, einer Turbulenzkammer und einer oder mehrerer Austrittsdüsen, wobei die Düsen axial zueinander angeordnet sind und die Eintrittsdüse(n) einen kleineren Bohrungsdurchmesser aufweist als die Austrittsdüse(n).
Es besteht ein kontinuierlicher Bedarf an weiterentwickelten und neuen Methoden auf dem Gebiet der Emulgiertechnik, um möglichst feinteilige flüssig-flüssig Formulierun¬ gen herzustellen. Derartig hergestellte Emulsionen sind beispielsweise in der Pharma-, Lebensmittel- und Kosmetikindustrie aber auch in anderen Industriezweigen wie bei¬ spielsweise der Papier-, Textil- und Leder sowie der Baustoffindustrie von Bedeutung.
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, ein alternatives Verfahren zur Herstellung feinteiliger flüssig-flüssig Formulierungen bereitzustellen.
Die Aufgabe wurde gelöst durch ein Verfahren zur Herstellung feinteiliger flüssig-flüssig Formulierungen mit einer Mischvorrichtung, die a) aus einer Blende mit wenigstens einer Eintrittsdüse und einer Blende mit wenigs¬ tens einer Austrittsdüse besteht, wobei sich im Zwischenraum zwischen den Blenden ein statischer Mischer befindet und gegebenenfalls zusätzlich mechani¬ sche Energieeinbringung erfolgt oder
b) aus einer Blende mit wenigstens einer Eintrittsdüse und einer Prallplatte besteht, wobei sich im Zwischenraum zwischen der Blende und der Prallplatte gegebe¬ nenfalls ein statischer Mischer befindet und/oder mechanische Energieeinbrin¬ gung erfolgt.
Gegenstand der vorliegenden Erfindung ist ebenfalls eine Vorrichtung zur Herstellung feinteiliger flüssig-flüssig Formulierungen, die
a) aus einer Blende mit wenigstens einer Eintrittsdüse und einer Blende mit wenigs- tens einer Austrittsdüse besteht, wobei sich im Zwischenraum zwischen den
Blenden ein statischer Mischer befindet und gegebenenfalls zusätzlich mechani¬ sche Energieeinbringung erfolgt oder
b) aus einer Blende mit wenigstens einer Eintrittsdüse und einer Prallplatte besteht, wobei sich im Zwischenraum zwischen der Blende und der Prallplatte gegebe¬ nenfalls ein statischer Mischer befindet und/oder mechanische Energieeinbrin¬ gung erfolgt.
Nach dem erfindungsgemäßen Verfahren können jegliche flüssig-flüssig Formulierun- gen hergestellt werden. Wie bereits beschrieben handelt es sich bei flüssig-flüssig
Formulierungen im Sinne der vorliegenden Erfindung um alle zwei- und mehrphasigen Systeme wie Dispersionen und Emulsionen. Neben den bekannten Öl-in-Wasser- (O/W) sowie Wasser-in-ÖI- (W/O) Emulsionen kommen auch Wasser-in-Wasser- (W/W) Emulsionen in Frage. Mehrphasige Systeme, sog. multiple Emulsionen, sind beispielsweise Öl-in-Wasser-in-ÖI- (O/W/O) Emulsionen sowie Wasser-in-ÖI-in- Wasser- (W/O/W) Emulsionen. Natürlich können die flüssig-flüssig Formulierungen auch feste und gasförmige Bestandteile enthalten.
Im folgenden wird das erfindungsgemäße Verfahren beispielhaft an der Herstellung von Emulsionen beschrieben, wodurch die Erfindung jedoch nicht auf Emulsionen be¬ schränkt werden soll.
Unter dem Begriff Partikelgröße soll im folgenden die Größe der in der kontinuierlichen Phase emulgierten Flüssigkeitstropfen verstanden werden.
Nach dem erfindungsgemäßen Verfahren wird aus einer Rohemulsion eine feinteilige Emulsion erzeugt, in dem eine Mischvorrichtung wie oben beschrieben verwendet wird. Das Verfahren geht von einer Rohemulsion aus, die bevorzugt in einem Rührkessel erzeugt wird. Als Rohemulsion wird eine Emulsion bezeichnet, in der die Bestandteile der Emulsion eine erste grobe Durchmischung erfahren haben.
Demgegenüber wird als Feinemulsion oder feinteilige Emulsion im Sinne der vorlie¬ genden Erfindung eine Emulsion verstanden, deren Partikelgrößenverteilung im Be¬ reich von 20 nm bis 100 μm, bevorzugt im Bereich von 50 nm bis 50 μm und beson¬ ders bevorzugt im Bereich von 100 nm bis 20 μm liegt. Die Partikel können mittels La¬ serlichtbeugung (z.B. Malvern Mastersizer 2000 oder Beckmann-Coulter LS 13320) und/oder der dynamischen Lichtstreuung, z.B. mittels Photonenkorrelationsspektro¬ skopie gemessen werden.
Die Mischvorrichtung zur Herstellung der feinteiligen Emulsion besteht entweder aus einer Blende mit wenigstens einer Eintrittsdüse und einer Blende mit wenigstens einer Austrittsdüse, wobei die Düsen axial zueinander angeordnet sind. Im Zwischenraum zwischen den Blenden befindet sich ein statischer Mischer. Gegebenenfalls erfolgt zusätzlich eine mechanische Energieeinbringung.
Die nach dem erfindungsgemäßen Verfahren einsetzbaren Blenden weisen wenigstens eine Öffnung, d.h. wenigstens eine Düse auf. Dabei können die beiden Blenden jeweils eine beliebige Anzahl an Öffnungen aufweisen, bevorzugt jedoch nicht mehr als jeweils 5 Öffnungen, besonders bevorzugt nicht mehr als jeweils drei Öffnungen, ganz beson¬ ders bevorzugt nicht mehr als jeweils zwei Öffnungen und insbesondere bevorzugt nicht mehr als jeweils eine Öffnung. Beide Blenden können eine unterschiedliche oder die selbe Anzahl an Öffnungen aufweisen, bevorzugt haben beide Blenden die selbe Anzahl an Öffnungen. Im allgemeinen handelt es sich bei den Blenden um perforierte Platten mit mindestens je einer Öffnung.
In einer anderen Ausführungsform dieses erfindungsgemäßen Verfahrens ist die zwei- te Blende durch ein Sieb ersetzt, d.h. die zweite Blende hat eine Vielzahl von Öffnun¬ gen bzw. Düsen. Die einsetzbaren Siebe können einen großen Bereich an Porengrö¬ ßen überspannen, in der Regel liegen die Porengrößen zwischen 0,1 und 250 μm, be¬ vorzugt zwischen 0,2 und 200 μm, besonders bevorzugt zwischen 0,3 und 150 μm und insbesondere zwischen 0,5 und 100 μm. Mit einem Sieb, dessen Porengröße bei 60 μm liegt, lassen sich je nach den weiteren Versuchsbedingungen Partikelgrößen der feinteiligen Emulsion von bis zu 200 nm erzeugen.
Die Öffnungen bzw. Düsen können jede denkbare geometrische Form haben, sie kön¬ nen beispielsweise kreisrund, oval, eckig mit beliebige vielen Ecken, die gegebenen- falls auch abgerundet sein können, oder auch sternförmig sein. Bevorzugt haben die Öffnungen eine kreisrunde Form. Die Öffnungen haben in der Regeln einen Durchmesser von 0,05 mm bis 1 cm, bevor¬ zugt von 0,08 mm bis 0,8 mm, besonders bevorzugt von 0,1 bis 0,5 mm und insbeson¬ dere von 0,2 bis 0,4 mm.
Die beiden Blenden sind vorzugsweise so konstruiert, dass die Öffnungen bzw. Düsen axial zueinander angeordnet sind. Unter axialer Anordnung soll verstanden werden, dass die durch die Geometrie der Düsenöffnung erzeugte Strömungsrichtung bei bei¬ den Blenden identisch ist. Die Öffnungsrichtungen der Eintritts- und Austrittsdüse müs¬ sen dazu nicht auf einer Linie liegen, sie können auch parallel verschoben sein, wie aus den obigen Ausführungen hervorgeht. Vorzugsweise sind die Blenden parallel ausgerichtet.
Es sind jedoch andere Geometrien, insbesondere nicht parallele Blenden oder unter¬ schiedliche Öffnungsrichtungen der Ein- und Austrittsdüse möglich.
Die Dicke der Blenden kann beliebig sein. Bevorzugt haben die Blenden eine Dicke im Bereich von 0,1 bis 100 mm, bevorzugt von 0,5 bis 30mm und besonders bevorzugt von 1 bis 10 mm. Dabei ist die Dicke (I) der Blenden so gewählt, dass der Quotient aus Durchmesser (d) der Öffnungen und Dicke (I) im Bereich von 1 :1 , bevorzugt 1:1 ,5 und besonders bevorzugt 1 :2 beträgt.
Der Zwischenraum zwischen den beiden Blenden kann beliebig lang sein, in der Regel beträgt die Länge des Zwischenraums 1 bis 500 mm, bevorzugt 10 bis 300 mm und besonders bevorzugt 20 bis 100 mm.
Im Zwischenraum zwischen den Blenden befindet sich erfindungsgemäß ein statischer Mischer, der die Strecke zwischen den beiden Blenden ganz oder teilweise ausfüllen kann. Bevorzugt erstreckt sich der statische Mischer über die gesamte Länge des Zwi¬ schenraums zwischen den beiden Blenden. Statische Mischer sind dem Fachmann bekannt. Es kann sich dabei beispielsweise um einen Ventil-Mischer handeln oder um einen statischen Mischer mit Bohrungen, einen aus geriffelten Lamellen oder einen aus ineinandergreifenden Stegen. Weiterhin kann es sich um einen statischen Mischer in Wendel-Form oder in N-Form oder um einen solchen mit heiz- oder kühlbaren Misch¬ elementen handeln
Die Eigenschaften von Emulsionen wie Stabilität und Theologisches Verhalten werden in besonderem Maße von der Partikelgrößeverteilung in der Emulsion beeinflusst. So steigt die Stabilität von beispielsweise zweiphasigen Emulsionen mit enger werdender Partikelgrößeverteilung an. Besonderes Augenmerk bei der Erzeugung von Emulsio- nen liegt demnach auf der Partikelgrößeverteilung und daraus folgend auf dem mittle¬ ren Partikelgrößendurchmesser. Durch den Einbau eines statischen Mischers in den Zwischenraum zwischen den bei¬ den Blenden wird die Stabilität der Partikel der erhaltenen feinteiligen Emulsion erheb¬ lich verbessert.
Zusätzlich zu dem statischen Mischer kann in dem Zwischenraum zwischen den bei¬ den Blenden noch eine mechanische Energieeinbringung erfolgen. Die Energie kann beispielsweise in Form von mechanischen Schwingungen, Ultraschall oder Rotations¬ energie eingebracht werden. Dadurch wird eine turbulente Strömung erzeugt, die be¬ wirkt, dass die Partikel im Zwischenraum nicht agglomerieren.
Alternativ zu dieser ersten Variante kann die Mischvorrichtung aus einer Blende mit wenigstens einer Eintrittsdüse und einer Prallplatte bestehen, wobei sich im Zwischen¬ raum zwischen der Blende und der Prallplatte gegebenenfalls ein statischer Mischer befindet. Alternativ oder zusätzlich zu dem statischen Mischer kann in dem Zwischen- räum eine mechanische Energieeinbringung erfolgen.
Für die Blende mit Eintrittsdüse, dem Zwischenraum mit statischem Mischer und der mechanischen Energieeinbringung gilt das obengesagte.
In dieser Variante wird die zweite Blende durch eine Prallplatte ersetzt. Die Prallplatte hat in der Regel einen Durchmesser, der 0,5 bis 20 %, bevorzugt 1 bis 10 % kleiner ist als der Rohrdurchmesser an der Stelle, an der die Prallplatte eingebaut ist.
Generell kann die Prallplatte jede geometrische Form haben, bevorzugt in Form einer runden Scheibe, so dass in Frontalaufsicht ein Ringspalt zu sehen ist. Denkbar ist bei¬ spielsweise auch die Form eines Schlitzes oder eines Kanals.
Die nach dieser Variante erhaltenen feinteiligen Emulsionen weisen in der Regel mittle¬ re Partikelgrößendurchmesser von ca. 150 nm auf.
Die Prallplatte kann analog zur zweiten Blende bei der oben beschriebenen Variante in unterschiedlichen Abständen zur ersten Blende angebracht sein. Dadurch ist der Zwi¬ schenraum zwischen der Blende und der Prallplatte beliebig lang, in der Regel beträgt die Länge des Zwischenraums 1 bis 500 mm, bevorzugt 10 bis 300 mm und besonders bevorzugt 20 bis 100 mm.
Je nach den weiteren einstellbaren Versuchsbedingungen sind nach dem erfindungs¬ gemäßen Verfahren, unabhängig von der gewählten Variante, Partikelgrößenverteilun¬ gen von 20 nm bis 100 μm, bevorzugt von 50 nm bis 50 μm und besonders bevorzugt von 100 nm bis 20 μm erhältlich. Die Partikel können mittels Laserlichtbeugung (z.B. Malvern Mastersizer 2000 oder Beckmann-Coulter LS 13320) und/oder der dynami- sehen Lichtstreuung, z.B. mittels Photonenkorrelationsspektroskopie gemessen wer¬ den.
Das erfindungsgemäße Verfahren weist gegenüber denen aus dem Stand der Technik bekannten Verfahren einige Vorteile auf, da besonders feinteilige Emulsionen erhalten werden, die sich durch eine hervorragende Stabilität ausweisen.
Nach den bekannten Verfahren müssen die Emulsionen mehrmals die Homogenisier¬ einheit durchlaufen, damit eine besonders feinteilige Dispersion erhalten wird. Nach dem erfindungsgemäßen Verfahren ist es nun ausreichend, dass die Rohemulsion die Homogeniersiereinheit nur einmal passiert. Auf diesem Wege werden Emulsionen er¬ halten, die besonders feinteilig sind und die gewünschte Partikelgröße aufweisen.
Die Temperatur, bei der die Emulgierung der Rohemulsion zur feinteiligen Emulsion nach dem erfindungsgemäßen Verfahren erfolgt, beträgt in der Regel -50 bis 350 0C, bevorzugt, 0 bis 300 0C1 besonders bevorzugt 20 bis 200 0C und ganz besonders be¬ vorzugt 50 bis 150 0C. Dabei können alle in der Vorrichtung eingesetzten Homogeni¬ siereinheiten temperierbar sein.
Die Homogenisierung bzw. Emulgierung wird in der Regel bei Drücken oberhalb des Atmosphärendrucks, d.h. > 1 bar durchgeführt. Dabei übersteigen die Drücke jedoch nicht einen Wert von 10 000 bar, so dass bevorzugt Homogenisierdrücke von > 1 bar bis 10 000 bar, bevorzugt 5 bis 2 000 bar und besonders bevorzugt von 10 bis 1500 bar eingestellt werden
Die nach dem erfindungsgemäßen Verfahren erhaltenen feinteiligen flüssig-flüssig- Formulierungen weisen Viskositäten von 0,01 mPas bis 100 000 mPas, bevorzugt von 0,1 mPas bis 10 000 mPas auf, gemessen mit einem Brookfield-Viskosimeter bei einer Temperatur von 20 0C. Die flüssig-flüssig Formulierungen enthalten Dispersphasenan- teile von 0,1 bis 95 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung.
Das vorliegende Verfahren eignet sich generell für eine breite Vielfalt von industriell relevanten Emulsionen. Typischerweise sind dies zweiphasige Emulsionen wie Öl-in¬ Wasser-Emulsionen, bei denen Öle, organische und anorganische Schmelzen in wäss- riger Lösung dispergiert werden. Ebenfalls möglich sind Wasser-in-ÖI-Emulsionen. Wie bereits oben beschrieben finden Emulsionen jeglicher Art eine breite Anwendung, vor allem in der Pharma-, Lebensmittel- und Kosmetikindustrie aber auch in anderen In¬ dustriezweigen wie beispielsweise der Papier, Textil- und Leder-, Baustoffindustrie, Pflanzenschutz oder photographischer Industrie. Daher soll an dieser Stelle keine Ein- schränkung auf die Emulsion erfolgen. Neben den zwei Phasen kann die Emulsion auch noch unterschiedliche Komponenten enthalten, insbesondere grenzflächenstabilisierende Verbindungen wie Emulgatoren, Tenisde und/oder Schutzkolloide. Diese sind dem Fachmann bekannt.
Die weiteren Komponenten insbesondere die grenzflächenaktiven Verbindungen kön¬ nen die flüssig-flüssig Formulierungen, insbesondere Emulsionen zu einem beliebigen Zeitpunkt und dann einem beliebigen Ort zugesetzt werden. Insbesondere können der¬ artige Komponenten zumindest teilweise auch in den Zwischenraum zudosiert werden.
Bei dem erfindungsgemäßen Verfahren können sich vor der Blende mit der Eintrittsdü¬ se und nach der Blende mit der Austrittsdüse weitere Mischelemente, z. B. Filter, Membranen etc. befinden. Die erfindungsgemäße Mischvorrichtung kann auch wieder¬ holt aneinander gereiht werden, so dass sich mehrere erfindungsgemäße Zwischen¬ räume ergeben.
Gegenstand der vorliegenden Erfindung ist ebenfalls die Vorrichtung zur Herstellung der feinteiligen flüssig-flüssig Formulierungen.
Dabei ist es von besonderem Vorteil, dass die Vorrichtung aufgrund ihrer praktischen Handhabbarkeit nicht ortsgebunden ist. D.h. die Emulgierung der Komponenten kann auch direkt an ihrem Ort der Verwendung erfolgen (sog. on-site Emulgierung). Dies ist insbesondere dann von Vorteil, wenn über weite Strecken eine Emulsion mit hohem Flüssigkeitsanteil (z.B. Wasser) transportiert werden muss. In diesem Fall kann die zu emulgierende Komponente beispielsweise auch als Feststoff transportiert werden und erst unmittelbar vor Ort emulgiert werden. Dies wird im folgenden an einem Beispielfall näher erläutert.
In der Papierindustrie werden zahlreiche Additive in Form von Emulsionen oder Dis¬ persionen eingesetzt. Neben Retentions- und Fixiermitteln kommen auch Reaktivlei- mungsmittel zum Einsatz. Handelsübliche wässrige Reaktivleimungsmitteldispersionen haben nur einen relativ geringen Feststoffanteil (ca. 25 Gew.-%), weshalb man ge¬ zwungen ist, große Mengen Wasser zum Endverbraucher zu transportieren.
Derartige Reaktivleimungsmittel sind beispielsweise ausgewählt aus der Gruppe der C14- bis C22-Alkyldiketene (AKD, Alkenyldiketene), der Ci2- bis C30-
Alkylbernsteinsäureanhydride (ASA), der Ci2- bis C30-Alkenylbernsteinsäureanhydride oder Mischungen der genannten Verbindungen. Beispiele für Fettalkyldiketene sind Tetradecyldiketen, Oleyldiketen, Palmityldiketen, Stearyldiketen und Behenyldiketen. Geeignet sind ausserdem Diketene mit unterschiedlichen Alkylgruppen, z.b. Stearyl- palmityldiketen, Behenylstearyldiketen, Behenyloleyldiketen oder Palmitylbehenyldike- ten. Vorzugsweise verwendet an Stearyldiketen, Palmityldiketen, Behenyldiketen und Mischungen dieser Diketene, sowie Stearylpalmityldiketen, Behenylstearyldiketen und Palmitylbehenyldiketen.
Die Verwendung von Bernsteinsäureanhydriden, die mit langkettigen Alkyl- oder Alke- nylgruppen substituiert sind, als Masseleimungsmittel für Papier ist ebenfalls bekannt (EP 0 609 879 A, EP 0 593 075 A, US 3,102,064). Alkenylbemsteinsäureanhydride enthalten in der Alkenylgruppe einen Alkylenrest mit mindestens 6 C-Atomen, vor¬ zugsweise einen Cu- bis C24-α-Olefinrest. Beispiele für substituierte Bernsteinsäu¬ reanhydride sind Decenylbernsteinsäureanhydrid, Octenylbernsteinsäureanhydrid, Do- decenylbernsteinsäureanhydrid und n-Hexadecenylbernsteinsäureanhydrid. Die als Leimungsmittel für Papier in Betracht kommenden substituierten Bernsteinsäurean¬ hydride werden vorzugsweise mit kationischer Stärke als Schutzkolloid in Wasser e- mulgiert.
Nach dem erfindungsgemäßen Verfahren können nun wässrige, anionisch eingestellte Dispersionen von Reaktivleimungsmitteln, bevorzugt auf Basis von AKD, hergestellt werden. Als anionische Dispergiermittel kommen beispielsweise Kondensationsproduk¬ te aus
- Naphthalinsuifonsäure und Formaldehyd,
Phenol, Phenolsulfonsäure und Formaldehyd, Naphthalinsuifonsäure, Formaldehyd und Harnstoff, Phenol, Phenolsulfonsäure, Formaldehyd und Harnstoff
in Betracht. Die anionischen Dispergiermittel können sowohl in Form der freien Säuren, der Alkali-, Erdalkali- und/oder Ammoniumsalze vorliegen. Die Ammoniumsalze kön¬ nen sich sowohl in Form von Ammoniak als auch von primären, sekundären und tertiä¬ ren Aminen ableiten, z.B. eignen sich die Ammoniumsalze von Dimethylamin, Tri- methylamin, Hexylamin, Cyclohexylamin, Dicyclohexylamin, Ethanolamin, Diethanola- min und Triethanolamin. Die oben beschriebenen Kondensationsprodukte sind bekannt und im Handel erhältlich. Sie werden durch Kondensieren der genannten Bestandteile hergestellt, wobei man anstelle der freien Säuren auch die entsprechenden Alkali-, Erdalkali- und/oder Ammoniumsalze einsetzen kann. Als Katalysator bei der Konden¬ sation eignen sich beispielsweise Säuren wie Schwefelsäure, p-Toluolsulfonsäure und Phosphorsäure. Naphthalinsuifonsäure oder deren Alkalimetallsalze werden mit For¬ maldehyd vorzugsweise im Molverhältnis 1:0,1 bis 1 :2 und meistens im Molverhältnis 1 :0,5 bis 1 :1 kondensiert. Das Molverhältnis für die Kondensation von Phenol, Phenol¬ sulfonsäure und Formaldehyd liegt ebenfalls in dem oben angegebenen Bereich, wobei man beliebige Mischungen von Phenol und Phenolsulfonsäure anstelle von Naphtha- linsulfonsäure mit Formaldehyd einsetzt. Anstelle von Phenolsulfonsäure kann man auch die Alkalimetall- und Ammoniumsalze von Phenolsulfonsäure verwenden. Die Kondensation der oben angegebenen Ausgangsstoffe kann gegebenenfalls zusätzlich in Gegenwart von Harnstoff durchgeführt werden.
Die genannten Kondensationsprodukte haben in der Regel Molmassen in dem Bereich von 800 bis 100 000 g/mol, vorzugsweise 1 000 bis 30 000 g/mol und insbesondere 4 000 bis 25 000 g/mol. Vorzugsweise setzt man als anionische Dispergiermittel Salze ein, die man beispielsweise durch Neutralisation der Kondensationsprodukte mit Alka- limetallhydroxiden wie Natriumhydroxid oder Kaliuhydroxid oder mit Ammoniak erhält.
Weiter geeignet sind ethoxylierte Fettsäuren mit Kohlenstoffketten zwischen 10 und 20 C-Atomen und 3 bis 30 EO-Gruppen.
Weitere geeignete anionische Dispergiermittel sind Ligninsulfonsäure und deren Salze wie Natriumligninsulfonat , Kalium- oder Calciumligninsulfonat.
Nach dem erfindungsgemäßen Verfahren wird nun eine Lösung des anionischen Dispergiermittels vorgelegt, ein Reaktivleimungsmittel auf Basis von AKD aufge¬ schmolzen, zu einer Rohemulsion emulgiert und vor Ort in der erfindungsgemäßen Vorrichtung zu einer feinteligen Emulsion emulgiert.
Der besondere Vorteil des erfindungsgemäßen Verfahrens bei der Herstellung von AKD-Emulsionen ist, dass die Rohemulsion nur einmal die Homogenisiereinheit durch¬ laufen muss, um zu einer feinteiligen Emulsion verarbeitet zu werden. Dies ist insbe¬ sondere bei Emulsionen von reaktiven Substanzen wie AKD von Bedeutung, da in die- sem Falle das AKD nicht bereits vor seiner Verwendung als Leimungsmittel abreagie¬ ren kann.
Derartige Reaktivleimungsmittel werden in der Papierindustrie zur Herstellung von Pa¬ pier, Pappe und Karton eingesetzt.
Beispiel 1
Als flüssig-flüssig Formulierung wurden eine Sojaöl-in-Wasser Emulsion (Disperspha- senanteil 30 Gew.-%) verwendet, die mit 3 Gew.-%, bezogen auf die Gesamtemulsion, Lutensol® TO 10 der BASF Aktiengesellschaft als Emulgator versetzt wurde.
Diese Emulsion wurde nach verschiedenen Varianten des erfindungsgemäßen Verfah¬ rens homogenisiert. Als Vergleichsbeispiel wurde die Emulsion auch nach EP 1 008 380 B1 homogenisiert.
Figur 1 zeigt den Sauterdurchmesser der Partikelgrößenverteilung von verschiedenen nach dem erfindungsmäßen Verfahren hergestellten flüssig-flüssig Formulierungen in Abhängigkeit vom Druckverlust. Der Sauterdurchmesser ist ein mittlerer Durchmesser, der das gleiche Volume-zu-Oberflächen-Verhältnis hat wie das betrachtete Tropfenkol¬ lektiv.
Demnach werden nach dem erfindungsgemäßen Verfahren kleinere Sauterdurchmes¬ ser der Partikelgrößenverteilung erhalten als nach dem vergleichbaren Stand der Technik (EP 1 008 380 B1 ). Lediglich der Einsatz einer 0,4 Blende mit statischem Mi¬ scher und einer anschließenden 0,4 Blende erzielt ähnliche Ergebnisse wie in EP 1 008 380 B1 beschrieben. Allerdings lehrt EP 1 008 380 B1 die Verwendung einer Austrittsdüse, deren Bohrungsdurchmesser größer ist als der der Eintrittsdüse.
Beispiel 2
Herstellung einer Uvinul® 3008 -Monomer-Miniemulsion
9,3 kg Uvinul 3008 werden in einer Mischung aus 28,5 kg Methylmethacrylat und 1 ,5 kg Glissopal® 1000 bei Raumtemperatur innerhalb von 15 Minuten gelöst, dann gibt man unter Rühren 1 ,2 kg einer wässrige 15%igen Natriumlaurylsulfats-Lösung (Steina- pol NLS) und 56,58 kg vollentsalztes Wasser zu. Diese gerührte Macroemulsion wurde während des Emulgiervorgangs gerührt. Die Mischung wurde dann bei 170 bar durch eine Anordnung von drei 0,5 mm Düsen (alle auf einer planen Metallplatte) mit an¬ schließender Prallplatte emulgiert in 2 Passagen emulgiert. Die resultierende Mini¬ emulsion nach einer Passage hatte eine mittlere Tropfengröße von 202 nm (Median¬ wert einer Messung mit einem High Performance Particle Sizer der Fa. Malvern) und nach der zweiten Passage eine mittlere Tropfengröße von 171 nm. Die Miniemulsion war mehrere Tage lagerstabil.
Beispiel 3
Herstellung einer AKD-Monomer-Miniemulsion
26.2 g C16/C18-AKD (Basoplast 88konz., BASF AG) werden in 52.3 g Styrol, 26.2 g n- Butylacrylat und 26.2 g t-Butylacrylat gelöst und mit 6.9 g einer wässrige 15%igen Natriumlaurylsulfats-Lösung und 516.3 g vollentsalztem Wasser vermischt. Diese Vor- emulsion wird zweimal bei einem Druck von 800 bar durch eine Anordnung einer
0.4mm Düse mit anschließender Prallplatte emulgiert. Die resultierende Miniemulsion hatte eine mittlere Tropfengröße nach der ersten Passage von 133 nm und nach der zweiten Passage von 104 nm (Medianwert einer Messung mit Coulter 230LS, Fa. Beckmann). Beispiel 4
Beschreibung einer automatisierten Emulgieranlage
Für die Emulgierung von AKD wurde eine automatisierte Anlage bestehend aus einem Schmelzkessel (1 ) (300 L) mit mechanischem Rührer und elektrisch beheiztem Mantel, einer Schmelzdosierpumpe (2), einer Pumpe (3) und Heizung (4) für vollentsalztes Wasser, einer Dosierpumpe (5) für Hilfsmittel wie z.B. Emulgatoren, Schutzkolloide, gelöste Polymere oder Polymerdispersionen, einer Exzenterschneckenpumpe (6), ei- ner Hochdruckpumpe (7) mit nachgeschalteter Lochblende, einem Umpumpkreislauf (8) einem Plattenwärmetauscher (9) zur Kühlung und einem Dispersionslagertank (10)
Beispiel 4.1 : Anionisch geladene AKD Dispersion
200 kg Pastelliertes AKD wurde in den Schmelzebehälter eingefüllt und bei 80 °C unter Rührung geschmolzen. Das VE Wasser wurde auf 60 0C geheizt, die Dosierung von Tamol NN2901 erfolgte über die Hilfsmittelpumpe (5). Die Dosierrate der Pumpen wur¬ de so gewählt, dass ein Verhältnis AKD/Tamol NN2901 /Wasser von 12/1/87 erreicht wurde. Die Emulgierung erfolgte bei 270 bar bei einem Durchsatz von 110 L/h, aus dem Umpumpkreislauf wurden 64 L/h entnommen. Die Dispersion wurde über die Plat¬ tenwärmetauscher auf 25 0C abgekühlt. Die Dispersion hatte eine mittlere Teilchen¬ größenverteilung von 0,7 μm (dynamische Lichtstreuung, Coulter LS 130). Die e- lektrophoretische Mobilität bei pH 8 lag bei -8.0 (μm/s)/(V/cm), das Zetapotential der AKD Partikel betrug -102,4 mV (pH 8).
Beispiel 4.2: Kationisch geladene AKD Dispersion
200 kg Pastelliertes AKD wurde in den Schmelzebehälter eingefüllt und bei 80 0C unter Rührung geschmolzen. Das VE Wasser wurde auf 60 0C geheizt. Eine 18%ige Polyvi- nyaminlösung (Catiofast PR8212, Hydrolysegrad 70%, K-Wert 45) wurde mit Ameisen¬ säure (85% in Wasser) auf pH = 3 gestellt und über die Hilfsmittelpumpe (5) dosiert. Die Dosierrate der Pumpen wurde so gewählt, dass ein Verhältnis AKD/Catiofast PR8121/Wasser von 12/22/66 erreicht wurde. Die Emulgierung erfolgte bei 260 bar bei einem Durchsatz von 100 L/h, aus dem Umpumpkreislauf wurden 50 L/h entnommen. Die Dispersion wurde über die Plattenwärmetauscher auf 25 0C abgekühlt. Die mittlere Teilchengrößenverteilung betrug 0,9 μm (dynamische Lichtstreuung, Coulter LS 130). Die elektrophoretische Mobilität bei pH 8 lag bei +3.0 (μm/s)/(V/cm), das Zetapotential der AKD Partikel betrug 38,4 mV (pH 8).

Claims

Patentansprüche
1. Verfahren zur Herstellung feinteiliger flüssig-flüssig Formulierungen mit einer Mischvorrichtung, die
a) aus einer Blende mit wenigstens einer Eintrittsdüse und einer Blende mit we¬ nigstens einer Austrittsdüse besteht, wobei sich im Zwischenraum zwischen den Blenden ein statischer Mischer befindet und gegebenenfalls zusätzlich mechanische Energieeinbringung erfolgt oder
b) aus einer Blende mit wenigstens einer Eintrittsdüse und einer Prallplatte be¬ steht, wobei sich im Zwischenraum zwischen der Blende und der Prallplatte gegebenenfalls ein statischer Mischer befindet und/oder mechanische Ener¬ gieeinbringung erfolgt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei den flüs¬ sig-flüssig Formulierungen um zwei- oder mehrphasige Emulsionen handelt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass es sich um eine Wasser-in-ÖI- oder ÖI-in-Wasser-Emulsion handelt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich um eine wässrige, anionische Reaktivleimungsmitteldispersion zur Herstel¬ lung von Papier, Pappe und Karton handelt und das Reaktivleimungsmittel aus- gewählt ist aus C14- bis C22- Alkyldiketenen, C12- bis C30- Alkylbernsteinsäurean- hydriden und C12- bis C30- Alkenylbernsteinsäureanhydriden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Partikelgrößenverteilung der flüssig-flüssig Formulierung im Bereich von 20 nm bis 100 μm liegt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die feinteiligen flüssig-flüssig Formulierungen Viskositäten im Bereich von 0,01 mPas bis 100 000 mPas aufweisen.
7. Vorrichtung zur Herstellung einer feinteiligen flüssig-flüssig Formulierung beste¬ hend aus
a) einer Blende mit wenigstens einer Eintrittsdüse und einer Blende mit wenigs- tens einer Austrittsdüse, wobei sich im Zwischenraum zwischen den Blenden ein statischer Mischer befindet und gegebenenfalls zusätzlich mechanische Energieeinbringung erfolgt oder b) aus einer Blende mit wenigstens einer Eintrittsdüse und einer Prallplatte, wo¬ bei sich im Zwischenraum zwischen der Blende und der Prallplatte gegebe¬ nenfalls ein statischer Mischer befindet und/oder mechanische Energieein- bringung erfolgt.
8. Verwendung einer flüssig-flüssig Formulierung hergestellt nach einem der An¬ sprüche 1 bis 6 in der Pharma-, Lebensmittel- und Kosmetikindustrie sowie in der Papier-, Textil- und Leder , Baustoffindustrie sowie Pflanzenschutz- oder photo- graphischen Industrie.
9. Verwendung einer flüssig-flüssig Formulierung hergestellt nach Anspruch 4 als Reaktivleimungsmittel in der Papierindustrie zur Herstellung von Papier, Pappe und Karton.
EP05806385A 2004-11-17 2005-11-15 Verfahren und vorrichtung zur herstellung feinteiliger flüssig-flüssig formulierungen sowie verwendungen dergestalter flüssig-flüssig formulierungen Revoked EP1814651B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004055507A DE102004055507A1 (de) 2004-11-17 2004-11-17 Verfahren zur Herstellung feinteiliger flüssig-flüssig Formulierungen und Vorrichtung zur Herstellung feinteiliger flüssig-flüssig Formulierungen
PCT/EP2005/012233 WO2006053712A2 (de) 2004-11-17 2005-11-15 Verfahren und vorrichtung zur herstellung feinteiliger flüssig-flüssig formulierungen sowie verwendungen dergestalter flüssig-flüssig formulierungen

Publications (2)

Publication Number Publication Date
EP1814651A2 true EP1814651A2 (de) 2007-08-08
EP1814651B1 EP1814651B1 (de) 2011-01-12

Family

ID=35539579

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05806385A Revoked EP1814651B1 (de) 2004-11-17 2005-11-15 Verfahren und vorrichtung zur herstellung feinteiliger flüssig-flüssig formulierungen sowie verwendungen dergestalter flüssig-flüssig formulierungen

Country Status (10)

Country Link
US (1) US20090073801A1 (de)
EP (1) EP1814651B1 (de)
JP (1) JP2008520417A (de)
CN (1) CN101060915A (de)
AT (1) ATE494945T1 (de)
CA (1) CA2586742A1 (de)
DE (2) DE102004055507A1 (de)
ES (1) ES2359839T3 (de)
PT (1) PT1814651E (de)
WO (1) WO2006053712A2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009002600A1 (de) 2008-04-30 2009-11-05 Basf Se Dispergierung von ionischen Flüssigkeiten in inerten unpolaren Lösungsmitteln
US8506402B2 (en) * 2009-06-01 2013-08-13 Sony Computer Entertainment America Llc Game execution environments
US20120208959A1 (en) 2009-11-02 2012-08-16 Basf Se Method for producing an aqueous polymer dispersion
US9174178B2 (en) 2010-06-09 2015-11-03 The Procter & Gamble Company Semi-continuous feed production of liquid personal care compositions
WO2012076426A1 (de) 2010-12-08 2012-06-14 Basf Se Verfahren zur herstellung einer wässrigen polymerisatdispersion
WO2012090496A1 (ja) * 2010-12-28 2012-07-05 星光Pmc株式会社 水分散性サイズ剤、紙の製造方法及び板紙の製造方法
US9867763B2 (en) 2013-05-10 2018-01-16 Noxell Corporation Modular emulsion-based product differentiation

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1218250A (en) * 1915-07-03 1917-03-06 John Fox Grain-pickler.
US1496345A (en) * 1923-09-28 1924-06-03 Frank E Lichtenthaeler Apparatus for mixing liquids
US1626487A (en) * 1924-01-10 1927-04-26 Warren David Emulsifier
US1924080A (en) * 1932-10-25 1933-08-22 American Glanzstoff Corp Mixer
US2000953A (en) * 1933-10-30 1935-05-14 Hooker Electrochemical Co Means for reacting semifluid materials
US2085132A (en) * 1934-11-26 1937-06-29 Bethlehem Steel Corp Mixer
US2132854A (en) * 1937-07-16 1938-10-11 John Duval Dodge Emulsifier
US2669946A (en) * 1951-02-20 1954-02-23 Joe Lowe Corp Apparatus for making variegated ice creams and the like
US2913318A (en) * 1955-02-08 1959-11-17 Union Carbide Corp Column-type reactor
DE1475183A1 (de) * 1966-07-18 1969-02-20 Freiberg Bergakademie Vorrichtung zur Zerstaeubung von Fluessigkeiten
US3462131A (en) * 1968-03-18 1969-08-19 Edward F Hill Mixing device
US3675901A (en) * 1970-12-09 1972-07-11 Phillips Petroleum Co Method and apparatus for mixing materials
US4068830A (en) * 1974-01-04 1978-01-17 E. I. Du Pont De Nemours And Company Mixing method and system
US3929318A (en) * 1974-12-09 1975-12-30 Exxon Research Engineering Co Static mixers for viscous material
US4000086A (en) * 1975-04-28 1976-12-28 Vish Minno-Geoloshki Institute - Nis Method of and apparatus for emulsification
US4382684A (en) * 1980-03-06 1983-05-10 Sanjo Seiki Co., Ltd. Apparatus for mixing and dispensing liquid resins
US4441823A (en) * 1982-07-19 1984-04-10 Power Harold H Static line mixer
JPS6182828A (ja) * 1984-09-28 1986-04-26 Harima Kasei Kogyo Kk 乳化装置
JPH0230019Y2 (de) * 1985-10-17 1990-08-13
JP2515983B2 (ja) * 1986-07-10 1996-07-10 三菱石油株式会社 中性抄紙用の乳化装置
JP2513475B2 (ja) * 1986-10-21 1996-07-03 ノードソン株式会社 液体の混合吐出又は噴出方法とその装置
JPS63242332A (ja) * 1987-03-31 1988-10-07 Nordson Kk 液体の混合及び混合吐出又は噴出方法とそれらの装置
JPH0822375B2 (ja) * 1987-04-30 1996-03-06 ノードソン株式会社 液体の衝突式混合吐出又は噴出方法とその装置
JP2545227B2 (ja) * 1987-05-11 1996-10-16 ノードソン株式会社 液体の複合衝突式混合吐出又は噴出方法及びその装置
JPH01123620A (ja) * 1987-11-06 1989-05-16 Nordson Kk 粉粒体の混合方法とその装置
JPH0624732U (ja) * 1991-03-13 1994-04-05 三菱石油株式会社 製紙用サイズ剤乳化装置
DE4408392A1 (de) * 1994-03-12 1995-09-28 Mtu Friedrichshafen Gmbh Vorrichtung zur Bildung einer Öl-Wasser-Emulsion
DE19512399A1 (de) * 1995-04-03 1996-10-10 Basf Ag Papierleimungsmittelmischungen
DE19542499A1 (de) * 1995-11-15 1997-05-22 Bayer Ag Verfahren und Vorrichtung zur Herstellung einer parenteralen Arzneistoffzubereitung
US5836686A (en) * 1996-02-06 1998-11-17 Chem Financial, Inc. Multi-chamber high pressure dispersion apparatus
DE19610995C2 (de) * 1996-03-21 2002-12-19 Betzdearborn Inc Papierleimungsmittel und -verfahren
US5765946A (en) * 1996-04-03 1998-06-16 Flo Trend Systems, Inc. Continuous static mixing apparatus and process
JP3688806B2 (ja) * 1996-05-14 2005-08-31 彦六 杉浦 スタティックミキサー
US5938327A (en) * 1997-11-20 1999-08-17 Benskin; Charles O. Static mixer apparatus with rotational mixing
US6207719B1 (en) * 1998-08-19 2001-03-27 Dennis G. Pardikes Method and system for preparing ASA emulsion
DK1008380T3 (da) * 1998-12-07 2004-07-12 Dsm Ip Assets Bv Fremgangsmåde og indretning til blanding eller dispergering af væsker
US6296696B1 (en) * 1998-12-15 2001-10-02 National Starch & Chemical Investment Holding Corporation One-pass method for preparing paper size emulsions
ATE299392T1 (de) * 1999-04-19 2005-07-15 Sulzer Chemtech Ag Statischer wirbelmischer und methode zur verwendung desselben
JP2001290231A (ja) * 2000-04-06 2001-10-19 Fuji Photo Film Co Ltd ハロゲン化銀乳剤の製造方法及び装置
US6509049B1 (en) * 2000-06-16 2003-01-21 The Quaker Oats Company Device system and method for fluid additive injection into a viscous fluid food stream
US6858381B2 (en) * 2002-04-26 2005-02-22 Fuji Photo Film Co., Ltd. Method and apparatus for forming silver halide emulsion particles and method for forming fine particles
DE102004055542A1 (de) * 2004-11-17 2006-05-18 Basf Ag Verfahren zur Herstellung einer feinteiligen Emulsion aus einer Rohemulsion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006053712A2 *

Also Published As

Publication number Publication date
CN101060915A (zh) 2007-10-24
US20090073801A1 (en) 2009-03-19
DE102004055507A1 (de) 2006-05-18
EP1814651B1 (de) 2011-01-12
ES2359839T3 (es) 2011-05-27
ATE494945T1 (de) 2011-01-15
DE502005010858D1 (de) 2011-02-24
PT1814651E (pt) 2011-02-17
JP2008520417A (ja) 2008-06-19
CA2586742A1 (en) 2006-05-26
WO2006053712A3 (de) 2006-08-31
WO2006053712A2 (de) 2006-05-26

Similar Documents

Publication Publication Date Title
EP1814651B1 (de) Verfahren und vorrichtung zur herstellung feinteiliger flüssig-flüssig formulierungen sowie verwendungen dergestalter flüssig-flüssig formulierungen
EP0101007B1 (de) Herstellung von pharmazeutischen oder kosmetischen Dispersionen
DE3302069C3 (de) Polymerisat- und tensidhaltige Präparate, deren Herstellung und Verwendung
EP1042063B1 (de) Vorrichtung zum herstellen von dispersen stoffgemischen mittels ultraschall und verwendung einer derartigen vorrichtung
EP0939774B1 (de) Verfahren zur herstellung einer polymerdispersion durch radikalische wässrige emulsionspolymerisation mit einer kontinuierlich hergestellten wässrigen monomerenemulsion
CH614395A5 (de) Verfahren und vorrichtung zur behandlung von materialien durch ultraschall-longitudinaldruckschwingungen
WO1998033582A1 (de) Verfahren und vorrichtung zur herstellung eines dispersen gemisches
DE60304728T2 (de) Verfahren zur herstellung von emulsionen
DE102016101232A1 (de) Verfahren zum Herstellen von Emulsionen
WO1999015263A1 (de) Vorrichtung und verfahren zur herstellung von siliconemulsionen
DE2319853A1 (de) Koazervierung eines anionen enthaltenden waessrigen dispersen systems mit amphoteren polyelektrolyten
DE10340540A1 (de) Emulgatorfreie Entschäumer, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102010056345A1 (de) Verfahren zur Herstellung einer Öl-Wasser-Emulsion
DE10349727A1 (de) Feste Mischungen aus einem Reaktivleimungsmittel und Stärke, Verfahren zu ihrer Herstellung und ihre Verwendung
WO2008058593A1 (de) Verfahren zur kontinuierlichen herstellung von dispersionen in einem wirbelkammerreaktor
DE2704282A1 (de) Verfahren zur herstellung einer homogenen mischung von zwei oder mehreren fluessigkeiten
CH678283A5 (en) Low-viscosity water-in-oil emulsions with submicron droplet size - esp. useful as fuels, contain water insol. substance
DE102021100787A1 (de) Vorrichtung zum Mischen oder in Reaktion bringen einer kontinuierlichen Phase mit einer dispersen Phase
CH396945A (de) Verfahren zur kontinuierlichen und intensiven Vermischung zweier flüssiger Phasen
WO2008058592A1 (de) Verfahren zur kontinuierlichen herstellung von dispersionen in mikrostrukturierten apparaten
DD218114B1 (de) Verfahren zur herstellung kationaktiver bitumenemulsionen
DE3103512A1 (de) "verfahren und vorrichtung zur herstellung von oel-, wie schweroel- oder leichten heiz-oel-wasser-, insbesondere seewasser-emulsionen und von kohlenstaub-wasser-, insbesondere seewasser-suspensionen mit zur verbrennung geeigneter viskositaet zur einduesung in den heisswindstrom von hochoefen, brennstoffmischanlagen, heiz-kraftwerksanlagen u.dgl."
CH703239B1 (de) Verfahren zur Herstellung emulgierter Salatsaucen.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070618

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070823

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

R17C First examination report despatched (corrected)

Effective date: 20080228

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20110210

REF Corresponds to:

Ref document number: 502005010858

Country of ref document: DE

Date of ref document: 20110224

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005010858

Country of ref document: DE

Effective date: 20110224

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2359839

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110527

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110512

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110413

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110412

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

26 Opposition filed

Opponent name: AKZO NOBEL CHEMICALS INTERNATIONAL B.V.

Effective date: 20111005

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502005010858

Country of ref document: DE

Effective date: 20111005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20111130

Year of fee payment: 7

Ref country code: NL

Payment date: 20111128

Year of fee payment: 7

Ref country code: PT

Payment date: 20111024

Year of fee payment: 7

Ref country code: ES

Payment date: 20111228

Year of fee payment: 7

Ref country code: FR

Payment date: 20111214

Year of fee payment: 7

Ref country code: FI

Payment date: 20111124

Year of fee payment: 7

Ref country code: CH

Payment date: 20111130

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20111230

Year of fee payment: 7

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120131

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502005010858

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502005010858

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20120910

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20120910

REG Reference to a national code

Ref country code: PT

Ref legal event code: MP4A

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20110112

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20110112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 502005010858

Country of ref document: DE

Effective date: 20130307

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 494945

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120910

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111115

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC