EP1808573A1 - Masselotte d'équilibrage, disque de rotor en étant équipe, rotor et moteur d'aéronef les comportant - Google Patents

Masselotte d'équilibrage, disque de rotor en étant équipe, rotor et moteur d'aéronef les comportant Download PDF

Info

Publication number
EP1808573A1
EP1808573A1 EP07100274A EP07100274A EP1808573A1 EP 1808573 A1 EP1808573 A1 EP 1808573A1 EP 07100274 A EP07100274 A EP 07100274A EP 07100274 A EP07100274 A EP 07100274A EP 1808573 A1 EP1808573 A1 EP 1808573A1
Authority
EP
European Patent Office
Prior art keywords
balancing weight
rotor
turbomachine
weight
faces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07100274A
Other languages
German (de)
English (en)
Other versions
EP1808573B1 (fr
Inventor
Laurent Gilles Dezouche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1808573A1 publication Critical patent/EP1808573A1/fr
Application granted granted Critical
Publication of EP1808573B1 publication Critical patent/EP1808573B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/027Arrangements for balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/10Anti- vibration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/32Correcting- or balancing-weights or equivalent means for balancing rotating bodies, e.g. vehicle wheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/50Vibration damping features

Definitions

  • the present invention relates to the technical field of balancing turbomachine rotors.
  • turbomachine rotor comprising such a disc.
  • turbomachine comprising such a rotor.
  • the turbomachine can be in particular an aircraft engine.
  • axial refers to an axial direction of the turbomachine
  • longitudinal refers to a longitudinal direction of the balance weight
  • transverse is used for a transverse direction of the turbomachine or balance weight.
  • balancing weights it is known to use balancing weights to balance a turbomachine rotor.
  • a rotor comprises several disks, and balancing weights are mounted at the two downstream discs of the rotor, which are discs carrying removable blades.
  • Figure 1 shows a balance weight of the prior art.
  • Figures 2, 3 and 4 illustrate a turbomachine rotor with such balancing weights known.
  • FIG. 2 shows in axial section a turbomachine rotor 110, and more particularly two disks 112, 132 corresponding to two successive stages N, N-1 of this rotor 110.
  • cavities 114 are distributed which each receive the foot 116 of a removable blade 118.
  • a balance weight 160 is disposed in a gap 120 formed between two blade roots 116 , 116 'successive.
  • cells are distributed 134 which each receive the foot 136 of a removable blade 138.
  • a balance weight 180 is disposed in a gap 140 formed between two feet of dawn 136, 136 'successive.
  • balancing weights 160, 180 are positioned in the gaps 120, 140, so that two active faces 156 of each weight 160, 180 are in contact with two active sides 104 of the cell 114, 134 corresponding, by centrifugal effect when the rotor 110 is rotated.
  • All the weights 160 of the disk 114 of the stage N are identical to each other.
  • all the weights 180 of the disc 134 of stage N-1 are identical to each other.
  • a balance weight 160, 180 typical of the prior art is shown in perspective in Figure 1.
  • a local orthogonal reference (X, Y, Z) is associated with it. It has a body 162, 182, which has recesses 158 made by machining, in order to optimize its mass. It also has two keying lugs 184, which extend outwardly from the body 182 in the transverse direction Y. These keying lugs 184 do not come into contact against the feet 136, 136 'of the blades 138, 138 'Between which the flyweight 180 is disposed, as shown in Figure 4.
  • the coding lugs 184 can avoid possible mounting errors that could lead to degradation of the disks 132.
  • FIG. 4 represents a cross-sectional view along the line BB of FIG. 2, of the disk 132 of the N-1 stage of the rotor 110 of FIG. 2, showing more particularly two adjacent removable vanes 138, 138 'respectively having blade roots 136, 136 ', and an N-1 stage balancing flyweight 180 disposed in the gap 140 formed between the blade roots 136, 136'.
  • FIG. 3 represents a cross-sectional view along the line AA of FIG. 2, of the disc 112 of the stage N of the rotor 110 of FIG. 2, showing more particularly two adjacent removable blades 118, 118 'respectively having feet of blades 116, 116 '.
  • the two disks 112, 132 have cavities 114, 134 having different dimensions, in particular in their radial direction. Indeed, it appears in Figures 2, 3 and 4 that the radial dimension of the cell 134 of the disk 132 of the N-1 stage (right in Figure 2) is less than the radial dimension of the cell 114 of the disk 112 of the N stage (left in Figure 2). Therefore, it is necessary to provide flyweights 160, 180 having shapes and / or slightly different dimensions depending on whether they are intended for the disk 112 of the stage N or the disk 132 of the stage N-1 of the rotor 110.
  • FIG. 3 shows a balance weight 180 adapted for the disc 132 of the stage N-1, placed between the two successive blade roots 116, 116 '. Because the cells 114, 134 of the two disks 112, 132 have different dimensions, the weight 180 adapted for the disk 132 of the stage N-1 is not suitable for the disc 112 of the stage N, as illustrated by areas of overlap 108 keying tabs 184 with the blade roots 116, 116 '. If the N-1 stage balancing flyweight 180 was disposed in the N-stage gap 120 so as to avoid such overlap, then its active faces 156 would not be in contact with the active sides 104 of the cell 114 during the rotation of the disk 112.
  • An object of the present invention is to provide a balancing weight having a shape and dimensions such that it can be placed indifferently in the cells of a disk of a stage N and in the cells of a disk of an N-1 floor.
  • Another object of the present invention is to provide a balancing weight having a shape and dimensions such that it can be placed correctly in the cell without the need to provide keying reliefs.
  • the invention relates to a balance weight of a turbomachine rotor, characterized in that it comprises two pyramid-shaped end portions each having a base and a top, and an intermediate portion which connects the two bases of the end portions.
  • the two vertices are aligned on a longitudinal axis
  • the two end portions and the intermediate portion have, in section along said longitudinal axis, sections having shapes of polygons centered on said longitudinal axis.
  • said balance weight comprises a median plane of symmetry perpendicular to said longitudinal axis.
  • said balance weight has rounded edges and rounded corners.
  • said balance weight has a recess.
  • said recess is in the form of a through hole oriented in a direction perpendicular to said longitudinal axis.
  • said polygons are polygons with four sides, so that each end portion has a four-sided pyramid shape and that the intermediate portion has a parallelepiped shape.
  • said four-sided polygons are rectangles.
  • said four-sided polygons are squares.
  • said balance weight comprises eight active faces which are the eight faces of the two end portions.
  • the invention relates to a rotor disk of a turbomachine, provided with at least one balancing flyweight according to the first aspect.
  • said rotor disk of a turbomachine comprises cells in which are inserted blade roots between which is formed an interval in a tangential direction of the disk, and said cells have two active flanks.
  • Said rotor disk is characterized in that it is provided with at least one balance weight according to the first aspect disposed in said gap.
  • said balance weight comprises two active faces each disposed on one of the end portions.
  • these two active faces are symmetrical to one another with respect to a median plane of symmetry perpendicular to a longitudinal axis which connects the two vertices (66) of the flyweight (50).
  • said active faces are intended to come into contact respectively with one of the active flanks of the cell when said rotor disk is rotated.
  • the invention relates to a turbomachine rotor comprising a balancing flyweight according to the first aspect and / or a rotor disc according to the second aspect of the invention.
  • the invention relates to a turbomachine comprising a balancing flyweight according to the first aspect and / or a rotor disc according to the second aspect and / or a rotor according to the third aspect of the invention.
  • the turbomachine is an aircraft engine.
  • a balance weight 50 according to the invention. This generally has an oblong shape extending along a longitudinal axis X.
  • a local orthogonal reference (X, Y, Z) is associated with it so that the plane (Y, Z) is a median transverse plane. of the balance weight 50 and that the plane (Z, X) is a longitudinal plane, perpendicular to the median plane (Y, Z).
  • the balance weight 50 is shown in section along the longitudinal plane (X, Z) in FIG. 6. It comprises three successive parts, namely two end portions 62. connected to each other by an intermediate portion 64.
  • the two end portions 62 each have a pyramid shape having a base 70, a vertex 66 and four faces 56.
  • the intermediate portion 64 has a parallelepiped shape having four faces 72 of the same dimensions.
  • the intermediate portion 64 connects the two bases 70 of the two end portions in a continuous and regular manner, parallel to the longitudinal axis X on which are aligned the two vertices 66.
  • the faces 72 of the intermediate portion 64 are in the extension respective faces 56 of the end portions 62.
  • the balance weight 50 has cross sections, perpendicular to the longitudinal axis X, having square shapes, as shown in Figure 7 which shows the balance weight 50 in section along a transverse plane (Y, Z) corresponding at the line CC of Figure 6, at the junction between the intermediate portion 64 and one of the end portion 62.
  • the Y and Z axes are positioned so that they each pass through the centers of two faces 72 opposite of the intermediate part 64.
  • the balance weight 50 preferably has rounded edges. It also preferably has rounded vertices 66.
  • the inclination of the faces 56 of the end portions 62 is defined by an angle ⁇ , the value of which is established according to the needs.
  • This angle ⁇ is in the range of 30 degrees to 60 degrees degrees, preferably in a range from 40 degrees to 55 degrees. Even more preferably, the value of the angle ⁇ is set at 45 °.
  • An advantage of a balance weight 50 having the form just described lies in the fact that it has several planes of symmetry, and keeps the same contour in the longitudinal plane (Z, X) when it is rotated 90 degrees around the longitudinal axis X.
  • FIG. 8 shows an alternative embodiment of the balance weight 50.
  • This has a recess 58, preferably made by machining, in order to modify and / or optimize its mass.
  • the recess 58 is in the form of a through hole 58 oriented perpendicularly to the longitudinal axis X and passing through one or the other of the transverse axes Y or Z.
  • the shape and the The position of the recess 58 does not affect the contour of the balance weight 50 when viewed in either of the transverse planes (X, Y) or (Z, X).
  • An advantage of the invention lies in the fact that a unique shape and dimensions are provided for all balancing weights 50, regardless of the disk 12, 32 on which they are intended to be installed. This simplifies the manufacture of balance weights, and reduce the costs of this manufacture.
  • the balancing weight according to the invention is preferably made of a material selected from the group consisting of base alloys nickel, titanium base alloys, aluminum base alloys and steels.
  • FIG. 9 is an axial section showing a turbomachine rotor 10 according to the invention, and more particularly two discs 12, 32 corresponding to two successive stages N, N-1 of this rotor 10.
  • the cells 14 which each receive the foot 16 of a removable blade 18 are distributed at the periphery of the disk 12 of the stage N.
  • a balancing weight 50 according to the invention is disposed in a gap 20 formed between two feet 16 successive.
  • cavities 34 which each receive the foot 36 of a removable blade 38 are distributed around the periphery of the disc 32 of the stage N-1.
  • a balance weight 50 according to the invention is disposed in a gap 40 formed between two successive feet 36.
  • FIG. 10 represents a cross-sectional view along the line DD of FIG. 9, of the disc 32 of the stage N of the rotor 10 of FIG. 9, showing more particularly two adjacent removable vanes 18, 18 'respectively having feet of vanes 16, 16 ', and a balance weight 50 disposed in the gap 20 therebetween.
  • FIG. 11 shows a cross-sectional view along the line EE of FIG. 9, of the disc 32 of the stage N-1 of the rotor 10 of FIG. 9, showing more particularly two adjacent removable vanes 38, 38 having respectively blade roots 36, 36 ', and a balance weight 50 disposed in the gap 40 formed therebetween.
  • All the weights 160 of the disk 114 of the stage N are identical to each other.
  • all the weights 180 of the disk 134 of the stage N-1 are identical to each other.
  • the weights 50 arranged in the stage disk N (FIG. 10 and left-hand part of FIG. 9) are identical to the balancing weights 50 arranged in the stage disk N-1 (FIG. 11 and right-hand part of FIG. Figure 9).
  • the balancing weights 50, 50 are positioned between two successive blade roots 16, 16 ', 36, 36' in the gap 20, 40 (FIGS. 10, 11), so that two active faces 56, 56 each of the weights 50 are in contact with two active flanks 4, 4 of the cell 14, 34 corresponding, by centrifugal effect when the rotor 10 is rotated ( Figure 9).
  • the two active faces 56, 56 which come into contact with the active flanks 4, 4 of the cell 14, 34 corresponding are symmetrical to one another relative to the median plane of symmetry (Y, Z) of the flyweight 50.
  • the gaps 20, 40 have substantially a square shape in a transverse plane of the disc 12, 32.
  • the balance weight 50 By choosing a polygon with four equal sides, that is to say say a square, to define the section of the intermediate portion 64, it prevents a possible rotation of the balance weight 50 does not move in rotation about its axis longitudinal X once it is in place in the cell 14, 34. As a result, the risk of injury to the cell 14, 34 and or the weight 50 are reduced. These risks are further reduced by the fact that the balance weight 50 is provided with 68 rounded edges and 66 rounded vertices.
  • each balance weight 50 can be arranged in the gap 20, 40 without it being necessary to provide a direction particular introduction and / or keying reliefs. Indeed, all the faces 56 of the end portions 62 are identical. They can therefore all fulfill the role of active face coming into contact with an active side 4, 4 of the cell 14, 34 corresponding. Therefore, the same form of balance weight can be considered for all the discs of a rotor that must be balanced. It is sufficient to choose the dimensions of the common balancing weight so that it can enter the cell which has the smallest radial dimension, that is to say the cell 34 of the floor disk 32 N-1, right in Figure 9. Therefore, such balance weight 50 provides a time saving when mounting discs 12, 32.
  • the invention is not limited to the embodiment previously described.
  • the number of faces of each pyramid is not limited to four.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

La masselotte d'équilibrage (50) comporte deux parties d'extrémité (62) en forme de pyramide ayant chacune une base (70) et un sommet (66), et une partie intermédiaire (64) qui relie entre elles les deux bases (70) des parties d'extrémité(62). Les deux sommets (66) sont alignés sur un axe longitudinal (X). Les deux parties d'extrémité (62) et la partie intermédiaire (64) présentent, en coupe selon un plan (Y, Z) perpendiculaire audit axe longitudinal (X), des sections ayant des formes de polygones centrées sur ledit axe longitudinal (X). Application à l'équilibrage d'un rotor (10) de turbomachine.

Description

    DOMAINE TECHNIQUE
  • La présente invention se rapporte au domaine technique de l'équilibrage des rotors de turbomachines.
  • Elle vise plus particulièrement une masselotte d'équilibrage d'un rotor de turbomachine.
  • Elle vise aussi un disque d'un rotor de turbomachine équipé d'une telle masselotte.
  • Elle vise encore un rotor de turbomachine comportant un tel disque.
  • Elle vise enfin une turbomachine comportant un tel rotor. La turbomachine peut être notamment un moteur d'aéronef.
  • Dans tout ce qui suit, le terme « axial » se rapporte à une direction axiale de la turbomachine, le terme « longitudinal » se rapporte à une direction longitudinale de la masselotte d'équilibrage, tandis que le terme « transversal » est utilisé pour une direction transversale de la turbomachine ou de la masselotte d'équilibrage.
  • ÉTAT DE LA TECHNIQUE ANTÉRIEURE
  • Il est connu d'utiliser des masselottes d'équilibrage pour équilibrer un rotor de turbomachine. De manière classique, un rotor comporte plusieurs disques, et les masselottes d'équilibrage sont montées au niveau des deux disques aval du rotor, qui sont des disques portant des aubes amovibles.
  • La figure 1 représente une masselotte d'équilibrage de la technique antérieure. Les figures 2, 3, et 4 illustrent un rotor de turbomachine doté de telles masselottes d'équilibrage connues.
  • Sur la figure 2 est représenté en coupe axiale un rotor 110 de turbomachine, et plus particulièrement deux disques 112, 132 correspondant à deux étages N, N-1 successifs de ce rotor 110.
  • A la périphérie du disque 112 de l'étage N, sont réparties des alvéoles 114 qui reçoivent chacune le pied 116 d'une aube amovible 118. Une masselotte d'équilibrage 160 est disposée dans un intervalle 120 ménagé entre deux pieds d'aube 116, 116' successifs. De manière analogue, à la périphérie du disque 132 de l'étage N-1, sont réparties des alvéoles 134 qui reçoivent chacune le pied 136 d'une aube amovible 138. Une masselotte d'équilibrage 180 est disposée dans un intervalle 140 ménagé entre deux pieds d'aube 136, 136' successifs.
  • De manière connue, les masselottes d'équilibrage 160, 180 sont positionnées dans les intervalles 120, 140, de telle manière que deux faces actives 156 de chaque masselotte 160, 180 soit en contact avec deux flancs actifs 104 de l'alvéole 114, 134 correspondante, par effet centrifuge lorsque le rotor 110 est entraîné en rotation.
  • Toutes les masselottes 160 du disque 114 de l'étage N sont identiques entre elles. De manière analogue, toutes les masselottes 180 du disque 134 de l'étage N-1 sont identiques entre elles. Une masselotte d'équilibrage 160, 180 typique de la technique antérieure est représentée en perspective sur la figure 1. Un référentiel orthogonal local (X, Y, Z) lui est associé. Elle possède un corps 162, 182, qui présente des évidements 158 réalisé par usinage, afin d'optimiser sa masse. Elle présente également deux pattes de détrompage 184, qui s'étendent vers l'extérieur à partir du corps 182 suivant la direction transversale Y. Ces pattes de détrompage 184 ne viennent pas en contact contre les pieds 136, 136' des aubes 138, 138' entre lesquelles la masselotte 180 est disposée, comme illustré sur la figure 4. Les pattes de détrompage 184 permettent d'éviter d'éventuelles erreurs de montage qui pourraient conduire à une dégradation des disques 132.
  • La figure 4 représente une vue en coupe transversale suivant la ligne B-B de la figure 2, du disque 132 de l'étage N-1 du rotor 110 de la figure 2, montrant plus particulièrement deux aubes amovibles adjacentes 138, 138' ayant respectivement des pieds d'aubes 136, 136', et une masselotte d'équilibrage 180 d'étage N-1 disposée dans l'intervalle 140 ménagé entre les pieds d'aube 136, 136'.
  • Lorsque la masselotte 180 est en place entre les deux pieds d'aube 136, 136', le plan (X, Z) de la masselotte 180 se trouve confondu avec le plan de coupe axiale qui est le plan de la figure 2, et le plan (Y, Z) de la masselotte 180 se trouve confondu avec le plan de coupe transversal qui est le plan de la figure 4. En d'autres termes, lorsque la masselotte 180 est en place entre les deux pieds d'aube 136, 136', son axe X est parallèle à la direction axiale de la turbomachine, et ses axes Y et Z définissent un plan parallèle à un plan transversal de la turbomachine.
  • La figure 3 représente une vue en coupe transversale suivant la ligne A-A de la figure 2, du disque 112 de l'étage N du rotor 110 de la figure 2, montrant plus particulièrement deux aubes amovibles adjacentes 118, 118' ayant respectivement des pieds d'aubes 116, 116' .
  • Du fait qu'ils appartiennent à deux étages N, N-1 différents, les deux disques 112, 132 présentent des alvéoles 114, 134 ayant des dimensions différentes, notamment suivant leur direction radiale. En effet, il apparaît sur les figures 2, 3 et 4 que la dimension radiale de l'alvéole 134 du disque 132 de l'étage N-1 (à droite sur la figure 2) est inférieure à la dimension radiale de l'alvéole 114 du disque 112 de l'étage N (à gauche sur la figure 2). Par conséquent, il est nécessaire de prévoir des masselottes 160, 180 ayant des formes et/ou des dimensions légèrement différentes selon qu'elles sont destinées au disque 112 de l'étage N ou au disque 132 de l'étage N-1 du rotor 110.
  • Cette situation est illustrée sur la figure 3, qui montre une masselotte d'équilibrage 180 adaptée pour le disque 132 de l'étage N-1, placée entre les deux pieds d'aube 116, 116' successifs. Du fait que les alvéoles 114, 134 des deux disques 112, 132 ont des dimensions différentes, la masselotte 180 adaptée pour le disque 132 de l'étage N-1 n'est pas adaptée pour le disque 112 de l'étage N, comme illustré par des zones de chevauchement 108 des pattes de détrompage 184 avec les pieds d'aube 116, 116'. Si la masselotte d'équilibrage 180 d'étage N-1 était disposée dans l'intervalle 120 d'étage N de manière à éviter un tel chevauchement, alors ses faces actives 156 ne seraient pas en contact avec les flancs actifs 104 de l'alvéole 114 lors de la rotation du disque 112.
  • Par conséquent, il s'avère impossible de placer des masselottes 180 identiques dans les alvéoles 114, 134 de deux disques 112, 132 différents, lorsque ces masselottes ont la géométrie de la masselotte 180 illustrée sur la figure 1.
  • EXPOSÉ DE L'INVENTION
  • Un but de la présente invention est de proposer une masselotte d'équilibrage ayant une forme et des dimensions telles qu'elle puisse être placée indifféremment dans les alvéoles d'un disque d'un étage N et dans les alvéoles d'un disque d'un étage N-1.
  • Un autre but de la présente invention est de proposer une masselotte d'équilibrage ayant une forme et des dimensions telles qu'elle puisse être placée correctement dans l'alvéole sans qu'il soit besoin de prévoir des reliefs de détrompage.
  • Les buts ci-dessus et d'autres buts sont atteints avec une masselotte d'équilibrage selon l'invention.
  • Selon un premier aspect, l'invention se rapporte à une masselotte d'équilibrage d'un rotor de turbomachine, caractérisée en ce qu'elle comporte deux parties d'extrémité en forme de pyramide ayant chacune une base et un sommet, et une partie intermédiaire qui relie les deux bases des parties d'extrémité.
  • Selon une caractéristique les deux sommets sont alignés sur un axe longitudinal,
  • Selon une caractéristique, les deux parties d'extrémité et la partie intermédiaire présentent, en coupe audit axe longitudinal, des sections ayant des formes de polygones centrées sur ledit axe longitudinal.
  • Selon une caractéristique, ladite masselotte d'équilibrage comporte un plan médian de symétrie perpendiculaire audit axe longitudinal.
  • Selon une caractéristique, ladite masselotte d'équilibrage présente des arêtes arrondies et des sommets arrondis.
  • Selon une caractéristique, ladite masselotte d'équilibrage présente un évidement. De préférence, ledit évidement se présente sous la forme d'un trou traversant orienté selon une direction perpendiculaire audit axe longitudinal.
  • Selon un mode de réalisation préféré, lesdits polygones sont des polygones à quatre côtés, de sorte que chaque partie d'extrémité présente une forme de pyramide à quatre faces et que la partie intermédiaire présente une forme de parallélépipède.
  • Selon une variante du mode de réalisation préféré, lesdits polygones à quatre côtés sont des rectangles.
  • Selon une autre variante, préférée, du mode de réalisation préféré, lesdits polygones à quatre côtés sont des carrés.
  • Selon cette variante préférée, ladite masselotte d'équilibrage comporte huit faces actives qui sont les huit faces des deux parties d'extrémité.
  • Selon un deuxième aspect, l'invention se rapporte à un disque de rotor d'une turbomachine, doté d'au moins une masselotte d'équilibrage selon le premier aspect.
  • En particulier, ledit disque de rotor d'une turbomachine comporte des alvéoles dans lesquelles sont insérés des pieds d'aubes entre lesquels est ménagé un intervalle suivant une direction tangentielle du disque, et lesdites alvéoles ont deux flancs actifs.
  • Ledit disque de rotor est caractérisé en ce qu'il est doté d'au moins une masselotte d'équilibrage selon le premier aspect disposée dans ledit intervalle.
  • De préférence, ladite masselotte d'équilibrage comporte deux faces actives disposées chacune sur l'une des parties d'extrémité.
  • De préférence, ces deux faces actives sont symétriques l'une de l'autre par rapport à un plan médian de symétrie perpendiculaire à un axe longitudinal qui relie les deux sommets (66) de la masselotte (50).
  • De préférence, lesdites faces actives sont destinées à venir en contact respectivement avec l'un des flancs actifs de l'alvéole lorsque ledit disque de rotor est entraîné en rotation.
  • Selon un troisième aspect, l'invention se rapporte à un rotor de turbomachine comportant une masselotte d'équilibrage selon le premier aspect et/ou un disque de rotor selon le deuxième aspect de l'invention.
  • Selon un quatrième aspect, l'invention se rapporte à une turbomachine comportant une masselotte d'équilibrage selon le premier aspect et/ou un disque de rotor selon le deuxième aspect et/ou un rotor selon le troisième aspect de l'invention. En particulier, la turbomachine est un moteur d'aéronef.
  • BRÈVE DESCRIPTION DES DESSINS
  • L'invention sera mieux comprise à la lecture de la description détaillée qui va suivre d'un mode de réalisation de l'invention, donné à titre illustratif et nullement limitatif, en référence aux dessins annexés, dans lesquels:
    • la figure 1, déjà décrite, représente, en vue en perspective, une masselotte d'équilibrage conforme à la technique antérieure ;
    • la figure 2, déjà décrite, représente, en coupe axiale, deux étages successifs d'un rotor de turbomachine, munis de masselottes d'équilibrage selon la technique antérieure ;
    • la figure 3, déjà décrite, est une vue en coupe transversale le long de la ligne A-A de la figure 2 ;
    • la figure 4, déjà décrite, est une vue en coupe transversale le long de la ligne B-B de la figure 2 ;
    • la figure 5 est une vue en perspective d'une masselotte d'équilibrage selon l'invention ;
    • la figure 6 est une autre vue en coupe longitudinale d'une masselotte d'équilibrage selon l'invention ;
    • la figure 7 est une autre vue en coupe transversale le long de la ligne C-C de la figure 6 d'une masselotte d'équilibrage selon l'invention ;
    • la figure 8 est une vue analogue à la figure 5, pour une variante de réalisation de la masselotte d'équilibrage selon l'invention ;
    • la figure 9 représente, en coupe axiale, deux étages successifs d'un rotor de turbomachine, munis de masselottes d'équilibrage selon l'invention ;
    • la figure 10 est une vue en coupe transversale le long de la ligne D-D de la figure 9 ;
    • la figure 11 est une vue en coupe transversale le long de la ligne E-E de la figure 9 ;
    EXPOSÉ DÉTAILLÉ D'UN MODE DE RÉALISATION PARTICULIER
  • En se référant tout d'abord à la figure 5, il est représenté, en vue en perspective, une masselotte d'équilibrage 50 selon l'invention. Celle-ci présente globalement une forme oblongue s'étendant le long d'un axe longitudinal X. Un référentiel orthogonal local (X, Y, Z) lui est associé de telle sorte que le plan (Y, Z) soit un plan transversal médian de la masselotte d'équilibrage 50 et que le plan (Z, X) soit un plan longitudinal, perpendiculaire au plan médian (Y, Z).
  • La masselotte d'équilibrage 50 est représentée en coupe suivant le plan longitudinal (X, Z) sur la figure 6. Elle comporte trois parties successives, à savoir deux parties d'extrémité 62 raccordées l'une à l'autre par une partie intermédiaire 64. Les deux parties d'extrémité 62 présentent chacune une forme de pyramide ayant une base 70, un sommet 66 et quatre faces 56. La partie intermédiaire 64 présente une forme de parallélépipède ayant quatre faces 72 de mêmes dimensions. La partie intermédiaire 64 relie les deux bases 70 des deux parties d'extrémité, de manière continue et régulière, parallèlement à l'axe longitudinal X sur lequel sont alignés les deux sommets 66. Les faces 72 de la partie intermédiaire 64 sont dans le prolongement des faces 56 respectives des parties d'extrémité 62.
  • La masselotte d'équilibrage 50 présente des sections transversales, perpendiculaires à l'axe longitudinal X, ayant des formes carrées, comme illustré sur la figure 7 qui montre la masselotte d'équilibrage 50 en coupe suivant un plan transversal (Y, Z) correspondant à la ligne C-C de la figure 6, à la jonction entre la partie intermédiaire 64 et l'une des partie d'extrémité 62. Les axes Y et Z sont positionnés de telle sorte qu'il passent chacun par les centres de deux faces 72 opposées de la partie intermédiaire 64.
  • Entre ses différentes faces 56, 72, la masselotte d'équilibrage 50 présente de préférence des arêtes arrondies. Elle présente aussi de préférence des sommets 66 arrondis.
  • L'inclinaison des faces 56 des parties d'extrémité 62 est définie par un angle α, dont la valeur est établie en fonction des besoins. Cet angle α est compris dans une plage allant de 30 degrés à 60 degrés, de préférence dans une plage allant de 40 degrés à 55 degrés. De manière encore plus préférée, la valeur de l'angle α est établie à 45°.
  • Un avantage d'une masselotte d'équilibrage 50 ayant la forme qui vient d'être décrite réside dans le fait qu'elle présente plusieurs plans de symétrie, et conserve un même contour dans le plan longitudinal (Z, X) lorsqu'elle est pivotée de 90 degrés autour de l'axe longitudinal X.
  • La figure 8 montre une variante de réalisation de la masselotte d'équilibrage 50. Celle-ci présente un évidement 58, réalisé de préférence par usinage, afin de modifier et/ou d'optimiser sa masse. Sur l'exemple illustré, l'évidement 58 se présente sous la forme d'un trou traversant 58 orienté perpendiculairement à l'axe longitudinal X et passant par l'un ou l'autre des axes transversaux Y ou Z. La forme et la position de l'évidement 58 n'affectent pas le contour de la masselotte d'équilibrage 50 lorsqu'elle est vue dans l'un ou l'autre des plans transversaux (X, Y) ou (Z, X).
  • Un avantage de l'invention réside dans le fait qu'il est prévu une forme et des dimensions uniques pour toutes les masselottes d'équilibrage 50, quel que soit le disque 12, 32 sur lequel elles sont destinées à être installées. Cela permet de simplifier la fabrication des masselottes d'équilibrage, et de réduire les coûts de cette fabrication.
  • La masselotte d'équilibrage selon l'invention est réalisée de préférence en un matériau choisi dans le groupe constitué par les alliages base nickel, les alliages base titane, les alliages base aluminium et les aciers.
  • Sur la figure 9 est représenté en coupe axiale un rotor 10 de turbomachine conforme à l'invention, et plus particulièrement deux disques 12, 32 correspondant à deux étages N, N-1 successifs de ce rotor 10.
  • Des alvéoles 14 qui reçoivent chacune le pied 16 d'une aube amovible 18 sont réparties à la périphérie du disque 12 de l'étage N. Une masselotte d'équilibrage 50 conforme à l'invention est disposée dans un intervalle 20 ménagé entre deux pieds 16 successifs. De manière analogue, des alvéoles 34 qui reçoivent chacune le pied 36 d'une aube amovible 38 sont réparties à la périphérie du disque 32 de l'étage N-1. Une masselotte d'équilibrage 50 conforme à l'invention est disposée dans un intervalle 40 ménagé entre deux pieds 36 successifs.
  • La figure 10 représente une vue en coupe transversale suivant la ligne D-D de la figure 9, du disque 32 de l'étage N du rotor 10 de la figure 9, montrant plus particulièrement deux aubes amovibles adjacentes 18, 18' ayant respectivement des pieds d'aubes 16, 16', et une masselotte d'équilibrage 50 disposée dans l'intervalle 20 ménagé entre ceux-ci.
  • De manière analogue, la figure 11 représente une vue en coupe transversale suivant la ligne E-E de la figure 9, du disque 32 de l'étage N-1 du rotor 10 de la figure 9, montrant plus particulièrement deux aubes amovibles adjacentes 38, 38' ayant respectivement des pieds d'aubes 36, 36', et une masselotte d'équilibrage 50 disposée dans l'intervalle 40 ménagé entre ceux-ci.
  • Toutes les masselottes 160 du disque 114 de l'étage N sont identiques entre elles. De manière analogue, toutes les masselottes 180 du disque 134 de l'étage N-1 sont identiques entre elles. De plus, les masselottes 50 disposées dans le disque d'étage N (figure 10 et partie gauche de la figure 9) sont identiques aux masselottes d'équilibrage 50 disposées dans le disque d'étage N-1 (figure 11 et partie droite de la figure 9).
  • Les masselottes d'équilibrage 50, 50 sont positionnées entre deux pieds d'aube 16, 16', 36, 36' successifs dans l'intervalle 20, 40 (figures 10, 11), de telle manière que deux faces actives 56, 56 de chaque masselotte 50 soient en contact avec deux flancs actifs 4, 4 de l'alvéole 14, 34 correspondante, par effet centrifuge lorsque le rotor 10 est entraîné en rotation (figure 9). Les deux faces actives 56, 56 qui viennent en contact avec les flancs actifs 4, 4 de l'alvéole 14, 34 correspondante sont symétrique l'une de l'autre par rapport au plan médian de symétrie (Y, Z) de la masselotte d'équilibrage 50. Comme le montrent plus particulièrement les figures 10 et 11, les intervalles 20, 40 ont sensiblement une forme carrée dans un plan transversal du disque 12, 32. En choisissant un polygone à quatre côtés égaux, c'est-à-dire un carré, pour définir la section de la partie intermédiaire 64, on prévient une rotation éventuelle de la masselotte d'équilibrage 50 ne se déplace pas en rotation autour de son axe longitudinal X une fois qu'elle est en place dans l'alvéole 14, 34. Par suite, les risques de blesser l'alvéole 14, 34 et ou la masselotte 50 sont réduits. Ces risques sont encore réduits du fait que la masselotte d'équilibrage 50 est dotée d'arêtes 68 arrondies et de sommets 66 arrondis.
  • Du fait de sa forme particulière ayant deux plan de symétrie longitudinaux (Y, Z) et (Z, X), chaque masselotte d'équilibrage 50 peut être disposée dans l'intervalle 20, 40 sans qu'il soit nécessaire de prévoir un sens d'introduction particulier et/ou des reliefs de détrompage. En effet, toutes les faces 56 des parties d'extrémité 62 sont identiques. Elles peuvent donc toutes remplir le rôle de face active venant en contact avec un flanc actif 4, 4 de l'alvéole 14, 34 correspondante. Par conséquent, une même forme de masselotte d'équilibrage peut être envisagée pour tous les disques d'un rotor qui doivent être équilibrés. Il suffit de choisir les dimensions de la masselotte d'équilibrage commune de telle sorte qu'elle puisse entrer dans l'alvéole qui a la plus faible dimension radiale, c'est-à-dire l'alvéole 34 du disque 32 d'étage N-1, à droite sur la figure 9. Par conséquent, une telle masselotte d'équilibrage 50 procure un gain de temps au moment du montage des disques 12, 32.
  • L'invention n'est pas limitée au mode de réalisation précédemment décrit. En particulier, le nombre de faces de chaque pyramide n'est pas limité à quatre.

Claims (22)

  1. Masselotte d'équilibrage (50) d'un rotor (10) de turbomachine, caractérisée en ce qu'elle comporte deux parties d'extrémité (62) en forme de pyramide ayant chacune une base (70) et un sommet (66), et une partie intermédiaire (64) qui relie entre elles les deux bases (70) des parties d'extrémité (62).
  2. Masselotte d'équilibrage (50) selon la revendication 1, caractérisée en ce que lesdits deux sommets (66) sont alignés sur un axe longitudinal (X).
  3. Masselotte d'équilibrage (50) selon la revendication 2, caractérisée en ce qu'elle comporte un plan de symétrie (Y, Z) perpendiculaire audit axe longitudinal (X).
  4. Masselotte d'équilibrage (50) selon l'une quelconque des revendications 1 à 3, caractérisée en ce qu'elle présente un évidement (58).
  5. Masselotte d'équilibrage (50) selon la revendication 4, caractérisée en ce que ledit évidement (58) se présente sous la forme d'un trou traversant orienté selon une direction perpendiculaire à un axe longitudinal (X) qui relie les deux sommets (66).
  6. Masselotte d'équilibrage (50) selon l'une quelconque des revendications 2 à 5, caractérisée en ce que les deux parties d'extrémité (62) et la partie intermédiaire (64) présentent, en coupe selon un plan (Y, Z) perpendiculaire audit axe longitudinal (X), des sections ayant des formes de polygones centrées sur ledit axe longitudinal (X).
  7. Masselotte d'équilibrage (50) selon la revendication 6, caractérisée en ce que lesdits polygones sont des polygones à quatre côtés, de sorte que chaque partie d'extrémité (62) présente une forme de pyramide à quatre faces et que la partie intermédiaire (64) présente une forme de parallélépipède.
  8. Masselotte d'équilibrage (50) selon la revendication 7, caractérisée en ce que lesdits polygones à quatre côtés sont des rectangles.
  9. Masselotte d'équilibrage (50) selon la revendication 7, caractérisée en ce que lesdits polygones à quatre côtés sont des carrés.
  10. Masselotte d'équilibrage (50) selon la revendication 9, caractérisée en ce qu'elle présente huit faces actives (56) qui sont les huit faces (56) des deux parties d'extrémité (62).
  11. Masselotte d'équilibrage (50) selon l'une quelconque des revendications 1 à 10, caractérisée en ce qu'elle présente des arêtes arrondies et des sommets arrondis.
  12. Masselotte d'équilibrage (50) selon l'une quelconque des revendications 1 à 11, caractérisée en ce qu'elle est réalisée dans un matériau choisi dans le groupe constitué par les alliages base nickel, les alliages base titane, les alliages base aluminium et les aciers.
  13. Disque de rotor d'une turbomachine, caractérisé en ce qu'il est doté d'au moins une masselotte d'équilibrage (50) selon l'une quelconque des revendications 1 à 12.
  14. Disque de rotor (12, 32) d'une turbomachine, ledit disque (12, 32) comportant des alvéoles (14, 34) dans lesquelles sont insérés des pieds d'aubes (16, 16', 36, 36') entre lesquels est ménagé un intervalle (20, 40) suivant une direction tangentielle du disque (12, 32), et lesdites alvéoles (14, 34) ayant deux flancs actifs (4, 4), caractérisé en ce qu'il est doté d'au moins une masselotte d'équilibrage (50) selon l'une quelconque des revendications 1 à 12 disposée dans ledit intervalle (20, 40).
  15. Disque de rotor (12, 32) selon la revendication 14, caractérisé en ce que ladite masselotte d'équilibrage (50) comporte deux faces actives (56, 56) disposées sur l'une des parties d'extrémité (62).
  16. Disque de rotor (12, 32) selon la revendication 15, caractérisé en ce que ces deux faces actives (56, 56) sont symétriques l'une de l'autre par rapport à un plan médian (Y, Z) perpendiculaire à un axe longitudinal (X) qui relie les deux sommets (66) de la masselotte (50).
  17. Disque de rotor (12, 32) selon la revendication 16, caractérisé en ce que lesdites faces actives (56, 56) sont destinées à venir en contact respectivement avec l'un des flancs actifs (4, 4) de l'alvéole (114, 134) lorsque ledit disque de rotor (112, 132) est entraîné en rotation.
  18. Rotor (10) de turbomachine, caractérisé en ce qu'il comporte au moins un disque de rotor (12, 32) selon l'une quelconque des revendications 13 à 17.
  19. Turbomachine, caractérisée en ce qu'elle comporte au moins une masselotte d'équilibrage (50) selon l'une quelconque des revendications 1 à 12.
  20. Turbomachine, caractérisée en ce qu'elle comporte au moins un disque de rotor (12, 32) selon l'une quelconque des revendications 13 à 17.
  21. Moteur d'aéronef, caractérisé en ce qu'elle comporte au moins une masselotte d'équilibrage (50) selon l'une quelconque des revendications 1 à 12.
  22. Moteur d'aéronef, caractérisé en ce qu'elle comporte au moins un disque de rotor (12, 32) selon l'une quelconque des revendications 13 à 17.
EP07100274.5A 2006-01-13 2007-01-09 Masselotte d'équilibrage, disque de rotor en étant équipé, rotor et moteur d'aéronef les comportant Active EP1808573B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0650125A FR2896289B1 (fr) 2006-01-13 2006-01-13 Masselotte d'equilibrage, disque de rotor en etant equipe, rotor et moteur d'aeronef les comportant

Publications (2)

Publication Number Publication Date
EP1808573A1 true EP1808573A1 (fr) 2007-07-18
EP1808573B1 EP1808573B1 (fr) 2013-08-07

Family

ID=36997380

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07100274.5A Active EP1808573B1 (fr) 2006-01-13 2007-01-09 Masselotte d'équilibrage, disque de rotor en étant équipé, rotor et moteur d'aéronef les comportant

Country Status (7)

Country Link
US (1) US7753651B2 (fr)
EP (1) EP1808573B1 (fr)
JP (1) JP5019888B2 (fr)
CN (1) CN101008322B (fr)
CA (1) CA2573034C (fr)
FR (1) FR2896289B1 (fr)
RU (1) RU2433275C2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2946076A1 (fr) * 2013-01-18 2015-11-25 Snecma Société Anonyme Vis, dispositif et procédé d'équilibrage pour pièce tournante de turbomachine
EP2253800A3 (fr) * 2009-05-19 2017-05-17 Rolls-Royce plc Rotor équilibré pour moteur de turbine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2939470B1 (fr) * 2008-12-10 2011-01-07 Snecma Soufflante pour turbomachine comprenant un systeme d'equilibrage a trous borgnes de logement de masses
GB201203303D0 (en) * 2012-02-27 2012-04-11 Rolls Royce Plc Balancing of rotor
US9404367B2 (en) * 2012-11-21 2016-08-02 Solar Turbines Incorporated Gas turbine engine compressor rotor assembly and balancing system
RU2529279C1 (ru) * 2013-04-11 2014-09-27 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" Рабочее колесо компрессора турбомашины
JP6648293B2 (ja) * 2016-02-19 2020-02-14 ヴェークマン アウトモーティブ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトWEGMANN automotive GmbH & Co. KG 車両ホイール用の自己接着バランスウェイト
RU175943U1 (ru) * 2016-09-19 2017-12-25 Публичное акционерное общество "Научно-производственное объединение "Сатурн" Ротор турбины
FR3073045B1 (fr) * 2017-10-26 2019-11-22 Safran Aircraft Engines Procede d'equilibrage d'un ensemble d'aubes
FR3096734B1 (fr) * 2019-05-29 2021-12-31 Safran Aircraft Engines Ensemble pour turbomachine
EP3976929A1 (fr) * 2019-05-29 2022-04-06 Safran Aircraft Engines Ensemble pour turbomachine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2358545A1 (fr) * 1976-07-16 1978-02-10 Snecma Perfectionnements aux dispositifs d'equilibrage de rotors
US5018943A (en) * 1989-04-17 1991-05-28 General Electric Company Boltless balance weight for turbine rotors
EP1052424A2 (fr) * 1999-05-10 2000-11-15 General Electric Company Dispositif et méthode pour équilibrer un rotor d'une turbine
US20050191181A1 (en) * 2004-02-06 2005-09-01 Snecma Moteurs Rotor disk balancing device, disk fitted with such a device and rotor with such a disk

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957270A (en) * 1974-06-24 1976-05-18 The Raymond Lee Organization, Inc. Game: whispering stick
US4093226A (en) * 1976-10-19 1978-06-06 The Raymond Lee Organization, Inc. Dinkey game
JPS5412604U (fr) * 1977-06-29 1979-01-26
US4355957A (en) * 1981-06-18 1982-10-26 United Technologies Corporation Blade damper
JPS59164854U (ja) * 1983-04-19 1984-11-05 株式会社東芝 バランス重錘
JPS6078901U (ja) * 1983-11-04 1985-06-01 株式会社東芝 タ−ボ流体機械の釣合い装置
US4872812A (en) * 1987-08-05 1989-10-10 General Electric Company Turbine blade plateform sealing and vibration damping apparatus
US5156528A (en) * 1991-04-19 1992-10-20 General Electric Company Vibration damping of gas turbine engine buckets
US6042336A (en) * 1998-11-25 2000-03-28 United Technologies Corporation Offset center of gravity radial damper
GB0109033D0 (en) * 2001-04-10 2001-05-30 Rolls Royce Plc Vibration damping
US6769877B2 (en) * 2002-10-18 2004-08-03 General Electric Company Undercut leading edge for compressor blades and related method
US20050265846A1 (en) * 2004-06-01 2005-12-01 Przytulski James C Balance assembly for rotary turbine component and method for installing and/or adjusting balance weight
DE102005030716A1 (de) * 2005-07-01 2007-01-04 Arnold Umformtechnik Gmbh & Co.Kg Auswuchtgewicht

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2358545A1 (fr) * 1976-07-16 1978-02-10 Snecma Perfectionnements aux dispositifs d'equilibrage de rotors
US5018943A (en) * 1989-04-17 1991-05-28 General Electric Company Boltless balance weight for turbine rotors
EP1052424A2 (fr) * 1999-05-10 2000-11-15 General Electric Company Dispositif et méthode pour équilibrer un rotor d'une turbine
US20050191181A1 (en) * 2004-02-06 2005-09-01 Snecma Moteurs Rotor disk balancing device, disk fitted with such a device and rotor with such a disk

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253800A3 (fr) * 2009-05-19 2017-05-17 Rolls-Royce plc Rotor équilibré pour moteur de turbine
EP2946076A1 (fr) * 2013-01-18 2015-11-25 Snecma Société Anonyme Vis, dispositif et procédé d'équilibrage pour pièce tournante de turbomachine
EP2946076B1 (fr) * 2013-01-18 2021-06-09 Safran Aircraft Engines Dispositif et procédé d'équilibrage pour une pièce tournante de turbomachine

Also Published As

Publication number Publication date
CN101008322B (zh) 2011-04-13
US7753651B2 (en) 2010-07-13
EP1808573B1 (fr) 2013-08-07
CA2573034A1 (fr) 2007-07-13
CN101008322A (zh) 2007-08-01
CA2573034C (fr) 2014-02-25
FR2896289A1 (fr) 2007-07-20
RU2433275C2 (ru) 2011-11-10
JP2007187164A (ja) 2007-07-26
US20100135774A1 (en) 2010-06-03
JP5019888B2 (ja) 2012-09-05
FR2896289B1 (fr) 2008-03-28
RU2007101133A (ru) 2008-07-20

Similar Documents

Publication Publication Date Title
EP1808573B1 (fr) Masselotte d'équilibrage, disque de rotor en étant équipé, rotor et moteur d'aéronef les comportant
EP0463955B1 (fr) Dispositif de fixation d'une couronne de révolution sur un disque de turbomachine
EP2009245B1 (fr) Rotor de soufflante
CA2931769C (fr) Soufflante pour une turbomachine
CA2746979C (fr) Roue de turbine avec systeme de retention axiale des aubes
CA2635635A1 (fr) Dispositif de retenue axiale d'aubes montees sur un disque de rotor de turbomachine
EP3074639B1 (fr) Soufflante, en particulier pour une turbomachine, et flasque pour ladite soufflante
EP1895103B1 (fr) Aube de rotor d'une turbomachine
EP2488725A1 (fr) Roue de turbine equipee d'un jonc de retenue axiale verrouillant des pales par rapport a un disque
FR3021693B1 (fr) Plateforme pour roue aubagee
EP3201438B1 (fr) Aube mobile de turbomachine, comprenant un ergot engageant une entaille de blocage d'un disque de rotor
CA2943461C (fr) Piece de revolution pour un rotor de turbomachine
EP1855011B1 (fr) Ensemble pour compresseur de moteur d'aéronef comprenant des aubes à attache marteau à pied incliné
WO2017144807A1 (fr) Moyeu d'hélice à pales à calage variable avec variation radiale et axiale de dimensionnement
FR3107922A1 (fr) Clinquant pour aube mobile de turbomachine
FR3070183B1 (fr) Turbine pour turbomachine
FR3081520A1 (fr) Disque ameliore de soufflante de turbomachine
WO2017162975A1 (fr) Plateforme, disque et ensemble de soufflante
FR3100836A1 (fr) Aubes mobiles pour turbine
FR3117534A1 (fr) Rotor de soufflante à aubes à calage variable.
FR3102796A1 (fr) Plateformes inter-aubes
EP4352336A1 (fr) Roue de rotor pour une turbomachine d'aéronef
FR3021694B1 (fr) Plateforme pour roue aubagee
FR3121706A1 (fr) Clinquant a languettes pour pied d’aube de rotor de turbomachine
FR3087484A1 (fr) Aube de turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071219

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20081211

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007032075

Country of ref document: DE

Effective date: 20131002

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007032075

Country of ref document: DE

Effective date: 20140508

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 18