EP1805469B1 - Flachrohr für wärmetauscher - Google Patents

Flachrohr für wärmetauscher Download PDF

Info

Publication number
EP1805469B1
EP1805469B1 EP05800345.0A EP05800345A EP1805469B1 EP 1805469 B1 EP1805469 B1 EP 1805469B1 EP 05800345 A EP05800345 A EP 05800345A EP 1805469 B1 EP1805469 B1 EP 1805469B1
Authority
EP
European Patent Office
Prior art keywords
flat tube
foregoing
projecting part
longitudinal wall
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05800345.0A
Other languages
English (en)
French (fr)
Other versions
EP1805469A1 (de
Inventor
Jürgen Hägele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP1805469A1 publication Critical patent/EP1805469A1/de
Application granted granted Critical
Publication of EP1805469B1 publication Critical patent/EP1805469B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • B21C37/0803Making tubes with welded or soldered seams the tubes having a special shape, e.g. polygonal tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • B21C37/083Supply, or operations combined with supply, of strip material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/151Making tubes with multiple passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0391Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making

Definitions

  • the present invention relates to a flat tube for a heat exchanger, in particular for a motor vehicle.
  • Heat exchangers in motor vehicles such as in motor vehicle air conditioners, in the prior art, in addition to collecting devices for a refrigerant flat tubes, which are provided for forwarding the refrigerant or other fluids.
  • the EP 0 854 343 shows such flat tubes, which have on their outer side considerable external cavities, which are reduced by a complex process.
  • EP 1 106 949 and EP 0 829 316 disclose multi-channel flat tubes with protrusions.
  • the present invention is therefore an object of the invention to provide a flat tube, which has projections in its interior and at the same time largely avoids recesses or recesses on its outer side in the region of the projections.
  • a flat tube is understood to mean a tube that is configured in cross-section such that it far exceeds a further expansion direction in an expansion direction.
  • a longitudinal wall of the flat tube is understood to mean that wall which runs along one of the longitudinal sides. Under a formed of the material of the longitudinal wall projection is understood such a projection that is not subsequently applied to the wall, but - in particular, but not exclusively - is formed by a molding process from the wall itself.
  • the region of the projection is understood to mean that geometric region of the corresponding longitudinal wall in which the projection is formed. Under essentially flat is understood that the outer profile in the region of the projections has only recesses with a small cross-sectional area.
  • the projection is in contact with the other longitudinal wall, that is, the projection is formed on a longitudinal wall and contacts the opposite longitudinal wall. In this way, substantially separate channels can be created within the flat tube from each other.
  • the flat tube has two curved end sections on.
  • at least one end portion is bent through substantially 180 degrees to cause the two Longitudinal walls are arranged substantially parallel with respect to each other.
  • the second end portion can also be bent to close the flat tube in another way, for example, in the course of the manufacturing process, the respective end portions of the base material can be partially bent by a predetermined angle, and then joined together at this point.
  • a plurality of projections are formed on a longitudinal wall of the material of the longitudinal wall.
  • projections are formed on both longitudinal walls of the material of the longitudinal walls. In this case, in a further preferred embodiment, all the projections contact the respectively opposite longitudinal wall. In this way it can be achieved that in the manufactured state, the flat tube is formed with a plurality of mutually substantially separated chambers.
  • the distances between the projections can be selected such that the finished flat tube has channels with a substantially constant cross-sectional area.
  • the projections in such a way that they do not contact the opposite longitudinal wall, but rather a further projection arranged on the opposite longitudinal wall.
  • At least one projection preferably has a plurality of, more preferably all projections, a substantially symmetrical profile. This means that the projection has an axis of symmetry substantially perpendicular to the plane of the longitudinal wall has, with respect to which the projection is formed substantially axially symmetrical.
  • the flat tubes have a depth of between 0.5 mm and 5 mm, preferably between 0.8 mm and 4 mm and particularly preferably between 1 mm and 3 mm. These respective depths depend on the actual applications in the heat exchangers to be manufactured.
  • At least one wall has a wall thickness between 0.05 mm and 0.8 mm, preferably between 0.07 mm and 0.6 mm, and more preferably between 0.1 mm and 0.5 mm.
  • the corresponding projections are preferably adapted, wherein in particular also procedural framework conditions are to be considered.
  • the present invention is further directed to a method of manufacturing a multi-channel flat tube for a heat exchanger.
  • a projection having a predetermined profile is produced from a material strip by means of a first shaping unit and a second shaping unit interacting with the first shaping unit.
  • the profile of the projection is changed by means of a third shaping unit and a fourth shaping unit interacting with the third shaping unit.
  • a change in the profile is understood to mean that predetermined geometric changes are made to the projection or its cross section.
  • a shaping unit is understood to mean a device which acts on the material to be processed in such a way that its shape is changed at least locally.
  • the shaping units are preferably rollers that rotate relative to one another.
  • the first and the second shaping unit are designed as mutually rotating upper and lower rollers, between which the material to be processed is arranged.
  • the third and fourth shaping unit are corresponding roles, between which the material to be processed is arranged.
  • the rollers are designed so that a role is limited by lateral conclusions of the other role, to prevent in this way a broadening of the material strip to be processed in the course of the deformation process.
  • the rollers have a substantially cylindrical profile.
  • the change of the profile in at least one method step preferably consists in reducing its height and / or width. Preferably, both the height and the width of the projection during this process step is reduced. In this way it can be achieved that the outer side of the flat tube is leveled in the region of the projection, that is, a recess is reduced in this area.
  • the profile of the projection is further changed.
  • the height is preferred and / or reduces the width of the profile.
  • a plurality of method steps are provided in succession, in which the profile of the projection is changed continuously, wherein this change in each case at least in the reduction of the width or the height of the profile.
  • the profile of the projection is changed in at least four, more preferably in at least six process steps.
  • the number of process steps is limited by the efficiency offered both in terms of manufacturing costs, as well as in terms of time.
  • a pre-centering of the projection is carried out in a further method step. This is preferred over a preference.
  • the rotatable rollers, through which the material is passed have a substantially constant distance from one another.
  • the material to be processed has a substantially constant wall thickness or thickness.
  • the material of the roller is preferably matched to the material to be processed such that a diffusion of material particles is prevented.
  • the width of the material strip is preferably reduced.
  • the material is fed to the rolls in the form of strips of predetermined dimensions. Below the width of the material strip is understood to mean the expansion in the direction of the roller axis.
  • the width of the material strip remains constant in at least one method step. In these process steps, a change in shape of the projection is achieved substantially without the use of further material from the vicinity of the projection.
  • a plurality of projections are formed from the strip of material.
  • the required amount of additional material can preferably be obtained by reducing the length of the strip in a first method step.
  • the projections are preferably formed at predetermined distances from each other.
  • the projections are chosen such that the flat tube produced in this way substantially has a plurality of channels with substantially the same cross-section.
  • different protrusions are subjected to different shaping steps.
  • a curved section is preferably produced.
  • a curvature of 180 degrees is created so as to arrange the longitudinal walls substantially parallel to each other.
  • Fig. 1 the individual process steps of a method according to the invention for producing a projection are shown.
  • the individual process steps are marked with the Arabic numbers 1 to 6.
  • the respective lower case letters a) to f) denote the width of the material, that is the material strip, during the manufacturing process.
  • the capital letters A to F mark the end points of the material strip.
  • Fig. 1 illustrated method represents only one possible variant of the method according to the invention. According to the invention, further method steps can also be provided or individual method steps can be omitted.
  • the reference character L denotes the center line, preferably the axis of symmetry of the protrusion 9a to 9f produced.
  • pre-centering of the projection 9a is performed by a preference. This is particularly advantageous if the projections or webs with high heights H A to H F to be generated.
  • the strip of material or the strip 7 is reshaped in the area Z shown.
  • the respective shaping units that is to say preferably the rollers, have a bead-like shape.
  • the height H B generated in method step 2 represents the maximum height H max of the projection 9 b , which is at least partially reduced in the course of further method steps.
  • stages 2 to 6 the unwinding of the neutral fiber in zone Z remains almost constant. This means that in the region Z always substantially the same amount of material is supplied to the shaping units or the rollers. This is achieved by a corresponding design of the respective shaping stages in steps 2 to 6 by maintaining the respective total strip widths.
  • the widths of the strip b to f thus remain substantially constant in the process steps 2 to 6.
  • the material strip 7 is preferably held with suitable tools at the respective end points B to F.
  • both the height H and the width of the projection 9 decreases, and the respective flanks 25 are steeper. Also, the radius of curvature at the tip of the respective projection 9a to 9f decreases in the course of the process. This means that the material which by reducing the height and width is saved, is essentially added by the fact that the surface of the recess 11 is continuously reduced below the projection.
  • the width of the strip between the starting point 33 and the end point 34 during the method steps 2 to 6 preferably remains substantially constant.
  • a closure of the projection or the recess 11 below the projection 11 must be achieved, that is, the respective flanks 29 of the projection are pressed against each other.
  • the material 7 in the region of the projection is substantially completely covered by the corresponding regions of the shaping units.
  • the projection which is still open in method step 4 can be closed by folding, gathering or squeezing.
  • the height H D or H E is substantially reduced, but the total strip width.
  • the risk of burr formation between the squeezing tools would have to be counteracted, and in addition, no ideally reduced ridge outer cavity 11 is achieved.
  • the strip width b to f does not remain constant, at least partially. If this procedure is followed, when compressing the projection, material or strip material can flow back into the band width, that is, out of the region of the projection.
  • One possible consequence is that too little material is available for closing the outer cavity 11 in further method steps, or more material has to be brought forward in the first stages. In this case, even stronger thinning of the material strip 7 and a higher risk of cracking occur.
  • the required ridge height may not be achieved and the process will be more sensitive to variations in strip material properties.
  • a final height H F is achieved, which is less than the height H E in step 5.
  • the area 11, which is still present in step 5 substantially closed and therefore the smooth outer profile according to the invention reached.
  • the bandwidth or total width of the strip e is also not further reduced, that is, the bandwidth f and the bandwidth e are substantially the same.
  • Fig. 2a shows the shaping units for carrying out the method according to the invention, which is an upper roller 21 and a lower roller 22. Between these rollers, the flat tube material or the material strip 7 is arranged, which is pulled in this way from the rollers through the rollers.
  • the lower roller 22 has a machining projection 25 and the upper roller 21 a with respect to their shape to the machining projection 25 adapted recess. It would also be possible, conversely, to provide the upper roller with a projection and the lower roller with a recess.
  • the recess 26 and the machining projection 25 are adapted to each other so that between them the material with a predetermined thickness or thickness S can be passed.
  • Fig. 2a shows the pair of rollers 21, 22 in the processing step 2 from Fig. 1 that is, the machining projection 25 and the recess 26 are adapted so that the resulting projection has the height H B.
  • gaps 13a and 13b are provided. During the first process step material of the strip is still drawn into the area of the upper roll.
  • Fig. 2b shows the pair of rollers for the process step 4.
  • the recess 26 is designed such that the projection reaches the illustrated height H D.
  • the lower roller 22 has here no more machining projection.
  • the gaps 13a and 13b between the upper roller 21 and the lower roller 22 are now in width with respect to in Fig. 2a reduced device shown.
  • the lower roller 22 is, for example, according to the strip width b of processing step 4 from Fig. 1 designed.
  • Fig. 2c is the device for the in Fig. 1 shown method step 6 shown.
  • the lower roller 22 also has no machining projection and only the upper roller 21 has a recess 26. This recess is adapted so that the final height H F of the projection 9 results.
  • the gap widths 13a and 13b are chosen to be minimal, that is, the material or the band must be completely covered by the two rollers 21 and 22, so that the projection 9 can be reshaped such that the region 11 below the projection 9 can be substantially completely closed and in this way also in the region of the projection 9 a smooth Outside (here underside) of the material 7 results.
  • Fig. 3 shows the method, in the event that multiple projections - more precisely, an even number of projections - to be generated.
  • the individual method steps have been identified here by the reference symbols I to VIII.
  • a trough 31 generated.
  • the generation of this trough is particularly advantageous if the projections to be produced are to have a comparatively large initial height H B.
  • two projections 9a and 9b are produced.
  • an upper roller with a corresponding recess and a lower roller with a correspondingly adapted machining projection are preferably used.
  • the bandwidth is reduced from method step I with a strip width a to method step II to a strip width b and in method step III to a strip width c.
  • two further projections 9c and 9d are produced by suitably adapted upper and lower rollers.
  • the strip width c in method step III is reduced to the strip width d in method step IV.
  • the lower roller preferably has machining projections in the region of the projections to be newly produced.
  • the further inside and then the further outward protrusions are generated.
  • This is advantageous because it allows material from the respective outer regions of the material strip to be used to produce the new protrusions and prevents material from being drawn in from the regions of other already produced protrusions.
  • it is also possible to provide or produce several projections instead of the projection shown here.
  • the in Fig. 3 shown process steps only as an example. It would also be possible to provide significantly more process steps, as well as several forming processes.
  • the method step IV can also be supplemented by further method steps in order to produce additional projections or webs.
  • a flat tube is shown, which by the in Fig. 3 sketched method can be produced.
  • the flat tube 1 results in cross section through a deformation of the in Fig. 3 strip shown under VIII. there the strip is bent 180 degrees in an area between the projections 9a and 9b, and further at the respective end portions so as to achieve the curved portions 18 and 19;
  • the reference numerals 14 and 15 refer to the resulting longitudinal walls, which are arranged substantially parallel to each other.
  • the projections 9a to 9d can be arranged to contact the respective opposite wall (in the case of the projections 9b and 9d the wall 15, and in the case of the projections 9a and 9c the wall 14).
  • the projections 9a to 9d or their end portions are soldered to the respective opposite longitudinal wall.
  • the two bent end portions 18 and 19 are sealed together.
  • FIG. 5 For example, the process steps I to VIII are shown to produce a flat tube having an odd number of protrusions, more specifically, three protrusions in this case.
  • Reference numeral 41 also refers here to a substantially flat or smooth strip of material, that is a smooth belt, which has the width a.
  • process step II is - similarly as in process step II at Fig. 3 - Produces a projection 9a.
  • This projection is transformed into method step III, wherein in this method step the strip width a is first reduced to the width b, and this again to the width c, that is, the width c is less than the width b and the width b less than the width a.
  • two further projections 9b and 9c are produced.
  • the generations of the individual projections 9a, 9b and 9c are staggered, that is, while in the case of the projection 9a, the first deformation has already taken place, the portions 9b and 9c have been produced first.
  • the strip width d is further reduced with respect to the strip width c.
  • the inner and then the outer projections are preferably formed first.
  • step V the three projections 9a, 9b and 9c are further formed.
  • the strip width remains essentially constant, that is, the bandwidth e substantially corresponds to the bandwidth d.
  • step VI a further forming process of the type described above takes place, that is, the height of the individual projections 9a, 9b and 9c is reduced, as well as their width; instead, the flanks are made steeper and thus the radii of curvature at the tip of the projection lower.
  • a further method step VII the projections are narrowed even further in order finally to be closed in method step VIII.
  • the individual strip widths e, f, g and h remain substantially constant.
  • corner folds 42a and 42b are bent.
  • Fig. 6 a flat tube is shown, which consists of the in Fig. 5 shown lowest strip results. Unlike the in Fig. 4 shown embodiment, the end portions are not arranged in the region of the curvatures 17 or 18, but in the central region. That's exactly what it's about the respective bent-up folds 42a and 42b. These are welded or soldered together and thus provide another advantage.
  • the individual projections 9a to 9c and the projection resulting from the end folds 42a and 42b contact the respectively opposite longitudinal wall of the flat tube.
  • a flat tube with five channels This in Fig. 5 illustrated method (step I-VIII) can be used in general for flat tubes with an odd number of protrusions, while the in Fig. 3 shown method is preferably used for flat tubes with an even number of projections use.
  • the formation of the Endfalze 42a, 42b according to Fig. 6 or the Endfalze 18, 19 according to Fig. 4 is, however, largely possible regardless of the number of projections in particular in a known manner.
  • Fig. 7 a flat tube according to the invention is shown, wherein the individual dimensions serve to illustrate.
  • the illustration of the smooth or even outer surface of the flat tube according to the invention that is, the representation of the minimized surface 11 under the projection 9, has been dispensed with. Also, the flanks of the projection were not shown compressed.
  • the reference a refers to the distance of the webs along a longitudinal wall.
  • the reference character K denotes the distance between two adjacent webs, which may form a chamber.
  • Reference T denotes the thickness of the flat tube.
  • the thickness T is preferably between 1 mm and 3 mm.
  • the chamber or channel size is chosen here in about half as large as the web distance (distance of the projections) a.
  • the minimum pitch is in this embodiment at least twice as large as the width T. Therefore, the minimum chamber size or channel size is at least as large or larger than the thickness T.
  • projections 9 are attached only to the longitudinal wall 14, which contact the longitudinal wall 15.
  • the land distance a substantially coincides with the chamber or channel size K.
  • the minimum web distance a is greater than the thickness T, which is also due here by the manufacturing process. Since the web distance a coincides with the channel size K, the channel size is at least twice as large as the thickness T of the flat tube.
  • the individual projections 9 do not contact the respective opposite longitudinal wall 14 or 15, but on the opposite longitudinal wall in turn attached projections 9. This means that contact the ends of the projections approximately in the middle of the flat tube.
  • the channel size K is substantially equal to the land distance a. However, in this case the minimum web spacing is greater than or equal to the thickness T of the flat tube. This also applies to the chamber size or channel size K.
  • Fig. 10 shows an enlarged view of a projection 9 according to the invention, in which the dimensions are shown in detail.
  • To the in Fig. 10 To reach the final shape shown are provided between four and ten steps in which each of the projections are formed. The number of process steps to be used depends on the height H F to be achieved , the wall thickness or strip thickness t and the material properties. If a plurality of projections, or webs to be generated, but far more process steps may be necessary.
  • R is the upper radius of curvature
  • X is the width of the projection at its tip
  • Y is the width of the projection 9 at its base
  • R F is the radius of curvature at the base of the projection
  • R D is the radius of curvature of the recess 11.
  • the upper radius of curvature r F is in the invention between 0 and the wall thickness t, that is smaller than the wall thickness t.
  • the lower radius of curvature R F is less than twice the wall thickness t.
  • the upper width X of the projection is between one and a half times and twice the wall thickness t.
  • the lower width Y of the projection is between twice and two and a half times the wall thickness t, that is, the upper width X is smaller than the lower width Y, which results from the molding process.
  • the height of the projection H F is between the wall thickness t and ten times this wall thickness t.
  • the lower radius of the recess r D is smaller than the wall thickness t.
  • the wall thickness t is between 0.05 mm, 0.8 mm, preferably between 0.1 mm and 0.7 mm and, more preferably, between 0.1 mm and 0.5 mm. This means that a substantially smooth outer profile is understood as meaning a profile which is caused by radii of curvature r D which are smaller than the wall thickness t.
  • Fig. 11 shows a plan view of the flat tube according to the invention. This has only a single projection or web 9, and is therefore divided into two channels.
  • the ratio of the tube width b to the tube height H is between 10 and 30, preferably between 10 and 24.
  • the chamber or the channel size is between one third of the pipe width and half the pipe width.
  • the height of the projection H F is preferably between three times the wall thickness and eight times the wall thickness.
  • the lower radius of curvature rd is such that it is less than 0.75 times, preferably less than or equal to 0.5 times the wall thickness t.
  • the wall thickness is between 0.05 mm and 0.6 mm, preferably between 0.1 mm and 0.4 mm and, more preferably, between 0.15 mm and 0.3 mm. This leaves a recess 11 on the outside of the flat tube, which has an area of less than 0.01 mm 2 , preferably less than 0.006 mm 2 . This represents a significant improvement over the prior art.
  • recess 11 has an area of less than 0.1 mm 2 , preferably less than 0.07 mm 2 , which also represents a significant improvement over the prior art.
  • the flat tube as stated at the outset, can be soldered much more easily to the tubesheet and a dense connection can be achieved with considerably less effort.

Description

  • Die vorliegende Erfindung bezieht sich auf ein Flachrohr für einen Wärmetauscher, insbesondere für ein Kraftfahrzeug. Wärmetauscher in Kraftfahrzeugen, wie beispielsweise in Kraftfahrzeugklimaanlagen, weisen im Stand der Technik neben Sammeleinrichtungen für ein Kältemittel Flachrohre auf, die zur Weiterleitung des Kältemittels beziehungsweise anderer Fluide vorgesehen sind.
  • Diese Flachrohre sind dabei mit den Sammeleinrichtungen über Rohrböden oder dergleichen verbunden. Bei dieser Verbindung ist insbesondere auch auf die Dichtheit Wert zu legen.
  • Die aus dem Stand der Technik bekannten Flachrohre weisen in ihrem Inneren Stege beziehungsweise Vorsprünge auf, welche bewirken, dass das Flachrohr insgesamt mehrkanalig ausgeführt wird.
  • Diese aus dem Stand der Technik bekannten Stege bestehen aus beidseitig eingeformten Sicken oder einseitig eingeformten Stegen. Dabei weisen jedoch die Flachrohre an ihrer Außenseite im Bereich der Stege kein geschlossenes beziehungsweise glattes Profil auf. Dieses nicht glatte Außenprofil der Flachrohre führt dazu, dass bei dem Einfügen der Flachrohre in die Böden ein höherer Verfahrensaufwand betrieben werden muss, um eine fluiddichte Verbindung zu erreichen. Darüber hinaus werden im Stand der Technik die Stege an der Außenseite nicht ausreichend geschlossen, so dass es in der Verbindung zwischen dem Rohr und dem Boden an den verbliebenen Rohraußenhohlräumen zu Undichtigkeiten kommt. Daneben kommt es in einer verbleibenden Rinne an der Außenseite des Flachrohres zu Durchlegierungen beim Löten. Ferner müssen im Stand der Technik die in den Bereichen der Stege entstehenden Rohraußenhohlräume nach der Rohrherstellung an den Rohrenden aufwendig nachkalibriert werden, um außen glatte Rohre zu erreichen.
  • Die EP 0 854 343 zeigt derartige Flachrohre, welche an ihrer Außenseite erhebliche Außenhohlräume aufweisen, welche durch ein aufwendiges Verfahren vermindert werden.
  • Auch die EP 1 106 949 und EP 0 829 316 offenbaren mehrkanalige Flachrohre mit Vorsprünge.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Flachrohr zu schaffen, welches in seinem Inneren Vorsprünge aufweist und gleichzeitig an seiner Außenseite im Bereich der Vorsprünge Ausnehmungen oder Aussparungen weitgehend vermeidet.
  • Dies wird erfindungsgemäß durch ein Flachrohr nach Anspruch 1 sowie ein Verfahren zu dessen Herstellung nach Anspruch 13 erreicht. Bevorzugte Weiterbildungen des Flachrohres und des Verfahrens sind Gegenstand der Unteransprüche.
  • Das erfindungsgemäße mehrkanalige Flachrohr für einen Wärmetauscher, insbesondere für ein Kraftfahrzeug, weist eine erste Längswand, eine zweite Längswand, die der ersten Längswand im wesentlichen parallel gegenüber liegt, sowie wenigstens einen gebogenen Endabschnitt auf. Dabei ist an wenigstens einer Längswand an einer dem Fluidstrom im Inneren des Flachrohrs zugewandten Innenseite aus dem Material der Längswand ein Vorsprung ausgebildet. Erfindungsgemäß ist die Längswand an ihrer dem Fluid abgewandten Außenseite im Bereich des Vorsprungs im wesentlichen eben und weist eine Ausnehmung auf, wobei die Wandstärke t ist, rF ein oberer Krümmungsradius des Vorsprungs an dessen Spitze, RF ein unterer Krümmungsradius an dessen Basis, X die Breite des Vorsprungs an dessen Spitze, Y die Breite des Vorsprungs an dessen Basis und rD der Krümmungsradius der Ausnehmung ist, und mit HF als der Höhe des Vorsprungs, wobei folgendes gilt:
    • 0<rF<t,
    • RF<2t,
    • 1,5t<X<2t,
    • 2t<Y<2,5t,
    • rD<t,
    • t<HF<10t.
  • Unter einem mehrkanaligen Rohr wird verstanden, dass im Inneren des Rohres mehrere voneinander im wesentlichen getrennte Kanäle ausgebildet sind. Unter einem Flachrohr wird ein Rohr verstanden, dass im Querschnitt so ausgebildet ist, dass dieser in einer Ausdehnungsrichtung eine weitere Ausdehnungsrichtung bei weitem übertrifft.
  • Unter einer Längswand des Flachrohrs wird diejenige Wand verstanden, die entlang einer der Längsseiten verläuft. Unter einem aus dem Material der Längswand ausgebildeten Vorsprung wird ein solcher Vorsprung verstanden, der nicht nachträglich auf die Wand aufgebracht wird, sondern - insbesondere, aber nicht ausschließlich - durch ein Formgebungsverfahren aus der Wand selbst ausgebildet wird.
  • Unter dem Bereich des Vorsprungs wird derjenige geometrische Bereich der entsprechenden Längswand verstanden, in welchem der Vorsprung ausgebildet ist. Unter im wesentlichen eben wird verstanden, dass das Außenprofil im Bereich der Vorsprünge lediglich Ausnehmungen mit geringer Querschnittsfläche aufweist.
  • In einer weiteren bevorzugten Ausführungsform steht der Vorsprung in Kontakt mit der anderen Längswand, das heißt, der Vorsprung ist an einer Längswand ausgebildet und kontaktiert die gegenüberliegende Längswand. Auf diese Weise können voneinander im wesentlichen abgetrennte Kanäle innerhalb des Flachrohrs geschaffen werden.
  • Bei einer weiteren bevorzugten Ausführungsform weist das Flachrohr zwei gebogene Endabschnitte auf. Bevorzugt ist wenigstens ein Endabschnitt um im wesentlichen 180 Grad gebogen, um zu bewirken, dass die beiden Längswände bezüglich einander im wesentlichen parallel angeordnet sind. Der zweite Endabschnitt kann zum Abschließen des Flachrohrs auch in anderer Weise gebogen werden, denn beispielsweise können im Laufe des Herstellungsverfahrens die jeweiligen Endbereiche des Grundmaterials teilweise um einen vorgegebenen Winkel gebogen werden, um dann an dieser Stelle zusammengefügt zu werden.
  • Bei einer weiteren bevorzugten Ausführungsform sind an einer Längswand aus dem Material der Längswand mehrere Vorsprünge ausgebildet.
  • Bei einer weiteren bevorzugten Ausführungsform sind an beiden Längswänden aus dem Material der Längswände Vorsprünge ausgebildet. Dabei kontaktieren in einer weiteren bevorzugten Ausführungsform alle Vorsprünge die jeweils gegenüberliegende Längswand. Auf diese Weise kann erreicht werden, dass im hergestellten Zustand das Flachrohr mit mehreren gegeneinander im wesentlichen abgetrennten Kammern ausgebildet wird.
  • Dabei können die Abstände zwischen den Vorsprüngen derart gewählt werden, dass das fertiggestellte Flachrohr Kanäle mit im wesentlichen gleichbleibender Querschnittsfläche aufweist.
  • Bei einer weiteren bevorzugten Ausführungsform ist es auch möglich, die Vorsprünge so auszubilden, dass sie nicht die gegenüberliegende Längswand kontaktieren, sondern einen an der gegenüberliegenden Längswand angeordneten weiteren Vorsprung.
  • Bei einer weiteren bevorzugten Ausführungsform weist wenigstens ein Vorsprung bevorzugt mehrere, besonders bevorzugt alle Vorsprünge, ein im wesentlichen symmetrisches Profil auf. Dies bedeutet, dass der Vorsprung eine im wesentlichen senkrecht auf der Ebene der Längswand stehende Symmetrieachse aufweist, bezüglich derer der Vorsprung im wesentlichen achsensymmetrisch ausgebildet ist.
  • Bei einer weiteren bevorzugten Ausführungsform weisen die Flachrohre eine Tiefe zwischen 0,5 mm und 5 mm, bevorzugt zwischen 0,8 mm und 4 mm und besonders bevorzugt zwischen 1 mm und 3 mm auf. Diese jeweiligen Tiefen hängen von den tatsächlichen Anwendungen in den herzustellenden Wärmetauschern ab.
  • In einer weiteren bevorzugten Ausführungsform weist wenigstens eine Wand eine Wandstärke zwischen 0,05 mm und 0,8 mm, bevorzugt zwischen 0,07 mm und 0,6 mm und - besonders bevorzugt - zwischen 0,1 mm und 0,5 mm auf. In Abhängigkeit von dieser Wandstärke werden bevorzugt die entsprechenden Vorsprünge angepasst, wobei insbesondere auch verfahrenstechnische Rahmenbedingungen zu berücksichtigen sind.
  • Die vorliegende Erfindung ist ferner auf ein Verfahren zur Herstellung eines mehrkanaligen Flachrohres für einen Wärmetauscher gerichtet. Dabei wird in einem Verfahrensschritt ein Vorsprung mit einem vorgegebenen Profil aus einem Materialstreifen mittels einer ersten Formgebungseinheit und einer zweiten, mit der ersten Formgebungseinheit zusammenwirkenden Formgebungseinheit erzeugt.
  • In einem weiteren Verfahrensschritt wird das Profil des Vorsprungs mittels einer dritten Formgebungseinheit und einer vierten, mit der dritten Formgebungseinheit zusammenwirkenden Formgebungseinheit verändert.
  • Unter einer Veränderung des Profils wird verstanden, dass vorgegebene geometrische Veränderungen an dem Vorsprung beziehungsweise dessen Querschnitt vorgenommen werden.
  • Unter einer Formgebungseinheit wird eine Einrichtung verstanden, die derart auf das zu bearbeitende Material einwirkt, dass dessen Gestalt zumindest lokal verändert wird.
  • Bevorzugt handelt es sich bei den Formgebungseinheiten um gegeneinander drehbare Rollen. So sind bevorzugt die erste und die zweite Formgebungseinheit als sich gegeneinander drehende Ober- und Unterrollen ausgeführt, zwischen welchen das zu bearbeitende Material angeordnet ist. Auch bei der dritten und vierten Formgebungseinheit handelt es sich um entsprechende Rollen, zwischen denen das zu bearbeitende Material angeordnet ist. Bevorzugt werden die Rollen so ausgeführt, dass eine Rolle durch seitliche Abschlüsse der anderen Rolle begrenzt wird, um auf diese Weise eine Verbreiterung des zu bearbeitenden Materialstreifens im Laufe des Verformungsvorgangs zu verhindern.
  • In einer weiteren bevorzugten Ausführungsform weisen die Rollen ein im wesentlichen zylindrisches Profil auf.
  • Es wäre jedoch auch möglich, anstelle von Rollen zwei gegenüberliegende Auflagen vorzusehen, zwischen denen das Material gepresst beziehungsweise durchgezogen wird.
  • Bevorzugt besteht die Veränderung des Profils in wenigstens einem Verfahrensschritt darin, dass dessen Höhe und/oder Breite verringert wird. Bevorzugt wird sowohl die Höhe als auch die Breite des Vorsprungs während dieses Verfahrensschrittes verringert. Auf diese Weise kann erreicht werden, dass die Außenseite des Flachrohres im Bereich des Vorsprungs eingeebnet wird, das heißt, eine Ausnehmung in diesem Bereich verringert wird.
  • Bevorzugt wird in wenigstens einem weiteren Verfahrensschritt das Profil des Vorsprungs weiter verändert. Dabei wird bevorzugt wiederum die Höhe und/oder die Breite des Profils verringert. Bevorzugt wird eine Vielzahl von Verfahrensschritten hintereinander vorgesehen, in welchen das Profil des Vorsprungs kontinuierlich verändert wird, wobei diese Veränderung jeweils zumindest in der Verringerung der Breite oder der Höhe des Profils besteht. Diese Verfahrensschritte dienen jeweils dazu - wie oben gesagt - eine möglichst ebene Außenfläche des Flachrohrprofils im Bereich des Vorsprungs zu erreichen.
  • Bevorzugt wird in wenigstens vier, besonders bevorzugt in wenigstens sechs Verfahrensschritten das Profil des Vorsprungs verändert. Bei der Durchführung zu weniger Verfahrensschritte bestünde die Gefahr, dass das zu bearbeitende Material den dann nötigen massiven Umformungen nicht gewachsen wäre und es so zu Rissen und dergleichen kommen könnte. Nach oben ist die Anzahl der Verfahrensschritte durch die gebotene Effizienz sowohl im Hinblick auf die Herstellungskosten, als auch im Hinblick auf den zeitlichen Aufwand begrenzt.
  • Bei einem weiteren bevorzugten Verfahren wird in einem weiteren Verfahrensschritt eine Vorzentrierung des Vorsprungs vorgenommen. Dies wird über einen Vorzug bevorzugt bewältigt.
  • Bevorzugt weisen die drehbaren Rollen, durch welche das Material hindurchgeführt wird, einen im wesentlichen konstanten Abstand zueinander auf. Auf diese Weise wird erreicht, dass das zu bearbeitende Material eine im wesentlichen konstante Wandstärke, beziehungsweise Dicke, aufweist. Bevorzugt ist das Material der Rolle derart auf das zu bearbeitende Material abgestimmt, dass eine Diffusion von Materialpartikeln verhindert wird.
  • Bevorzugt wird bei wenigstens einem Verfahrensschritt die Breite des Materialstreifens vermindert. Das Material wird den Rollen in Form von Streifen mit vorgegebenen Dimensionen zugeführt. Unter der Breite des Materialstreifens wird dabei die Ausdehnung in Richtung der Rollenachse verstanden. Durch diese Vorgehensweise kann in besonders vorteilhafter Weise die Ausbildung des jeweiligen Vorsprungs erreicht werden. Bei einer weiteren bevorzugten Ausführungsform bleibt bei wenigstens einem Verfahrensschritt die Breite des Materialstreifens konstant. Bei diesen Verfahrensschritten wird eine Formveränderung des Vorsprungs im wesentlichen ohne Verwendung weiteren Materials aus der Umgebung des Vorsprungs erreicht.
  • Bevorzugt werden mehrere Vorsprünge aus dem Materialstreifen gebildet. Zu diesem Zweck kann bevorzugt in einem ersten Verfahrensschritt die benötigte Menge an zusätzlichem Material durch Verminderung der Länge des Streifens gewonnen werden.
  • Dabei werden bevorzugt die Vorsprünge in vorgegebenen Abständen zueinander ausgebildet. Bevorzugt werden die Vorsprünge derart gewählt, dass das auf diese Weise hergestellte Flachrohr im wesentlichen mehrere Kanäle mit im wesentlichen gleichem Querschnitt aufweist.
  • Bevorzugt werden in wenigstens einem Verfahrensschritt verschiedene Vorsprünge unterschiedlichen Formgebungsstufen unterworfen. Damit ist gemeint, dass ein bestimmter Vorsprung bereits in seiner Form angepasst wird, während ein weiterer Vorsprung erst gebildet wird oder ein Vorsprung bereits seine endgültige Form erhält, während ein weiterer Vorsprung noch in einem Zwischenschritt in seiner Form angepasst wird.
  • Auf diese Weise kann unter Umständen erreicht werden, dass mehrere Vorsprünge mit wenigen Umformschritten so hergestellt werden, dass bereits vor- oder fertiggeformte Vorsprünge in ihrer Form nicht mehr verändert werden.
  • Bevorzugt wird bei einem weiteren Verfahrensschritt ein gekrümmter Abschnitt erzeugt. Bevorzugt wird eine Krümmung von 180 Grad erzeugt, um auf diese Weise die Längswände im wesentlichen parallel gegenüberliegend anzuordnen.
  • Weitere Vorteile und Ausführungsformen ergeben sich aus den beigefügten Zeichnungen.
  • Dabei zeigen:
    • Fig. 1 eine Darstellung des erfindungsgemäßen Verfahrens zur Erzeugung eines Vorsprungs;
    • Fig. 2a eine Darstellung der erfindungsgemäßen Formgebungseinheiten zur Herstellung eines Vorsprungs;
    • Fig. 2b eine Darstellung der Formgebungseinheiten zur Veränderung des Profils des Vorsprungs;
    • Fig. 2c eine Darstellung der Formgebungseinheiten zur weiteren Veränderung des Profils des Vorsprungs;
    • Fig. 3 eine Darstellung zur Veranschaulichung des Herstellungsverfahrens für die Erzeugung einer geraden Anzahl von Vorsprüngen;
    • Fig. 4 ein durch das in Fig. 3 dargestellte Verfahren fertiggestelltes Flachrohr;
    • Fig. 5 eine Figur zur Veranschaulichung der Herstellung eines Flachrohrs mit einer ungeraden Anzahl von Vorsprüngen;
    • Fig. 6 ein durch ein Verfahren nach Fig. 5 hergestelltes Flachrohr;
    • Fig. 7 ein erfindungsgemäßes Flachrohr in einer ersten Ausführungsform;
    • Fig. 8 ein erfindungsgemäßes Flachrohr in einer zweiten Ausführungsform;
    • Fig. 9 ein erfindungsgemäßes Flachrohr in einer dritten Ausführungsform;
    • Fig. 10 eine vergrößerte Darstellung eines Vorsprungs zur Veranschaulichung der geometrischen Verhältnisse; und
    • Fig. 11 ein erfindungsgemäßes Flachrohr zur Veranschaulichung der geometrischen Verhältnisse.
  • In Fig. 1 sind die einzelnen Verfahrensschritte eines erfindungsgemäßen Verfahrens zur Erzeugung eines Vorsprungs dargestellt. Die einzelnen Verfahrensschritte sind mit den arabischen Ziffern 1 bis 6 gekennzeichnet. Die jeweiligen Kleinbuchstaben a) bis f) bezeichnen die Breite des Materials, das heißt des Materialstreifens, während des Herstellungsverfahrens. Die Großbuchstaben A bis F kennzeichnen die Endpunkte des Materialstreifens.
  • Es wird darauf hingewiesen, dass das in Fig. 1 dargestellte Verfahren lediglich eine mögliche Variante des erfindungsgemäßen Verfahrens wiedergibt. Erfindungsgemäß können auch weitere Verfahrensschritte vorgesehen werden oder einzelne Verfahrensschritte weggelassen werden.
  • Das Bezugszeichen L kennzeichnet die Mittellinie, bevorzugt die Symmetrieachse des erzeugten Vorsprungs 9a bis 9f. In dem optionalen Verfahrensschritt 1a wird durch einen Vorzug eine Vorzentrierung des Vorsprungs 9a vorgenommen. Dies ist insbesondere dann vorteilhaft, wenn die Vorsprünge beziehungsweise Stege mit großen Höhen HA bis HF erzeugt werden sollen. Im Verfahrensschritt 2 wird der Materialstreifen beziehungsweise das Band 7 in dem dargestellten Bereich Z umgeformt. Zu diesem Zweck weisen die jeweiligen Formgebungseinheiten, das heißt bevorzugt die Rollen, eine sickenähnliche Form auf. Durch die Erzeugung des Vorsprungs 9b im Verfahrensschritt 2 wird die Gesamtbreite b des Streifens 7 erzeugt, wobei die Gesamtbreite b geringer ist als die Gesamtbreite a, beziehungsweise die Gesamtbreite a' in den Verfahrensschritten 1 und 1a.
  • Die im Verfahrensschritt 2 erzeugte Höhe HB stellt die Maximalhöhe Hmax des Vorsprungs 9b dar, die im Laufe weiterer Verfahrensschritte zumindest teilweise noch verringert wird.
  • In den Stufen 2 bis 6 bleibt die Abwicklung der neutralen Faser im Bereich Z nahezu konstant. Dies bedeutet, dass in dem Bereich Z immer im wesentlichen die gleiche Materialmenge den Formgebungseinheiten beziehungsweise den Rollen zugeführt wird. Dies wird durch eine entsprechende Auslegung der jeweiligen Formungsstadien in den Schritten 2 bis 6 durch Beibehaltung der jeweiligen Gesamtstreifenbreiten erreicht.
  • Die Breiten des Streifens b bis f bleiben also in den Verfahrensschritten 2 bis 6 im wesentlichen konstant. Um die Gesamtstreifenbreiten b bis f konstant zu halten, wird der Materialstreifen 7 bevorzugt mit geeigneten Werkzeugen an den jeweiligen Endpunkten B bis F festgehalten.
  • Während der Verfahrensstufen 2 bis 6 findet damit im wesentlichen lediglich eine Umformung des Vorsprungs 9 statt. Im einzelnen nimmt sowohl die Höhe H, als auch die Breite des Vorsprungs 9 ab, und die jeweiligen Flanken 25 verlaufen steiler. Auch der Krümmungsradius an der Spitze des jeweiligen Vorsprungs 9a bis 9f verringert sich im Laufe des Verfahrens. Dies bedeutet, dass dasjenige Material, welches durch Verringerung der Höhe und der Breite eingespart wird, im wesentlichen dadurch hinzugefügt wird, dass die Fläche der Ausnehmung 11 unterhalb des Vorsprungs stetig verringert wird.
  • Anders ausgedrückt, bleibt die Breite des Streifens zwischen dem Anfangspunkt 33 und dem Endpunkt 34 während der Verfahrensschritte 2 bis 6 bevorzugt im wesentlichen konstant. Während der Verfahrensschritte 5 und 6 muss eine Schließung des Vorsprungs beziehungsweise der Ausnehmung 11 unterhalb des Vorsprunges 11 erreicht werden, das heißt, die jeweiligen Flanken 29 des Vorsprungs werden aneinander gepresst. Zu diesem Zweck wird das Material 7 im Bereich des Vorsprungs im wesentlichen vollständig von den entsprechenden Bereichen der Formgebungseinheiten umfasst.
  • Im Verfahrensschritt 5 kann alternativ auch der im Verfahrensschritt 4 noch offene Vorsprung durch zusammenfalten, raffen oder quetschen geschlossen werden. Bei einer derartigen Vorgehensweise wird jedoch nicht die Höhe HD beziehungsweise HE wesentlich reduziert, sondern die Gesamtstreifenbreite. In diesem Fall müsste auch der Gefahr einer Gratbildung zwischen den quetschenden Werkzeugen entgegengewirkt werden, und daneben wird auch kein ideal verminderter Stegaußenhohlraum 11 erreicht.
  • Ferner ist es auch möglich, in dem Bereich Z eine Änderung der Streifenbreite auch in wenigstens einem der Verfahrensschritte 3 bis 6 zu erlauben, das heißt, in den Verfahrensschritten 3 bis 6 bleibt, zumindest teilweise, auch die Streifenbreite b bis f nicht konstant. Wird nach dieser Variante vorgegangen, kann beim Komprimieren des Vorsprungs Material beziehungsweise Bandmaterial zurück in die Bandbreite, das heißt, aus dem Bereich des Vorsprungs heraus, fließen. Eine mögliche Folge besteht darin, dass in weiteren Verfahrensschritten zu wenig Material zur Schließung des Außenhohlraums 11 zur Verfügung steht oder in den ersten Stufen mehr Material vorgezogen werden muss. In diesem Fall können auch stärkere Ausdünnungen des Materialstreifens 7 sowie eine höhere Gefahr von Rissbildung auftreten. Ferner kann unter Umständen die erforderliche Steghöhe nicht erreicht werden, und der Prozess wird insgesamt empfindlicher gegenüber Schwankungen der Streifenmaterialeigenschaften.
  • In dem hier gezeigten Verfahrensschritt 6 wird eine endgültige Höhe HF erreicht, welche geringer ist, als die Höhe HE im Verfahrensschritt 5. Gleichzeitig wird der Bereich 11, der im Verfahrensschritt 5 noch vorhanden ist, im wesentlichen geschlossen und daher das erfindungsgemäße glatte Außenprofil erreicht.
  • Die Bandbreite beziehungsweise Gesamtbreite des Streifens e wird ebenfalls nicht weiter reduziert, das heißt, die Bandbreite f und die Bandbreite e sind im wesentlichen gleich.
  • Fig. 2a zeigt die Formgebungseinheiten zur Durchführung des erfindungsgemäßen Verfahrens, bei welchem es sich um eine obere Rolle 21 sowie eine untere Rolle 22 handelt. Zwischen diesen Rollen ist das Flachrohrmaterial beziehungsweise der Materialstreifen 7 angeordnet, welcher auf diese Weise von den Rollen durch die Rollen hindurchgezogen wird. Die untere Rolle 22 weist einen Bearbeitungsvorsprung 25 auf und die obere Rolle 21 eine hinsichtlich ihrer Gestalt an den Bearbeitungsvorsprung 25 angepasste Ausnehmung. Es wäre auch möglich, umgekehrt die obere Rolle mit einem Vorsprung und die untere Rolle mit einer Ausnehmung zu versehen.
  • Die Ausnehmung 26 und der Bearbeitungsvorsprung 25 sind so aneinander angepasst, dass zwischen Ihnen das Material mit einer vorgegebenen Dicke beziehungsweise Stärke S hindurchgeführt werden kann.
  • Fig. 2a zeigt das Rollenpaar 21, 22 bei dem Bearbeitungsschritt 2 aus Fig. 1, das bedeutet, dass der Bearbeitungsvorsprung 25 und die Ausnehmung 26 so angepasst sind, dass der entstehende Vorsprung die Höhe HB aufweist.
  • Zwischen der oberen Rolle 21 und der unteren Rolle 22 sind Spalte 13a und 13b vorgesehen. Während des ersten Verfahrensschritts wird Material des Streifens noch in den Bereich der Oberrolle eingezogen.
  • Fig. 2b zeigt das Rollenpaar für den Verfahrensschritt 4. In diesem Fall ist die Ausnehmung 26 derart ausgelegt, dass der Vorsprung die dargestellte Höhe HD erreicht. Die untere Rolle 22 weist hier keinen Bearbeitungsvorsprung mehr auf. Die Spalte 13a und 13b zwischen der Oberrolle 21 und der Unterrolle 22 sind mittlerweile in ihrer Breite gegenüber der in Fig. 2a gezeigten Vorrichtung verringert. Die Unterrolle 22 ist beispielsweise gemäß der Streifenbreite b von Bearbeitungsschritt 4 aus Fig. 1 ausgelegt.
  • Beim Komprimieren läuft der Materialstreifen beziehungsweise das Band gegen die Unterrolle. Dabei müssen die Breiten des Streifens, sobald die in Fig. 2a gezeigte Höhe HB erreicht wurde, in der Folge im wesentlichen beziehungsweise möglichst konstant gehalten werden, damit kein Bereich des Streifens aus dem Bereich des Vorsprungs in den ebenen Bereich 7b des Streifens fließt.
  • In Fig. 2c ist die Vorrichtung für den in Fig. 1 gezeigten Verfahrensschritt 6 dargestellt. In diesem Fall weist die untere Rolle 22 ebenfalls keinen Bearbeitungsvorsprung mehr auf, und lediglich die Oberrolle 21 weist noch eine Ausnehmung 26 auf. Diese Ausnehmung ist so angepasst, dass sich die endgültige Höhe HF des Vorsprungs 9 ergibt.
  • Neben dem in Fig. 2c gezeigten Verfahrensschritt werden die Spaltbreiten 13a und 13b minimal gewählt, das heißt, das Material beziehungsweise das Band muss komplett von den beiden Rollen 21 und 22 umfasst werden, damit der Vorsprung 9 derartig umgeformt werden kann, dass der Bereich 11 unterhalb des Vorsprungs 9 im wesentlichen vollständig geschlossen werden kann und sich auf diese Weise auch im Bereich des Vorsprungs 9 eine glatte Außenseite (hier Unterseite) des Materials 7 ergibt.
  • Fig. 3 zeigt das Verfahren, für den Fall, dass mehrere Vorsprünge - genauer gesagt, eine gerade Anzahl von Vorsprüngen - erzeugt werden soll. Die einzelnen Verfahrensschritte wurden hier mit den Bezugszeichen I bis VIII gekennzeichnet.
  • In einem ersten optionalen Schritt I wird durch entsprechend angepasste Ober- und Unterrollen, das heißt, Rollen, welche einen Bearbeitungsvorsprung sowie eine Ausnehmung, wie in Fig. 2 gezeigt, aufweisen, eine Mulde 31 erzeugt. Die Erzeugung dieser Mulde ist insbesondere dann vorteilhaft, wenn die zu erzeugenden Vorsprünge eine vergleichsweise große Anfangshöhe HB aufweisen sollen.
  • In Verfahrensschritt II werden zwei Vorsprünge 9a und 9b erzeugt. Dazu wird bevorzugt eine Oberrolle mit entsprechender Ausnehmung sowie eine Unterrolle mit entsprechend angepasstem Bearbeitungsvorsprung verwendet. Es ist jedoch auch möglich, eine Unterrolle ohne Bearbeitungsvorsprung in diesem Verfahrensschritt vorzusehen.
  • Die Bandbreite reduziert sich vom Verfahrensschritt I mit einer Streifenbreite a hin zum Verfahrensschritt II auf eine Streifenbreite b und im Verfahrensschritt III auf eine Streifenbreite c. Es ist jedoch auch möglich, im Verfahrensschritt III lediglich eine Umformung der Vorsprünge 9 vorzunehmen, das heißt in diesem Fall, die Streifenbreite c gegenüber der Streifenbreite b im wesentlichen konstant zu halten.
  • In Verfahrensschritt IV werden durch geeignet angepasste Ober- und Unterrollen zwei weitere Vorsprünge 9c und 9d erzeugt. Zu diesem Zweck wird die Streifenbreite c im Verfahrensschritt III auf die Streifenbreite d im Verfahrensschritt IV reduziert. Bevorzugt weist die Unterrolle zu diesem Zweck im Bereich der neu zu erzeugenden Vorsprünge Bearbeitungsvorsprünge auf.
  • Bevorzugt werden bei der Erzeugung der Vorsprünge zunächst die weiter innen liegenden und anschließend die weiter außen liegenden Vorsprünge erzeugt. Dies ist vorteilhaft, da so Material aus den jeweiligen Außenbereichen des Materialstreifens zur Erzeugung der neuen Vorsprünge verwendet werden kann und verhindert wird, dass Material aus den Bereichen anderer bereits erzeugter Vorsprünge eingezogen wird. Es ist jedoch auch möglich, anstelle des hier gezeigten Vorsprungs auch mehrere Vorsprünge vorzusehen beziehungsweise zu erzeugen. Auch sind die in Fig. 3 gezeigten Verfahrensschritte nur beispielhaft. Ebenso wäre es möglich, wesentlich mehr Verfahrensschritte vorzusehen, sowie auch mehrere Umformungsprozesse.
  • In den Verfahrensschritten VI bis VIII findet wiederum die bereits in Fig. 1 dargestellte Umformung der einzelnen Vorsprünge statt, wobei jeweils wieder - wie in Fig. 1 gezeigt - die Flanken steiler sowie die Krümmungsradien an der Spitze des Vorsprungs kleiner werden und die Höhen und Breiten der Vorsprünge reduziert werden. Dabei werden die gesamten Streifenbreiten, wie f, g und h, im wesentlichen konstant gehalten, wie bereits unter Bezug auf Fig. 1 erläutert.
  • Der Verfahrensschritt IV kann auch durch weitere Verfahrensschritte ergänzt werden, um zusätzliche Vorsprünge beziehungsweise Stege zu erzeugen.
  • In Fig. 4 ist ein Flachrohr gezeigt, welches durch das in Fig. 3 skizzierte Verfahren hergestellt werden kann. Das Flachrohr 1 ergibt sich im Querschnitt durch eine Umformung des in Fig. 3 unter VIII. gezeigten Streifens. Dabei wird der Streifen in einem Bereich zwischen den Vorsprüngen 9a und 9b um 180 Grad gebogen und ferner auch an den jeweiligen Endbereichen, um auf diese Weise die gekrümmten Bereiche 18 und 19 zu erzielen. Die Bezugszeichen 14 und 15 beziehen sich dabei auf die entstehenden Längswände, die im wesentlichen parallel zueinander angeordnet sind.
  • Durch weitere Formgebungsverfahren, wie beispielsweise Walzprofilieren, können die Vorsprünge 9a bis 9d so angeordnet werden, dass sie die jeweils gegenüberliegende Wand (im Falle der Vorsprünge 9b und 9d die Wand 15, und im Falle der Vorsprünge 9a und 9c die Wand 14) kontaktieren.
  • Bevorzugt werden die Vorsprünge 9a bis 9d beziehungsweise deren Endbereiche mit der jeweils gegenüberliegenden Längswand verlötet. Ebenso werden die beiden gebogenen Endbereiche 18 und 19 miteinander dichtverlötet. Durch die Erzeugung der hier gezeigten vier Vorsprünge 9a bis 9d wird ein Flachrohr mit insgesamt fünf Kanälen realisiert.
  • In Fig. 5 sind die Verfahrensschritte I bis VIII zur Erzeugung eines Flachrohrs mit einer ungeraden Anzahl von Vorsprüngen, genauer gesagt, in diesem Fall drei Vorsprüngen, dargestellt. Bezugszeichen 41 bezieht sich auch hier auf einen im wesentlichen ebenen beziehungsweise glatten Materialstreifen, das heißt ein Glattband, welches die Breite a aufweist.
  • In Verfahrensschritt II wird - ähnlich wie im Verfahrensschritt II bei Fig. 3 - ein Vorsprung 9a erzeugt. Dieser Vorsprung wird in Verfahrensschritt III umgeformt, wobei bei diesem Verfahrensschritt die Streifenbreite a zunächst auf die Breite b, und diese wiederum auf die Breite c, reduziert wird, das heißt, die Breite c ist geringer als die Breite b und die Breite b geringer als die Breite a.
  • In Verfahrensschritt IV werden zwei weitere Vorsprünge 9b und 9c erzeugt. In diesem Verfahren sind die Erzeugungen der einzelnen Vorsprünge 9a beziehungsweise 9b und 9c versetzt, das heißt, während im Falle des Vorsprungs 9a schon die erste Umformung stattgefunden hat, wurden die Abschnitte 9b und 9c erst erzeugt. Die Streifenbreite d wird dabei gegenüber der Streifenbreite c weiter verringert. Auch bei dieser Variante werden bevorzugt zuerst die innenliegenden und dann die außenliegenden Vorsprünge gebildet.
  • In Verfahrensschritt V werden die drei Vorsprünge 9a, 9b und 9c weiter geformt. Dabei bleibt die Streifenbreite im wesentlichen konstant, das heißt, die Bandbreite e entspricht im wesentlichen der Bandbreite d.
  • In Verfahrensschritt VI findet ein weiterer Umformungsprozess der oben beschriebenen Art statt, das heißt, die Höhe der einzelnen Vorsprünge 9a, 9b und 9c wird verringert, ebenso wie deren Breite; dafür werden die Flanken steiler ausgeführt und damit die Krümmungsradien an der Spitze des Vorsprungs geringer.
  • In einem weiteren Verfahrensschritt VII werden die Vorsprünge noch weiter verengt, um schließlich in Verfahrensschritt VIII geschlossen zu werden. Dabei bleiben die einzelnen Streifenbreiten e, f, g und h im wesentlichen konstant. Im letzten, an den Verfahrensschritt VIII anschließenden Verfahrensschritt werden Eckfalze 42a und 42b gebogen. Diese beiden Eckfalze führen zu der Erzeugung eines weiteren Vorsprungs, wobei Eckfalze auch in mehreren Verfahrensschritten erzeugbar sind.
  • In Fig. 6 ist ein Flachrohr gezeigt, welches sich aus dem in Fig. 5 gezeigten untersten Streifen ergibt. Anders als bei der in Fig. 4 gezeigten Ausführungsform sind hier die Endabschnitte nicht im Bereich der Krümmungen 17 oder 18 angeordnet, sondern im Zentralbereich. Genau handelt es sich dabei um die jeweils hochgebogenen Falze 42a und 42b. Diese werden miteinander verschweißt beziehungsweise verlötet und stellen auf diese Weise einen weiteren Vorsprung zur Verfügung.
  • Auch bei dieser Ausführungsform kontaktieren die einzelnen Vorsprünge 9a bis 9c sowie der sich aus den Endfalzen 42a und 42b ergebenden Vorsprung die jeweils gegenüberliegende Längswand des Flachrohrs. Auch bei dieser Ausführungsform entsteht ein Flachrohr mit fünf Kanälen. Das in Fig. 5 dargestellte Verfahren (Verfahrensschritt I-VIII) kann allgemein für Flachrohre mit einer ungeraden Anzahl von Vorsprüngen verwendet werden, während das in Fig. 3 gezeigte Verfahren bevorzugt für Flachrohre mit einer geraden Anzahl von Vorsprüngen Verwendung findet. Die Ausbildung der Endfalze 42a, 42b gemäß Fig. 6 beziehungsweise der Endfalze 18, 19 gemäß Fig. 4 ist dagegen weitestgehend unabhängig von der Anzahl der Vorsprünge insbesondere auf bekannte Art und Weise möglich.
  • In Fig. 7 ist ein erfindungsgemäßes Flachrohr dargestellt, wobei die einzelnen Dimensionen zur Veranschaulichung dienen. Dabei wurde zum besseren Verständnis auf die Darstellung der erfindungsgemäß glatten bzw. ebenen Außenfläche des Flachrohres, das heißt, auf die Darstellung der minimierten Fläche 11 unter dem Vorsprung 9 verzichtet. Auch wurden die Flanken des Vorsprungs nicht zusammengepresst dargestellt.
  • Das Bezugszeichen a bezieht sich auf den Abstand der Stege entlang einer Längswand. Das Bezugszeichen K bezeichnet den Abstand zweier benachbarter Stege, die unter Umständen eine Kammer bilden. Das Bezugszeichen T bezeichnet die Dicke des Flachrohres.
  • Bei der hier gezeigten Ausführungsform liegt die Dicke T bevorzugt zwischen 1 mm und 3 mm. Die Kammer beziehungsweise Kanalgröße ist hier in etwa halb so groß gewählt, wie der Stegabstand (Abstand der Vorsprünge) a. Der minimale Stegabstand ist bei dieser Ausführungsform wenigstens doppelt so groß, wie die Breite T. Daher ist die minimale Kammergröße beziehungsweise Kanalgröße wenigstens genauso groß oder größer als die Dicke T.
  • Bei der in Fig. 8 gezeigten Ausführungsform sind nur an der Längswand 14 Vorsprünge 9 angebracht, welche die Längswand 15 kontaktieren. In diesem Fall stimmt der Stegabstand a im wesentlichen mit der Kammer- beziehungsweise Kanalgröße K überein. Auch bei dieser Ausführungsform ist der minimale Stegabstand a größer als die Dicke T, was auch hier durch das Herstellungsverfahren bedingt ist. Da der Stegabstand a mit der Kanalgröße K übereinstimmt, ist auch die Kanalgröße wenigstens doppelt so groß wie die Dicke T des Flachrohres.
  • Bei der in Fig. 9 gezeigten Ausführungsform kontaktieren die einzelnen Vorsprünge 9 nicht die jeweils gegenüberliegende Längswand 14 beziehungsweise 15, sondern an der gegenüberliegenden Längswand ihrerseits angebrachte Vorsprünge 9. Dies bedeutet, dass sich die Enden der Vorsprünge in etwa in der Mitte des Flachrohres kontaktieren. Auch in diesem Fall ist, wie bei der Ausführungsform nach Fig. 8, die Kanalgröße K im wesentlichen gleich dem Stegabstand a. Der minimale Stegabstand ist jedoch in diesem Fall größer oder gleich der Dicke T des Flachrohres. Dies gilt auch für die Kammergröße beziehungsweise Kanalgröße K.
  • In einer weiteren (nicht gezeigten) Ausführungsform ist es auch denkbar, die einzelnen Vorsprünge so auszuführen, dass sie - im Gegensatz zu der in Fig. 9 gezeigten Ausführungsform - seitlich geringfügig gegeneinander versetzt sind, so dass sie sich nicht an ihren jeweiligen Enden kontaktieren, sondern an ihren Seitenflächen, wodurch eine erhöhte Verbindungsfläche erzielt werden kann.
  • Fig. 10 zeigt eine vergrößerte Darstellung eines erfindungsgemäßen Vorsprungs 9, bei welchem dessen Abmessungen im Einzelnen dargestellt sind. Um die in Fig. 10 gezeigte Endform zu erreichen, werden zwischen vier und zehn Verfahrensschritte vorgesehen, in welchen jeweils die Vorsprünge umgeformt werden. Die Anzahl der anzuwendenden Verfahrensschritte richtet sich nach der zu erreichenden Höhe HF, der Wandstärke beziehungsweise Streifendicke t sowie den Materialeigenschaften. Falls mehrere Vorsprünge, beziehungsweise Stege, erzeugt werden sollen, können jedoch noch weitaus mehr Verfahrensschritte nötig sein.
  • In Fig. 10 kennzeichnet rF den oberen Krümmungsradius, X die Breite des Vorsprungs an dessen Spitze, Y die Breite des Vorsprungs 9 an dessen Basis, RF den Krümmungsradius an der Basis des Vorsprungs und rD den Krümmungsradius der Ausnehmung 11. Die einzelnen Größen sind miteinander teilweise korreliert.
  • Die im Folgenden gezeigten Grenzen ergeben sich aus umfangreichen Löt- und Umformversuchen. Bei diesen Versuchen wurden nach einem festgelegten System die Parameter aufeinander abgestimmt und die Ergebnisse für die hier dargestellten Grenzen verwendet.
  • Der obere Krümmungsradius rF liegt bei der Erfindung zwischen 0 und der Wandstärke t, ist also kleiner als die Wandstärke t. Der untere Krümmungsradius RF ist kleiner als die zweifache Wandstärke t. Die obere Breite X des Vorsprungs liegt zwischen dem eineinhalbfachen und dem zweifachen der Wandstärke t. Die untere Breite Y des Vorsprungs liegt zwischen dem zweifachen und dem zweieinhalbfachen der Wandstärke t, das heißt, die obere Breite X ist kleiner als die untere Breite Y, was sich aus dem Ausformungsprozess ergibt.
  • Die Höhe des Vorsprungs HF liegt zwischen der Wandstärke t und dem zehnfachen dieser Wandstärke t. Auch der untere Radius der Ausnehmung rD ist kleiner als die Wandstärke t. Die Wandstärke t liegt zwischen 0,05 mm, 0,8 mm, bevorzugt zwischen 0,1 mm und 0,7 mm und, besonders bevorzugt, zwischen 0,1 mm und 0,5 mm. Dies bedeutet, dass unter einem im wesentlichen glatten Außenprofil ein solches Profil verstanden wird, welches durch Krümmungsradien rD bewirkt wird, welche kleiner als die Wandstärke t sind. Fig. 11 zeigt eine Draufsicht auf das erfindungsgemäße Flachrohr. Dieses weist nur einen einzigen Vorsprung beziehungsweise Steg 9 auf, und wird daher in zwei Kanäle unterteilt.
  • Das Verhältnis aus der Rohrbreite b zur Rohrhöhe H liegt zwischen 10 und 30, bevorzugt zwischen 10 und 24.
  • Die Kammer- beziehungsweise die Kanalgröße liegt zwischen einem Drittel der Rohrbreite und der halben Rohrbreite.
  • Die Höhe des Vorsprungs HF liegt bevorzugt zwischen der dreifachen Wandstärke und der achtfachen Wandstärke. Der untere Krümmungsradius rd ergibt sich so, dass er kleiner ist als das 0,75-fache, bevorzugt kleiner oder gleich dem 0,5-fachen der Wandstärke t. Bei dieser Ausführungsform liegt die Wandstärke zwischen 0,05 mm und 0,6 mm, bevorzugt zwischen 0,1 mm und 0,4 mm und, besonders bevorzugt, zwischen 0,15 mm und 0,3 mm. Damit verbleibt eine Ausnehmung 11 an der Außenseite des Flachrohrs, welche eine Fläche von weniger als 0,01 mm2, bevorzugt weniger als 0,006 mm2 aufweist. Dies stellt eine erhebliche Verbesserung gegenüber dem Stand der Technik dar.
  • Die in Fig. 10 gezeigte Ausnehmung 11 weist eine Fläche von weniger als 0,1 mm2, bevorzugt weniger als 0,07 mm2 auf, was ebenfalls noch eine erhebliche Verbesserung gegenüber dem Stand der Technik darstellt.
  • Durch diese erhebliche Verminderung der Fläche der Ausnehmung 11 kann das Flachrohr, wie eingangs ausgeführt, wesentlich leichter mit dem Rohrboden verlötet werden und mit wesentlich geringerem Aufwand eine dichte Verbindung erreicht werden.

Claims (25)

  1. Mehrkanaliges Flachrohr (1) für einen Wärmetauscher, insbesondere für ein Kraftfahrzeug, mit einer ersten Längswand (14), einer zweiten Längswand (15), die der ersten Längswand (14) im wesentlichen parallel gegenüberliegt, wenigstens einem gebogenen Endabschnitt (17), wobei an wenigstens einer Längswand (14,15) an der einem Fluidstrom im Inneren des Flachrohrs zugewandten Innenseite aus dem Material der Längswand ein Vorsprung (9) ausgebildet ist, wobei an der dem Fluid abgewandten Außenseite die Längswand im Bereich des Vorsprungs (9) im Wesentlichen eben verläuft, und eine Ausnehmung (11) aufweist, wobei die Wandstärke t ist, RF ein unterer Krümmungsradius des Vorsprungs an dessen Basis, X die Breite des Vorsprungs an dessen Spitze, Y die Breite des Vorsprungs an dessen Basis und rD der Krümmungsradius der Ausnehmung (11) ist, und mit HF als der Höhe des Vorsprungs, dadurch gekennzeichnet, dass folgendes gilt:
    0 < rF < t,
    RF < 2t,
    1,5 t < X < 2t,
    2t < Y < 2,5 t,
    rD < t, und
    t < HF < 10 t,
    wobei rF ein oberer Krümmungsradius des Vorsprungs an dessen Spitze ist.
  2. Flachrohr nach Anspruch 1, dadurch gekennzeichnet, dass der an einer Längswand (14,15) ausgebildete Vorsprung (9) in Kontakt mit der anderen Längswand (15,14) steht.
  3. Flachrohr nach wenigstens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass dieses zwei gebogene Endabschnitte (17,18) aufweist.
  4. Flachrohr nach wenigstens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass an einer Längswand aus dem Material der Längswand mehrere Vorsprünge (9a, 9b, 9c, 9d) ausgebildet sind.
  5. Flachrohr nach wenigstens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass an beiden Längswänden (14,15) aus dem Material der Längswände (14,15) Vorsprünge (9) ausgebildet sind.
  6. Flachrohr nach wenigstens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass mehrere Vorsprünge (9a,9b,9c,9d), bevorzugt alle Vorsprünge die jeweils gegenüberliegende Längswand (15,14) kontaktieren.
  7. Flachrohr nach wenigstens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Vorsprung (9) an einer Längswand (14,15) einen Vorsprung an der gegenüberliegenden Längswand (15, 14) kontaktiert.
  8. Flachrohr nach wenigstens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Vorsprung (9) ein im wesentlichen symmetrisches Profil aufweist.
  9. Flachrohr nach wenigstens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Flachrohr eine Tiefe zwischen 0,5 mm und 5 mm, bevorzugt zwischen 0,8 mm und 4 mm und besonders bevorzugt zwischen 1 mm und 3 mm aufweist.
  10. Flachrohr nach wenigstens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Vorsprung eine Höhe HF zwischen dem drei- und achtfachen einer Wandstärke des Flachrohrs, insbesondere zwischen dem vier- und sechsfachen einer Wandstärke des Flachrohrs aufweist.
  11. Flachrohr nach wenigstens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass wenigstens eine Wand und bevorzugt das gesamte Flachrohr eine Wandstärke zwischen 0,05 mm und 0,8 mm, bevorzugt zwischen 0,07 mm und 0,6 mm und besonders bevorzugt zwischen 0,1 mm und 0,5 mm aufweist.
  12. Vorrichtung zum Austausch von Wärme mit wenigstens einem Flachrohr nach einem der vorangegangenen Ansprüche.
  13. Verfahren zur Herstellung eines mehrkanaligen Flachrohres nach einem der vorhergehenden Ansprüche 1 bis 11 für einen Wärmetauscher mit den Verfahrensschritten:
    Erzeugung eines Vorsprungs (9) mit vorgegebenem Profil aus einem Materialstreifen mittels einer ersten Formgebungseinheit (21) und einer zweiten mit der ersten Formgebungseinheit zusammenwirkenden Formgebungseinheit (22);
    Veränderung des Profils des Vorsprungs mittels einer dritten Formgebungseinheit und einer vierten mit der dritten Formgebungseinheit zusammenwirkenden Formgebungseinheit.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Formgebungseinheiten gegeneinander drehbare Rollen sind.
  15. Verfahren nach wenigstens einem der vorangegangenen Ansprüche 13 oder 14, dadurch gekennzeichnet, dass bei der Veränderung des Profils des Vorsprungs (9) dessen Höhe und/oder Breite verringert wird.
  16. Verfahren nach wenigstens einem der vorangegangenen Ansprüche 13 bis 15, dadurch gekennzeichnet, dass in wenigstens einem weiteren Verfahrensschritt das Profil des Vorsprungs (9) weiter verändert wird.
  17. Verfahren nach wenigstens einem der vorangegangenen Ansprüche 13 bis 16, dadurch gekennzeichnet, dass das Profil des Vorsprungs (9) in wenigstens vier, bevorzugt in wenigstens sechs Verfahrensschritten verändert wird.
  18. Verfahren nach wenigstens einem der vorangegangenen Ansprüche 13 bis 17, dadurch gekennzeichnet, dass in einem Verfahrensschritt eine Vorzentrierung des Vorsprungs (9) vorgenommen wird.
  19. Verfahren nach wenigstens einem der vorangegangenen Ansprüche 13 bis 18, dadurch gekennzeichnet, dass die drehbaren Rollen zueinander parallele Drehachsen aufweisen.
  20. Verfahren nach wenigstens einem der vorangegangenen Ansprüche 13 bis 19, dadurch gekennzeichnet, dass bei wenigstens einem Verfahrensschritt die Breite des Materialstreifens (7) vermindert wird.
  21. Verfahren nach wenigstens einem der vorangegangenen Ansprüche 13 bis 20, dadurch gekennzeichnet, dass bei wenigstens einem Verfahrensschritt die Breite des Materialstreifens (7) im wesentlichen konstant, insbesondere konstant bleibt.
  22. Verfahren nach wenigstens einem der vorangegangenen Ansprüche 13 bis 21, dadurch gekennzeichnet, dass mehrere Vorsprünge (9a, 9b, 9c, 9d) aus dem Materialstreifen (11) ausgebildet werden.
  23. Verfahren nach wenigstens einem der vorangegangenen Ansprüche 13 bis 22, dadurch gekennzeichnet, dass die Vorsprünge (9a, 9b, 9c, 9d) in vorgegebenen Abständen zueinander ausgebildet werden.
  24. Verfahren nach wenigstens einem der vorangegangenen Ansprüche 13 bis 23, dadurch gekennzeichnet, dass in wenigstens einem Verfahrensschritt die Vorsprünge (9a, 9b, 9c, 9d) unterschiedlichen Formgebungsstufen unterworfen werden.
  25. Verfahren nach wenigstens einem der vorangegangenen Ansprüche 13 bis 24, dadurch gekennzeichnet, dass in einem weiteren Verfahrensschritt ein gekrümmter Abschnitt erzeugt wird.
EP05800345.0A 2004-10-12 2005-10-11 Flachrohr für wärmetauscher Active EP1805469B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004049809A DE102004049809A1 (de) 2004-10-12 2004-10-12 Flachrohr für Wärmetauscher
PCT/EP2005/010904 WO2006040118A1 (de) 2004-10-12 2005-10-11 Flachrohr für wärmetauscher

Publications (2)

Publication Number Publication Date
EP1805469A1 EP1805469A1 (de) 2007-07-11
EP1805469B1 true EP1805469B1 (de) 2019-05-29

Family

ID=35520052

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05800345.0A Active EP1805469B1 (de) 2004-10-12 2005-10-11 Flachrohr für wärmetauscher

Country Status (6)

Country Link
US (1) US20070295490A1 (de)
EP (1) EP1805469B1 (de)
JP (1) JP2008516177A (de)
DE (1) DE102004049809A1 (de)
TR (1) TR201910994T4 (de)
WO (1) WO2006040118A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128600A (ja) * 2006-11-22 2008-06-05 Usui Kokusai Sangyo Kaisha Ltd フィン構造体およびその製造方法並びに該フィン構造体を用いた伝熱管
DE102007036300B4 (de) 2007-07-31 2019-07-04 Mahle International Gmbh Vorrichtung und Verfahren zur Prüfung, sowie Verfahren zur Herstellung eines Rohres
FR2923591B1 (fr) * 2007-11-09 2017-07-21 Valeo Systemes Thermiques Branche Thermique Moteur Tubes multicanaux pour un echangeur de chaleur brase
EP2306134B1 (de) * 2009-10-01 2012-05-30 Techspace Aero S.A. Verfahren zur Herstellung eines Wärmetauschers und durch dieses Verfahren erhaltener Wärmetauscher
JP2011099630A (ja) * 2009-11-06 2011-05-19 Mitsubishi Electric Corp 熱交換器及びこの熱交換器を用いた冷蔵庫、空気調和機
FR2962204B1 (fr) * 2010-06-30 2014-11-21 Valeo Systemes Thermiques Tube d'echangeur de chaleur, echangeur de chaleur comportant de tels tubes et procede d'obtention d'un tel tube.
US20120168435A1 (en) * 2011-01-04 2012-07-05 Cooler Master Co., Ltd. Folding vapor chamber
FR2973490B1 (fr) 2011-03-31 2018-05-18 Valeo Systemes Thermiques Tube pour echangeur thermique, echangeur thermique et procede d'obtention correspondants

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671520A (en) * 1979-11-13 1981-06-15 Nissan Motor Co Ltd Production of tube structural body
US4971240A (en) * 1989-11-21 1990-11-20 Wallis Bernard J Method and apparatus for forming heat exchanger tubes
US5186250A (en) * 1990-05-11 1993-02-16 Showa Aluminum Kabushiki Kaisha Tube for heat exchangers and a method for manufacturing the tube
JPH0420791A (ja) * 1990-05-11 1992-01-24 Showa Alum Corp 熱交換器用チューブ及びその製造方法
JPH05115934A (ja) * 1991-10-28 1993-05-14 Furukawa Alum Co Ltd 熱交換器用偏平管の製造方法
JP3311001B2 (ja) * 1991-12-27 2002-08-05 昭和電工株式会社 熱交換器用チューブの製造方法
JP3692654B2 (ja) * 1996-09-16 2005-09-07 株式会社デンソー 偏平チューブのロール成形方法及び装置
FR2757615B1 (fr) * 1996-12-24 1999-03-05 Valeo Thermique Moteur Sa Tube lamine, notamment pour un echangeur de chaleur de vehicule automobile
DE19719252C2 (de) * 1997-05-07 2002-10-31 Valeo Klimatech Gmbh & Co Kg Zweiflutiger und in Luftrichtung einreihiger hartverlöteter Flachrohrverdampfer für eine Kraftfahrzeugklimaanlage
US5934365A (en) * 1997-08-21 1999-08-10 Ford Motor Company Heat exchanger
FR2787180B1 (fr) * 1998-12-11 2001-03-02 Valeo Thermique Moteur Sa Tube plie pour echangeur de chaleur et procede pour sa conformation
US6286201B1 (en) * 1998-12-17 2001-09-11 Livernois Research & Development Co. Apparatus for fin replacement in a heat exchanger tube
US6209202B1 (en) * 1999-08-02 2001-04-03 Visteon Global Technologies, Inc. Folded tube for a heat exchanger and method of making same
JP3783996B2 (ja) * 1999-08-10 2006-06-07 株式会社ヴァレオサーマルシステムズ 熱交換器
US6241012B1 (en) * 1999-12-10 2001-06-05 Visteon Global Technologies, Inc. Folded tube for a heat exchanger and method of making same
US6988539B2 (en) * 2000-01-07 2006-01-24 Zexel Valeo Climate Control Corporation Heat exchanger
GB2361301B (en) * 2000-03-16 2003-10-08 Denso Corp Self clamping groove in a seamed tube
US6594897B2 (en) * 2000-07-25 2003-07-22 Mando Climate Control Corporation Method for manufacturing coolant tube of heat exchanger
JP2002143959A (ja) * 2000-11-13 2002-05-21 Zexel Valeo Climate Control Corp 熱交換器及び熱交換用チューブの製造方法
GB0101697D0 (en) * 2001-01-23 2001-03-07 Emerson & Renwick Ltd Heat exchanger tube
DE10212300A1 (de) * 2001-04-28 2002-11-14 Behr Gmbh & Co Gefalztes Mehrkammerflachrohr
WO2003033188A1 (fr) * 2001-10-10 2003-04-24 Zexel Valeo Climate Control Corporation Tube et echangeur de chaleur comprenant des tubes
DE10201511A1 (de) * 2002-01-17 2003-07-31 Behr Gmbh & Co Geschweißtes Mehrkammerrohr
DE10257767A1 (de) * 2002-12-10 2004-06-24 Behr Gmbh & Co. Kg Wärmeübertrager
US20050092476A1 (en) * 2003-10-31 2005-05-05 Valeo Inc Folded tube for a heat exchanger and method of making same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2006040118A1 (de) 2006-04-20
TR201910994T4 (tr) 2019-08-21
JP2008516177A (ja) 2008-05-15
US20070295490A1 (en) 2007-12-27
DE102004049809A1 (de) 2006-04-13
EP1805469A1 (de) 2007-07-11

Similar Documents

Publication Publication Date Title
EP1805469B1 (de) Flachrohr für wärmetauscher
EP0519334B1 (de) Flachrohrwärmetauscher, Herstellungsverfahren desselben, Anwendungen und Flachrohre zum Einbau in den Flachrohrwärmetauscher
DE19628280C2 (de) Wärmeübertragungsrohr mit einer gerillten Innenfläche
DE60203721T2 (de) Verfahren zur herstellung einer versetzten wellenförmigen rippe
DE102004045018B4 (de) Verfahren zur Herstellung eines flachen Rohres für einen Wärmetauscher eines Kraftfahrzeugs, flaches Rohr, Verfahren zur Herstellung eines Wärmetauschers und Wärmetauscher
DE3918312A1 (de) Flachrohrverfluessiger, herstellungsverfahren und anwendung
EP1196232B1 (de) Partikelfilter aus metallfolie
EP1253391A1 (de) Gefalztes Mehrkammerflachrohr
DE19639794C2 (de) Schlauchfassung und Verfahren zu deren Herstellung
DE102014108463A1 (de) Wärmeübertragerrohr und Verfahren zur Herstellung eines Wärmeübertragerrohrs
DE2813952A1 (de) Rohrboden aus metall, anwendungen und verwendung desselben sowie verfahren und vorrichtung zu seiner herstellung
DE102006002932A1 (de) Wärmetauscher und Herstellungsverfahren für Wärmetauscher
DE10030341C2 (de) Verfahren zur Herstellung eines hebelartigen Nockenfolgers
EP1630513B1 (de) Flachrohr für einen Wärmeübertrager, insbesondere für Kraftfahrzeuge und Verfahren zur Herstellung des Flachrohres
EP1509739B1 (de) Waerme-uebertrager und verfahren zu seiner herstellung
DE102005003933B4 (de) Dorn zum Strangpressen von Gegenständen und Verfahren zur Herstellung eines Strangpressproduktes
DE19944679C2 (de) Verfahren zur Herstellung eines hohlen Metallkörpers sowie eine Werkzeugform zur Durchführung des Verfahrens
DE102006031676A1 (de) Turbulenzblech und Verfahren zur Herstellung eines Turbulenzbleches
DE10102759B4 (de) Verbundlenkerhinterachse sowie Verfahren zur Herstellung derselben
DE102011007937B4 (de) Verfahren zum Herstellen eines Strukturbauteils einer Kraftfahrzeugkarosserie
EP3001130A1 (de) Heizkörper, kühlkreislauf, klimagerät für eine kraftfahrzeug-klimaanlage sowie klimaanlage für ein kraftfahrzeug
DE60125706T2 (de) Verfahren zur Herstellung eines Bauteils und Bauteil
DE4120442A1 (de) Flachrohrwaermetauscher, herstellungsverfahren desselben und anwendungen
DE102006012625C5 (de) Verfahren zur Herstellung von Profilen
EP2189229B1 (de) Verfahren zum Verschliessen des Stirnendes von Rohren mit rechteckigem Querschnitt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

17Q First examination report despatched

Effective date: 20150423

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20181213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20190418

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAEGELE, JUERGEN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005016045

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1138514

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190529

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005016045

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

26N No opposition filed

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191011

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191011

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191011

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1138514

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20201009

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201023

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20051011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231020

Year of fee payment: 19