EP1803791B1 - Carburants ayant un pouvoir lubrifiant amélioré, comprenant des mélanges d'acides gras avec dispersants de paraffine, tout comme un additif améliorant le pouvoir lubrifiant - Google Patents

Carburants ayant un pouvoir lubrifiant amélioré, comprenant des mélanges d'acides gras avec dispersants de paraffine, tout comme un additif améliorant le pouvoir lubrifiant Download PDF

Info

Publication number
EP1803791B1
EP1803791B1 EP07005870A EP07005870A EP1803791B1 EP 1803791 B1 EP1803791 B1 EP 1803791B1 EP 07005870 A EP07005870 A EP 07005870A EP 07005870 A EP07005870 A EP 07005870A EP 1803791 B1 EP1803791 B1 EP 1803791B1
Authority
EP
European Patent Office
Prior art keywords
alkyl
weight
carbon atoms
oder
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP07005870A
Other languages
German (de)
English (en)
Other versions
EP1803791A2 (fr
EP1803791A3 (fr
Inventor
Matthias Krull
Werner Reimann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Clariant Produkte Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7664508&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1803791(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Clariant Produkte Deutschland GmbH filed Critical Clariant Produkte Deutschland GmbH
Publication of EP1803791A2 publication Critical patent/EP1803791A2/fr
Publication of EP1803791A3 publication Critical patent/EP1803791A3/fr
Application granted granted Critical
Publication of EP1803791B1 publication Critical patent/EP1803791B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/08Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1616Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/1822Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
    • C10L1/1824Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1852Ethers; Acetals; Ketals; Orthoesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1852Ethers; Acetals; Ketals; Orthoesters
    • C10L1/1855Cyclic ethers, e.g. epoxides, lactides, lactones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • C10L1/1883Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom polycarboxylic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1885Carboxylic acids; metal salts thereof resin acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1888Carboxylic acids; metal salts thereof tall oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • C10L1/191Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polyhydroxyalcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1966Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1981Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/221Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • C10L1/2225(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates hydroxy containing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2364Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amide and/or imide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • C10L1/2387Polyoxyalkyleneamines (poly)oxyalkylene amines and derivatives thereof (substituted by a macromolecular group containing 30C)

Definitions

  • the present invention relates to mixtures of fatty acids and paraffin dispersants having improved low-temperature stability, and to their use for improving the lubricity of middle distillate fuel oils.
  • Mineral oils and mineral oil distillates used as fuel oils generally contain 0.5% by weight and more sulfur which causes the formation of sulfur dioxide upon combustion. In order to reduce the resulting environmental impact, the sulfur content of fuel oils is lowered further and further.
  • the standard EN 590 relating to diesel fuels currently prescribes a maximum sulfur content of 350 ppm in Germany. In Scandinavia fuel oils of less than 50 ppm and in exceptional cases less than 10 ppm of sulfur are used. These fuel oils are usually prepared by hydrogenating the fractions obtained from the petroleum by distillation. In the desulfurization but other substances are removed, which give the fuel oils a natural lubricating effect. These substances include polyaromatic and polar compounds.
  • EP-A-0 798 364 discloses salts and amides of mono- to tetracarboxylic acids having 2 to 50 carbon atoms and aliphatic mono- / polyamines having 2 to 50 carbon atoms and 1 to 10 N atoms as lubricity additives for low-sulfur diesel fuel.
  • Preferred amines have 8-20 C-atoms, such as coco fatty amine, tallow fatty amine and oleylamine.
  • WO 95/33805 discloses the use of cold flow improvers to improve the lubricity of low sulfur middle distillates.
  • polar nitrogen-containing compounds which contain a group NR 13 , where R 13 is a hydrocarbon radical having 8 to 40 C atoms and may be present in the form of a cation.
  • WO-A-96/18706 disclosed in analogy to WO 95/33805 the use of the nitrogen-containing compounds mentioned therein in combination with lubricity additives.
  • WO-A-96/23855 disclosed in analogy to WO 95/33805 the use of the nitrogen-containing compounds mentioned therein in combination with detergent additives.
  • the fatty acids used in the prior art have the disadvantage that they solidify when stored at low temperatures, ie often at room temperature, usually at temperatures of 0 ° C at -5 ° C at the latest, or that deposit crystalline particles and problems prepare handling. This problem can only be partially solved by dilution with organic solvents, since components also crystallize out of these solutions or the solution gels and solidifies. For use as lubricity additives, they therefore have to be diluted considerably, or kept in heated storage containers and metered via heated lines.
  • the object underlying the present invention was to find lubricity additives which improve the lubricating effect of middle distillates at reduced metering rates, but remain homogeneous, clear and, in particular, free-flowing even in the cold.
  • Another object of the invention are cold-stabilized solutions of the additives of the invention in organic solvents, wherein the solutions contain 1 to 90 wt .-% of solvent.
  • Suitable solvents are aliphatic and / or aromatic hydrocarbons or hydrocarbon mixtures.
  • the additives according to the invention preferably contain 1 to 80%, especially 10 to 70%, in particular 25 to 60%, of solvent.
  • the cold-stabilized solutions according to the invention have an own pour point of less than 40 ° C., preferably -45 ° C., in particular -50 ° C.
  • Another object of the invention is the use of said mixtures of the components A and B to improve the lubricating properties of low-sulfur middle distillates with up to 0.05 wt .-% sulfur content.
  • Preferred fatty acids are those having 8 to 40 C atoms, in particular 12 to 22 C atoms.
  • the alkyl radicals of the fatty acids consist essentially of carbon and hydrogen. However, they may contain other substituents, e.g. Hydroxyl, halogen, amino or nitro groups, provided they do not affect the predominantly hydrocarbon character.
  • Component A2) may contain one or more double bonds and be of natural or synthetic origin. In the case of polyunsaturated carboxylic acids, their double bonds may be isolated or else conjugated.
  • the proportion of saturated Fatty acids A1) in the mixture of A1) and A2) is preferably below 20% by weight, in particular below 10% by weight, especially below 5% by weight.
  • preferred fatty acid mixtures which is understood here as the combination of A1) and A2), at least 50% by weight, in particular at least 75% by weight, especially at least 90% by weight, of the constituents contain one or more double bonds.
  • These preferred fatty acid (mixtures) have iodine numbers of at least 40 g I / 100 g, preferably at least 80 gl / 100 g, in particular at least 125 g I / 100 g.
  • Suitable fatty acids are, for example, lauric, tridecane, myristic, pentadecane, palmitic, margarine, stearic, isostearic, arachic and behenic acid, oleic and erucic acid, palmitoleic, myristoleic, linoleic, linolenic, elaeosterol - And arachidonic acid, ricinoleic acid and derived from natural fats and oils fatty acid mixtures, such as Coconut oil, peanut oil, fish, linseed oil, palm oil, rapeseed oil, ricinine, castor oil, rapeseed oil, soybean oil, sunflower oil and tall oil fatty acid.
  • dicarboxylic acids such as dimer fatty acids and alkyl- and alkenylsuccinic acids with C 8 -C 50 -alk (en) yl radicals, preferably with C 8 -C 40 -, in particular with C 12 -C 22 -alkyl radicals.
  • the alkyl radicals can be linear or branched (oligomerized alkenes, PIB).
  • the fatty acids may further contain 1-40, especially 1-25% by weight of resin acids, based on the weight of A1) and A2) together.
  • the additives according to the invention contain as constituent B at least one polar nitrogen-containing compound of the formula II which is active as paraffin dispersant in middle distillates.
  • Carboxylic acids or acid derivatives are phthalic acid (anhydride), trimellit, pyromellitic acid (dianhydride), isophthalic acid, terephthalic acid, cyclohexane-dicarboxylic acid (anhydride), maleic acid (anhydride), alkenylsuccinic acid (anhydride).
  • the formulation (anhydride) means that the anhydrides of said acids are also preferred acid derivatives.
  • the compounds of formula (11) are amides or amine salts, they are preferably obtained from a secondary amine containing a hydrogen and carbon containing group having at least 10 carbon atoms.
  • R 17 contains from 10 to 30, in particular from 10 to 22, for example from 14 to 20 carbon atoms and is preferably straight-chain or branched at the 1- or 2-position.
  • the other hydrogen and carbon containing groups may be shorter, eg containing less than 6 carbon atoms, or may have at least 10 carbon atoms if desired.
  • Suitable alkyl groups include methyl, ethyl, propyl, hexyl, decyl, dodecyl, tetradecyl, eicosyl and docosyl (behenyl).
  • Paraffin dispersants reduce the size of paraffin crystals precipitated in the cold and cause the paraffin particles not to settle but to remain colloidally dispersed with significantly reduced sedimentation effort.
  • oil-soluble polar compounds having ionic or polar groups for example amine salts and / or amides, which have been prepared by reaction of aliphatic or aromatic amines, preferably long-chain aliphatic amines, with aliphatic or aromatic mono-, di-, tri - Are obtained or tetracarboxylic acids or their anhydrides.
  • Particularly preferred paraffin dispersants contain reaction products of secondary fatty amines 8 to 36 carbon atoms, especially dicocosfettamine, ditallow fatty amine and distearylamine.
  • paraffin dispersants are copolymers of maleic anhydride and ⁇ , ⁇ -unsaturated compounds which can optionally be reacted with primary monoalkylamines and / or aliphatic alcohols, the reaction products of alkenyl spirobislactones with amines and reaction products of terpolymers based on ⁇ , ⁇ -unsaturated dicarboxylic acid anhydrides, ⁇ , ⁇ -unsaturated compounds and polyoxyalkylene ethers of lower unsaturated alcohols.
  • Alkylphenol-formaldehyde resins are also suitable as paraffin dispersants. In the following, some suitable paraffin dispersants are listed.
  • the amides or amide ammonium salts or ammonium salts of, for example, nitrilotriacetic acid, ethylenediaminetetraacetic acid or propylene-1,2-diaminetetraacetic acid are obtained by reacting the acids with from 0.5 to 1.5 mol of amine, preferably from 0.8 to 1.2 mol Amine per carboxyl group.
  • the reaction temperatures are about 80 to 200 ° C, wherein for the preparation of the amides a continuous removal of the resulting water of reaction takes place. However, the reaction does not have to be completely led to the amide, but may be 0 to 100 mol% of the amine used in the form of the ammonium salt. Under analogous conditions, the compounds mentioned under B1) can also be prepared.
  • dialkylamines are contemplated in which R 6 , R 7 is a straight-chain alkyl radical having 10 to 30 carbon atoms, preferably 14 to 24 carbon atoms.
  • R 6 , R 7 is a straight-chain alkyl radical having 10 to 30 carbon atoms, preferably 14 to 24 carbon atoms.
  • dioleylamine, dipalmitinamine, dicoco fatty amine and dibehenylamine and preferably ditallow fatty amine may be mentioned.
  • Quaternary ammonium salts of formula 10 + NR 6 R 7 R 8 R 11 X - (10) where R 6 , R 7 , R 8 have the abovementioned meaning and R 11 is C 1 -C 30 -alkyl, preferably C 1 -C 22 -alkyl, C 1 -C 30 -alkenyl, preferably C 1 -C 22 - Alkenyl, benzyl or a radical of the formula - (CH 2 -CH 2 -O) n -R 12 wherein R 12 is hydrogen or a fatty acid radical of the formula C (O) -R 13 , with R 13 C 6 -C 40 alkenyl, n is a number from 1 to 30 and X is halogen, preferably chlorine, or a methosulfate.
  • quaternary ammonium salts include: dihexadecyldimethylammonium chloride, distearyldimethylammonium chloride, quaternization products of esters of di- and triethanolamine with long-chain fatty acids (lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid and fatty acid mixtures such as coconut fatty acid, tallow fatty acid, hydrogenated tallow fatty acid, tall oil fatty acid) such as N-methyltriethanolammonium distearyl ester chloride, N-methyltriethanolammonium distearyl ester methosulfate, N, N-dimethyldiethanolammonium distearyl ester chloride, N-methyltriethanolammonium dioleyl ester chloride, N-Methyltriethanolammoniumtrilaurylestermethosulfat, N-Methyltriethanolammoniumtristearylestermethosulfat and mixtures
  • polymers are suitable which contain at least one amide or ammonium group bound directly to the skeleton of the polymer, wherein the amide or ammonium group carries at least one alkyl group of at least 8 C atoms on the nitrogen atom.
  • Such polymers can be prepared in various ways. One way is to use a polymer containing several carboxylic acid or anhydride groups and react this polymer with an amine of the formula NHR 6 R 7 to obtain the desired polymer.
  • polymers are generally copolymers of unsaturated esters such as C 1 -C 40 alkyl (meth) acrylates, fumaric di (C 1 -C 40 alkyl esters), C 1 -C 40 alkyl vinyl ethers, C 1 -C 40 alkyl vinyl esters or C.
  • C 2 -C 40 -olefins linear, branched, aromatic with unsaturated carboxylic acids or their reactive derivatives, such as carboxylic acid anhydrides (acrylic acid, methacrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, citraconic acid, preferably maleic anhydride) suitable.
  • Carboxylic acids are preferably reacted with from 0.1 to 1.5 mol, in particular from 0.5 to 1.2 mol of amine per acid group, carboxylic anhydrides, preferably with from 0.1 to 2.5, in particular from 0.5 to 2.2, mol of amine per acid anhydride group
  • amides, ammonium salts, amide-ammonium salts or imides are formed.
  • copolymers containing unsaturated carboxylic acid anhydrides upon reaction with a secondary amine, yield half amide and half amine salts by reaction with the anhydride group. By heating, water can be split off to form the diamide.
  • polymers are copolymers of didodecyl fumarate, vinyl acetate and maleic anhydride; Ditetradecyl fumarate, vinyl acetate and maleic anhydride; Di-hexadecyl fumarate, vinyl acetate and maleic anhydride; or the corresponding copolymers in which the itaconate is used instead of the fumarate.
  • the desired amide is obtained by reacting the polymer containing anhydride groups with a secondary amine of the formula HNR 6 R 7 (optionally also with an alcohol when forming an ester amide).
  • a secondary amine of the formula HNR 6 R 7 optionally also with an alcohol when forming an ester amide.
  • the resulting amino groups will be ammonium salts and amides.
  • Such polymers may be used provided that they contain at least two amide groups.
  • the polymer containing at least two amide groups contains at least one alkyl group having at least 10 carbon atoms.
  • This long-chain group which may be a straight-chain or branched alkyl group, may be bonded via the nitrogen atom of the amide group.
  • the suitable amines can be represented by the formula R 6 R 7 NH and the polyamines by R 6 NH [R 19 NH] x R 7 , wherein R 19 is a divalent hydrocarbon group, preferably an alkylene or hydrocarbyl-substituted alkylene group, and x is a whole Number, preferably between 1 and 30.
  • R 19 is a divalent hydrocarbon group, preferably an alkylene or hydrocarbyl-substituted alkylene group
  • x is a whole Number, preferably between 1 and 30.
  • one of the two contain or both R 6 and R 7 are at least 10 carbon atoms, for example 10 to 20 carbon atoms, for example dodecyl, tetradecyl, hexadecyl or octadecyl.
  • suitable secondary amines are dioctylamine and those containing alkyl groups of at least 10 carbon atoms, for example, didecylamine, didodecylamine, dicocosamine (ie, mixed C 12 -C 14 amines), dioctadecylamine, hexadecyloctadecylamine, di (hydrogenated tallow) amine (approx Wt% nC 14 alkyl, 30 wt% nC 10 alkyl, 60 wt% nC 18 alkyl, the remainder is unsaturated).
  • polyamines examples include N-octadecylpropanediamine, N, N'-dioctadecylpropanediamine, N-tetradecylbutanediamine and N, N'-dihexadecylhexanediamine.
  • N-Cocospropylenediamine C 12 / C 14 -alkylpropylenediamine
  • N-tallowpropylenediamine C 16 / C 18 -alkylpropylenediamine
  • the structural units of the copolymers are derived from, for example, maleic acid, fumaric acid, tetrahydrophthalic acid, citraconic acid, preferably maleic anhydride. They can be used both in the form of their homopolymers and the copolymers. Suitable comonomers are: styrene and alkylstyrenes, straight-chain and branched olefins having 2 to 40 carbon atoms, and mixtures thereof with one another.
  • Examples include: styrene, ⁇ -methylstyrene, dimethylstyrene, ⁇ -ethylstyrene, diethylstyrene, i-propylstyrene, tert-butylstyrene, ethylene, propylene, n-butylene, diisobutylene, decene, dodecene, tetradecene, hexadecene, octadecene. Preference is given to styrene and isobutene, particular preference to styrene.
  • polymers which may be mentioned are: polymaleic acid, a molar styrene / maleic acid copolymer of alternating design, random copolymers of styrene / maleic acid in a ratio of 10:90 and an alternating copolymer of maleic acid and i-butene.
  • the molar masses of the polymers are generally 500 g / mol to 20,000 g / mol, preferably 700 to 2000 g / mol.
  • the reaction of the polymers or copolymers with the amines is carried out at temperatures of 50 to 200 ° C in the course of 0.3 to 30 hours.
  • the amine is thereby present in amounts of about one mole per mole of polymerized dicarboxylic anhydride, d.i. ca.0.9 to 1.1 mol / mol applied.
  • the use of larger or smaller amounts is possible, but brings no advantage. If larger amounts than one mole are used, ammonium salts are sometimes obtained because the formation of a second amide group requires higher temperatures, longer residence times, and water recirculation. If amounts smaller than one mole are used, complete conversion to the monoamide does not take place and a correspondingly reduced effect is obtained.
  • the copolymers consist of 10 to 95 mol%, preferably 40 to 95 mol% and particularly preferably 60 to 90 mol% of alkyl (meth) acrylates and 5 to 90 mol%, preferably 5 to 60 mol -% and particularly preferably from 10 to 40 mol% of the olefinically unsaturated dicarboxylic acid derivatives.
  • the alkyl groups of the alkyl (meth) acrylates contain from 1 to 26, preferably 4 to 22 and more preferably 8 to 18 carbon atoms. They are preferably straight-chain and unbranched. However, it may also contain up to 20 wt .-% cyclic and / or branched portions.
  • alkyl (meth) acrylates examples include n-octyl (meth) acrylate, n-decyl (meth) acrylate, n-dodecyl (meth) acrylate, n-tetradecyl (meth) acrylate, n-hexadecyl (meth) acrylate and n-octadecyl (meth) acrylate and mixtures thereof.
  • ethylenically unsaturated dicarboxylic acids are maleic acid, tetrahydrophthalic acid, citraconic acid and itaconic acid or their anhydrides and fumaric acid. Preference is given to maleic anhydride.
  • Suitable amines are compounds of the formula HNR 6 R 7 .
  • the dicarboxylic acids in the form of the anhydrides, if available, in the copolymerization, for example maleic anhydride, itaconic anhydride, citraconic anhydride and tetrahydrophthalic anhydride, since the anhydrides generally copolymerize better with the (meth) acrylates.
  • the anhydride groups of the copolymers can then be reacted directly with the amines.
  • the reaction of the polymers with the amines takes place at temperatures of 50 to 200 ° C in the course of 0.3 to 30 hours.
  • the amine is thereby added in amounts of about one to two moles per mole of polymerized dicarboxylic anhydride, d.i. about 0.9 to 2.1 mol / mol applied.
  • the use of larger or smaller amounts is possible, but brings no advantage. If amounts greater than two moles are used, free amine is present. If amounts smaller than one mole are used, complete conversion to the monoamide does not take place and a correspondingly reduced effect is obtained.
  • the amide / ammonium salt structure may be built up from two different amines.
  • a copolymer of lauryl acrylate and maleic anhydride may first be reacted with a secondary amine such as hydrogenated di-tallow fatty amine to form the amide, after which the free carboxyl group derived from the anhydride may be reacted with another amine, e.g. 2-ethylhexylamine is neutralized to the ammonium salt.
  • a secondary amine such as hydrogenated di-tallow fatty amine
  • another amine e.g. 2-ethylhexylamine is neutralized to the ammonium salt.
  • the reverse procedure is conceivable: first with ethylhexylamine to the monoamide, then reacted with Ditalgfettamin to the ammonium salt.
  • At least one amine is used which has at least one straight-chain, unbranched alkyl group having more than 16 carbon atoms. It is not significant whether this amine is present in the structure of the amide structure or as the ammonium salt of the dicarboxylic acid.
  • alkyl, cycloalkyl and aryl radicals may optionally be substituted.
  • Suitable substituents of the alkyl and aryl radicals are, for example, (C 1 -C 6 ) -alkyl, halogens, such as fluorine, chlorine, bromine and iodine, preferably chlorine and (C 1 -C 6 ) -alkoxy
  • Alkyl here stands for a straight-chain or branched one Hydrocarbon radical. Specific examples which may be mentioned are: n-butyl, tert-butyl, n-hexyl, n-octyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, dodecenyl, tetrapropenyl, tetradecenyl, pentapropenyl, hexadecenyl, octadecenyl and eicosanyl or mixtures such as cocoalkyl , Tallow fatty alkyl and behenyl.
  • Cycloalkyl here stands for a cyclic aliphatic radical having 5 to 20 carbon atoms.
  • Preferred cycloalkyl radicals are cyclopentyl and cyclohexyl.
  • Aryl here stands for an optionally substituted aromatic ring system having 6 to 18 carbon atoms.
  • the terpolymers consist of the bivalent structural units of the formulas 12 and 14 and 15 and 16 and optionally 13. They contain only in a conventional manner the end groups formed in the polymerization by initiation, inhibition and chain termination.
  • structural units of the formulas 12 to 14 are derived from ⁇ , ⁇ -unsaturated dicarboxylic acid anhydrides of the formulas 17 and 18 such as maleic anhydride, itaconic anhydride, citraconic anhydride, preferably maleic anhydride, from.
  • the structural units of the formula 15 are derived from the ⁇ , ⁇ -unsaturated compounds of the formula 19.
  • ⁇ -unsaturated olefins examples which may be mentioned are the following ⁇ , ⁇ -unsaturated olefins: styrene, ⁇ -methylstyrene, dimethylstyrene, ⁇ -ethylstyrene, diethylstyrene, i-propylstyrene, tert-butylstyrene, diisobutylene and ⁇ -olefins, such as decene, dodecene, tetradecene, pentadecene, Hexadecene, octadecene, C 20 - ⁇ -olefin, C 24 - ⁇ -olefin, C 30 - ⁇ -olefin, tripropenyl, tetrapropenyl, pentapropenyl and mixtures thereof.
  • ⁇ -olefins having 10 to 24 C atoms and
  • the structural units of formula 16 are derived from polyoxyalkylene ethers of lower, unsaturated alcohols of formula 20.
  • ⁇ -olefin oxides such as ethylene oxide, propylene oxide and / or Butylene oxide
  • polymerizable lower unsaturated alcohols are, for example, allyl alcohol, methallyl alcohol, butenols, such as 3-buten-1-ol and 1-buten-3-ol or methylbutenols, such as 2-methyl-3-buten-1-ol, 2-methyl-3 -but-2-ol and 3-methyl-3-buten-1-ol.
  • Preferred are addition products of ethylene oxide and / or propylene oxide with allyl alcohol.
  • etherification products of the polyoxyalkylene ethers can also be prepared by reacting ⁇ -olefin oxides, preferably ethylene oxide, propylene oxide and / or butylene oxide, with alcohols of the formula 22 R 32 - OH (22) wherein R 32 is equal to C 1 -C 24 alkyl, C 5 -C 20 cycloalkyl or C 6 -C 18 aryl, by known methods attached and with polymerizable lower unsaturated halides of the formula 23rd where W is a halogen atom.
  • the halides used are preferably the chlorides and bromides. Suitable production methods are mentioned, for example, in J. March, Advanced Organic Chemistry, 2nd Edition, p. 377f (1977).
  • the esterification of the polyoxyalkylene ethers takes place by reaction with customary esterification agents, such as carboxylic acids, carboxylic acid halides, carboxylic anhydrides or carboxylic acid esters with C 1 -C 4 alcohols.
  • esterification agents such as carboxylic acids, carboxylic acid halides, carboxylic anhydrides or carboxylic acid esters with C 1 -C 4 alcohols.
  • the halides and anhydrides of C 1 -C 40 -alkyl, C 5 -C 10 -cycloalkyl or C 6 -C 18 -arylcarboxylic acids are preferably used.
  • the esterification is generally carried out at temperatures of 0 to 200 ° C, preferably 10 to 100 ° C.
  • the index m indicates the degree of alkoxylation, i. the number of moles of ⁇ -olefin, which are added per mole of formula 20 or 21.
  • Suitable secondary amines for preparing the terpolymers are: didecylamine, ditetradecylamine, distearylamine, dicocosfettamine, ditallow fatty amine and mixtures thereof.
  • the structural units of the formulas 25, 26 and 27 are derived from ⁇ , ⁇ -unsaturated dicarboxylic acid anhydrides of the formulas 17 and / or 18.
  • the structural units of the formula 15 are derived from the ⁇ , ⁇ -unsaturated olefins of the formula 19.
  • the abovementioned alkyl, cycloalkyl and aryl radicals have the same meanings as under 7.
  • radicals R 37 and R 38 in formula 25 or R 39 in formula 27 are derived from polyetheramines or alkanolamines of the formulas 28 a) and b), amines of the formula NR 6 R 7 R 8 and optionally of alcohols having 1 to 30 carbon atoms from.
  • the preparation of the polyetheramines used is possible, for example, by reductive amination of polyglycols. Furthermore, it is possible to prepare polyetheramines having a primary amino group by addition of polyglycols to acrylonitrile and subsequent catalytic hydrogenation. In addition, polyetheramines are accessible by reaction of polyethers with phosgene or thionyl chloride and subsequent amination to the polyetheramine.
  • the polyetheramines used according to the invention are (for example) commercially available under the name ® Jeffamine (Texaco). Its molecular weight is up to 2000 g / mol and the ethylene oxide / propylene oxide ratio is from 1:10 to 6: 1.
  • a further possibility for derivatizing the structural units of the formulas 17 and 18 is that instead of the polyether amines an alkanolamine of the formulas 28a) or 28b) is used and subsequently subjected to alkoxylation.
  • reaction temperature is between 50 and 100 ° C (amide formation). In the case of primary amines, the reaction takes place at temperatures above 100 ° C (imide formation).
  • the alkoxylation is usually carried out at temperatures between 70 and 170 ° C with catalysis of bases, such as NaOH or NaOCH 3 , by gassing of alkylene oxides, such as ethylene oxide (EO) and / or propylene oxide (PO).
  • bases such as NaOH or NaOCH 3
  • alkylene oxides such as ethylene oxide (EO) and / or propylene oxide (PO).
  • the additives according to the invention are added to oils in amounts of from 0.001 to 0.5% by weight, preferably from 0.001 to 0.1% by weight. They may be used as such or dissolved in solvents, such as aliphatic and / or aromatic hydrocarbons or hydrocarbon mixtures such as toluene, xylene, ethylbenzene, decane, pentadecane, gasoline fractions, kerosene or commercial solvent mixtures such as Solvent Naphtha, ® Shellsol AB, ® Solvesso 150 , ® Solvesso 200, ® Exxsol, ® Isopar and ® Shellsol D types.
  • solvents such as aliphatic and / or aromatic hydrocarbons or hydrocarbon mixtures such as toluene, xylene, ethylbenzene, decane, pentadecane, gasoline fractions, kerosene or commercial solvent mixtures such as Solvent Naphtha, ® Shellsol
  • the additives according to the invention preferably contain 1 to 80%, especially 10 to 70%, in particular 25 to 60%, of solvent.
  • the additives which can be used without problems even at low temperatures of, for example, -40 ° C and lower, improve the lubricity of the additized oils and their cold and corrosion protection properties.
  • the additives according to the invention can also be used together with one or more oil-soluble co-additives, which in themselves improve the cold flow properties and / or lubricity of crude oils, lubricating oils or fuel oils.
  • oil-soluble co-additives are vinyl acetate-containing copolymers or terpolymers of ethylene, comb polymers, alkylphenol-aldehyde resins and oil-soluble amphiphiles.
  • the additives according to the invention are used in admixture with ethylene / vinyl acetate / vinyl neononanoate terpolymers or ethylene / vinyl acetate / vinyl neodecanoate terpolymers to improve the flowability of mineral oils or mineral oil distillates.
  • the terpolymers of vinyl neononanoate or vinyl neodecanoate contain, in addition to ethylene, 10 to 35% by weight of vinyl acetate and 1 to 25% by weight of the respective neo compound. Further preferred copolymers contain, in addition to ethylene and from 10 to 35% by weight of vinyl esters, from 0.5 to 20% by weight of olefin, such as diisobutylene, 4-methylpentene or norbornene.
  • the mixing ratio of the additives according to the invention with the ethylene / vinyl acetate copolymers described above or the terpolymers of ethylene, vinyl acetate and the vinyl esters of neononanic or neodecanoic acid is (in parts by weight) 20: 1 to 1:20, preferably 10: 1 to 1:10.
  • these alkylphenol-formaldehyde resins are those of the formula wherein R 50 is C 4 -C 50 alkyl or alkenyl, R 51 is ethoxy and / or propoxy, n is a number from 5 to 100 and p is a number from 0 to 50.
  • the additives according to the invention are used together with comb polymers.
  • This term refers to polymers in which hydrocarbon radicals having at least 8, in particular at least 10, carbon atoms are bonded to a polymer backbone.
  • they are homopolymers whose alkyl side chains contain at least 8 and in particular at least 10 carbon atoms.
  • at least 20%, preferably at least 30% of the monomers have side chains (cf., Comb-like Polymers-Structure and Properties; NA Platé and VP Shibaev, J. Polym. Sci. Macromolecular Revs. 1974, 8, 117 ff ).
  • Suitable comb polymers are, for example, fumarate / vinyl acetate copolymers (cf. EP 0 153 176 A1 ), Copolymers of a C 6 -C 24 - ⁇ -olefin and a NC 6 -C 22 -alkylmaleimide (cf. EP 0 320 766 Further, esterified olefin / maleic anhydride copolymers, polymers and copolymers of ⁇ -olefins and esterified copolymers of styrene and maleic anhydride.
  • the mixing ratio (in parts by weight) of the inventive additives with resins or comb polymers is 1:10 to 20: 1, preferably 1: 1 to 10: 1.
  • the additives according to the invention are suitable for improving the lubricating properties of animal, vegetable, mineral or synthetic fuel oils with only low dosing rates. Due to their improved cold properties can be dispensed with storage and application to a warming and / or dilution. In addition, they simultaneously improve the cold and corrosion protection properties of the additized oils. The emulsifying properties of the additized oils are less affected than is the case with the lubricating additives of the prior art.
  • the additives of the invention are particularly well suited for use in middle distillates. As middle distillates are in particular those mineral oils which are obtained by distillation of crude oil and boil in the range of 120 to 450 ° C, for example kerosene, jet fuel, diesel and fuel oil.
  • the oils can also be alcohols such as methanol and / or contain or consist of ethanol.
  • the additives of the invention are used in middle distillates containing 0.05% by weight of sulfur and less, more preferably less than 350 ppm of sulfur, more preferably less than 200 ppm of sulfur and in special cases less than 50 ppm of sulfur. These are generally those middle distillates that have been subjected to a hydrogenating refining, and therefore contain only small amounts of polyaromatic and polar compounds that give them a natural lubricating effect.
  • the additives according to the invention are furthermore preferably used in middle distillates which have 95% distillation points below 370.degree. C., in particular 350.degree. C. and in special cases below 330.degree. They can also be used as components in lubricating oils.
  • the mixtures can be used alone or together with other additives, e.g. with other pour point depressants or dewaxing aids, with corrosion inhibitors, antioxidants, sludge inhibitors, dehazers, conductivity improvers, lubricity additives, and cloud point depressant additives. Furthermore, they are successfully used in conjunction with additive packages, which i.a. known ashless dispersing additives, detergents, defoamers and corrosion inhibitors.
  • Table 1 Own point (pour point) of the additives of the invention Composition (parts by weight) Pour point example A1 A2 B1 B2 B3 B4 V1 80 20 -9 V2 50 50 -24 V3 20 80 0 V4 80 20 -9 V5 50 50 -24 V6 20 80 -6 V7 80 20 0 V8 50 50 -15 V9 20 80 -48 V10 80 20 -9 V11 50 50 -18 V12 20 80 -15 V13 80 20 -27 V14 50 50 -27 V15 20 80 -6 V16 80 20 -27 V17 50 50 -54 V18 20 80 -45 V19 80 20 -21 V20 50 50 -30 V21 20 80 -21 V22 80 20 -21 V23 50 50 -21 V24 20 80 -9 V25 * 99.95 0.05 -36 V26 * 99.95 0.05 -36 V27 99.95 0.05 -15 V28 100 -9 V29 100 6 V30 100 9 V31 100 -12 V32 100 0 V33 100 -6 V34 * 100 -36 * These examples
  • MS is a mixture of a number of aliphatic and cyclic non-aromatic hydrocarbons.
  • the main components of MS can be found in the following table: Table 6: Components of MS component Concentration range (wt%) Di-2-ethylhexyl 10 - 25 2-ethylhexyl acid-2-ethylhexyl 10 - 25 C 16 lactones 4 - 20 2-Ethylhexylbutyrat 3 - 10 2-ethylhexanediol- (1,3) glycol mono-n-butyrate 5 - 15 2-ethylhexanol 4 - 10 C 4 to C 8 acetates 2 - 10 2-ethylhexanediol- (1,3) 2 - 5 Ethers and esters ⁇ C 20 0 - 20
  • the lubricating effect of the additives was carried out using an HFRR instrument from PCS Instruments on additized oils at 60 ° C.
  • the High Frequency Reciprocating Rig Test (HFRR) is described in D. Wei, H. Spikes, Wear, Vol. 111, No.2, p.217, 1986 , The results are given as coefficient of friction and Wear Scar (WS1.4). A low coefficient of friction and a low Wear Scar show a good lubricating effect.
  • test oils having the following characteristics were used: Test oil 1 Test oil 2 boiling range: 170 - 344 ° C 182-304 ° C density 0.830 g / cm 3 0.821 g / cm 3 Cloud point -9 ° C -33 ° C sulfur content 45 ppm 6 ppm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Claims (11)

  1. Additifs stabilisés au froid pour carburants présentant une teneur en soufre jusqu'à 0,05% en poids, contenant des mélanges d'acides gras constitués par
    A1) 1 à 99% en poids d'au moins un acide monocarboxylique ou dicarboxylique saturé comprenant 6 à 50 atomes de carbone,
    A2) 1 à 99% en poids d'au moins un acide monocarboxylique ou dicarboxylique insaturé comprenant 6 à 50 atomes de carbone,
    ainsi que
    B) au moins un composé azoté polaire actif comme dispersant de paraffines dans les distillats moyens en une quantité de 0,01 à 90% en poids par rapport au poids total de A1), A2) et B), qui est un composé de formule 11
    Figure imgb0033
    dans laquelle
    R6 , R7 peuvent être identiques ou différents et au moins un de ces groupes représente C8-C36-alkyle, C6-C36-cycloalkyle ou C8-C36-alcényle, et l'autre groupe signifie hydrogène, C1-C36-alkyle, C2-C36-alcényle, cyclohexyle, ou un groupe des formules - (A-O)x-E ou -(CH2)n-NYZ, où A représente un groupe éthylène ou propylène, x un nombre de 1 à 50, E = H, C1-C30-alkyle, C5-C12-cycloalkyle ou C6-C30-aryle, et n vaut 2, 3 ou 4, et Y et Z signifient, indépendamment l'un de l'autre H, C1-C30-alkyle ou -(A-O)x-H,
    R14 représente CONR6R7 ou CO2 - +H2NR6R7,
    R15 et R16 représentent H, CONR17 2, CO2R17 ou OCOR17, -OR17, -R17 ou -NCOR17, et
    R17 représente alkyle, alcoxyalkyle ou polyalcoxyalkyle et présente au moins 10 atomes de carbone.
  2. Additifs selon la revendication 1, où le constituant A comprend des acides carboxyliques comprenant 12 à 22 atomes de carbone.
  3. Additifs selon la revendication 1 et/ou 2, contenant 1 à moins de 20% en poids de A1) et plus de 80 à 99% en poids de A2).
  4. Additifs selon l'une ou plusieurs des revendications 1 à 3, où le mélange de A1) et de A2) présente un indice d'iode d'au moins 40 g 1/100 g.
  5. Additifs selon l'une ou plusieurs des revendications 1 à 4, où le mélange de A1) et de A2) comprend 1 à 40% en poids d'acides de résine.
  6. Additifs selon l'une ou plusieurs des revendications 1 à 5, où les composés de formule (11) sont des amides ou des sels d'amine d'une amine secondaire, qui contient un groupe contenant de l'hydrogène et du carbone comprenant au moins 10 atomes de carbone.
  7. Solutions stabilisées au froid des additifs selon l'une ou plusieurs des revendications 1 à 6 dans des solvants organiques, les solvants contenant 1 à 80% en poids de solvant.
  8. Solutions stabilisées au froid selon la revendication 7, où on utilise comme solvant des hydrocarbures aliphatiques et/ou aromatiques et/ou oxygénés.
  9. Mélanges d'acides gras stabilisés au froid, contenant
    A1) 1. à 99% en poids d'au moins un acide monocarboxylique ou dicarboxylique saturé comprenant 6 à 50 atomes de carbone,
    A2) 1 à 99% en poids d'au moins un acide monocarboxylique ou dicarboxylique insaturé comprenant 6 à 50 atomes de carbone,
    ainsi que
    B) au moins un composé azoté polaire actif comme dispersant de paraffines dans les distillats moyens en une quantité de 0,01 à 90% en poids par rapport au poids total de A1) , A2) et B), qui est un composé de formule 11
    Figure imgb0034
    dans laquelle
    R6, R7 peuvent être identiques ou différents et au moins un de ces groupes représente C8-C36-alkyle, C6-C36-cycloalkyle ou C8-C36-alcényle, et l'autre groupe signifie hydrogène, C1-C36-alkyle, C2-C36-alcényle, cyclohexyle, ou un groupe des formules - (A-O)x-E ou -(CH2)n-NYZ, où A représente un groupe éthylène ou propylène, x un nombre de 1 à 50, E = H, C1-C30-alkyle, C5-C12-cycloalkyle ou C6-C30-aryle, et n vaut 2, 3 ou 4, et Y et Z signifient, indépendamment l'un de l'autre H, C1-C30-alkyle ou -(A-O)x-H,
    R14 représente CONR6R7 ou CO2 - +H2NR6R7,
    R15 et R16 représentent H, CONR17 2, CO2R17 ou OCOR17,
    -OR17, -R17 ou -NCOR17, et
    R17 représente alkyle, alcoxyalkyle ou polyalcoxyalkyle et présente au moins 10 atomes de carbone.
  10. Carburants, contenant, outre un distillat moyen présentant une teneur en soufre jusqu'à 0,05% en poids, un additif selon l'une ou plusieurs des revendications 1 à 9.
  11. Utilisation d'additifs selon l'une ou plusieurs des revendications 1 à 9 pour améliorer les propriétés lubrifiantes de distillats moyens pauvres en soufre présentant une teneur en soufre jusqu'à 0,05% en poids.
EP07005870A 2000-11-24 2001-11-06 Carburants ayant un pouvoir lubrifiant amélioré, comprenant des mélanges d'acides gras avec dispersants de paraffine, tout comme un additif améliorant le pouvoir lubrifiant Revoked EP1803791B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10058359A DE10058359B4 (de) 2000-11-24 2000-11-24 Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Fettsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv
EP01126254A EP1209215B1 (fr) 2000-11-24 2001-11-06 Huiles combustibles à pouvoir lubrifiant amélioré, contenant des mélanges d'acides gras avec des dispersants de paraffine, ainsi qu'un additif améliorant le pouvoir lubrifiant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP01126254A Division EP1209215B1 (fr) 2000-11-24 2001-11-06 Huiles combustibles à pouvoir lubrifiant amélioré, contenant des mélanges d'acides gras avec des dispersants de paraffine, ainsi qu'un additif améliorant le pouvoir lubrifiant

Publications (3)

Publication Number Publication Date
EP1803791A2 EP1803791A2 (fr) 2007-07-04
EP1803791A3 EP1803791A3 (fr) 2007-10-03
EP1803791B1 true EP1803791B1 (fr) 2009-02-18

Family

ID=7664508

Family Applications (3)

Application Number Title Priority Date Filing Date
EP01126254A Expired - Lifetime EP1209215B1 (fr) 2000-11-24 2001-11-06 Huiles combustibles à pouvoir lubrifiant amélioré, contenant des mélanges d'acides gras avec des dispersants de paraffine, ainsi qu'un additif améliorant le pouvoir lubrifiant
EP07005871A Expired - Lifetime EP1801188B1 (fr) 2000-11-24 2001-11-06 Carburants ayant un pouvoir lubrifiant amélioré, comprenant des mélanges d'acides gras avec dispersants de paraffine, tout comme un additif améliorant le pouvoir lubrifiant
EP07005870A Revoked EP1803791B1 (fr) 2000-11-24 2001-11-06 Carburants ayant un pouvoir lubrifiant amélioré, comprenant des mélanges d'acides gras avec dispersants de paraffine, tout comme un additif améliorant le pouvoir lubrifiant

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP01126254A Expired - Lifetime EP1209215B1 (fr) 2000-11-24 2001-11-06 Huiles combustibles à pouvoir lubrifiant amélioré, contenant des mélanges d'acides gras avec des dispersants de paraffine, ainsi qu'un additif améliorant le pouvoir lubrifiant
EP07005871A Expired - Lifetime EP1801188B1 (fr) 2000-11-24 2001-11-06 Carburants ayant un pouvoir lubrifiant amélioré, comprenant des mélanges d'acides gras avec dispersants de paraffine, tout comme un additif améliorant le pouvoir lubrifiant

Country Status (6)

Country Link
US (3) US6610111B2 (fr)
EP (3) EP1209215B1 (fr)
JP (1) JP5317380B2 (fr)
CA (1) CA2363700C (fr)
DE (4) DE10058359B4 (fr)
ES (1) ES2295098T3 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI122428B2 (fi) * 2002-08-05 2021-01-29 Arizona Chemical Rasvahappokoostumus ja sen käyttö
US7597725B2 (en) * 2002-10-04 2009-10-06 Infineum International Ltd. Additives and fuel oil compositions
DE10313883A1 (de) * 2003-03-27 2004-10-07 Basf Ag Additivgemisch zur Verbesserung der Schmierfähigkeitseigenschaften von Mineralölprodukten
US8287608B2 (en) * 2005-06-27 2012-10-16 Afton Chemical Corporation Lubricity additive for fuels
EP1770151A1 (fr) * 2005-09-30 2007-04-04 Infineum International Limited Concentré d'additifs
EP1979445A1 (fr) * 2006-01-18 2008-10-15 Basf Se Utilisation de mélanges d'acides monocarboxyliques et de composés d'hydrocarbures polycycliques pour améliorer la stabilité au stockage de concentrés d'additifs de carburants
US20070234637A1 (en) * 2006-04-05 2007-10-11 Baker Hughes Incorporated Fuel Additives Useful for Reducing Particulate Emissions
US20080141579A1 (en) * 2006-12-13 2008-06-19 Rinaldo Caprotti Fuel Oil Compositions
WO2009131024A1 (fr) * 2008-04-25 2009-10-29 株式会社Adeka Agent d’amélioration de la fluidité à basse température pour carburant biodiesel
CN102369262B (zh) 2009-04-07 2014-10-15 巴斯夫欧洲公司 用于在中间馏分燃料中降低浊点的极性油溶性氮化合物和油溶性脂族化合物的混合物
JP5737190B2 (ja) * 2010-02-10 2015-06-17 日油株式会社 油脂用流動性向上剤
KR101781672B1 (ko) * 2011-03-29 2017-09-25 니치유 가부시키가이샤 연료유용 유동성 향상제 및 연료유 조성물
RU2561279C1 (ru) * 2014-09-19 2015-08-27 Общество с ограниченной ответственностью "Научно-производственное предприятие КВАЛИТЕТ" (ООО "НПП КВАЛИТЕТ") Диспергатор парафинов, способ его получения и топливная композиция, его содержащая
CN104403706B (zh) * 2014-11-20 2016-06-22 中国石油大学(北京) 一种新型柴油蜡晶分散剂
WO2017144378A1 (fr) * 2016-02-23 2017-08-31 Basf Se Acides polycarboxyliques hydrophobes utilisés comme additifs réducteurs d'usure par frottement dans des carburants
EP3272837B1 (fr) * 2016-07-21 2021-01-27 Bharat Petroleum Corporation Limited Composition de combustible contenant un agent d'amélioration de pouvoir lubrifiant et procédé associé

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2793A (en) * 1842-09-30 Joel g
US2487189A (en) * 1946-05-28 1949-11-08 Gulf Oil Corp Diesel fuel oils
WO1985001496A1 (fr) 1983-10-03 1985-04-11 American Telephone & Telegraph Company Housse de protection pour robot
EP0153177B1 (fr) 1984-02-21 1991-11-06 Exxon Research And Engineering Company Compositions de distillat moyen à caractéristiques d'écoulement à froid
US4569679A (en) * 1984-03-12 1986-02-11 Exxon Research & Engineering Co. Additive concentrates for distillate fuels
GB8630594D0 (en) * 1986-12-22 1987-02-04 Exxon Chemical Patents Inc Chemical compositions
US5039437A (en) * 1987-10-08 1991-08-13 Exxon Chemical Patents, Inc. Alkyl phenol-formaldehyde condensates as lubricating oil additives
DE3742630A1 (de) 1987-12-16 1989-06-29 Hoechst Ag Polymermischungen fuer die verbesserung der fliessfaehigkeit von mineraloeldestillaten in der kaelte
DE3926992A1 (de) 1989-08-16 1991-02-21 Hoechst Ag Verwendung von umsetzungsprodukten von alkenylspirobislactonen und aminen als paraffindispergatoren
DE4237662A1 (de) * 1992-11-07 1994-05-11 Basf Ag Erdölmitteldestillatzusammensetzungen
DK0606055T3 (da) 1993-01-06 1998-04-14 Clariant Gmbh Terpolymerer på basis af alfa,beta-umættede dicarboxylsyreanhydrider, alfa-beta-umættede forbindelser og polyoxyalkylenethere af lavere umættede alkoholer
GB9411614D0 (en) * 1994-06-09 1994-08-03 Exxon Chemical Patents Inc Fuel oil compositions
JPH08134476A (ja) * 1994-11-14 1996-05-28 Cosmo Sogo Kenkyusho:Kk 低硫黄分軽油組成物
KR100420430B1 (ko) * 1994-12-13 2004-06-24 엑손 케미칼 패턴츠 인코포레이티드 연료유조성물
GB9502041D0 (en) 1995-02-02 1995-03-22 Exxon Chemical Patents Inc Additives and fuel oil compositions
JP3829948B2 (ja) * 1995-03-24 2006-10-04 出光興産株式会社 ディーゼル軽油組成物
EP0780460B1 (fr) * 1995-12-22 2001-06-27 ExxonMobil Research and Engineering Company Concentré additif pour essence
US5755834A (en) * 1996-03-06 1998-05-26 Exxon Chemical Patents Inc. Low temperature enhanced distillate fuels
JPH09255973A (ja) 1996-03-25 1997-09-30 Oronaito Japan Kk 軽油添加剤及び軽油組成物
GB9610363D0 (en) * 1996-05-17 1996-07-24 Ethyl Petroleum Additives Ltd Fuel additives and compositions
DE19620119C1 (de) * 1996-05-18 1997-10-23 Hoechst Ag Terpolymerisate des Ethylens, ihre Herstellung und ihre Verwendung als Additive für Mineralöldestillate
DE19622052A1 (de) 1996-05-31 1997-12-04 Basf Ag Paraffindispergatoren für Erdölmitteldestillate
FR2751982B1 (fr) * 1996-07-31 2000-03-03 Elf Antar France Additif d'onctuosite pour carburant moteurs et composition de carburants
EP0829527A1 (fr) * 1996-09-12 1998-03-18 Exxon Research And Engineering Company Concentré additif pour des compositions de combustibles
JP3841368B2 (ja) * 1996-10-07 2006-11-01 花王株式会社 低硫黄軽油用油性向上剤及び低硫黄軽油組成物
JP3968820B2 (ja) * 1997-06-13 2007-08-29 日本油脂株式会社 燃料油組成物
ATE223471T1 (de) * 1998-01-13 2002-09-15 Baker Hughes Inc Zusammensetzung und verfahren um die brennstoffschmiereigenshaft zu verbessern
JP3725347B2 (ja) * 1998-09-09 2005-12-07 三洋化成工業株式会社 燃料油低温流動性向上剤および燃料油組成物
US6051039A (en) * 1998-09-14 2000-04-18 The Lubrizol Corporation Diesel fuel compositions
KR20020070286A (ko) * 1999-11-23 2002-09-05 더 어소시에이티드 악텔 컴퍼니 리미티드 조성물
EP1116780B1 (fr) * 2000-01-11 2005-08-31 Clariant GmbH Additif polyfonctionnel pour huiles combustibles

Also Published As

Publication number Publication date
DE50114718D1 (de) 2009-04-02
USRE40758E1 (en) 2009-06-23
EP1209215A3 (fr) 2003-08-13
US6610111B2 (en) 2003-08-26
EP1801188A2 (fr) 2007-06-27
US20040083644A1 (en) 2004-05-06
DE10058359A1 (de) 2002-06-06
EP1801188B1 (fr) 2009-02-18
CA2363700A1 (fr) 2002-05-24
US20020095857A1 (en) 2002-07-25
JP2002167586A (ja) 2002-06-11
DE50114719D1 (de) 2009-04-02
DE10058359B4 (de) 2005-12-22
CA2363700C (fr) 2010-04-06
JP5317380B2 (ja) 2013-10-16
EP1803791A2 (fr) 2007-07-04
EP1803791A3 (fr) 2007-10-03
EP1209215A2 (fr) 2002-05-29
ES2295098T3 (es) 2008-04-16
EP1209215B1 (fr) 2007-10-10
DE50113115D1 (de) 2007-11-22
EP1801188A3 (fr) 2007-10-03

Similar Documents

Publication Publication Date Title
EP1116781B1 (fr) Additif polyfonctionnel pour huiles combustibles
EP1116780B1 (fr) Additif polyfonctionnel pour huiles combustibles
EP2038380B1 (fr) Mélange constitué de composés d'azote polaires oléosolubles et d'amides d'acides en tant que dispersant de paraffine pour des carburants
EP1803791B1 (fr) Carburants ayant un pouvoir lubrifiant amélioré, comprenant des mélanges d'acides gras avec dispersants de paraffine, tout comme un additif améliorant le pouvoir lubrifiant
DE10058356B4 (de) Brennstofföle mit verbesserter Schmierwirkung, enthaltend Umsetzungsprodukte aus Fettsäuren mit kurzkettigen öllöslichen Aminen
DE10155774B4 (de) Additive für schwefelarme Mineralöldestillate, umfassend einen Ester alkoxylierten Glycerins und einen polaren stickstoffhaltigen Paraffindispergator
EP1124916B1 (fr) Emulsionnants de paraffine a effet lubrifiant pour distillats de produits petroliers
EP0997517B1 (fr) Mélanges polymères pour l'amélioration de l'action lubrifiante de distillats moyens
EP1380634B1 (fr) Additifs lubrifiant stabilisés contre l'oxydation pour huiles combustibles hautement désulfurées.
EP0909307B1 (fr) Dispersants paraffiniques pour distillats moyens de petrole
EP1458837B1 (fr) Distillats d'huile minerale a basse teneur en soufre a proprietes a froid ameliorees, contenant un ester d'un polyol alcoxyle et un copolymere d'ethylene et d'esters insatures
EP1134273A2 (fr) Mélanges d'acides carboxyliques,leurs dérivés et de polymères portant des groupes hydroxyles, et leurs utilisations pour l'amélioration du pouvoir lubrifiant d'huiles
EP1446464B1 (fr) Additifs pour distillats de petrole pauvres en soufre, contenant un ester d'un polyol alkoxyle et une resine aldehyde alkyle phenol
DE10136828B4 (de) Schmierverbessernde Additive mit verminderter Emulgierneigung für hochentschwefelte Brennstofföle
EP3885424A1 (fr) Compositions et procédés de dispersion des paraffines dans des huiles de combustible à faible teneur en soufre
DE19856270C2 (de) Polymermischung zur Verbesserung der Schmierwirkung von Mitteldestillaten
DE10000650C2 (de) Mehrfunktionelles Additiv für Brennstofföle
DE10252973A1 (de) Oxidationsstabilisierte Schmieradditive für hochentschwefelte Brennstofföle
DE10048682A1 (de) Mehrfunktionelles Additiv für Brennstofföle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1209215

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIC1 Information provided on ipc code assigned before grant

Ipc: C10L 1/188 20060101AFI20070824BHEP

Ipc: C10L 10/08 20060101ALI20070824BHEP

Ipc: C10L 1/224 20060101ALI20070824BHEP

Ipc: C10L 10/14 20060101ALI20070824BHEP

RTI1 Title (correction)

Free format text: FUEL OILS WITH IMPROVED LUBRICITY, COMPRISING MIXTURES OF FATTY ACIDS AND PARAFFIN DISPERSING AGENTS AND AN IMPROVED LUBRICITY ADDITIVE

17P Request for examination filed

Effective date: 20080403

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20080602

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C10L 1/188 20060101AFI20080728BHEP

Ipc: C10L 1/224 20060101ALI20080728BHEP

Ipc: C10L 10/14 20060101ALI20080728BHEP

Ipc: C10L 1/238 20060101ALI20080728BHEP

Ipc: C10L 10/08 20060101ALI20080728BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RBV Designated contracting states (corrected)

Designated state(s): BE DE FI FR GB NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1209215

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FI FR GB NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REF Corresponds to:

Ref document number: 50114719

Country of ref document: DE

Date of ref document: 20090402

Kind code of ref document: P

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: INFINEUM INTERNATIONAL LIMITED

Effective date: 20091117

NLR1 Nl: opposition has been filed with the epo

Opponent name: INFINEUM INTERNATIONAL LIMITED

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121010

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 50114719

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 50114719

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131113

Year of fee payment: 13

Ref country code: SE

Payment date: 20131028

Year of fee payment: 13

Ref country code: GB

Payment date: 20131021

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20131021

Year of fee payment: 13

Ref country code: BE

Payment date: 20131112

Year of fee payment: 13

Ref country code: FI

Payment date: 20131118

Year of fee payment: 13

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20130913

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20130913

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 50114719

Country of ref document: DE

Effective date: 20140528

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC