EP1802939A1 - Determination electrique de l'epaisseur de membranes de semiconducteurs par apport d'energie - Google Patents

Determination electrique de l'epaisseur de membranes de semiconducteurs par apport d'energie

Info

Publication number
EP1802939A1
EP1802939A1 EP05810074A EP05810074A EP1802939A1 EP 1802939 A1 EP1802939 A1 EP 1802939A1 EP 05810074 A EP05810074 A EP 05810074A EP 05810074 A EP05810074 A EP 05810074A EP 1802939 A1 EP1802939 A1 EP 1802939A1
Authority
EP
European Patent Office
Prior art keywords
membrane
thickness
energy input
heating
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05810074A
Other languages
German (de)
English (en)
Inventor
Siegfried Hering
Gisbert Hoelzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
X Fab Semiconductor Foundries GmbH
Original Assignee
X Fab Semiconductor Foundries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by X Fab Semiconductor Foundries GmbH filed Critical X Fab Semiconductor Foundries GmbH
Publication of EP1802939A1 publication Critical patent/EP1802939A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • G01B21/085Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness using thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Definitions

  • the invention relates to a method and an arrangement for determining the thicknesses of semiconductor membranes.
  • components are often created which have membranes as sensor surfaces or cover, wherein the thickness of the membrane for the component behavior and / or further processing steps is an important parameter.
  • the behavior is critically dependent on the finally achieved thickness of the membrane.
  • a membrane thickness determination is therefore an important aspect for controlling the technological production processes and the specification-compliant function of a sensor.
  • the membrane thickness is determined both by destructive methods, e.g. Scanning electron microscopy of a perpendicular break through the membrane, as well as non-destructive methods, e.g. determined optical interferometric method. Thereafter, either the membrane is destroyed or the non-destructive measuring method has an insufficient measurement resolution, so that essential aspects can not be determined with the required accuracy.
  • a thermal energy input into the membrane for producing thermally trimmable resistors by a specific change in the electrical conductivity of special resistors on the membrane is known, cf. WO-A 2003/023794.
  • a thermal energy input in a membrane structure used to determine flow rates, wherein the cooling of the membrane is measured by a passing medium see. DE-A 197 10 559, DE-A 199 61 129.
  • the active principle of the membrane pressure sensors is based on mechanical energy input into the membrane.
  • the membrane is mechanically deformed and the pressure-dependent strain is usually detected capacitively, cf. EP-A 195 985, or piezoresistive, cf. WO-A 1998/031998, DE-A 197 01 055.
  • the invention is therefore based on the object to design a non-destructive method and a corresponding device so that thicknesses of semiconductor membranes with high accuracy and the least possible effort can be determined.
  • a parameter indicative of the thickness of a membrane in a microstructure can be determined by means of electrical measurements.
  • defined energy is coupled into the membrane and closed from the distribution / propagation of the energy to the membrane thickness by the changes in state of the membrane by measurements, for example, in one embodiment, the electrical conductivity are tracked by means located on the membrane measuring resistors.
  • the electrical conductivity changes due to the energy input, for example in the form of temperature and the mechanical strain of the membrane, both of which depend on the thickness of the membrane.
  • suitable reference data may be used to specify the thickness or at least one parameter value representative thereof.
  • the reference data can also be specified by other measuring methods, for example electron microscopy.
  • the invention thus relates to a method and an arrangement for determining the thicknesses of semiconductor membranes by means of electrical measurements.
  • energy is coupled into the membrane in advantageous embodiments for heating, and energy is distributed from the distribution / propagation of the energy to the membrane thickness by measuring the electrical conductivity of definedly applied electrical resistance measurement strips on time-dependent completion of the energy input.
  • the present invention has the advantages that with a very low overhead of preparation, the membrane thickness on semiconductor wafers and on individual finished sensors can be determined non-destructive, accurate and fast.
  • a method for determining the thickness of a membrane in microstructures comprising: applying at least a portion of the membrane with a defined energy input, obtaining an electrical signal from the membrane in response to the defined energy input, and Evaluating the signal obtained to determine at least one parameter representing the thickness of the membrane by means of reference data describing the dependence of the thickness on the defined energy input.
  • the change in state of a membrane caused by an energy input is utilized in order to close the thickness of the membrane by evaluating electrical signals obtained from the membrane. Since electrical signals can be evaluated easily and with great accuracy, thus results in an efficient and cost-effective method, with suitable reference data can also be generated in an efficient manner. For example, electron microscopy data from a few samples may be correlated with corresponding electrical parameters to provide an absolute measure of thickness. In other cases, suitable reference data may additionally or alternatively be obtained by model calculations.
  • applying at least one region of the membrane with a defined introduction of energy comprises heating at least the region of the membrane.
  • Heating is a proven method to produce temperature gradients and mechanical stresses that depend on the thickness and thus can be exploited to characterize them.
  • the heating of the region of the membrane is performed by electrical resistance heating elements.
  • the heating of the region of the membrane by laser radiation whereby the energy can be introduced in a very localized manner.
  • the signal is obtained after completion of the energy input and evaluated.
  • the signal is evaluated with regard to its temporal change after completion of the energy input.
  • the temporal change After completion of the energy input.
  • the electrical signal includes a reference signal obtained from an area adjacent to the applied area and substantially unaffected thereby.
  • a difference signal can be obtained, thus allowing a reduction of interference.
  • the microstructures are produced together on a support and the determination of the at least one parameter takes place before the singulation of the microstructures.
  • the obtained information about the membrane thickness can be used for the evaluation of previous process steps or for the control of subsequent process steps.
  • test fields are provided on the carrier, at which the at least one parameter is determined. This can be a efficient product and process monitoring can be realized without significant modifications to the actual products must be made.
  • the microstructures are produced together on a support, and the determination of the at least one parameter ensues after the singulation of the microstructures.
  • a determination of the thickness can also be made on the finished product, so that an increased degree of accuracy in the actual application is possible.
  • a method for the electrical determination of the membrane thickness by energy input is provided.
  • the area of the membrane is heated in a defined manner and membrane thickness-dependent changes in physical states of the membrane caused by the heat input are registered after completion of the heating in the temporal change via corresponding measuring elements which allow to measure the changes of the physical states in electrical units.
  • At least one measuring element is located on the membrane and at least one measuring element is located outside the membrane in the unheated area and the difference between the measured values of the measuring elements located at the different points is used to determine the membrane thickness.
  • Figure 1 is a schematic diagram of a measuring arrangement consisting of a membrane 1 with a surrounding area as a section of a semiconductor wafer 10. Heat distribution and mechanical strain of the membrane are dependent on the membrane thickness "h" at a known heat output and are measured electrically via corresponding measuring strips.
  • the electrical energy is introduced into the semiconductor membrane 1 of a microstructure 10 through a large-area heater arrangement with the electrical resistance heating elements 4 on the membrane 1.
  • the electrical measuring resistor 2 arranged between the electrical resistance heating elements 4 and the non-heated edge region serve for the measurement the diaphragm arranged electrical measuring resistor 3 as part of an electrical bridge circuit, not shown.
  • the method is based in one embodiment on the evaluation of the resistance changes of the located on the heated membrane 1 measuring resistor 2 after a certain time, caused by changing the thickness-dependent mechanical strain and heat conduction in the membrane after the end of the energy input.
  • One embodiment relates to a measuring arrangement for the electrical determination of the membrane thickness by energy input, wherein means 4 are present on the membrane 1, which heat the area of the membrane 1 defined and at least one measuring element 2 on the membrane and at least one measuring element 3 in the non-heated area outside are the membrane 1, which allow indirectly to detect by means of electrical and thermal units caused by the heat input membrane thickness-dependent changes in time physical conditions of the membrane 1 and measuring devices, for example in the form of known Measuring devices are present, which determine the membrane thickness in comparison to the energy input from the changing difference of the measured values of the measuring elements 2, 3 located at the different points.
  • the device 4 for heating the membrane 1 of electrical resistance heating elements.
  • the device 4 for heating the membrane 1 consists of two electrical resistance heating elements, which are positioned symmetrically on both sides of the measuring element 2 on the membrane 1.
  • the measuring device measuring the difference between the measured values of the measuring elements 2 on the membrane 1 and outside the membrane 1 is a bridge circuit.
  • the heating and measuring elements formed on the semiconductor wafer are part of special test fields.
  • the heating and measuring elements formed on the semiconductor wafer are part of a finished sensor.
  • the heating and measuring elements formed on the semiconductor wafer together with the integrated measuring bridge circuit are part of special test fields.
  • the heating and measuring elements formed on the semiconductor wafer 10 together with the integrated measuring bridge circuit are part of the finished sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

L'invention concerne un procédé et un dispositif de détermination de l'épaisseur de membranes de semiconducteurs (1) par mesure électrique. De l'énergie est appliquée de façon définie à la membrane et l'épaisseur de la membrane est déduite de la répartition ou de la propagation de l'énergie. Une variation d'état de la membrane est suivie par mesure de la conductivité électrique par l'intermédiaire de résistances de mesure (3) situées sur la membrane. La conductivité électrique varie sous l'effet de la température et de la déformation de la membrane dépendant toutes deux de l'épaisseur de la membrane.
EP05810074A 2004-10-21 2005-10-20 Determination electrique de l'epaisseur de membranes de semiconducteurs par apport d'energie Withdrawn EP1802939A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004051113A DE102004051113B4 (de) 2004-10-21 2004-10-21 Verfahren und Messanordnung zur elektrischen Ermittlung der Dicke von Halbleitermembranen durch Energieeintrag
PCT/DE2005/001873 WO2006042528A1 (fr) 2004-10-21 2005-10-20 Determination electrique de l'epaisseur de membranes de semiconducteurs par apport d'energie

Publications (1)

Publication Number Publication Date
EP1802939A1 true EP1802939A1 (fr) 2007-07-04

Family

ID=35735228

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05810074A Withdrawn EP1802939A1 (fr) 2004-10-21 2005-10-20 Determination electrique de l'epaisseur de membranes de semiconducteurs par apport d'energie

Country Status (4)

Country Link
US (1) US20090174418A1 (fr)
EP (1) EP1802939A1 (fr)
DE (2) DE102004051113B4 (fr)
WO (1) WO2006042528A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006002753B4 (de) * 2006-01-20 2010-09-30 X-Fab Semiconductor Foundries Ag Verfahren und Anordnung zur Bewertung der Unterätzung von tiefen Grabenstrukturen in SOI-Scheiben
DE102007018877B4 (de) * 2007-04-19 2010-03-04 Hönig, Thomas Verfahren und Materialauftragseinrichtung mit einer Prüfvorrichtung zur Gütemessung des Auftragsbildes einer Sprühdüse sowie Verwendung eines Testfelds
EP2668483B1 (fr) 2011-01-28 2015-11-18 ELMOS Semiconductor AG Composant microelectromecanique et procede pour tester un composant microelectromecanique

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0195985B1 (fr) * 1985-03-27 1990-01-24 Siemens Aktiengesellschaft Capteur capacitif de pression
GB2179748B (en) * 1985-08-20 1989-09-06 Sharp Kk Thermal flow sensor
US5251980A (en) * 1990-12-14 1993-10-12 Anritsu Corporation Sensing system for measuring specific value of substance to be measured by utilizing change in thermal resistance
DE4414349A1 (de) * 1993-12-23 1995-06-29 Heimann Optoelectronics Gmbh Thermoelektrischer Mikrovakuumsensor
WO1998005921A1 (fr) * 1996-07-31 1998-02-12 Siemens Aktiengesellschaft Procede pour determiner l'epaisseur de paroi d'une pale de turbine et dispositif pour mettre en oeuvre ledit procede
DE19701055B4 (de) * 1997-01-15 2016-04-28 Robert Bosch Gmbh Halbleiter-Drucksensor
DE19710559A1 (de) * 1997-03-14 1998-09-17 Bosch Gmbh Robert Sensor mit einem Dünnfilmelement
JP3455473B2 (ja) * 1999-07-14 2003-10-14 三菱電機株式会社 感熱式流量センサ
DE19958311C2 (de) * 1999-12-03 2001-09-20 Daimler Chrysler Ag Halbleiter-Gassensor in Siliziumbauweise, sowie Verfahren zur Herstellung und zum Betrieb eines Halbleiter-Gassensors
KR20050026904A (ko) * 2001-09-10 2005-03-16 마이크로브리지 테크놀로지스 인크. 저항기 트리밍 방법
JP2006226756A (ja) * 2005-02-16 2006-08-31 Denso Corp 圧力センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006042528A1 *

Also Published As

Publication number Publication date
DE102004051113A1 (de) 2006-05-04
DE102004051113B4 (de) 2006-11-30
DE112005002169A5 (de) 2007-07-12
US20090174418A1 (en) 2009-07-09
WO2006042528A1 (fr) 2006-04-27

Similar Documents

Publication Publication Date Title
DE102017202427B4 (de) MEMS-Mikrofon, Vorrichtung, die ein MEMS-Mikrofon umfasst, und Verfahren zur Herstellung eines MEMS-Mikrofons
DE102010028390B4 (de) Verfahren zur Bestimmung eines Erregerleiterabstandes von einem Magnetfeldsensor, Verfahren zum Kalibrieren des Magnetfeldsensors sowie ein kalibrierbarer Magnetfeldsensor und Verwendung einer Erregerleiterstruktur zur Bestimmung eines Erregerleiterabstandes
DE69912685T2 (de) Vorrichtung und Verfahren zur Normierung und Eichung einer Sensormatrix
EP1065475B1 (fr) Procédé pour mesurer un courant de gaz
DE102019113539B9 (de) Verfahren und Vorrichtung zum Betreiben eines Multigassensors
EP2580563A2 (fr) Procédé de mesure dynamométrique optique à faibles vibrations, notamment à températures élevées
WO2006042528A1 (fr) Determination electrique de l'epaisseur de membranes de semiconducteurs par apport d'energie
EP3754329B1 (fr) Capteur d'hydrogène et son procédé de fabrication, dispositif de mesure et procédé de mesure dune concentration d'hydrogène
DE102021107255B4 (de) Digitaler Sensor mit Referenzkantilever zur Umwandlung chemischer und/oder biochemischer Information
DE3438546A1 (de) Verfahren zum nachweis eines stoffes oder zum nachweis zumindest einer komponente eines stoffgemisches sowie schwingkondensator zur durchfuehrung des verfahrens
EP1521972A1 (fr) Capteur thermique pour detecter une acceleration ou un choc, comportant une unite de chauffage, et procede associe
DE102016202537B4 (de) Verfahren und Vorrichtung zur Bestimmung der Konzentration von Gaskomponenten in einem Gasgemisch
EP1021704B1 (fr) Methode pour la detection de condensation sur des surfaces
DE69722926T2 (de) Vorrichtung und verfahren zur feststellung eines fluids
DE102012206512B4 (de) Beheizbares Gasanalysengerät
EP3390976B1 (fr) Procédé de détermination d'un débit ou d'une vitesse d'écoulement d'un milieu
DE102015009960B4 (de) Keramischer DSC-Chip mit intregrierter Einrichtung zur Probenmassenbestimmung
DE4309530C2 (de) Vorrichtung für die dynamisch-mechanische Analyse von Probenkörpern
DE102017215533A1 (de) Sensoranordnung mit zusätzlicher pH-sensitiver Schicht
DE10003676B4 (de) Verfahren und Vorrichtung zur Bestimmung der Konzentrationen eines H2/He-Gasgemisches
DE102011085747A1 (de) Verfahren zur Überprüfung und/oder Justierung eines Dünnfilm-pH-Sensors und Selbstüberwachender und/oder -justierender Dünnfilm-pH-Sensor
DE102022121188B3 (de) Sensor zur Umwandlung chemischer und/oder biochemischer Information eines Analyten
EP2278323A1 (fr) Dispositif de détermination de la teneur en oxygène dans un gaz
EP3588081B1 (fr) Procédé et dispositif d'étalonnage d'un détecteur de fluide comprennant un préconcentrateur
WO2017071950A1 (fr) Système et procédé pour surveiller un canal, notamment un canal mems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070402

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071015

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD AND DEVICE FOR DETERMINING THE THICKNESS OF A SEMICONDUCTOR MEMBRANE IN A MICROSTRUCTURE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20090317