EP1800079A1 - Echangeur de chaleur - Google Patents

Echangeur de chaleur

Info

Publication number
EP1800079A1
EP1800079A1 EP05794759A EP05794759A EP1800079A1 EP 1800079 A1 EP1800079 A1 EP 1800079A1 EP 05794759 A EP05794759 A EP 05794759A EP 05794759 A EP05794759 A EP 05794759A EP 1800079 A1 EP1800079 A1 EP 1800079A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
exchanger according
channels
flow medium
turns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05794759A
Other languages
German (de)
English (en)
Inventor
Josef Bachmaier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1800079A1 publication Critical patent/EP1800079A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/04Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by spirally-wound plates or laminae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2240/00Spacing means

Definitions

  • the invention relates to a heat exchanger according to the preamble of claim 1.
  • heat exchangers are known, for example tubular heat exchangers, plate heat exchangers, etc. As different as they are in their nature, so are the fields of application. For example, heat exchangers are used for room ventilation, but are also used, for example, in Stirling engines or nitrogen engines. In addition to a high degree of efficiency and low production costs, a small space requirement and a high pressure and / or heat resistance are often required.
  • the object of the invention is to provide a heat exchanger which meets these requirements.
  • the heat exchanger is produced in a simple manner in that at least one sheet-shaped material is wound around the longitudinal axis of the heat exchanger. In cross section, a spiral with spaced windings is thus formed. The turns thus form the partitions while the channels are spaced through the space between the ones Turns are formed.
  • separating webs can additionally be provided between adjacent turns which extend along the heat exchanger from one end face to the other. Thus, a channel is formed between two turns and two separating webs.
  • the heat exchanger can be pre-produced by the meter with any number of turns and with any desired dimensions.
  • the channels are alternately flowed through in countercurrent of one or the other flow medium, between which the heat transfer takes place. That is, the innermost or first channel between the innermost or first turn and the second turn is flowed through by the one, for example, warm flow medium in one direction and the second channel between the second turn and the third turn of the other, colder flow medium in the opposite direction ⁇ tion, the third channel again from the warm flow medium, etc.
  • the flow medium can be both a gas and a liquid, but for example also a solid heat storage mass having a melting temperature below the temperature of the warm flow medium, for example paraffin, wax or fat.
  • the sheet-like material may be metal, plastic or another material, as long as it can be wound or produced in a gewi ⁇ ckelt.
  • the sheet-like material can be plastic.
  • a stainless steel sheet can be used.
  • the heat exchanger according to the invention has a high pressure and temperature resistance.
  • punctiform connection points can be provided between the windings, preferably in the longitudinal direction and around the circumference.
  • the individual channels are preferably closed at the end faces of the heat exchanger via a pitch circle and open at the other end face via a pitch circle. If the separating webs run parallel to the pole axis of the spiral, that is to say parallel to the longitudinal axis of the heat exchanger, the closed pitch circle of a channel preferably faces an open pitch circle on one end face on the other end face.
  • the flow medium does not flow straight through the channels, but is deflected in the circumferential direction, so that it emerges on the other end face, based on the cross section of the heat exchanger, on the Nielseneau ⁇ the side. In other words, if, in the case of a horizontally arranged heat exchanger, it enters the channel at the top or at the right in the channel, it exits at the other end side at the bottom or at the left.
  • the pitch circles are preferably formed by semicircles.
  • the open pitch circles or semicircles, via which the flow medium enters the heat exchanger, are preferably arranged on the same side or half of one side of the heat exchanger, and the open pitch circles or semicircles over which the other flow medium on the other end face in the opposite direction, on the wholie ⁇ ing side or half of the other end face. That is, in a horizontally arranged heat exchanger and extending parallel to the longitudinal axis separating webs, the open part or semicircles are hen vorgese ⁇ example, bottom or right for the entry of a flow medium, and the open part or semicircles on the other end face for the entrance of the other Flow medium in countercurrent top or left.
  • the connection of the heat exchanger is much easier, because the one Strö ⁇ tion medium at one end face and the other flow medium in countercurrent on the other end side in each case on one side or half of the respective end side can be connected sen sen.
  • the dividers can also extend helically around the polar axis of the spiral, ie the longitudinal axis of the heat exchanger.
  • the helix angle can be 180 ° or a multiple thereof.
  • the flow medium can in each case on the same side on the one end face and emerge on the other end face ren, ie. enter at a horizontally arranged heat exchanger in the upper half at one end face and emerge at the upper half from the other end face.
  • the heat exchanger according to the invention can be used in different fields. For example, it can be used in nitrogen engines in which liquid nitrogen is expanded with air, that is, in which the nitrogen forms the cold flow medium and the air or water countercurrently forms the warm flow medium. Another possibility is the Stirling machine, since the heat exchanger according to the invention is able to withstand a high pressure and high temperature.
  • the heat exchanger according to the invention can furthermore be used as an absorber for heat pumps, furthermore, for example as a water / air heater, eg as pre- or post-heating register. It is also ideal for geo-thermal plants.
  • the heat exchanger according to the invention can also be used to obtain thermo-power according to the Peltier effect.
  • FIG. 1 shows a heat exchanger according to a firstticians ⁇ form in a perspective view
  • Figure 2 and 3 is a plan view of the one or the other end face of the heat exchanger
  • Figure 4 is a cross-section along the line IV-IV in Figure 1;
  • Figure 5 shows a cross section through the heat exchanger according to a further embodiment
  • Figure 6 and 7 is a plan view of an end face of the
  • FIG. 8 is a plan view corresponding to FIG. 7, however, of a heat exchanger designed as a mixer;
  • FIG. 9 shows a cross section through the heat exchanger according to a third amongsf ⁇ rm.
  • FIG. 10 shows a plan view of an end face of the heat exchanger according to FIG. 9 with the cover for one of the two flow media.
  • the heat exchanger according to the invention consists of a sheet-like material 1, which is spirally wound around the longitudinal axis of the heat exchanger or polar axis P of the spiral.
  • the turns 2.1, 2.2, 2.3, ..., 2.6 of the spiral form the partitions of the heat exchanger, while the channels 3.1, 3.2, ..., 3.5 are formed by the space between the adjacent turns.
  • additional dividers 4.1, 4.2, ..., 4.5 are provided between adjacent turns 2.1, 2.2, 2.3, ..., extending along the heat exchanger from one end face A to the other end face B.
  • the channels 3.1, 3.2, ... are alternately flowed through in countercurrent by the warm flow medium W or the cold flow medium K, wherein the warm flow medium W enters at the end face A and exits cooled at the other end B as Wk, while the cold Flow medium K enters at the end face B and exits heated at the end face A as Kw.
  • the innermost or first channel 3.1 between the inners ⁇ th or first turn of 2.1 and the second winding 2.2 is of the cold flow medium K in the one direction by ⁇ flows and the second channel 3.2 between the second winding 2.2, and the third turn 2.3 from the warm flow medium W in the opposite direction, the third channel 3.3 again from the cold flow medium K, the fourth channel 3.4 from the warm flow medium W and the fifth channel 3.5 again from the cold flow medium K.
  • the individual channels 3.1, 3.2, ... are closed at both ends A and B of the heat exchanger via a semicircle 5.1, 5.2, ..., 5.5 and open therebetween.
  • connection points 6 ' are provided between the turns 2.1, 2.2,..., Distributed in the longitudinal direction and in the circumferential direction, which are produced, for example, by spot welding.
  • a bypass channel 9 is provided, by means of which, for example, cold air, for example in summer, can be conveyed into the room when the heat exchanger is used for room ventilation.
  • channels 13.1 and 13.2 for example, helical dividers may be provided to extend the flow path.
  • the channels 13.1 and 13.2 may have a different width by spacers 15 of different lengths.
  • a wide duct 13.2 for the passage of air and a narrow duct 13.1 for the passage of water can be provided.
  • the heat exchanger according to the invention can also be designed for three or more media.
  • a divider is provided in one of the channels 13.1, 13.2 to form three channels, e.g. through a channel
  • the heat transfer fluid heated by a solar system flow in the second channel may be provided a heat storage mass, e.g. Paraffin or fat, and through the third channel in the passage e.g. Water flows to get warm water.
  • the channel 13.1 can be closed on one end side on one, for example the left side and open on the other side, while the channel 13.2 on this front side is open on the left side and on the right side closed is.
  • corresponding covers 17, 18 with pipe connections 19, 20 on the respective side of each end face the corresponding inlets and outlets for the respective flow medium can be connected.
  • the bypass channel 6 is closed.
  • the heat exchanger can also be used as a mixer. As shown in FIG. 8, the cover 18, from which the warmer flow medium emerges, then also extends over the bypass channel 16.
  • FIGS. 9 and 10 differs from that according to FIG. 5 essentially in that the two blades 10, 11 of each pair act at a first predetermined angle ⁇ and the inner blade 11 turns with the outer blade 10 of the adjacent inner Winding after a second predetermined angle ß, the predetermined to the first Angle ⁇ , are interconnected to form the channels 20.1, 20.2, 20.3 for one and 21.1, 21.2 and 21.3 for the other flow medium.
  • connections between the leaves 10, 11 of a pair are formed by constrictions 23 of the pairs of leaves.
  • the angle at which the constrictions 23 are offset relative to the connections 24 between the inner blade 11 of one turn and the outer blade 10 of the respectively adjacent inner turn is .alpha. / 2.
  • the channels 20.1, 20.2 and 20.3 for the one, for example, cold flow medium K, and the channels 21.1, 21.2, 21.3 for the warm flow medium Wk are each arranged radially one behind the other.
  • the heat exchange surface is increased in this embodiment.
  • the lid 26 is shown schematically, the channels 21.1, 21.2, 21.3 closes at one end face of the heat exchanger to connect them with the drain line for the flow medium Wk.
  • the cover 26 has radially extending wings 27 which cover the channels 21.1, 21.2 and 21.3.
  • the gussets 28 at the constrictions 23 and connections 24 are closed in order to separate the two flow media from one another.
  • the cover, not shown, at this end face for connecting the supply line for the cold flow medium K to the heat exchanger 1 is constructed in a manner similar to the cover 26.
  • the inlet and outlet of the flow media at the two end faces of the heat exchanger 1 also take place in several pitch circles, ie not only in the form of semicircles, as shown in Figure 1 to 4 or 5 to 8.
  • the inlet and outlet openings can be adapted to the volume changes due to the cooling or heating via the size of the opening angles of the individual partial circles to the inlet and outlet volumes. That is, if a high-temperature gas over a Crystal Vietnamese ⁇ area of e.g. 60% or a total proportion of Generalnik ⁇ surfaces of e.g. 60% enters at one end face, the volume decreases as a result of the cooling and occurs at the other end face of the heat exchanger with e.g. 40% of ⁇ ff ⁇ ff mbis Diagram again off.
  • the cold gas e.g. 40% of the total area for entry at one end and e.g. 60% of the total area to be provided for exit on the other Stirn ⁇ side of the heat exchanger.
  • a preferred field of application of this variant of the heat exchanger is the exhaust gas heat recovery, for example in biomass combustion, in which the exhaust gas heats the combustion air.
  • particularly high-efficiency ventilation heat exchangers can be produced cost-effectively.
  • the bypass 6 in the interior is advantageous, especially in conjunction with a mixing valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Echangeur de chaleur pourvu de passages (3.1, 3.2,...) séparés par des parois de séparation, qui sont traversés en alternance à contre-courant par l'un ou l'autre des milieux d'écoulement (W, K). Ledit échangeur de chaleur est formé d'une matière (1) en forme de feuille enroulée en spirale. Les spires (2.1, 2.2,...) de la spirale forment les parois de séparation entre les passages (3.1, 3.2,...). Les passages (3.1, 3.2,...) sont en outre séparés les uns des autres par des nervures de séparation (4.1, 4.2,...) situées entre des spires voisines (2.1, 2.2,...).
EP05794759A 2004-09-23 2005-09-22 Echangeur de chaleur Withdrawn EP1800079A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004046587A DE102004046587B4 (de) 2004-09-23 2004-09-23 Wärmetauscher
PCT/DE2005/001675 WO2006032258A1 (fr) 2004-09-23 2005-09-22 Echangeur de chaleur

Publications (1)

Publication Number Publication Date
EP1800079A1 true EP1800079A1 (fr) 2007-06-27

Family

ID=35708794

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05794759A Withdrawn EP1800079A1 (fr) 2004-09-23 2005-09-22 Echangeur de chaleur

Country Status (4)

Country Link
US (1) US20080257534A1 (fr)
EP (1) EP1800079A1 (fr)
DE (2) DE102004046587B4 (fr)
WO (1) WO2006032258A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005045734B4 (de) * 2004-09-23 2010-04-29 Josef Bachmaier Wärmetauscher mit an diesem angeordneter Fördereinrichtung
DE102006036965A1 (de) * 2006-08-01 2008-02-07 Makatec Gmbh Folienwärmeübertrager für Fluide
DE112006004190A5 (de) * 2006-10-31 2009-10-01 Josef Bachmaier Kompaktlüfter, bestehend aus Wärmetauscher mit integrierten oder angedockten Ventilatoren
DE102008058817B4 (de) * 2008-11-25 2013-07-04 Horst Hinterneder Luft-Luft-Wärmetauscher
EP2825833B1 (fr) * 2012-03-16 2016-06-08 Ateliers de Construction de Thermo-Echangeurs S.A. Corps d'échangeur et échangeur
DE102012106079A1 (de) 2012-07-06 2014-01-09 Benteler Automobiltechnik Gmbh Spiralwärmetauscher sowie Verfahren zur Herstellung des Spiralwärmetauschers
DE102013111290B3 (de) 2013-10-14 2014-08-21 ROOS GmbH Luft-Luft-Wärmetauscher
US10539349B2 (en) * 2017-04-05 2020-01-21 International Business Machines Corporation Coiled adsorption heat exchanger
JP7303647B2 (ja) * 2019-03-20 2023-07-05 株式会社Subaru スパイラル式熱交換器
DE202020005950U1 (de) 2020-03-20 2023-08-04 Viessmann Climate Solutions Se Tauschervorrichtung
EP3882552B1 (fr) 2020-03-20 2023-08-23 Viessmann Climate Solutions SE Dispositif échangeur

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2429403A1 (fr) * 1978-06-21 1980-01-18 Barriquand Echangeur de chaleur perfectionne
US6233824B1 (en) * 1999-10-08 2001-05-22 Carrier Corporation Cylindrical heat exchanger

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB291593A (en) * 1927-05-13 1928-06-07 Martyn Clissold Macpherson Improvements in or relating to radiators for effecting heat transference to or from fluids
NL43858C (fr) * 1936-02-01
US2131265A (en) * 1937-03-01 1938-09-27 Dow Chemical Co Spiral heat interchanger and method of making same
FR2313650A1 (fr) * 1975-06-05 1976-12-31 Bertin & Cie Echangeur de chaleur compact pour fluides
DE2534442A1 (de) * 1975-08-01 1977-02-10 Linde Ag Waermeaustauscher in spiralblechbauart
DE8006193U1 (de) * 1980-03-07 1980-07-03 Witzenmann Gmbh, Metallschlauch- Fabrik Pforzheim, 7530 Pforzheim Membran-waermetauscher
DE3141300A1 (de) * 1981-10-17 1983-04-28 KEC Kneissl Energie Consult GmbH, 8184 Gmund Gewickelte spiralwaermetauscher mit wickelbefestigungen, die von aussen zerstoert werden koennen
DE3505789A1 (de) * 1985-02-20 1986-08-21 Grote, Paul, 2901 Friedrichsfehn Spiralwaermetauscher
US5445216A (en) * 1994-03-10 1995-08-29 Cannata; Antonio Heat exchanger
DE69610589T2 (de) * 1995-07-12 2001-02-08 Rolls-Royce Plc, London Wärmetauscher
WO1999023435A1 (fr) * 1997-11-05 1999-05-14 Solar Turbines Incorporated Procede de production ameliore d'une cellule de recuperateur
DE19810185C1 (de) * 1998-03-10 1999-10-21 Renzmann Und Gruenewald Gmbh Spiralwärmetauscher
JP2000329484A (ja) * 1999-05-14 2000-11-30 Matsushita Seiko Co Ltd 熱交換素子とその製造方法
US6289978B1 (en) * 1999-11-09 2001-09-18 Ateliers De Construction De Thermo-Echangeurs Sa Coiled heat exchanger and a method for making a coiled heat exchanger
FR2809483B1 (fr) * 2000-05-26 2003-08-15 Spirec Perfectionnements aux echangeurs thermiques de type spirale
FR2810726B1 (fr) * 2000-06-27 2004-05-28 Spirec Echangeur spirale multiecartement
KR100804103B1 (ko) * 2000-08-10 2008-02-18 가부시키가이샤 칸쿄 열교환기, 그 제조방법 및 그것을 포함하는 제습기
AUPR286801A0 (en) * 2001-02-05 2001-03-01 Burns, Alan Robert Heat exchanger
JP3968466B2 (ja) * 2001-11-30 2007-08-29 株式会社ティラド 円筒型熱交換器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2429403A1 (fr) * 1978-06-21 1980-01-18 Barriquand Echangeur de chaleur perfectionne
US6233824B1 (en) * 1999-10-08 2001-05-22 Carrier Corporation Cylindrical heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2006032258A1 *

Also Published As

Publication number Publication date
DE102004046587B4 (de) 2007-02-22
US20080257534A1 (en) 2008-10-23
DE102004046587A1 (de) 2006-04-06
WO2006032258A1 (fr) 2006-03-30
WO2006032258B1 (fr) 2006-11-16
DE112005002917A5 (de) 2007-08-30

Similar Documents

Publication Publication Date Title
EP1800079A1 (fr) Echangeur de chaleur
EP1999423B1 (fr) Refroidisseur de gaz d'echappement pour véhicule automobile
EP1654508B2 (fr) Echangeur de chaleur et procede de fabrication dudit echangeur
EP1626238A1 (fr) Echangeur de chaleur avec tubes plats
DE10314782A1 (de) Wärmetauscher für den Wärmeaustausch zwischen einem inneren und einem äußeren Fluid und Verfahren zur Herstellung desselben
EP3119623A1 (fr) Module de chauffage et de refroidissement
DE60310992T2 (de) Hochdruckwärmetauscher
DE102009047620B4 (de) Wärmeübertrager mit Rohrbündel
DE112013007041B4 (de) Wärmetauscher
EP2839136A1 (fr) Microturbine à gaz équipée d'un récupérateur de forme annulaire
EP0201665B1 (fr) Elément de transfert de chaleur comportant des tubes parallèles à ailettes
EP2710318A1 (fr) Echangeur de chaleur à lamelles
DE2331563B2 (de) Waermetauscher
EP3491323B1 (fr) Échangeur de chaleur présentant une structure à micro-canal ou une structure à tube à ailettes
EP1788320B1 (fr) Echangeur de chaleur
WO2016131786A1 (fr) Échangeur de chaleur à faisceau tubulaire
DE69521843T2 (de) Wärmetauscher, insbesondere für die Kühlung eines Luftstromes mit hoher Temperatur
DE102004007510B4 (de) Wärmeübertrager, insbesondere Ölkühler für Kraftfahrzeuge
EP1557627A1 (fr) Canal d'écoulement
DE102004044861A1 (de) Wärmetauscher für Kraftfahrzeuge
WO2011089266A2 (fr) Échangeur de chaleur, en particulier pour préchauffer l'air de combustion de chaudières à eau chaude
DE19547928A1 (de) Plattenwärmetauscher
WO2013120817A2 (fr) Échangeur de chaleur à plaques
DE202019103964U1 (de) Wärmeaustauscher
EP0230982B1 (fr) Echangeur de chaleur cylindrique, fabriqué avec des éléments de construction préfabriqués, en particulier récupérateur sur cheminée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20070323

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090824

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140401