EP1798298B1 - Use of a low-migration copper alloy and parts made of such alloy - Google Patents

Use of a low-migration copper alloy and parts made of such alloy Download PDF

Info

Publication number
EP1798298B1
EP1798298B1 EP05027341A EP05027341A EP1798298B1 EP 1798298 B1 EP1798298 B1 EP 1798298B1 EP 05027341 A EP05027341 A EP 05027341A EP 05027341 A EP05027341 A EP 05027341A EP 1798298 B1 EP1798298 B1 EP 1798298B1
Authority
EP
European Patent Office
Prior art keywords
alloy
components
copper alloy
copper
unavoidable impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05027341A
Other languages
German (de)
French (fr)
Other versions
EP1798298B2 (en
EP1798298A1 (en
Inventor
Katrin Dr.-Ing. Müller
Patrik Zeiter
Frank Leistritz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JRG Gunzenhauser AG
R NUSSBAUM AG METALLGIESSEREI und ARMATURENFABRIK
Viega GmbH and Co KG
Gebr Kemper GmbH and Co KG
Original Assignee
JRG Gunzenhauser AG
R NUSSBAUM AG METALLGIESSEREI und ARMATURENFABRIK
Viega GmbH and Co KG
Gebr Kemper GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36499302&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1798298(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JRG Gunzenhauser AG, R NUSSBAUM AG METALLGIESSEREI und ARMATURENFABRIK, Viega GmbH and Co KG, Gebr Kemper GmbH and Co KG filed Critical JRG Gunzenhauser AG
Priority to EP05027341.6A priority Critical patent/EP1798298B2/en
Priority to AT05027341T priority patent/ATE380259T1/en
Priority to ES05027341.6T priority patent/ES2297598T5/en
Priority to DE502005002181T priority patent/DE502005002181D1/en
Priority to EP06840971A priority patent/EP1817438B1/en
Priority to DE502006001675T priority patent/DE502006001675D1/en
Priority to US12/095,615 priority patent/US20090214380A1/en
Priority to AT06840971T priority patent/ATE409753T1/en
Priority to JP2008544870A priority patent/JP4838859B2/en
Priority to ES06840971T priority patent/ES2314946T3/en
Priority to PCT/EP2006/012008 priority patent/WO2007068470A1/en
Publication of EP1798298A1 publication Critical patent/EP1798298A1/en
Publication of EP1798298B1 publication Critical patent/EP1798298B1/en
Priority to NO20083081A priority patent/NO20083081L/en
Publication of EP1798298B2 publication Critical patent/EP1798298B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent

Definitions

  • the present invention relates to the use of a low-migration copper alloy for the production of components for gas and sanitary installation, especially for components that are used in drinking water installation and directly with the in the components, usually pipes, fittings and fittings, guided drinking water in Contact, as well as components consisting of such copper alloy.
  • the GB-1 443 090 discloses a dezincification-enhanced copper alloy having between 80 and 90 weight percent copper, between 6.3 and 17.5 weight percent zinc, and between 2.8 and 4.75 weight percent silicon as essential alloying ingredients between 0.03 and 0.05% by weight of arsenic.
  • 443,090 proposed a heat treatment of the cast parts. In this heat treatment, the cast parts are annealed at temperatures between 600 ° C and 750 ° C for a period of 5 to 10 days and then quenched. This heat treatment is carried out with the aim of obtaining the ⁇ and ⁇ phases to be preferred in view of the corrosion. By quenching in particular the formation of phases is to be avoided, the corrosion resistance is low, so the p and ⁇ phase.
  • a copper alloy containing up to 10% by weight of aluminum is known and up to 5 wt .-% iron and which is used for the production of water-bearing components of water installations.
  • this alloy shows inadequate corrosion behavior and, in particular, excessive migration of metal ions into the water.
  • the present invention is based on the problem of providing a migration behavior improved copper alloy, which is particularly suitable for the production of media-carrying gas or water pipes and their parts and the good corrosion resistance to the media, good strength and good machinability and castability Has.
  • machinability in particular, the chipping properties of the copper alloy are important.
  • the invention wants to specify corresponding media-carrying components, in particular fittings or fittings, as well as an advantageous use of the copper alloy according to the invention.
  • a copper alloy having the features of claim 1 comprises between 2 and 4.5% by weight of silicon, between 1 and 15% by weight of zinc and between 0.05 and 2% by weight of manganese.
  • the copper alloy may contain between 0.05 and 0.4% by weight of aluminum and / or between 0.05 and 2% by weight of tin.
  • the remainder of the alloy contains copper and unavoidable impurities. These impurities are preferably limited to a content of 0.5% by weight. Most preferably, the upper limit for the impurities is 0.25%. This upper limit applies in particular to the cumulative nickel and lead content in the alloy, which has proven to be a particularly effective measure for suppressing the migration of lead or nickel.
  • the alloy is preferably free of lead and / or nickel.
  • a lead-free alloy an alloy is considered in which the content of lead is less than 0.25%.
  • the nickel-free alloy is considered to be an alloy in which the nickel content is less than 0.15%.
  • the components in question for media-carrying lines easily with the usual casting process, for example, in the sand, mold, spin or continuous casting can be produced.
  • the cooling conditions from the melt there are no special requirements.
  • the casting thus obtained can be processed well spanariad.
  • the casting is preferably annealed at between 400 ° C and 800 ° C for at least half an hour.
  • the heat treatment is carried out in a temperature interval of between 600 ° C and 700 ° C.
  • the glow time can be any length. In terms of economic constraints, however, this is set at between 2 and 16 hours. In this glow time, the Aufzeitphase is not included.
  • the annealing takes place in particular with the aim of adjusting the ⁇ -phase in the cast component, which, according to the present inventions, enables the combination of different properties to be achieved. It should be noted, however, that even the vast majority of the necessary alloying elements copper, zinc and silicon solidifies in a natural cooling from the melt without separate heat treatment in the form of ⁇ -mixed crystals.
  • the upper limit of the silicon content is set to 4.5 wt% not least in view of the machinability of the alloy.
  • the zinc content limited to 15 wt .-%.
  • a minimum content of 1% by weight of zinc guarantees a minimum of machinability.
  • Manganese is added to the alloy within the limits of 0.05 to 2% by weight in order to improve the microstructure. Manganese refines the microstructure and positively influences the solidification behavior of the copper alloy. However, the manganese content is limited to 2% by weight in consideration of the migration tendency of manganese.
  • Limiting the sum of the impurities to a maximum of 0.5% by weight limits the content of ingredients that may possibly migrate into the drinking water to a minimum that is also economically desirable. With a further limited upper limit of the unavoidable impurities of 0.25% by weight, a higher security against migration, but at the expense of manufacturing costs, can be achieved.
  • the alloy contains between 5 and 15% by weight of zinc. In this limited interval, the best possible combination of corrosion resistance and machinability can be achieved.
  • the silicon content is set at between 2.8% by weight and 4% by weight.
  • the content is preferably set at 0.2 to 0.6 wt .-%.
  • the alloy preferably contains no nickel or lead at all for the same reasons.
  • the copper content in the alloy should be at least 80 and not more than 96.95% by weight.
  • the use of the copper alloy for the production of components for media-carrying gas or water pipes is proposed. These are in particular those components to understand that form drinking water pipes, in particular fittings and fittings and parts thereof. Not least because of the good stress-strain properties
  • the copper alloy should preferably be made of a compression connector of the copper alloy according to the invention.
  • the compression connectors can either be designed as separate components or be provided with material or positive fit to the fitting or the fitting.
  • the press connectors can be realized as integral components in the casting of the fitting or fitting from the copper alloy.
  • the casting alloy is particularly suitable for producing an element of a press connection arrangement, as for example from the EP 0 343 395 or the DE 10 2004 031 247 is known.
  • Figs. 1 to 4 show the time course of the release of certain metal ions in a measurement arrangement according to DIN 50931-1 over a total period of 26 weeks. DIN specifies the test arrangement and test conditions with which the corrosion probability of materials for metallic components of a drinking water installation can be determined in the case of corrosive contamination of drinking water.
  • the measurement results with the exemplary embodiment of the copper alloy are marked with A.
  • the comparison measurement with the gunmetal alloy with B.
  • FIGS. 1 to 3 also contain a limit value according to the German Drinking Water Ordinance (TrinkwV) for the delivery of certain ions to water and the parameter value W (15) to be observed during migration tests.
  • This parameter value W (15) must be adhered to if it is intended to avoid exceeding the value of the TrinkwV when using the tested component.
  • the parameter value W (15) results from the product of the limit value according to the TrinkwV and the ratio of the form factors A and B.
  • the form factor A results from the ratio of the water-contacted surface of the material to the water-contacting surface of the entire test section.
  • the form factor B is a normalization factor in accordance with DIN 50930-6, which takes into account the type of components.
  • FIG. 1 illustrates that the lead-release quantity of the gunmetal alloy drops from a very high value, greater than 50 ⁇ g / l, almost exponentially within the first four weeks of testing to a value which is just above the limit of the German drinking water regulations of 10 ⁇ g / l. l after 12 to 26 weeks of testing.
  • this significant excess is attributed to the fact that lead, which had been introduced to the surface of the component to be tested, migrated into the drinking water as a result of the processing and production of the test part.
  • the near-surface lead has migrated out of the sample and the amount of discharged lead remains approximately constant.
  • the exemplary embodiment according to A gives virtually no lead to the drinking water. Even an increased value at the beginning of the experiments can not be seen. Since the measured values are at the limit of the resolution of the measurement analysis, the fluctuations in the measured values are attributed to the measuring accuracy of the measuring apparatus. Essentially, the measured value for the lead release in the sample remains well below the limit value of the PrincipalwV of 10 ⁇ g / l.
  • the comparison sample from the gunmetal alloy shows a typical course in which the conventional alloy after nine weeks exceeds the limit value according to the German UlwV, after a maximum in about the 18th Week slowly back to the limit value of the TrinkwV.
  • the copper alloy A gives no appreciable nickel ions to the drinking water.
  • the measured values of about 2 ⁇ g / l are in the range of the resolution of the analysis related to the measuring instruments.
  • Fig. 4 shows the amount of zinc released by the alloy into the drinking water.
  • no limit is set according to the TrinkwV.
  • the course of the zinc release in the case of the copper alloy A differs considerably from the corresponding course for the comparative alloy B.
  • the migration of the embodiment A of the alloy of zinc is below 100 ⁇ g / l at all times.
  • the conventional alloy B exceeds this value many times.
  • FIGS. 1 to 4 illustrate the advantages of the copper alloy A, in particular the influence of the silicon for suppressing unwanted metal ion migration into the drinking water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Domestic Plumbing Installations (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

A copper alloy is used in the production of components for drinking water pipes and their fittings. The alloy contains (wt.%): 2.8-4 silicon; 1-15 zinc; 0.05-2 manganese; 80-96.95 copper; and optionally 0.05-0.4 aluminum and 0.05-2 tin. An independent claim is also included for a component made from the above copper alloy used for the production of drinking water pipes.

Description

Die vorliegende Erfindung betrifft die Verwendung einer migrationsarmen Kupferlegierung zur Herstellung von Bauteilen für die Gas- und Sanitärinstallation, speziell für Bauteile, die bei der Trinkwasserinstallation Anwendung finden und unmittelbar mit dem in den Bauteilen, in der Regel Rohre, Fittings und Armaturen, geführten Trinkwasser in Kontakt kommen, sowie Bauteile bestehend aus solcher Kupferlegierung.The present invention relates to the use of a low-migration copper alloy for the production of components for gas and sanitary installation, especially for components that are used in drinking water installation and directly with the in the components, usually pipes, fittings and fittings, guided drinking water in Contact, as well as components consisting of such copper alloy.

Werkstoffe zur Herstellung von Bauteilen für die Gas- und Wasserinstallation unterliegen besonderen Anforderungen, die insbesondere an trinkwasserführende Leitungen und ihre Komponenten gestellt werden. Hier ist zuvorderst die Korrosionsbeständigkeit der Bauteile zu nennen, denn die eingesetzten Bauteile sollen auch bei einem langjährigen Einsatz nicht korrodieren. Darüber hinaus werden besondere Anforderungen an die Herstellbarkeit und die Verarbeitbarkeit gestellt, wobei sich die Legierungen nicht nur einfach und wirtschaftlich gießen lassen müssen, sondern darüber hinaus auch das Erfordernis besteht, dass die gegossenen Bauteile einfach mechanisch zu bearbeiten sind. Dabei ist insbesondere auf eine gute Zerspanbarkeit zu achten. Schließlich müssen die aus der Kupferlegierung hergestellten Bauteile auch für den Einsatzbereich erforderlichen mechanischen Beanspruchungen Stand halten. So wird regelmäßig bei Kupfer-Zinn-Zink-Legierungen eine Zugfestigkeit von mehr als 180 N/mm2 bei einer 0,2%-Dehngrenze von 85 N/mm2 für erforderlich erachtet. Bei Bronzen (Kupfer-Zinn-Legierungen) sollten die Zugfestigkeit bei 240 N/mm2 und die 0,2%-Dehngrenze bei 130 N/mm2 und mehr liegen.Materials for the production of components for the gas and water installation are subject to special requirements, which are placed in particular on drinking water pipes and their components. First and foremost, the corrosion resistance of the components must be mentioned, because the components used should not corrode even after many years of use. In addition, special demands are made on the manufacturability and processability, with the alloys not only having to be simply and economically cast, but also the requirement that the cast components are easy to machine mechanically. Particular attention should be paid to a good machinability. Finally, the components produced from the copper alloy must also withstand the mechanical stresses required for the application. Thus, a tensile strength of more than 180 N / mm 2 at a 0.2% proof stress of 85 N / mm 2 is regularly considered necessary for copper-tin-zinc alloys. For bronzes (copper-tin alloys) the tensile strength should be 240 N / mm 2 and the 0.2% proof stress 130 N / mm 2 and more.

Von besonderem Interesse ist ferner das Verhalten der Werkstoffe hinsichtlich der Abgabe von Ionen der Legierungskomponenten der Werkstoffe bzw. von Reaktionsprodukten mit Wasserinhaltsstoffen. Hier sind zum Schutz der Verbraucher sehr enge Grenzen hinsichtlich der erlaubten Abgabe von Metallionen aus den Bauteilen in das Trinkwasser einzuhalten.Of particular interest is also the behavior of the materials with regard to the release of ions of the alloy components of the materials or of reaction products with water constituents. Here, very narrow limits are to be observed for the protection of consumers with regard to the permitted release of metal ions from the components into the drinking water.

Neben anderen Legierungen werden heutzutage auch hoch kupferhaltige Buntmetall-Legierungen, wie Bronze oder Rotguss zur Herstellung der medienführenden Bauteile von Gas- und Wasserleitungen eingesetzt. Im Hinblick auf eine gute maschinelle Bearbeitbarkeit werden diesen Buntmetall-Legierungen gewisse Mengen an Blei zugesetzt. Zur Erhöhung der Korrosionsbeständigkeit und der Festigkeit ist die Zugabe von Nickel zu bevorzugen.In addition to other alloys, highly copper-containing non-ferrous metal alloys, such as bronze or gunmetal, are also used today for producing the media-carrying components of gas and water pipes. In view of good machinability, certain amounts of lead are added to these non-ferrous metal alloys. To increase the corrosion resistance and the strength, the addition of nickel is preferable.

Übliche Vertreter von Bronze-Guss-Legierungen sind in DIN EN 1982 zusammengestellt. Beispielhaft soll hier die Rotguss-Legierung CuSn5Zn5Pb5 mit jeweils zwischen 4 bis 6 Gew.-% Zinn, Zink und Blei bei einem Gehalt von bis zu 2,0 Gew.-% Nickel und bis zu 0,1 Gew.-% Phosphor sowie als Beimengungen bis zu 0,3 Gew.-% Eisen und bis zu 0,25 Gew.-% Antimon genannt werden. Dieser Werkstoff zeichnet sich zwar durch eine gute Gießbarkeit sowie Korrosionsbeständigkeit auch gegenüber Meerwasser aus. Hinsichtlich der Abgabe von Metallionen in das Wasser muss dieser Werkstoff indes vor dem Hintergrund der künftig zu erwartenden Grenzwerte als nicht zufriedenstellend angesehen werden. Hier wird insbesondere die hohe Bleiabgabe von CuSn5Zn5Pb5 bemängelt.Conventional representatives of bronze casting alloys are compiled in DIN EN 1982. By way of example, the gun metal alloy CuSn5Zn5Pb5 with in each case between 4 to 6 wt .-% tin, zinc and lead at a level of up to 2.0 wt .-% nickel and up to 0.1 wt .-% phosphorus and as Admixtures up to 0.3 wt .-% iron and up to 0.25 wt .-% antimony are called. Although this material is characterized by good castability and corrosion resistance to seawater. With regard to the release of metal ions into the water, however, this material must be regarded as unsatisfactory against the background of the future expected limit values. Here, in particular, the high lead levy of CuSn5Zn5Pb5 is criticized.

Mit der EP-1 045 041 ist bereits eine bleifreie Kupferlegierung vorgeschlagen worden, die eine zufriedenstellende Zerspanbarkeit aufweisen soll und welche bis zu 79 Gew.-% Kupfer, zwischen 2 und 4 Gew.-% Silicium und als Rest Zink aufweist. Diese Legierung kommt speziell zur Herstellung von Armaturen, Fittings und dergleichen Teile für wasserführende Rohrleitungssysteme in Frage. Die Legierung verhält sich indes insbesondere im Hinblick auf die Korrosionsbeständigkeit nicht wie Rotguss und kann folglich diesen nicht substituieren.With the EP-1 045 041 A lead-free copper alloy has already been proposed which is said to have satisfactory machinability and which comprises up to 79% by weight of copper, from 2 to 4% by weight of silicon and the remainder zinc. This alloy is particularly suitable for the production of fittings, fittings and the like parts for water-bearing piping systems in question. However, the alloy does not behave like gunmetal, particularly with regard to corrosion resistance, and consequently can not substitute it.

Die GB-1 443 090 offenbart eine im Hinblick auf Entzinkung verbesserte Kupferlegierung mit zwischen 80 und 90 Gew.-% Kupfer, zwischen 6,3 und 17,5 Gew.-% Zink und zwischen 2,8 und 4,75 Gew.-% Silicium als wesentliche Legierungsbestandteile mit zwischen 0,03 und 0,05 Gew.-% Arsen. Zur Verbesserung der Korrosionseigenschaften wird nach dem Lösungsvorschlag der GB-1, 443 090 eine Wärmebehandlung der gegossenen Teile vorgeschlagen. Bei dieser Wärmebehandlung werden die gegossenen Teile bei Temperaturen zwischen 600°C und 750°C über die Dauer von 5 bis 10 Tagen geglüht und nachfolgend abgeschreckt. Diese Wärmebehandlung wird mit dem Ziel durchgeführt, die im Hinblick auf die Korrosion zu bevorzugende α- und ξ-Phase zu erhalten. Durch das Abschrecken soll insbesondere die Ausbildung von Phasen vermieden werden, deren Korrosionswiderstand gering ist, so der p- und χ-Phase.The GB-1 443 090 discloses a dezincification-enhanced copper alloy having between 80 and 90 weight percent copper, between 6.3 and 17.5 weight percent zinc, and between 2.8 and 4.75 weight percent silicon as essential alloying ingredients between 0.03 and 0.05% by weight of arsenic. To improve the corrosion properties is proposed by the proposed solution GB-1, 443,090 proposed a heat treatment of the cast parts. In this heat treatment, the cast parts are annealed at temperatures between 600 ° C and 750 ° C for a period of 5 to 10 days and then quenched. This heat treatment is carried out with the aim of obtaining the α and ξ phases to be preferred in view of the corrosion. By quenching in particular the formation of phases is to be avoided, the corrosion resistance is low, so the p and χ phase.

Aus der GB-1 385 411 ist eine Kupferlegierung bekannt, die bis zu 10 Gew.-% Aluminium und bis zu 5 Gew.-% Eisen hat und die zur Herstellung von wasserführenden Bauteilen von Wasserinstallationen zum Einsatz kommt. Diese Legierung zeigt indes ein unzureichendes Korrosionsverhalten und insbesondere eine zu hohe Migration von Metallionen in das Wasser.From the GB-1 385 411 For example, a copper alloy containing up to 10% by weight of aluminum is known and up to 5 wt .-% iron and which is used for the production of water-bearing components of water installations. However, this alloy shows inadequate corrosion behavior and, in particular, excessive migration of metal ions into the water.

Der vorliegenden Erfindung liegt das Problem zugrunde, eine hinsichtlich des Migrationsverhaltens verbesserte Kupferlegierung anzugeben, die sich insbesondere zur Herstellung von medienführenden Gas- bzw. Wasserleitungen und deren Teile eignet und die eine gute Korrosionsbeständigkeit gegenüber den Medien, eine gute Festigkeit und eine gute Bearbeitbarkeit und Gießbarkeit hat. Bei der Bearbeitbarkeit kommt es insbesondere auf die Zerspanungseigenschaften der Kupferlegierung an. Darüber hinaus will die Erfindung entsprechende medienführende Bauteile, insbesondere Fittings oder Armaturen, angeben, sowie eine vorteilhafte Verwendung der erfindungsgemäßen Kupferlegierung.The present invention is based on the problem of providing a migration behavior improved copper alloy, which is particularly suitable for the production of media-carrying gas or water pipes and their parts and the good corrosion resistance to the media, good strength and good machinability and castability Has. In terms of machinability, in particular, the chipping properties of the copper alloy are important. In addition, the invention wants to specify corresponding media-carrying components, in particular fittings or fittings, as well as an advantageous use of the copper alloy according to the invention.

Im Hinblick auf den stoffbezogenen Aspekt der vorliegenden Erfindung wird die Verwendung einer Kupferlegierung mit den Merkmalen von Anspruch 1 vorgeschlagen. Diese Kupferlegierung umfasst zwischen 2 und 4,5 Gew.-% Silicium, zwischen 1 und 15 Gew.-% Zink und zwischen 0,05 und 2 Gew.-% Mangan. Neben diesen notwendigen Elementen kann die Kupferlegierung zwischen 0,05 und 0,4 Gew.-% Aluminium und/oder zwischen 0,05 und 2 Gew.-% Zinn enthalten. Als Rest sind in der Legierung Kupfer und unvermeidbare Verunreinigungen enthalten. Diese Verunreinigungen sind vorzugsweise auf einen Anteil von 0,5 Gew.-% beschränkt. Besonders bevorzugt liegt die Obergrenze für die Verunreinigungen bei 0,25 %. Diese Obergrenze gilt insbesondere für den kumulativen Anteil an Nickel und Blei in der Legierung, was sich als besonders wirksame Maßnahme zur Unterdrückung der Migration von Blei bzw. Nickel erwiesen hat. Im Hinblick darauf ist die Legierung vorzugsweise frei von Blei- und/oder Nickel. Als bleifreie Legierung wird eine Legierung angesehen, bei welcher der Anteil an Blei weniger als 0,25 % beträgt. Als nickelfreie Legierung wird eine Legierung angesehen, bei welcher der Anteil an Nickel weniger als 0,15 % beträgt.With regard to the fabric-related aspect of the present invention, the use of a copper alloy having the features of claim 1 is proposed. This copper alloy comprises between 2 and 4.5% by weight of silicon, between 1 and 15% by weight of zinc and between 0.05 and 2% by weight of manganese. In addition to these necessary elements, the copper alloy may contain between 0.05 and 0.4% by weight of aluminum and / or between 0.05 and 2% by weight of tin. The remainder of the alloy contains copper and unavoidable impurities. These impurities are preferably limited to a content of 0.5% by weight. Most preferably, the upper limit for the impurities is 0.25%. This upper limit applies in particular to the cumulative nickel and lead content in the alloy, which has proven to be a particularly effective measure for suppressing the migration of lead or nickel. In view of this, the alloy is preferably free of lead and / or nickel. As a lead-free alloy, an alloy is considered in which the content of lead is less than 0.25%. The nickel-free alloy is considered to be an alloy in which the nickel content is less than 0.15%.

Es hat sich gezeigt, dass mit einer Kupferlegierung, wie sie in Anspruch 1 angegeben ist, bestmöglich den an Bauteile für medienführende Gas- bzw. Wasserleitungen zu stellenden Anforderungen entsprochen werden kann. So zeigt die Legierung ein gutes Gießverhalten. Die durch Gießen hergestellten Bauteile lassen sich gut spanhebend bearbeiten. Versuche an Probestücken haben gezeigt, dass die Festigkeit den zu stellenden Anforderungen entspricht. Darüber hinaus ist die Korrosionsbeständigkeit der Legierung hoch.It has been found that with a copper alloy, as specified in claim 1, as best as possible to be placed on components for media-carrying gas or water pipes requirements can be met. That's how it shows Alloy a good casting behavior. The components produced by casting can be machined well. Tests on specimens have shown that the strength meets the requirements to be met. In addition, the corrosion resistance of the alloy is high.

In praktischen Versuchen konnte bestätigt werden, dass die in Rede stehenden Bauteile für medienführende Leitungen ohne Weiteres mit den üblichen Gussverfahren, beispielsweise im Sand-, Kokillen-, Schleuder- oder Stranggussverfahren, hergestellt werden können. Hinsichtlich der Abkühlbedingungen aus der Schmelze gelten keine besonderen Anforderungen. Das so gewonnene Gussteil kann gut spanhebend bearbeitet werden. Zur Verminderung der Migrationsneigung des Gussteils kann dieses vorzugsweise vor einer spanhebenden Bearbeitung einer Wärmebehandlung unterzogen werden. Dabei wird das Gussteil vorzugsweise bei zwischen 400°C und 800°C für mindestens eine halbe Stunde geglüht. Vorzugsweise erfolgt die Wärmebehandlung in einem Temperaturintervall von zwischen 600°C und 700°C. Die Glühzeit kann beliebig lang sein. Im Hinblick auf wirtschaftliche Randbedingungen wird diese indes mit zwischen 2 und 16 Stunden festgelegt. In diese Glühzeit ist die Aufzeitphase nicht einbezogen.In practical experiments it could be confirmed that the components in question for media-carrying lines easily with the usual casting process, for example, in the sand, mold, spin or continuous casting can be produced. With regard to the cooling conditions from the melt, there are no special requirements. The casting thus obtained can be processed well spanhebend. To reduce the tendency of the casting to migrate, it may preferably be subjected to a heat treatment before machining. In this case, the casting is preferably annealed at between 400 ° C and 800 ° C for at least half an hour. Preferably, the heat treatment is carried out in a temperature interval of between 600 ° C and 700 ° C. The glow time can be any length. In terms of economic constraints, however, this is set at between 2 and 16 hours. In this glow time, the Aufzeitphase is not included.

Das Glühen erfolgt insbesondere mit dem Ziel, in dem gegossenen Bauteil die α-Phase einzustellen, die nach der derzeitigen Vorstellen der Erfinder die zu erzielende Kombination unterschiedlicher Eigenschaften ermöglicht. Es sei aber darauf hingewiesen, dass bereits der überwiegende Teil der notwendigen Legierungselemente Kupfer, Zink und Silicium bei einer natürlichen Abkühlung aus der Schmelze ohne gesonderte Wärmebehandlung in Form von α-Mischkristallen erstarrt.The annealing takes place in particular with the aim of adjusting the α-phase in the cast component, which, according to the present inventions, enables the combination of different properties to be achieved. It should be noted, however, that even the vast majority of the necessary alloying elements copper, zinc and silicon solidifies in a natural cooling from the melt without separate heat treatment in the form of α-mixed crystals.

Eine Zugabe von Silicium innerhalb des angegebenen Intervalls begünstig ferner den Spanbruch bei der Bearbeitung. Mit zunehmendem Silicium-Gehalt erhöht sich jedoch auch der Werkzeugverschleiß bei der spanabhebenden Bearbeitung von aus der Legierung hergestellten Bauteilen. Dementsprechend wird die Obergrenze für den Silicium-Gehalt nicht zuletzt auch im Hinblick auf die mechanische Bearbeitbarkeit der Legierung auf 4,5 Gew.-% festgelegt.Addition of silicon within the specified interval also promotes chip breakage during processing. However, with increasing silicon content, tool wear also increases in the machining of components made of the alloy. Accordingly, the upper limit of the silicon content is set to 4.5 wt% not least in view of the machinability of the alloy.

Im Hinblick auf die geforderte Korrosionsbeständigkeit ist bei der Kupferlegierung der Zinkgehalt auf 15 Gew.-% beschränkt. Ein Mindestgehalt von 1 Gew.-% Zink garantiert hingegen ein Mindestmaß an Zerspanbarkeit.With regard to the required corrosion resistance is in the Copper alloy, the zinc content limited to 15 wt .-%. On the other hand, a minimum content of 1% by weight of zinc guarantees a minimum of machinability.

Mangan wird der Legierung in den Grenzen von 0,05 bis 2 Gew.-% zugegeben, um die Gefügestruktur zu verbessern. Mangan verfeinert das Gefüge und beeinflusst das Erstarrungsverhalten der Kupferlegierung positiv. Der Mangangehalt ist allerdings mit Rücksicht auf die Migrationsneigung von Mangan auf 2 Gew.-% beschränkt.Manganese is added to the alloy within the limits of 0.05 to 2% by weight in order to improve the microstructure. Manganese refines the microstructure and positively influences the solidification behavior of the copper alloy. However, the manganese content is limited to 2% by weight in consideration of the migration tendency of manganese.

Mit einer Beschränkung der Summe der Verunreinigungen auf maximal 0,5 Gew.-% wird der Gehalt an Inhaltsstoffen, die möglicherweise in das Trinkwasser migrieren können, auf ein auch unter wirtschaftlichen Gesichtspunkten gewähltes Minimum beschränkt. Mit einem weiter eingeschränkten oberen Grenzwert für die unvermeidbaren Verunreinigungen von 0,25 Gew.-% kann eine höhere Sicherheit gegen Migration, jedoch zu Lasten der Herstellungskosten erreicht werden.Limiting the sum of the impurities to a maximum of 0.5% by weight limits the content of ingredients that may possibly migrate into the drinking water to a minimum that is also economically desirable. With a further limited upper limit of the unavoidable impurities of 0.25% by weight, a higher security against migration, but at the expense of manufacturing costs, can be achieved.

Vorzugsweise enthält die Legierung zwischen 5 und 15 Gew.-% Zink. In diesem eingeschränkten Intervall kann eine bestmögliche Kombination aus Korrosionsbeständigkeit und Zerspanbarkeit erzielt werden.Preferably, the alloy contains between 5 and 15% by weight of zinc. In this limited interval, the best possible combination of corrosion resistance and machinability can be achieved.

Zur Optimierung der Festigkeit bei ausreichenden Dehnungseigenschaften des Materials in Kombination mit guten Migrationswerten wird der Siliciumgehalt auf zwischen 2,8 Gew.-% und 4 Gew.-% festgelegt.In order to optimize the strength with sufficient elongation properties of the material in combination with good migration values, the silicon content is set at between 2.8% by weight and 4% by weight.

Zur weiteren Verminderung der Migrationsneigung von Mangan wird dessen Gehalt vorzugsweise auf 0,2 bis 0,6 Gew.-% festgelegt. Die Legierung enthält aus gleichen Gründen vorzugsweise überhaupt kein Nickel bzw. Blei. Der Kupfergehalt in der Legierung soll mindestens 80 und maximal 96,95 Gew.-% betragen.To further reduce the migration tendency of manganese, its content is preferably set at 0.2 to 0.6 wt .-%. The alloy preferably contains no nickel or lead at all for the same reasons. The copper content in the alloy should be at least 80 and not more than 96.95% by weight.

Gemäß einem Aspekt der vorliegenden Erfindung wird die Verwendung der Kupferlegierung zur Herstellung von Bauteilen für medienführende Gas- bzw. Wasserleitungen vorgeschlagen. Hierunter sind insbesondere solche Bauteile zu verstehen, welche Trinkwasserleitungen bilden, wie insbesondere Fittings und Armaturen sowie Teile hiervon. Nicht zuletzt aufgrund der guten Spannungs-DehnungsEigenschaften der Kupferlegierung soll vorzugsweise ein Pressverbinder aus der erfindungsgemäßen Kupferlegierung hergestellt werden. Die Pressverbinder können entweder als separate Bauteile ausgebildet sein oder stoff- oder formschlüssig an dem Fitting bzw. der Armatur vorgesehen sein. Auch können die Pressverbinder als integrale Bestandteile beim Gießen der Armatur bzw. des Fittings aus der Kupferlegierung verwirklicht werden. Die Gusslegierung eignet sich insbesondere zur Herstellung eines Elementes einer Pressverbindungsanordnung, wie sie beispielsweise aus der EP 0 343 395 oder der DE 10 2004 031 247 bekannt ist.According to one aspect of the present invention, the use of the copper alloy for the production of components for media-carrying gas or water pipes is proposed. These are in particular those components to understand that form drinking water pipes, in particular fittings and fittings and parts thereof. Not least because of the good stress-strain properties The copper alloy should preferably be made of a compression connector of the copper alloy according to the invention. The compression connectors can either be designed as separate components or be provided with material or positive fit to the fitting or the fitting. Also, the press connectors can be realized as integral components in the casting of the fitting or fitting from the copper alloy. The casting alloy is particularly suitable for producing an element of a press connection arrangement, as for example from the EP 0 343 395 or the DE 10 2004 031 247 is known.

Die vorliegende Erfindung soll nachfolgend anhand eines Ausführungsbeispiels in Verbindung mit der Zeichnung verdeutlicht werden. Die Zeichnung zeigt:

Fig. 1
ein Schaubild mit einem Vergleich der Bleimigration eines Ausführungsbeispiels der Kupferlegierung gegenüber einer anderen konventionellen Rotguss-Legierung;
Fig. 2
ein Schaubild mit einem Vergleich der Nickelmigration eines Ausführungsbeispiels der Kupferlegierung gegenüber einer anderen konventionellen Rotguss-Legierung;
Fig. 3
ein Schaubild mit einem Vergleich der Kupfermigration eines Ausführungsbeispiels der Kupferlegierung gegenüber einer anderen konventionellen Rotguss-Legierung; und
Fig. 4
ein Schaubild mit einem Vergleich der Zinkmigration eines Ausführungsbeispiels der Kupferlegierung gegenüber einer anderen konventionellen Rotguss-Legierung.
The present invention will be illustrated below with reference to an embodiment in conjunction with the drawings. The drawing shows:
Fig. 1
a graph comparing the lead migration of one embodiment of the copper alloy over another conventional gunmetal alloy;
Fig. 2
a graph comparing nickel migration of one embodiment of the copper alloy versus another conventional gunmetal alloy;
Fig. 3
a graph comparing copper migration of one embodiment of the copper alloy versus another conventional gunmetal alloy; and
Fig. 4
a graph comparing zinc migration of one embodiment of the copper alloy over another conventional gunmetal alloy.

Die Fig. 1 bis 4 zeigen den zeitlichen Verlauf der Abgabe von bestimmten Metallionen bei einer Messanordnung gemäß DIN 50931-1 über eine Zeit von insgesamt 26 Wochen. Die DIN legt dabei die Prüfungsanordnung und die Prüfungsbedingungen fest, mit deren Hilfe die Korrosionswahrscheinlichkeit von Werkstoffen für metallische Komponenten einer Trinkwasserinstallation bei Korrosionsbelastung bei Trinkwasser ermittelt werden kann.Figs. 1 to 4 show the time course of the release of certain metal ions in a measurement arrangement according to DIN 50931-1 over a total period of 26 weeks. DIN specifies the test arrangement and test conditions with which the corrosion probability of materials for metallic components of a drinking water installation can be determined in the case of corrosive contamination of drinking water.

Dargestellt ist jeweils der zeitliche Verlauf bei Verwendung eines Ausführungsbeispiels einer Kupferlegierung mit folgender Zusammensetzung:

  • Si: 3,5 Gew.-%;
  • Zn: 1,6 Gew.-%;
  • Mn: 0,5 Gew.-%;
  • unvermeidbare Verunreinigungen in Summe: max. 0,5 Gew.-%;
  • und als Rest Kupfer.
Shown in each case is the time profile when using an exemplary embodiment of a copper alloy having the following composition:
  • Si: 3.5% by weight;
  • Zn: 1.6% by weight;
  • Mn: 0.5% by weight;
  • unavoidable impurities in total: max. 0.5% by weight;
  • and as the rest of copper.

Die Ergebnisse werden in den jeweiligen Darstellungen der Fig. 1 bis 4 mit denjenigen Messwerten verglichen, die bei einer konventionellen Rotguss-Legierung bei gleichen Versuchsbedingungen erzielt werden können. Die Rotguss-Legierung hat folgende Zusammensetzung:

  • Zn: 5,5 Gew.-%;
  • Sn: 4,5 Gew.-%;
  • Pb: 3,0 Gew.-%;
  • Ni: 0,5 Gew.-%;
  • Rest: Kupfer und unvermeidbare Verunreinigungen.
The results are compared in the respective representations of FIGS. 1 to 4 with those measured values that can be achieved in a conventional gunmetal alloy under the same experimental conditions. The gunmetal alloy has the following composition:
  • Zn: 5.5% by weight;
  • Sn: 4.5% by weight;
  • Pb: 3.0% by weight;
  • Ni: 0.5% by weight;
  • Remainder: copper and unavoidable impurities.

Die Messergebnisse mit dem Ausführungsbeispiel der Kupferlegierung sind mit A gekennzeichnet. Die Vergleichsmessung mit der Rotguss-Legierung mit B.The measurement results with the exemplary embodiment of the copper alloy are marked with A. The comparison measurement with the gunmetal alloy with B.

Neben dem vorerwähnten Vergleich enthalten die Figuren 1 bis 3 auch einen Grenzwert gemäß der deutschen Trinkwasserverordnung (TrinkwV) für die Abgabe bestimmter Ionen an Wasser und den bei Migrationsversuchen einzuhaltenden Parameterwert W(15). Dieser Parameterwert W(15) muss eingehalten werden, wenn eine Überschreitung des Wertes der TrinkwV bei der Verwendung des geprüften Bauteils vermieden werden soll. Der Parameterwert W(15) ergibt sich aus dem Produkt des Grenzwertes nach der TrinkwV und dem Verhältnis der Formfaktoren A und B. Der Formfaktor A ergibt sich nach DIN 50931-1 aus dem Verhältnis der wasserberührten Oberfläche des Werkstoffs zur wasserberührten Oberfläche der gesamten Versuchsstrecke. Der Formfaktor B ist ein Normierungsfaktor gemäß DIN 50930-6, welcher die Art der Bauteile berücksichtigt.In addition to the above-mentioned comparison, FIGS. 1 to 3 also contain a limit value according to the German Drinking Water Ordinance (TrinkwV) for the delivery of certain ions to water and the parameter value W (15) to be observed during migration tests. This parameter value W (15) must be adhered to if it is intended to avoid exceeding the value of the TrinkwV when using the tested component. The parameter value W (15) results from the product of the limit value according to the TrinkwV and the ratio of the form factors A and B. According to DIN 50931-1, the form factor A results from the ratio of the water-contacted surface of the material to the water-contacting surface of the entire test section. The form factor B is a normalization factor in accordance with DIN 50930-6, which takes into account the type of components.

Fig. 1 verdeutlicht, dass die Bleiabgabemenge der Rotguss-Legierung von einem sehr hohen Wert, größer als 50 µg/l, innerhalb der ersten vier Versuchswochen nahezu exponentiell auf einen Wert abfällt, welcher sich knapp oberhalb des Grenzwertes der deutschen TrinkwV von 10 µg/l nach 12 bis 26 Versuchswochen einstellt. Man führt diese deutliche Überschreitung zu Beginn der Versuche darauf zurück, dass durch die Bearbeitung und Herstellung des Versuchsteils an die Oberfläche des zu prüfenden Bauteils gelangtes Blei in das Trinkwasser migriert. Nach den ersten Wochen ist das oberflächennahe Blei aus dem Probenkörper migriert und die Menge des abgegebenen Bleis bleibt in etwa konstant.FIG. 1 illustrates that the lead-release quantity of the gunmetal alloy drops from a very high value, greater than 50 μg / l, almost exponentially within the first four weeks of testing to a value which is just above the limit of the German drinking water regulations of 10 μg / l. l after 12 to 26 weeks of testing. At the beginning of the tests, this significant excess is attributed to the fact that lead, which had been introduced to the surface of the component to be tested, migrated into the drinking water as a result of the processing and production of the test part. After the first few weeks, the near-surface lead has migrated out of the sample and the amount of discharged lead remains approximately constant.

Das Ausführungsbeispiel nach A gibt dagegen an das Trinkwasser so gut wie kein Blei ab. Auch ein erhöhter Wert zu Beginn der Versuche ist nicht zu erkennen. Da die gemessenen Werte an der Grenze der Auflösung der Messanalytik liegt, werden die Schwankungen der Messwerte auf die Messgenauigkeit der Messapparatur zurückgeführt. Im Wesentlichen bleibt der Messwert für die Bleiabgabe bei der Probe deutlich unterhalb des Grenzwertes der TrinkwV von 10 µg/l.By contrast, the exemplary embodiment according to A gives virtually no lead to the drinking water. Even an increased value at the beginning of the experiments can not be seen. Since the measured values are at the limit of the resolution of the measurement analysis, the fluctuations in the measured values are attributed to the measuring accuracy of the measuring apparatus. Essentially, the measured value for the lead release in the sample remains well below the limit value of the TrinkwV of 10 μg / l.

Entsprechendes gilt für die Fig. 2 dargestellte Nickelabgabe der verglichenen Proben. Die Vergleichsprobe aus der Rotguss-Legierung zeigt einen typischen Verlauf, bei dem die konventionelle Legierung nach neun Wochen den Grenzwert nach der deutschen TrinkwV überschreitet, um nach einem Maximum in etwa in der 18. Woche langsam wieder in Richtung des Grenzwertes der TrinkwV zu fallen. Zwar kann das Ansteigen der Nickelkonzentration im Trinkwasser durch die Rotguss-Legierung B bisher nicht genau erklärt werden. Der Anstieg ist aber reproduzierbar. Der durch die TrinkwV ausgegebene Grenzwert wird nicht eingehalten.The same applies to the nickel output shown in FIG. 2 of the compared samples. The comparison sample from the gunmetal alloy shows a typical course in which the conventional alloy after nine weeks exceeds the limit value according to the German TrinkwV, after a maximum in about the 18th Week slowly back to the limit value of the TrinkwV. Although the increase in the nickel concentration in drinking water can not be explained exactly by the gunmetal alloy B so far. The increase is reproducible. The limit issued by the TrinkwV is not met.

Im Vergleich dazu gibt die Kupferlegierung A keine nennenswerte Nickel-lonen an das Trinkwasser ab. Auch hier liegen die gemessenen Werte von etwa 2 µg/l im Bereich der Auflösung der bei den Messgeräten verwandten Analytik.In comparison, the copper alloy A gives no appreciable nickel ions to the drinking water. Here, too, the measured values of about 2 μg / l are in the range of the resolution of the analysis related to the measuring instruments.

Bei der Kupferabgabe (Fig. 3) zeigen die beiden verglichenen Legierungen im Wesentlichen den gleichen Verlauf. Die Legierung A nimmt aber jeweils innerhalb der zeitlich aussagekräftigen Versuchsergebnisse geringere Werte für die Kupferabgabe in µg/l ein. Das Maximum für beide Legierungen liegt bei dem Messwert nach 18 Versuchswochen. Danach fällt die Kupferabgabe für beide Legierungen ab. Die besseren Migrationswerte für das Element Kupfer gegenüber konventionellem Rotguss belegen die verbesserte Korrosionsbeständigkeit der Legierung A und waren zunächst nicht zu erwarten, da die Legierung A einen höheren KupferAnteil als konventioneller Rotguss hat. Es zeigte sich jedoch, dass gerade dieser hoher Kupferanteil von 80 % und höher die wesentliche Ursache für das verbesserte Migrationsverhalten darstellt. Beide Legierungen halten im Übrigen selbst in ihrem Maximum einen hinreichenden Abstand zu dem W (15-Wert) ein. Unter Berücksichtigung des Versuchsaufbaus ergibt sich damit eine Einhaltung der Grenzwerte nach TrinkwV. Im Vergleich fällt allerdings auf, dass die Legierung A sich gegenüber der konventionellen Legierung B mit einem Differenzbetrag von etwa 500 µg/l, entsprechend 20 bis 25 % günstiger, verhält.For copper delivery (Figure 3), the two compared alloys are essentially the same course. However, the alloy A assumes lower values for the copper release in μg / l within the time-meaningful experimental results. The maximum for both alloys is the measured value after 18 weeks of testing. Thereafter, the copper output drops for both alloys. The better migration values for the element copper over conventional gunmetal prove the improved corrosion resistance of the alloy A and were not to be expected at first, since the alloy A has a higher copper content than conventional gunmetal. However, it has been shown that it is precisely this high copper content of 80% and higher that is the main reason for the improved migration behavior. Incidentally, both alloys, even at their maximum, maintain a sufficient distance from the W (15 value). Taking into account the experimental set-up, this results in compliance with the limit values according to TrinkwV. In comparison, however, it is noticeable that the alloy A compared to the conventional alloy B with a difference of about 500 micrograms / l, corresponding to 20 to 25% cheaper, behaves.

Schließlich zeigt Fig. 4 die durch die Legierung an das Trinkwasser abgegebene Menge an Zink. Für Zink ist nach der TrinkwV kein Grenzwert festgelegt. Der Verlauf für die Zinkabgabe bei der Kupferlegierung A unterscheidet sich erheblich von dem entsprechenden Verlauf für die Vergleichslegierung B. Die Migration des Ausführungsbeispiels A der Legierung von Zink liegt zu jeder Zeit bei unter 100 µg/l. Die konventionelle Legierung B übersteigt diesen Wert um das Vielfache.Finally, Fig. 4 shows the amount of zinc released by the alloy into the drinking water. For zinc, no limit is set according to the TrinkwV. The course of the zinc release in the case of the copper alloy A differs considerably from the corresponding course for the comparative alloy B. The migration of the embodiment A of the alloy of zinc is below 100 μg / l at all times. The conventional alloy B exceeds this value many times.

Die in den Fig. 1 bis 4 gezeigten Diagramme verdeutlichen die Vorteile der Kupferlegierung A, insbesondere den Einfluss des Siliciums zur Unterdrückung von unerwünschter Metallionenmigration in das Trinkwasser.The diagrams shown in FIGS. 1 to 4 illustrate the advantages of the copper alloy A, in particular the influence of the silicon for suppressing unwanted metal ion migration into the drinking water.

Claims (17)

  1. Use of a copper alloy for the manufacture of components for medium-conducting gas pipes and/or water pipes, in particular drinking-water pipes, and valves and fittings for the same, the copper alloy comprising, in wt%: 2.8 Si 4 ,
    Figure imgb0013
    1 Zn 15 ,
    Figure imgb0014
    0.05 Mn 2 ,
    Figure imgb0015
    and 80 Cu 96.95 ,
    Figure imgb0016
    optionally further comprising: 0.05 AI 0.4 ,
    Figure imgb0017
    0.05 Sn 2 ,
    Figure imgb0018
    and unavoidable impurities.
  2. Use according to Claim 1, characterized in that the copper alloy is used for the manufacture of compression couplings.
  3. Use according to Claim 1, characterized in that the copper alloy is used for the manufacture of valves and fittings with a permanent compression joint.
  4. Use according to any one of Claims 1 to 3, characterized in that 5 wt% ≤ Zn ≤ 15 wt%.
  5. Use according to any one of Claims 1 to 4, characterized in that 0.2 wt% ≤ Mn ≤ 0.6 wt%.
  6. Use according to Claim 5, characterized in that the unavoidable impurities contained total is not more than 0.5 wt%.
  7. Use according to Claim 6, characterized in that the unavoidable impurities contained total is not more than 0.25 wt%.
  8. Use according to Claim 6 or Claim 7, characterized in that any Ni and/or Pb contained as unavoidable impurities totals not more than 0.25 wt%.
  9. Components for medium-conducting gas pipes and/or water pipes, in particular drinking-water pipes, and valves and fittings for the same, at least partly consisting of a copper alloy comprising, in wt%: 2.8 Si 4 ,
    Figure imgb0019
    1 Zn 15 ,
    Figure imgb0020
    0.05 Mn 2 ,
    Figure imgb0021
    and 80 Cu 96.95 ,
    Figure imgb0022
    optionally further comprising: 0.05 AI 0.4 ,
    Figure imgb0023
    0.05 Sn 2 ,
    Figure imgb0024
    and unavoidable impurities.
  10. Component according to Claim 9, characterized in that more than 98 wt% of the elements Cu, Zn and Si is present in the form of an alpha mixed crystal.
  11. Components according to Claim 9 or Claim 10, characterized in that the components are compression couplings.
  12. Components according to any one of Claims 9 to 11, characterized in that the components are valves or fittings with a permanent compression joint.
  13. Component according to any one of Claims 9 to 12, characterized in that 5 wt% ≤ Zn ≤ 15 wt%.
  14. Component according to any one of Claims 9 to 13, characterized in that 0.2 wt% ≤ Mn ≤ 0.6 wt%.
  15. Component according to Claim 14, characterized in that the unavoidable impurities contained total is not more than 0.5 wt%.
  16. Component according to Claim 15, characterized in that the unavoidable impurities contained total is not more than 0.25 wt%.
  17. Component according to either of Claims 15 and 16, characterized in that any Ni and/or Pb contained as unavoidable impurities totals not more than 0.25 wt%.
EP05027341.6A 2005-12-14 2005-12-14 Use of a low-migration copper alloy and parts made of such alloy Active EP1798298B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP05027341.6A EP1798298B2 (en) 2005-12-14 2005-12-14 Use of a low-migration copper alloy and parts made of such alloy
AT05027341T ATE380259T1 (en) 2005-12-14 2005-12-14 USE OF A LOW-MIGRATION COPPER ALLOY AND COMPONENTS MADE OF THIS ALLOY
ES05027341.6T ES2297598T5 (en) 2005-12-14 2005-12-14 Use of a low migration copper alloy and parts of this alloy
DE502005002181T DE502005002181D1 (en) 2005-12-14 2005-12-14 Use of a low-migration copper alloy and components made from this alloy
AT06840971T ATE409753T1 (en) 2005-12-14 2006-12-13 LOW-MIGRATION COPPER ALLOY
PCT/EP2006/012008 WO2007068470A1 (en) 2005-12-14 2006-12-13 Low-migration copper alloy
DE502006001675T DE502006001675D1 (en) 2005-12-14 2006-12-13 MIGRATION ARMED COPPER ALLOY
US12/095,615 US20090214380A1 (en) 2005-12-14 2006-12-13 Low-migration copper alloy
EP06840971A EP1817438B1 (en) 2005-12-14 2006-12-13 Low-migration copper alloy
JP2008544870A JP4838859B2 (en) 2005-12-14 2006-12-13 Low migration copper alloy
ES06840971T ES2314946T3 (en) 2005-12-14 2006-12-13 LOW COPPER ALLOY IN MIGRATION.
NO20083081A NO20083081L (en) 2005-12-14 2008-07-09 Low-Migrating Copper Alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05027341.6A EP1798298B2 (en) 2005-12-14 2005-12-14 Use of a low-migration copper alloy and parts made of such alloy

Publications (3)

Publication Number Publication Date
EP1798298A1 EP1798298A1 (en) 2007-06-20
EP1798298B1 true EP1798298B1 (en) 2007-12-05
EP1798298B2 EP1798298B2 (en) 2016-05-04

Family

ID=36499302

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05027341.6A Active EP1798298B2 (en) 2005-12-14 2005-12-14 Use of a low-migration copper alloy and parts made of such alloy
EP06840971A Revoked EP1817438B1 (en) 2005-12-14 2006-12-13 Low-migration copper alloy

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06840971A Revoked EP1817438B1 (en) 2005-12-14 2006-12-13 Low-migration copper alloy

Country Status (8)

Country Link
US (1) US20090214380A1 (en)
EP (2) EP1798298B2 (en)
JP (1) JP4838859B2 (en)
AT (2) ATE380259T1 (en)
DE (2) DE502005002181D1 (en)
ES (2) ES2297598T5 (en)
NO (1) NO20083081L (en)
WO (1) WO2007068470A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1801250T3 (en) * 2005-12-22 2018-02-28 Viega Technology Gmbh & Co. Kg Parts made from copper alloy with low migration for conduits conveying fluids or drinking water
DE102007059182B4 (en) 2007-12-06 2017-04-13 Viega Gmbh & Co. Kg A method for making a permanent connection and a permanent connection between a fitting and a pipe, fitting for a pipe with a predetermined inner diameter and detachable connection between at least one fitting and a fitting body
EP2290114A1 (en) 2009-08-04 2011-03-02 Gebr. Kemper GmbH + Co. KG Metallwerke Water-guiding component
DE202009016240U1 (en) 2009-11-27 2010-04-29 Weihmann, Andreas, Dipl.-Designer Water recovery system technology
DE102010055055B3 (en) * 2010-12-17 2012-05-10 Wieland-Werke Ag Use of a copper-tin multi-substance bronze
DE102012013817A1 (en) * 2012-07-12 2014-01-16 Wieland-Werke Ag Molded parts made of corrosion-resistant copper alloys
DE102013012288A1 (en) 2013-07-24 2015-01-29 Wieland-Werke Ag Grain-refined copper casting alloy
DE202016101661U1 (en) 2016-03-29 2017-06-30 Geberit International Ag Component for media-carrying gas or water pipes
CN106011528A (en) * 2016-05-18 2016-10-12 来安县赛华管业有限公司 Environment-friendly alloy pipe material used for drinking water pipe
DE102018004702A1 (en) 2018-06-12 2019-12-12 Gebr. Kemper Gmbh + Co. Kg Metallwerke Moldings made of a corrosion-resistant and machinable copper alloy
DE202019101597U1 (en) * 2019-03-20 2019-04-23 Otto Fuchs - Kommanditgesellschaft - Cu-Zn alloy
GB2614752A (en) 2022-01-18 2023-07-19 Conex Ipr Ltd Components for drinking water pipes, and method for manufacturing same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH148195A (en) * 1930-05-27 1931-07-15 Hirsch Kupfer & Messingwerke Copper-silicon-zinc alloy.
DE585002C (en) * 1930-05-28 1933-09-27 Hirsch Kupfer Und Messingwerke Copper-silicon-zinc alloy
AU465605B2 (en) 1971-08-11 1975-10-02 Toyo Valve Co., Ltd Copper rase alloy
GB1443090A (en) 1974-03-25 1976-07-21 Anaconda Co Silicon brass resistant to partin corrosion-
JPS5837143A (en) * 1981-08-27 1983-03-04 Furukawa Electric Co Ltd:The High-strength corrosion resistant copper alloy
EP0343395B1 (en) 1988-05-25 1996-06-05 R. Nussbaum AG Pressfitting, tap and method of manufacture
WO1994024325A1 (en) * 1993-04-16 1994-10-27 Ideal-Standard Gmbh Brass alloy
DE4324008C2 (en) * 1993-07-17 2003-03-27 Km Europa Metal Ag Use of a corrosion-resistant copper-based alloy
DE4326550C1 (en) * 1993-08-07 1994-11-24 Sprenger Herm Gmbh Co Kg Use of a copper alloy for producing horse bits or parts thereof
JP3734372B2 (en) * 1998-10-12 2006-01-11 三宝伸銅工業株式会社 Lead-free free-cutting copper alloy
US20040234412A1 (en) * 2002-09-09 2004-11-25 Keiichiro Oishi High-strength copper alloy
DE10308778B3 (en) * 2003-02-28 2004-08-12 Wieland-Werke Ag Lead-free brass with superior notch impact resistance, used in widely ranging applications to replace conventional brasses, has specified composition
CH696672A5 (en) 2003-10-01 2007-09-14 Nussbaum & Co Ag R Fitting.
DE102004013181B3 (en) * 2004-03-17 2005-09-22 Federal-Mogul Nürnberg GmbH Piston for an internal combustion engine, method of manufacturing a piston, and use of a copper alloy to make a piston

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP1817438B1 (en) 2008-10-01
WO2007068470A1 (en) 2007-06-21
ES2314946T3 (en) 2009-03-16
EP1817438A1 (en) 2007-08-15
EP1798298B2 (en) 2016-05-04
DE502005002181D1 (en) 2008-01-17
US20090214380A1 (en) 2009-08-27
JP2009519377A (en) 2009-05-14
ATE409753T1 (en) 2008-10-15
ES2297598T3 (en) 2008-05-01
JP4838859B2 (en) 2011-12-14
NO20083081L (en) 2008-07-09
DE502006001675D1 (en) 2008-11-13
ES2297598T5 (en) 2016-06-03
ATE380259T1 (en) 2007-12-15
EP1798298A1 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
EP1798298B1 (en) Use of a low-migration copper alloy and parts made of such alloy
DE69832097T2 (en) LEAD-FREE AUTOMATIC COPPER ALLOY
DE69835912T2 (en) Free-cutting alloy based on copper.
EP1812612B1 (en) Copper/zinc/silicon alloy, use and production thereof
EP3225707B1 (en) Component for media-conducting gas or water lines comprising a copper alloy
EP1801250B1 (en) Parts made from copper alloy with low migration for conduits conveying fluids or drinking water
DE10301552B3 (en) Use of a brass alloy for corrosion resistant drinking water molded parts, especially coupling parts, angular parts, angular bent parts, T-pieces, distribution parts and fittings
EP1712648A2 (en) Copper-zinc alloy and use thereof
EP3529389B1 (en) Copper-zinc alloy
DE60030175T2 (en) cutting alloy
EP3908682B1 (en) Pb-free cu-zn alloy
EP1273671B1 (en) Dezincification resistant copper-zinc alloy and method for producing the same
DE4121994A1 (en) COPPER-NICKEL-TIN ALLOY, METHOD FOR TREATING AND USE THEREOF
EP3417083B1 (en) Sliding component made of a copper-zinc-alloy
EP1749897B1 (en) Process including annealing for producing water-bearing copper cast parts with lowered tendency of migration
DE60311803T2 (en) Copper alloy having excellent corrosion resistance and dezincification resistance, and a method of producing the same
DE202017103901U1 (en) Special brass alloy as well as special brass alloy product
EP2290114A1 (en) Water-guiding component
EP3899073B1 (en) Cu-zn alloy
EP1652946A1 (en) Copper alloy
DE3626435A1 (en) Copper-zinc alloy
DE202004020395U1 (en) Copper-based alloy used e.g. in the production of electro-technical components contains copper, silicon, boron and phosphorus and/or arsenic and a balance of zinc
WO2024032924A1 (en) Wrought copper-zinc alloy, semi-finished product made from a wrought copper-zinc alloy, and method for producing such a semi-finished product
EP3436615A2 (en) Component for media-conducting gas or water lines, which contains a copper alloy
WO1994024325A1 (en) Brass alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005002181

Country of ref document: DE

Date of ref document: 20080117

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080123

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2297598

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

BERE Be: lapsed

Owner name: VIEGA G.M.B.H. & CO. KG

Effective date: 20071231

Owner name: R. NUSSBAUM A.G. METALLGIESSEREI UND ARMATURENFAB

Effective date: 20071231

Owner name: GEBR. KEMPER G.M.B.H. + CO. KG METALLWERKE

Effective date: 20071231

Owner name: JRG GUNZENHAUSER A.G.

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080405

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080505

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: KAIMER GMBH & CO. HOLDING KG

Effective date: 20080905

Opponent name: REHAU AG & CO.

Effective date: 20080905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071214

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

NLR1 Nl: opposition has been filed with the epo

Opponent name: KAIMER GMBH & CO. HOLDING KG

Opponent name: REHAU AG & CO.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080606

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: KAIMER GMBH & CO. HOLDING KG

Effective date: 20080905

Opponent name: REHAU AG & CO.

Effective date: 20080905

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: KAIMER GMBH & CO. HOLDING KG

Effective date: 20080905

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SANHA GMBH & CO. KG

Effective date: 20080905

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20160504

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502005002181

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2297598

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20160603

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231218

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231220

Year of fee payment: 19

Ref country code: NL

Payment date: 20231220

Year of fee payment: 19

Ref country code: IT

Payment date: 20231227

Year of fee payment: 19

Ref country code: FR

Payment date: 20231220

Year of fee payment: 19

Ref country code: AT

Payment date: 20231219

Year of fee payment: 19

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240102

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231221

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 19