EP1812612B1 - Copper/zinc/silicon alloy, use and production thereof - Google Patents

Copper/zinc/silicon alloy, use and production thereof Download PDF

Info

Publication number
EP1812612B1
EP1812612B1 EP05747601A EP05747601A EP1812612B1 EP 1812612 B1 EP1812612 B1 EP 1812612B1 EP 05747601 A EP05747601 A EP 05747601A EP 05747601 A EP05747601 A EP 05747601A EP 1812612 B1 EP1812612 B1 EP 1812612B1
Authority
EP
European Patent Office
Prior art keywords
alloy
boron
weight
group
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05747601A
Other languages
German (de)
French (fr)
Other versions
EP1812612A1 (en
Inventor
Heinz Strobl
Klaus Schwarm
Hermann Mayer
Norbert Gaag
Ulrich Rexer
Klaus Marstaller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Metall Stiftung and Co KG
Original Assignee
Diehl Metall Stiftung and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl Metall Stiftung and Co KG filed Critical Diehl Metall Stiftung and Co KG
Priority to PL05747601T priority Critical patent/PL1812612T3/en
Publication of EP1812612A1 publication Critical patent/EP1812612A1/en
Application granted granted Critical
Publication of EP1812612B1 publication Critical patent/EP1812612B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent

Definitions

  • the invention relates to a copper-zinc-silicon alloy and to a use and production of such a copper-zinc-silicon alloy.
  • the overriding requirement for copper-zinc-silicon alloys is that they be dezincification-resistant and machinable.
  • a good machinability of such brass alloys has been realized by the addition of lead, such as in the EP 1 045 041 A1 described.
  • lead-free brass alloys have been developed with good cutting properties, such as the EP 1 038 981 A1 and the DE 103 08 778 B3 describe.
  • Both the lead-free and lead-containing Cu-Zn-Si alloys tend to oxidize at temperatures between 300 ° C and 800 ° C and form a scale layer. This scale layer only loosely adheres to the metal, dissolves easily and spreads over the production facilities, with the result that they are contaminated disturbing.
  • the cleaning of the production equipment is complex, whereby the production costs are high.
  • a disadvantage of the previously known Cu-Zn-Si alloys is that the mechanical properties of the material change over long workpieces, since the material is not homogeneous.
  • the present invention is therefore based on the problem to provide a copper-zinc-silicon alloy, which is improved in terms of their homogeneity and also has a lower tendency to scale formation, and to specify a use and manufacture of such brass alloy.
  • the first object with respect to an alloy is achieved according to the invention by a copper-zinc-silicon alloy comprising in weight percent 70 to 80% copper, 1 to 5% silicon, 0.0001 to 0.5% boron, 0 to 0.2% Phosphorus and / or arsenic as well as the remainder of zinc and unavoidable impurities.
  • the copper content is between 70 and 80%, because copper contents below 70% or above 80% would adversely affect the machinability of the alloy.
  • the boron concentration in the alloy is between 0.0001 to 0.5%.
  • Phosphorus and arsenic can each be contained in the alloy with a concentration content of up to 0.2% and can be substituted with one another. Phosphorus and arsenic favorably influence the formation of the initial cast structure and the corrosion properties, in addition to increasing the melt flowability and reducing susceptibility to stress corrosion cracking.
  • the remaining essential alloying content is zinc.
  • the second object with respect to a use of such a copper-zinc-silicon alloy is achieved by a use for electrical engineering Components for sanitary engineering components, for containers for the transport or storage of liquids or gases, for components subject to torsion, for recyclable components, for drop forgings, for semi-finished products, for strips, for sheets, for profiles, for sheets or as kneading or rolling cast alloys.
  • the Cu-Zn-Si alloy is used for contacts, pins or fasteners in electrical engineering, for example, as a stationary contacts or fixed contacts to which also clamps and connectors or plug contacts belong.
  • the alloy has a high corrosion resistance to liquid and gaseous media. In addition, it is extremely resistant to dezincification and stress corrosion cracking. As a result, the alloy is particularly suitable for use in containers for the transport or storage of liquids or gases, in particular for containers in refrigeration or for pipes, water fittings, faucet extensions, pipe connectors and valves in sanitary engineering.
  • the low corrosion rates also ensure that the metal permeability, that is, the property by the action of liquid or gaseous media to discharge alloying shares, in itself is low.
  • the material is suitable for applications requiring low pollutant emissions to protect the environment.
  • the use of the alloy according to the invention is in the field of recyclable components.
  • the insensitivity to stress corrosion cracking recommends the alloy for use in screwed or clamped connections in which large elastic energy sources are stored for technical reasons.
  • the use of the alloy is particularly suitable for all tensile and / or torsional stressed components, in particular for screws and nuts. After cold forming, the material reaches high values for the yield strength. Thus, in screw, which must not deform plastically, larger tightening torques can be realized.
  • the yield ratio of the Cu-Zn-Si alloy is smaller than that of automatic brass. Screw connections that are tightened only once and deliberately overstretched, thus achieve particularly high holding forces.
  • Cu-Zn-Si alloy arise for both tubular and band-shaped starting materials. It is also well suited for milling or punching tapes, sheets and plates, especially for keys, engraving, for decorative purposes or for punched grid applications.
  • the third object with regard to a production of such a copper-zinc-silicon alloy is achieved by conventional continuous casting and hot rolling between 600 to 760 ° C with subsequent forming, in particular cold rolling, preferably supplemented by further annealing and forming steps.
  • the object of producing such a copper-zinc-silicon alloy is also achieved by conventional continuous casting and extrusion at up to 760 ° C, preferably between 650 and 680 ° C and cooling in air.
  • this comprises 75 to 77% copper, 2.8 to 4% silicon and 0.001 to 0.1% boron and 0.03 to 0.1% phosphorus and / or arsenic, in addition to zinc as a residual element and unavoidable impurities.
  • the copper-zinc-silicon alloy comprises at least one element in wt .-% from the group lead with 0.01 to 2.5%, tin with 0.01 to 2%, iron with 0.01 to 0.3%, cobalt at 0.01 to 0.3%, nickel at 0.01 to 0.3% and manganese at 0.01 to 0.3%.
  • the alloy advantageously comprises at least one element in wt .-% from the group 0.01 to 0.1% lead, 0.01 to 0.2% tin, 0.01 to 0.1% iron, 0, 01 to 0.1% cobalt, 0.01 to 0.1% nickel and 0.01 to 0.1% manganese.
  • the Cu-Zn-Si alloy additionally comprises at least one element in wt .-% with up to 0.5% silver, up to 0.5% aluminum, up to 0.5% magnesium, up to 0 , 5% antimony, up to 0.5% titanium and up to 0.5% zirconium, preferably from the group of 0.01 to 0.1% silver, 0.01 to 0.1% aluminum, 0.01 to 0.1% magnesium, 0.01 to 0.1% antimony, 0.01 to 0.1% titanium and 0.01 to 0.1% zirconium.
  • the Cu-Zn-Si alloy additionally comprises at least one element in% by weight from the group consisting of up to 0.3% cadmium, up to 0.3% chromium, up to 0.3% selenium, up to 0, 3% tellurium and up to 0,3% bismuth, preferably from the group consisting of 0,01 - 0,3% cadmium, 0,01 - 0,3% chromium, 0,01 - 0,3% selenium, 0,01 - 0.3% tellurium and 0.01-0.3% bismuth.
  • the scaled surface portion has continued to decrease and the remaining scale adheres firmly to the metal. It has thus surprisingly been found that low boron concentrations of 0.0001 - 0.5% limit the formation of scale in Cu-Zn-Si alloys and at the same time significantly increase the adhesion of the scale to the metal, thereby avoiding undesirable contamination of the production facilities ,
  • boron In addition to reducing the tendency for scaling of Cu-Zn-Si alloys, boron also has a positive effect on the mechanical properties, since boron makes the alloy structure more homogeneous. This change in the alloy structure is in Fig. 2 depending on the boron concentration. While a CuZn21Si3P alloy without addition of boron shows a coarse, inhomogeneous structure ( Fig. 2a ), a CuZn21 Si3P alloy with 0.0004% boron has a much more homogeneous microstructure, which is already very much uniform grain sizes shows ( Fig. 2b ). A further increase in the boron content to 0.009% causes a CuZn21Si3P alloy is even more uniform or the homogeneity has become even larger, the grain grain is no longer visible to the naked eye ( Fig. 2c ).
  • boron In addition to optical changes in the structure, the addition of boron also has a positive effect on the mechanical properties. This is particularly noticeable on rods pressed from Cu-Zn-Si alloys. To determine the mechanical properties samples were taken at the beginning and at the end of such rods. The tensile strength of a rod made of a CuZn21 Si3P alloy without added boron deviates at the beginning compared to the end of the rod by more than 60 N / mm 2 . By contrast, a corresponding alloy with a boron content of 0.0004% has only a difference in tensile strength of less than 40 N / mm 2 between the beginning and the end of the rod. By adding 0.009% of boron to a CuZn21 Si3P alloy, the deviation in the tensile strength between the beginning and the end of the bar is less than 5 N / mm 2 .
  • the material thus has consistently identical mechanical properties. It is therefore achieved a uniform strength over the entire press length away. The reason for this is the grain-refining effect of the boron.
  • the table summarizes the relationship between the boron content of a Cu-Zn-Si alloy and the increasing homogeneity of the alloy structure or the decreasing strength differences within a pressed workpiece.
  • alloy position Tensile strength in N / mm 2 CuZn21Si3P Press start 514 compressive 578 CuZn21 Si3P with 0.0004% boron Press start 507 compressive 545 CuZn21Si3P with 0.009% boron Press start 508 compressive 512

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Silicon Compounds (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

A Cu-Zn-Si alloy includes, in % by weight, 70 to 80% of copper, 1 to 5% of silicon, to 0.5% of boron, up to 0.2% of phosphorus and/or up to 0.2% of arsenic, a remainder of zinc, plus inevitable impurities. Products using the alloy and processes for producing the alloy are also provided. The alloy is distinguished by an improved resistance to oxidation and by uniform mechanical properties.

Description

Die Erfindung betrifft eine Kupfer-Zink-Silizium-Legierung sowie eine Verwendung und Herstellung einer solchen Kupfer-Zink-Silizium-Legierung.The invention relates to a copper-zinc-silicon alloy and to a use and production of such a copper-zinc-silicon alloy.

Die vordringliche Anforderung an Kupfer-Zink-Silizium-Legierungen ist, dass diese entzinkungsbeständig und zerspanbar sind. Eine gute Zerspanbarkeit derartiger Messinglegierungen wurde bislang durch die Zugabe von Blei realisiert, wie beispielsweise in der EP 1 045 041 A1 beschrieben. Neuerdings sind jedoch auch bleifreie Messinglegierungen mit guten Zerspanungseigenschaften entwickelt worden, wie sie beispielsweise die EP 1 038 981 A1 und die DE 103 08 778 B3 beschreiben. Sowohl die bleifreien als auch bleihaltigen Cu-Zn-Si-Legierungen neigen dazu, bei Temperaturen zwischen 300°C und 800°C zu oxidieren und eine Zunderschicht auszubilden. Diese Zunderschicht haftet nur lose am Metall, löst sich leicht ab und verteilt sich über die Produktionsanlagen, was zur Folge hat, dass diese störend verunreinigt werden. Die Reinigung der Produktionsanlagen ist aufwändig, wodurch die Produktionskosten hoch sind. Nachteilig an den bisher bekannten Cu-Zn-Si-Legierungen ist auch, dass sich die mechanischen Eigenschaften des Materials über lange Werkstücke hinweg verändern, da das Material nicht homogen ist.The overriding requirement for copper-zinc-silicon alloys is that they be dezincification-resistant and machinable. A good machinability of such brass alloys has been realized by the addition of lead, such as in the EP 1 045 041 A1 described. Recently, however, lead-free brass alloys have been developed with good cutting properties, such as the EP 1 038 981 A1 and the DE 103 08 778 B3 describe. Both the lead-free and lead-containing Cu-Zn-Si alloys tend to oxidize at temperatures between 300 ° C and 800 ° C and form a scale layer. This scale layer only loosely adheres to the metal, dissolves easily and spreads over the production facilities, with the result that they are contaminated disturbing. The cleaning of the production equipment is complex, whereby the production costs are high. A disadvantage of the previously known Cu-Zn-Si alloys is that the mechanical properties of the material change over long workpieces, since the material is not homogeneous.

In Erkenntnis dieser Gegebenheiten liegt vorliegender Erfindung deshalb die Problemstellung zugrunde, eine Kupfer-Zink-Silizium-Legierung anzugeben, die bezüglich ihrer Homogenität verbessert ist und darüber hinaus eine geringere Neigung zur Zunderbildung aufweist, sowie eine Verwendung und eine Herstellung einer derartigen Messinglegierung anzugeben.In recognition of these circumstances, the present invention is therefore based on the problem to provide a copper-zinc-silicon alloy, which is improved in terms of their homogeneity and also has a lower tendency to scale formation, and to specify a use and manufacture of such brass alloy.

Die erstgenannte Aufgabe hinsichtlich einer Legierung wird erfindungsgemäß gelöst durch eine Kupfer-Zink-Silizium-Legierung, umfassend in Gewichtsprozent 70 bis 80 % Kupfer, 1 bis 5 % Silizium, 0,0001 bis 0,5 % Bor, 0 bis 0,2 % Phosphor und/oder Arsen sowie Rest Zink nebst unvermeidbaren Verunreinigungen.The first object with respect to an alloy is achieved according to the invention by a copper-zinc-silicon alloy comprising in weight percent 70 to 80% copper, 1 to 5% silicon, 0.0001 to 0.5% boron, 0 to 0.2% Phosphorus and / or arsenic as well as the remainder of zinc and unavoidable impurities.

Der Kupfergehalt liegt zwischen 70 und 80 %, denn Kupfergehalte unter 70 % bzw. oberhalb von 80 % würden die Zerspanbarkeit der Legierung nachteilig beeinflussen. Gleiches gilt beim Verlassen des angegebenen Silizium-Konzentrationsbereiches von 1 % bis 5 %. Die Borkonzentration in der Legierung liegt zwischen 0,0001 bis 0,5 %. Überraschender Weise wurde jetzt gefunden, dass durch Zugabe von Bor entsprechend des beanspruchten Konzentrationsbereichs einerseits erreicht wird, dass die Zunderbildung geringer ist und gleichzeitig die Haftung des restlichen Zunders am Material deutlich erhöht wird. Andererseits überrascht es auch, dass die Zugabe von Bor bewirkt, dass sich die Homogenität des Gefüges verbessert und so Schwankungen der mechanischen Eigenschaften vermieden werden. Phosphor und Arsen können jeweils mit einem Konzentrationsgehalt von bis zu 0,2 % in der Legierung enthalten sein und sind gegeneinander substituierbar. Durch Phosphor und Arsen wird die Ausbildung des anfänglichen Gussgefüges und die Korrosionseigenschaften günstig beeinflusst, wobei darüber hinaus das Fließvermögen der Schmelze erhöht und die Anfälligkeit gegenüber Spannungsrisskorrosion vermindert wird. Der restliche wesentliche Legierungsanteil ist Zink.The copper content is between 70 and 80%, because copper contents below 70% or above 80% would adversely affect the machinability of the alloy. The same applies when leaving the specified silicon concentration range of 1% to 5%. The boron concentration in the alloy is between 0.0001 to 0.5%. Surprisingly, it has now been found that, on the one hand, by adding boron corresponding to the claimed concentration range, it is achieved that the scale formation is lower and at the same time the adhesion of the remaining scale to the material is markedly increased. On the other hand, it is also surprising that the addition of boron improves the homogeneity of the microstructure and thus avoids fluctuations in the mechanical properties. Phosphorus and arsenic can each be contained in the alloy with a concentration content of up to 0.2% and can be substituted with one another. Phosphorus and arsenic favorably influence the formation of the initial cast structure and the corrosion properties, in addition to increasing the melt flowability and reducing susceptibility to stress corrosion cracking. The remaining essential alloying content is zinc.

Neben den oben erwähnten Vorteilen, dass sich leicht lösende, die Produktionskosten erhöhende Zunderschichten vermieden werden und die mechanischen Eigenschaften verbessert werden sowie darüber hinaus eine gute Zerspanbarkeit und gute Formbarkeit in Verbindung mit hoher Korrosionsbeständigkeit gegeben ist, ist bei der Erfindung gerade auch die Beständigkeit gegenüber Entzinkung und Spannungsrisskorrosion besonders ausgeprägt. Entzinkungstests nach ISO 6509 ergeben Entzinkungstiefen von lediglich bis zu 26 µm.In addition to the above-mentioned advantages that easily dissolving, the production cost increasing scale layers are avoided and the mechanical properties are improved and beyond good machinability and good formability is given in conjunction with high corrosion resistance, just in the invention, the resistance to Entzinkung and stress corrosion cracking particularly pronounced. Dezincification tests according to ISO 6509 result in dezincification depths of only up to 26 μm.

Die zweitgenannte Aufgabe hinsichtlich einer Verwendung einer solchen Kupfer-Zink-Silizium-Legierung ist gelöst durch eine Verwendung für elektrotechnische Bauteile, für sanitärtechnische Bauteile, für Behältnisse zum Transport oder zur Lagerung von Flüssigkeiten oder Gasen, für torsionsbeanspruchte Bauteile, für recyclebare Bauteile, für Gesenkschmiedeteile, für Halbzeuge, für Bänder, für Bleche, für Profile, für Platten oder als Knet- Walz- oder Gusslegierungen.The second object with respect to a use of such a copper-zinc-silicon alloy is achieved by a use for electrical engineering Components for sanitary engineering components, for containers for the transport or storage of liquids or gases, for components subject to torsion, for recyclable components, for drop forgings, for semi-finished products, for strips, for sheets, for profiles, for sheets or as kneading or rolling cast alloys.

Die Cu-Zn-Si-Legierung findet Verwendung für Kontakte, Stifte oder Befestigungselemente in der Elektrotechnik, beispielsweise als ruhende Kontakte oder Festkontakte zu denen auch Klemm- und Steckverbindungen oder Steckerkontakte gehören.The Cu-Zn-Si alloy is used for contacts, pins or fasteners in electrical engineering, for example, as a stationary contacts or fixed contacts to which also clamps and connectors or plug contacts belong.

Die Legierung weist gegenüber flüssigen und gasförmigen Medien eine hohe Korrosionsbeständigkeit auf. Zudem ist sie gegenüber Entzinkung und Spannungsrisskorrosion äußerst beständig. Infolgedessen eignet sich die Legierung besonders für einen Einsatz für Behältnisse zum Transport oder zur Lagerung von Flüssigkeiten oder Gasen, insbesondere für Behältnisse in der Kältetechnik oder für Rohre, Wasserarmaturen, Hahnverlängerungen, Rohrverbinder und Ventile in der Sanitärtechnik.The alloy has a high corrosion resistance to liquid and gaseous media. In addition, it is extremely resistant to dezincification and stress corrosion cracking. As a result, the alloy is particularly suitable for use in containers for the transport or storage of liquids or gases, in particular for containers in refrigeration or for pipes, water fittings, faucet extensions, pipe connectors and valves in sanitary engineering.

Die geringen Korrosionsraten gewährleisten auch, dass die Metalllässigkeit, das heißt die Eigenschaft durch Einwirkung von flüssigen oder gasförmigen Medien Legierungsanteile auszutragen, an sich gering ist. Insofern eignet sich der Werkstoff für Einsatzgebiete, die niedrige Schadstoffemission zum Schutz der Umwelt erfordern. Damit liegt die Verwendung der erfindungsgemäßen Legierung auf dem Gebiet recycelbarer Bauteile.The low corrosion rates also ensure that the metal permeability, that is, the property by the action of liquid or gaseous media to discharge alloying shares, in itself is low. In this respect, the material is suitable for applications requiring low pollutant emissions to protect the environment. Thus, the use of the alloy according to the invention is in the field of recyclable components.

Die Unempfindlichkeit gegenüber Spannungsrisskorrosion empfiehlt die Legierung für eine Verwendung in Schraub- bzw. Klemmverbindungen, in denen technisch bedingt große elastische Energien gespeichert werden. Besonders geeignet ist damit die Verwendung der Legierung für alle zug- und/oder torsionsbeanspruchten Bauteile, insbesondere für Schrauben und Muttern. Nach Kaltumformung erreicht der Werkstoff hohe Werte für die Dehngrenze. Somit können in Schraubverbindungen, die sich nicht plastisch verformen dürfen, größere Anziehdrehmomente realisiert werden. Das Streckgrenzenverhältnis der Cu-Zn-Si-Legierung ist kleiner als bei Automatenmessing. Schraubverbindungen, die nur einmal angezogen und dabei bewusst überdehnt werden, erreichen damit besonders hohe Haltekräfte.The insensitivity to stress corrosion cracking recommends the alloy for use in screwed or clamped connections in which large elastic energy sources are stored for technical reasons. Thus, the use of the alloy is particularly suitable for all tensile and / or torsional stressed components, in particular for screws and nuts. After cold forming, the material reaches high values for the yield strength. Thus, in screw, which must not deform plastically, larger tightening torques can be realized. The yield ratio of the Cu-Zn-Si alloy is smaller than that of automatic brass. Screw connections that are tightened only once and deliberately overstretched, thus achieve particularly high holding forces.

Verwendungsmöglichkeiten der Cu-Zn-Si-Legierung ergeben sich sowohl für rohrförmige als auch bandförmige Ausgangsmaterialien. Sie eignet sich auch gut für fräs- oder stanzbare Bänder, Bleche und Platten, insbesondere für Schlüssel, Gravuren, für dekorative Zwecke oder für Stanzgitteranwendungen.Uses of Cu-Zn-Si alloy arise for both tubular and band-shaped starting materials. It is also well suited for milling or punching tapes, sheets and plates, especially for keys, engraving, for decorative purposes or for punched grid applications.

Die drittgenannte Aufgabe hinsichtlich einer Herstellung einer solchen Kupfer-Zink-Silizium-Legierung ist gelöst durch konventionellen Strangguss und Warmwalzen zwischen 600 bis 760°C mit anschließendem Umformen, insbesondere Kaltwalzen, bevorzugt ergänzt durch weitere Glüh- und Umformschritte.The third object with regard to a production of such a copper-zinc-silicon alloy is achieved by conventional continuous casting and hot rolling between 600 to 760 ° C with subsequent forming, in particular cold rolling, preferably supplemented by further annealing and forming steps.

Die Aufgabe hinsichtlich einer Herstellung einer solchen Kupfer-Zink-Silizium-Legierung ist auch gelöst durch konventionellen Strangguss und Strangpressen bei bis zu 760°C, bevorzugt zwischen 650 und 680°C und Abkühlung an Luft.The object of producing such a copper-zinc-silicon alloy is also achieved by conventional continuous casting and extrusion at up to 760 ° C, preferably between 650 and 680 ° C and cooling in air.

In einer vorteilhaften Weiterbildung der Cu-Zn-Si-Legierung umfasst diese 75 bis 77 % Kupfer, 2,8 bis 4 % Silizium und 0,001 bis 0,1 % Bor sowie 0,03 bis 0,1 % Phosphor und/oder Arsen, neben Zink als Restelement sowie unvermeidbaren Verunreinigungen.In an advantageous development of the Cu-Zn-Si alloy, this comprises 75 to 77% copper, 2.8 to 4% silicon and 0.001 to 0.1% boron and 0.03 to 0.1% phosphorus and / or arsenic, in addition to zinc as a residual element and unavoidable impurities.

In einer bevorzugten Alternative umfasst die Kupfer-Zink-Silizium-Legierung wenigstens ein Element in Gew.-% aus der Gruppe Blei mit 0,01 bis 2,5 %, Zinn mit 0,01 bis 2 %, Eisen mit 0,01 bis 0,3 %, Kobalt mit 0,01 bis 0,3 %, Nickel mit 0,01 bis 0,3 % und Mangan mit 0,01 bis 0,3 %. Durch die Zugabe von Blei, lässt sich die Zerspanbarkeit positiv beeinflussen.In a preferred alternative, the copper-zinc-silicon alloy comprises at least one element in wt .-% from the group lead with 0.01 to 2.5%, tin with 0.01 to 2%, iron with 0.01 to 0.3%, cobalt at 0.01 to 0.3%, nickel at 0.01 to 0.3% and manganese at 0.01 to 0.3%. By adding lead, the machinability can be positively influenced.

Dabei umfasst die Legierung in vorteilhafter Weise wenigstens ein Element in Gew.-% aus der Gruppe 0,01 bis 0,1 % Blei, 0,01 bis 0,2 % Zinn, 0,01 bis 0,1 % Eisen, 0,01 bis 0,1 % Kobalt, 0,01 bis 0,1 % Nickel und 0,01 bis 0,1 % Mangan.The alloy advantageously comprises at least one element in wt .-% from the group 0.01 to 0.1% lead, 0.01 to 0.2% tin, 0.01 to 0.1% iron, 0, 01 to 0.1% cobalt, 0.01 to 0.1% nickel and 0.01 to 0.1% manganese.

In einer bevorzugten Weiterbildung umfasst die Cu-Zn-Si-Legierung zusätzlich wenigstens ein Element in Gew.-% mit bis zu 0,5 % Silber, bis zu 0,5 % Aluminium, bis zu 0,5 % Magnesium, bis zu 0,5 % Antimon, bis zu 0,5 % Titan und bis zu 0,5 % Zirkon, vorzugsweise aus der Gruppe aus 0,01 bis 0,1 % Silber,0,01 bis 0,1 % Aluminium, 0,01 bis 0,1 % Magnesium, 0,01 bis 0,1 % Antimon, 0,01 bis 0,1 % Titan und 0,01 bis 0,1 % Zirkon.In a preferred development, the Cu-Zn-Si alloy additionally comprises at least one element in wt .-% with up to 0.5% silver, up to 0.5% aluminum, up to 0.5% magnesium, up to 0 , 5% antimony, up to 0.5% titanium and up to 0.5% zirconium, preferably from the group of 0.01 to 0.1% silver, 0.01 to 0.1% aluminum, 0.01 to 0.1% magnesium, 0.01 to 0.1% antimony, 0.01 to 0.1% titanium and 0.01 to 0.1% zirconium.

In einer vorteilhaften Alternative umfasst die Cu-Zn-Si-Legierung zusätzlich wenigstens ein Element in Gew.-% aus der Gruppe aus bis 0,3 % Cadmium, bis 0,3 % Chrom, bis 0,3 % Selen, bis 0,3 % Tellur und bis 0,3 % Wismut, vorzugsweise aus der Gruppe aus 0,01 - 0,3 % Cadmium, 0,01 - 0,3 % Chrom, 0,01 - 0,3 % Selen, 0,01 - 0,3 % Tellur und 0,01 - 0,3 % Wismut.In an advantageous alternative, the Cu-Zn-Si alloy additionally comprises at least one element in% by weight from the group consisting of up to 0.3% cadmium, up to 0.3% chromium, up to 0.3% selenium, up to 0, 3% tellurium and up to 0,3% bismuth, preferably from the group consisting of 0,01 - 0,3% cadmium, 0,01 - 0,3% chromium, 0,01 - 0,3% selenium, 0,01 - 0.3% tellurium and 0.01-0.3% bismuth.

Ein Ausführungsbeispiel wird anhand der Zeichnung und anhand der nachstehenden Beschreibung näher erläutert. Dabei zeigen

Fig. 1
die Ausbildung einer Zunderschicht nach einer Glühung von 2h bei 600°C an einer CuZn21Si3P-Legierung ohne Borzusatz (a), einer CuZn21 Si3P-Legierung mit 0,0004 % Bor (b) und einer CuZn21Si3P-Legierung mit 0,009 % Bor (c) und
Fig. 2
die Ausbildung des Gussgefüges einer CuZn21Si3P-Legierung ohne Borzusatz (a), einer CuZn21Si3P-Legierung mit 0,0004 % Bor (b) und einer CuZn21Si3P-Legierung mit 0,009 % Bor (c).
Die dem Ausführungsbeispiel zugrunde liegende CuZn21Si3P-Legierungen weisen Konzentrationsvariationen der Anteile auf, mit Kupfer zwischen 75,8 und 76,1 %, Silizium zwischen 3,2 und 3,4 % und Phosphor zwischen 0,07 und 0,1 % nebst Zink als restlichem Anteil und unvermeidlichen Verunreinigungen. Die Legierungsbeispiele zeigen einen unterschiedlichen Borgehalt von 0 %, 0,004 % und 0,009 %. Die Herstellung der Legierungen erfolgt durch Stranggießen, anschließendem Strangpressen bei Temperaturen unterhalb 760°C, bevorzugt zwischen 650 und 680°C, und schneller Abkühlung.An embodiment will be explained in more detail with reference to the drawing and the description below. Show
Fig. 1
the formation of a scale layer after annealing for 2 h at 600 ° C. on a CuZn21Si3P alloy without added boron (a), a CuZn21 Si3P alloy with 0.0004% boron (b) and a CuZn21Si3P alloy with 0.009% boron (c) and
Fig. 2
the formation of the cast structure of a CuZn21Si3P alloy without added boron (a), a CuZn21Si3P alloy with 0.0004% boron (b) and a CuZn21Si3P alloy with 0.009% boron (c).
The CuZn21Si3P alloys underlying the exemplary embodiment have concentration variations of the proportions, with copper between 75.8 and 76.1%, silicon between 3.2 and 3.4% and phosphorus between 0.07 and 0.1% together with zinc as remaining portion and inevitable impurities. The alloy examples show a different boron content of 0%, 0.004% and 0.009%. The alloys are produced by continuous casting, followed by extrusion at temperatures below 760 ° C., preferably between 650 and 680 ° C., and rapid cooling.

Alle Legierungen weisen eine hervorragende Entzinkungsbeständigkeit auf. Ein Entzinkungstest nach ISO 6509 ergibt Entzinkungstiefen von lediglich weniger als 26 µm.All alloys have excellent dezincification resistance. A dezincification test according to ISO 6509 results in dezincification depths of only less than 26 μm.

Werden CuZn21Si3P-Legierungen, beispielsweise bei der Warmverformung, Temperaturen von 300 - 800°C ausgesetzt, bildet sich Zunder aus, der sich leicht ablöst und die Produktionsanlagen verunreinigt. Eine stark verzunderte Oberfläche einer borfreien CuZn21 Si3P-Legierung ist in Fig. 1a dargestellt. Die Oberfläche der Probe erscheint in Fig. 1a zum überwiegenden Teil grau. Diese graue Färbung gibt die verzunderte Oberfläche der CuZn21 Si3P-Legierung wieder. Es sind lediglich einige wenige, vereinzelte helle Flecken auf der Legierungsoberfläche zu erkennen, die nicht regelmäßig verteilt sind. Im Gegensatz dazu zeigt die CuZn21 Si3P-Legierung mit einem Boranteil von 0,0004 % in Fig. 1b eine sehr viel größere Anzahl weiß erscheinender Flecken auf der Oberfläche der Legierung als die borfreie Legierung. Diese weißen Flecken geben metallisch blanke Bereiche der Legierung wieder. Diese metallisch blanken Bereiche, also Bereiche, die nicht verzundert sind, sind gleichmäßig über die Oberfläche der Legierung verteilt. Der Anteil der verzunderten Oberfläche ist deutlich reduziert, und der verbliebene Zunder haftet fester am Metall als bei der borfreien Legierung. Eine CuZn21Si3P-Legierung, die 0,009 % Bor aufweist, ist in Fig. 1c dargestellt. Hier ist deutlich zu erkennen, dass die Anzahl der metallisch blanken Flächen, also der weißen Flecken, weiter zugenommen hat. Teilweise liegen größere zusammenhängende Bereiche metallisch blanken Materials vor, und eine sehr regelmäßige Verteilung auf der Oberfläche der Legierung ist zu erkennen. Der verzunderte Oberflächenanteil hat weiter abgenommen und der verbleibende Zunder haftet fest am Metall. Es hat sich also überraschender Weise gezeigt, dass geringe Borkonzentrationen von 0,0001 - 0,5 % die Zunderbildung bei Cu-Zn-Si-Legierungen einschränken und gleichzeitig die Haftung des Zunders am Metall deutlich erhöhen, wodurch eine unerwünschte Verunreinigung der Produktionsanlagen vermieden wird.If CuZn21Si3P alloys, for example, during the hot deformation, exposed to temperatures of 300 - 800 ° C, scale forms, which is easy replaces and pollutes the production facilities. A highly scaled surface of a boron-free CuZn21 Si3P alloy is in Fig. 1a shown. The surface of the sample appears in Fig. 1a for the most part gray. This gray color reflects the scaled surface of the CuZn21 Si3P alloy. There are only a few, isolated bright spots on the alloy surface to recognize that are not regularly distributed. In contrast, the CuZn21 shows Si3P alloy with a boron content of 0.0004% in Fig. 1b a much larger number of white appearing spots on the surface of the alloy than the boron-free alloy. These white spots give metallic bright areas of the alloy. These bright metal areas, ie areas that are not scaled, are evenly distributed over the surface of the alloy. The proportion of the scale surface is significantly reduced, and the remaining scale adheres more firmly to the metal than to the boron-free alloy. A CuZn21Si3P alloy containing 0.009% boron is in Fig. 1c shown. Here it can be clearly seen that the number of bright metallic surfaces, ie the white spots, has continued to increase. Partly larger contiguous areas of bare metallic material are present, and a very regular distribution on the surface of the alloy can be seen. The scaled surface portion has continued to decrease and the remaining scale adheres firmly to the metal. It has thus surprisingly been found that low boron concentrations of 0.0001 - 0.5% limit the formation of scale in Cu-Zn-Si alloys and at the same time significantly increase the adhesion of the scale to the metal, thereby avoiding undesirable contamination of the production facilities ,

Ein vergleichbares Ergebnis wurde auch für Cu-Zn-Si-P-Legierungen gefunden, die unterschiedliche Gehalte von Blei aufweisen, wie beispielsweise 0,01 %, 0,05 %,0,1 % oder 2,5 %.A similar result has also been found for Cu-Zn-Si-P alloys having different levels of lead, such as 0.01%, 0.05%, 0.1% or 2.5%.

Neben der Reduzierung der Neigung zur Verzunderung von Cu-Zn-Si-Legierungen wirkt sich Bor auch positiv auf die mechanischen Eigenschaften aus, da durch Bor das Legierungsgefüge homogener wird. Diese Veränderung des Legierungsgefüges ist in Fig. 2 in Abhängigkeit von der Borkonzentration dargestellt. Während eine CuZn21Si3P-Legierung ohne Zusatz von Bor ein grobes, inhomogenes Gefüge zeigt (Fig. 2a), weist eine CuZn21 Si3P-Legierung mit 0,0004 % Bor ein deutlich homogeneres Gefüge auf, das bereits sehr gleichmäßige Korngrößen zeigt (Fig. 2b). Eine weitere Erhöhung des Borgehalts auf 0,009 % bewirkt, dass eine CuZn21Si3P-Legierung noch gleichmäßiger ist bzw. die Homogenität noch größer geworden ist, wobei die Gefügekörnung mit dem bloßen Auge nicht mehr erkennbar ist (Fig. 2c).In addition to reducing the tendency for scaling of Cu-Zn-Si alloys, boron also has a positive effect on the mechanical properties, since boron makes the alloy structure more homogeneous. This change in the alloy structure is in Fig. 2 depending on the boron concentration. While a CuZn21Si3P alloy without addition of boron shows a coarse, inhomogeneous structure ( Fig. 2a ), a CuZn21 Si3P alloy with 0.0004% boron has a much more homogeneous microstructure, which is already very much uniform grain sizes shows ( Fig. 2b ). A further increase in the boron content to 0.009% causes a CuZn21Si3P alloy is even more uniform or the homogeneity has become even larger, the grain grain is no longer visible to the naked eye ( Fig. 2c ).

Neben optischen Veränderungen des Gefüges wirkt sich die Zugabe von Bor auch positiv auf die mechanischen Eigenschaften aus. Dies ist besonders an Stangen, die aus Cu-Zn-Si-Legierungen gepressten wurden, zu erkennen. Zur Bestimmung der mechanischen Eigenschaften wurden am Anfang und am Ende solcher Stangen Proben entnommen. Die Zugfestigkeit einer Stange aus einer CuZn21 Si3P-Legierung ohne Borzusatz weicht am Anfang im Vergleich zum Ende der Stange um mehr als 60 N/mm2 ab. Eine entsprechende Legierung mit einem Boranteil von 0,0004 % weist im Gegensatz dazu zwischen Anfang und Ende der Stange nur noch einen Unterschied in der Zugfestigkeit von unter 40 N/mm2 auf. Durch eine Zugabe von 0,009 % Bor zu einer CuZn21 Si3P-Legierung liegt die Abweichung in der Zugfestigkeit zwischen Stangenanfang und -ende unter 5 N/mm2.In addition to optical changes in the structure, the addition of boron also has a positive effect on the mechanical properties. This is particularly noticeable on rods pressed from Cu-Zn-Si alloys. To determine the mechanical properties samples were taken at the beginning and at the end of such rods. The tensile strength of a rod made of a CuZn21 Si3P alloy without added boron deviates at the beginning compared to the end of the rod by more than 60 N / mm 2 . By contrast, a corresponding alloy with a boron content of 0.0004% has only a difference in tensile strength of less than 40 N / mm 2 between the beginning and the end of the rod. By adding 0.009% of boron to a CuZn21 Si3P alloy, the deviation in the tensile strength between the beginning and the end of the bar is less than 5 N / mm 2 .

Das Material weist also durchgängig identische mechanische Eigenschaften auf. Es wird demnach eine gleichmäßige Festigkeit über die gesamte Presslänge hinweg erreicht. Ursache hierfür ist die kornfeinende Wirkung des Bors.The material thus has consistently identical mechanical properties. It is therefore achieved a uniform strength over the entire press length away. The reason for this is the grain-refining effect of the boron.

In der Tabelle ist der Zusammenhang zwischen Borgehalt einer Cu-Zn-Si-Legierung und der zunehmenden Homogenität des Legierungsgefüges bzw. den abnehmenden Festigkeitsunterschieden innerhalb eines gepressten Werkstücks zusammengefasst.. Legierung Position Zugfestigkeit in N/mm2 CuZn21Si3P Pressanfang 514 Pressende 578 CuZn21 Si3P mit 0,0004 % Bor Pressanfang 507 Pressende 545 CuZn21Si3P mit 0,009 % Bor Pressanfang 508 Pressende 512 The table summarizes the relationship between the boron content of a Cu-Zn-Si alloy and the increasing homogeneity of the alloy structure or the decreasing strength differences within a pressed workpiece. alloy position Tensile strength in N / mm 2 CuZn21Si3P Press start 514 compressive 578 CuZn21 Si3P with 0.0004% boron Press start 507 compressive 545 CuZn21Si3P with 0.009% boron Press start 508 compressive 512

Claims (6)

  1. Cu-Zn-Si alloy comprising, in % by weight, 70 to 80% of copper, 1 to 5% of silicon and 0.0001 to 0.5% of boron, as well as 0 to 0.2% of phosphorus and/or arsenic, optionally, in addition, at least one element, in % by weight, selected from the group consisting of 0.01 to 2.5% of lead, 0.01 to 2% of tin, 0.01 to 0.3% of iron, 0.01 to 0.3% of cobalt, 0.01 to 0.3% of nickel, 0.01 to 0.3% of manganese, optionally, in addition, at least one element, in % by weight, selected from the group consisting of up to 0.5% of silver, up to 0.5% of aluminium, up to 0.5% of magnesium, up to 0.5% of antimony, up to 0.5% of titanium and up to 0.5% of zirconium, preferably from the group consisting of 0.01 to 0.1% of silver, 0.01 to 0.1% of aluminium, 0.01 to 0.1% of magnesium, 0.01 to 0.1% of antimony, 0.01 to 0.1% of titanium and 0.01 to 0.1% of zirconium, optionally, in addition, at least one element, in % by weight, selected from the group consisting of up to 0.3% of cadmium, up to 0.3% of chromium, up to 0.3% of selenium, up to 0.3% of tellurium and up to 0.3% of bismuth, preferably from the group consisting of 0.01 to 0.3% of cadmium, 0.01 to 0.3% of chromium, 0.01 to 0.3% of selenium, 0.01 to 0.3% of tellurium and 0.01 to 0.3% of bismuth, remainder zinc plus inevitable impurities.
  2. Cu-Zn-Si alloy according to Claim 1, characterized by, in % by weight, 75 to 77% of copper, 2.8 to 4% of silicon and 0.0001 to 0.01% of boron, as well as 0.03 to 0.1 % of phosphorus and/or arsenic.
  3. Cu-Zn-Si alloy according to Claim 1, characterized by, in addition, at least one element, in % by weight, selected from the group consisting of 0.01 to 0.1% of lead, 0.01 to 0.2% of tin, 0.01 to 0.1% of iron, 0.01 to 0.1% of cobalt, 0.01 to 0.1% of nickel and 0.01 to 0.1% of manganese.
  4. Use of a Cu-Zn-Si alloy according to one of Claims 1 to 3 for electrical engineering components, for sanitaryware components, for vessels for transporting or storing liquids or gases, for torsionally loaded components, for recyclable components, for drop-forged components, for semi-finished products, for strips, for sheets, for profiled sections, for plates or as a wrought, rolled or cast alloy.
  5. Process for producing a Cu-Zn-Si alloy according to one of Claims 1 to 3 by conventional continuous casting and hot-rolling at between 600 and 760°C with subsequent deformation, in particular cold-rolling, preferably with the addition of further annealing and deformation steps.
  6. Process for producing a Cu-Zn-Si alloy according to one of Claims 1 to 3 by conventional continuous casting and extrusion at up to 760°C, preferably between 650 and 680°C, followed by cooling in air.
EP05747601A 2004-10-11 2005-05-13 Copper/zinc/silicon alloy, use and production thereof Active EP1812612B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05747601T PL1812612T3 (en) 2004-10-11 2005-05-13 Copper/zinc/silicon alloy, use and production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004049468 2004-10-11
PCT/EP2005/005238 WO2006039951A1 (en) 2004-10-11 2005-05-13 Copper/zinc/silicon alloy, use and production thereof

Publications (2)

Publication Number Publication Date
EP1812612A1 EP1812612A1 (en) 2007-08-01
EP1812612B1 true EP1812612B1 (en) 2010-05-05

Family

ID=34969314

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05747601A Active EP1812612B1 (en) 2004-10-11 2005-05-13 Copper/zinc/silicon alloy, use and production thereof

Country Status (15)

Country Link
US (2) US20060078458A1 (en)
EP (1) EP1812612B1 (en)
JP (1) JP5148279B2 (en)
KR (1) KR101010906B1 (en)
CN (1) CN100510132C (en)
AT (1) ATE466965T1 (en)
BR (1) BRPI0516067B1 (en)
CA (1) CA2582972C (en)
DE (1) DE502005009545D1 (en)
ES (1) ES2343532T3 (en)
MY (1) MY145376A (en)
PL (1) PL1812612T3 (en)
PT (1) PT1812612E (en)
TW (1) TWI369405B (en)
WO (1) WO2006039951A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842131B2 (en) * 2006-01-30 2010-11-30 Kronos International Inc High opacity TiO2 pigment and production method
WO2008122994A2 (en) * 2007-04-09 2008-10-16 Usv Limited Stable pharmaceutical compositions of clopidogrel bisulfate and process of preparation thereof
CN101440444B (en) * 2008-12-02 2010-05-12 路达(厦门)工业有限公司 Leadless free-cutting high-zinc silicon brass alloy and manufacturing method thereof
US20100303667A1 (en) * 2009-03-09 2010-12-02 Lazarus Norman M Novel lead-free brass alloy
US20100226815A1 (en) * 2009-03-09 2010-09-09 Lazarus Norman M Lead-Free Brass Alloy
WO2010140915A1 (en) 2009-06-04 2010-12-09 Kostln Sergei Alekseevich Method for producing a precipitation-hardened lean copper-based alloy, and method for producing a metal product therefrom
TWI387656B (en) * 2009-07-06 2013-03-01 Modern Islands Co Ltd Preparation of Low Lead Brass Alloy and Its
US20110081272A1 (en) * 2009-10-07 2011-04-07 Modern Islands Co., Ltd. Low-lead copper alloy
US20110081271A1 (en) * 2009-10-07 2011-04-07 Modern Islands Co., Ltd. Low-lead copper alloy
EP2507401A1 (en) * 2009-11-30 2012-10-10 Moen Incorporated Copper corrosion resistant, machinable brass alloy
US20110142715A1 (en) * 2009-12-11 2011-06-16 Globe Union Industrial Corporation Brass alloy
TWI398532B (en) * 2010-01-22 2013-06-11 Modern Islands Co Ltd Lead-free brass alloy
WO2012032155A2 (en) * 2010-09-10 2012-03-15 Raufoss Water & Gas As Improved brass alloy and a method of manufacturing thereof
CN102816946B (en) * 2011-06-09 2016-06-22 浙江万得凯铜业有限公司 A kind of processing technology of copper rod
CN102230107A (en) * 2011-06-28 2011-11-02 安徽精诚铜业股份有限公司 Diamagnetic clothing brass band and manufacturing process thereof
KR101340487B1 (en) * 2011-09-30 2013-12-12 주식회사 풍산 Leadless Free Cutting Copper Alloy and Process of Production Same
KR101420619B1 (en) 2012-09-14 2014-08-13 노인국 Lead-free brass alloy and thereof manufacturing method
KR101483542B1 (en) 2012-09-14 2015-01-16 노인국 Silicon brass alloy and thereof manufacturing method
CN103114220B (en) * 2013-02-01 2015-01-21 路达(厦门)工业有限公司 Excellent-thermoformability lead-free free-cutting corrosion-resistant brass alloy
DE102013012288A1 (en) 2013-07-24 2015-01-29 Wieland-Werke Ag Grain-refined copper casting alloy
CN103484717A (en) * 2013-09-29 2014-01-01 苏州市凯业金属制品有限公司 Brass alloy metal pipe
CN103773993B (en) * 2014-01-10 2016-01-20 滁州学院 A kind of zinc electroplating bath cupronickel alloy material and preparation method thereof
CN104878242A (en) * 2015-06-25 2015-09-02 潘应生 Copper aluminum alloy and preparation method thereof
CN104878243A (en) * 2015-06-25 2015-09-02 潘应生 Copper aluminum alloy and preparation method thereof
US10143956B2 (en) 2015-08-24 2018-12-04 John B. Hayden Air cleaning fountain
US9868129B2 (en) 2015-08-24 2018-01-16 John B. Hayden Air cleaning fountain
US10329180B2 (en) 2015-08-24 2019-06-25 John B. Hayden Air cleaning fountain
CN105331846A (en) * 2015-12-02 2016-02-17 芜湖楚江合金铜材有限公司 Efficient and high-yield short flow special-shape copper alloy wire and processing process thereof
KR102021723B1 (en) * 2016-08-15 2019-09-16 미쓰비시 신도 가부시키가이샤 Free cutting copper alloy casting, and manufacturing method of free cutting copper alloy casting
US11155909B2 (en) 2017-08-15 2021-10-26 Mitsubishi Materials Corporation High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
CN110241327B (en) * 2019-06-25 2020-10-20 宁波金田铜业(集团)股份有限公司 Ti-tin-containing bronze rod and preparation processing and heat treatment process method thereof
US11427891B2 (en) * 2019-07-24 2022-08-30 Nibco Inc. Low silicon copper alloy piping components and articles

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696041A (en) * 1979-12-28 1981-08-03 Seiko Epson Corp Exterior decorative part material
US4826736A (en) * 1985-06-14 1989-05-02 Sumitomo Special Metals Co., Ltd. Clad sheets
KR900006105B1 (en) * 1987-06-13 1990-08-22 풍산금속 공업주식회사 Cu-alloy and method for cu-alloy sheet
JPH02166245A (en) * 1988-12-20 1990-06-26 Kobe Steel Ltd High conductivity heat-resistant copper alloy capable of atmospheric melting
JPH04224645A (en) * 1990-12-26 1992-08-13 Nikko Kyodo Co Ltd Copper alloy for electronic parts
CN1058531C (en) * 1997-05-08 2000-11-15 华南理工大学 Beta brass shape-memory alloy and preparation method
JPH111736A (en) * 1997-06-09 1999-01-06 Chuetsu Gokin Chuko Kk Brass alloy material for heating device
SE511680C2 (en) * 1998-03-06 1999-11-08 Tour & Andersson Hydronics Ab Brass alloy with zinc leaching resistance, suitable for hot pressing
JPH11293366A (en) * 1998-04-09 1999-10-26 Furukawa Electric Co Ltd:The Material for piezoelectric vibrator case and piezoelectric vibrator case using the material
JP3917304B2 (en) * 1998-10-09 2007-05-23 三宝伸銅工業株式会社 Free-cutting copper alloy
US8506730B2 (en) * 1998-10-09 2013-08-13 Mitsubishi Shindoh Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
JP3734372B2 (en) * 1998-10-12 2006-01-11 三宝伸銅工業株式会社 Lead-free free-cutting copper alloy
US6413330B1 (en) * 1998-10-12 2002-07-02 Sambo Copper Alloy Co., Ltd. Lead-free free-cutting copper alloys
JP3898619B2 (en) * 2002-10-15 2007-03-28 大同メタル工業株式会社 Copper-based alloy for sliding
DE10308778B3 (en) * 2003-02-28 2004-08-12 Wieland-Werke Ag Lead-free brass with superior notch impact resistance, used in widely ranging applications to replace conventional brasses, has specified composition
JP4296344B2 (en) * 2003-03-24 2009-07-15 Dowaメタルテック株式会社 Copper alloy material
DK1777305T3 (en) * 2004-08-10 2011-01-03 Mitsubishi Shindo Kk Copper base alloy casting with refined crystal grains

Also Published As

Publication number Publication date
CA2582972C (en) 2014-02-04
EP1812612A1 (en) 2007-08-01
TW200611985A (en) 2006-04-16
CN101023191A (en) 2007-08-22
US20090280026A1 (en) 2009-11-12
ATE466965T1 (en) 2010-05-15
PL1812612T3 (en) 2010-10-29
DE502005009545D1 (en) 2010-06-17
CN100510132C (en) 2009-07-08
JP5148279B2 (en) 2013-02-20
BRPI0516067A (en) 2008-08-19
JP2008516081A (en) 2008-05-15
TWI369405B (en) 2012-08-01
CA2582972A1 (en) 2006-04-20
BRPI0516067B1 (en) 2014-10-14
US20060078458A1 (en) 2006-04-13
ES2343532T3 (en) 2010-08-03
PT1812612E (en) 2010-06-28
KR101010906B1 (en) 2011-01-25
WO2006039951A1 (en) 2006-04-20
MY145376A (en) 2012-01-31
KR20070060100A (en) 2007-06-12

Similar Documents

Publication Publication Date Title
EP1812612B1 (en) Copper/zinc/silicon alloy, use and production thereof
EP1452613B1 (en) Lead-free copper alloy and use thereof
DE10308779B3 (en) Lead-free copper alloy and its use
DE69832097T2 (en) LEAD-FREE AUTOMATIC COPPER ALLOY
DE69835912T2 (en) Free-cutting alloy based on copper.
EP2855724B1 (en) Nickel-chromium alloy with good formability, creep strength and corrosion resistance
DE69703420T3 (en) Product made of AlMgMn alloy for welding structures with improved corrosion resistance
EP1798298B2 (en) Use of a low-migration copper alloy and parts made of such alloy
EP1801250B1 (en) Parts made from copper alloy with low migration for conduits conveying fluids or drinking water
EP2192202B2 (en) Aluminium sheet for lithographic printing plate support having high resistance to bending cycles
DE69106372T2 (en) ALLOY WITH LOW THERMAL EXPANSION COEFFICIENT AND ITEM PRODUCED FROM IT.
EP3529389B1 (en) Copper-zinc alloy
EP2872660A1 (en) Formed parts made from corrosion-resistant copper alloys
EP0521319A1 (en) Copper-nickel-tin alloy, process for the treatment of this alloy and application thereof
EP2703508B1 (en) Aluminium alloy resistant to intercrystalline corrosion
EP0599696B1 (en) Process for manufacturing aluminum alloy sheets excellent in strength and deep drawing formability
DE102005024037A1 (en) Copper-based alloy used e.g. in the production of electro-technical components contains copper, silicon, boron and phosphorus and/or arsenic and a balance of zinc
EP1748088B1 (en) Process for producing a semi-finished product or component for chassis or structural automotive applications
DE69207935T2 (en) Iron-chromium-nickel-silicon shape memory alloys with excellent stress corrosion resistance
DE202004020395U1 (en) Copper-based alloy used e.g. in the production of electro-technical components contains copper, silicon, boron and phosphorus and/or arsenic and a balance of zinc
DE1194153B (en) Use of a copper-manganese-zinc alloy as a material for machine parts exposed to sliding stress
DE102019106131A1 (en) Process for the production of components for media-carrying gas or water pipes and the component produced thereby
DE102022002928B4 (en) Wrought material made of a copper-zinc alloy, semi-finished product made of a wrought material and process for producing such a semi-finished product
DE2706514A1 (en) IRON-NICKEL-CHROME-STEEL ALLOY
DE102022002927B4 (en) Wrought material made of a copper-zinc alloy, semi-finished product made of a wrought material and process for producing such a semi-finished product

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005009545

Country of ref document: DE

Date of ref document: 20100617

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20100621

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2343532

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100505

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20100401883

Country of ref document: GR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

BERE Be: lapsed

Owner name: DIEHL METALL STIFTUNG & CO. K.G.

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100905

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

26N No opposition filed

Effective date: 20110208

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005009545

Country of ref document: DE

Effective date: 20110207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100513

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100805

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005009545

Country of ref document: DE

Owner name: DIEHL BRASS SOLUTIONS STIFTUNG & CO. KG, DE

Free format text: FORMER OWNER: DIEHL METALL STIFTUNG & CO. KG, 90552 ROETHENBACH, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230504

Year of fee payment: 19

Ref country code: IT

Payment date: 20230526

Year of fee payment: 19

Ref country code: FR

Payment date: 20230525

Year of fee payment: 19

Ref country code: CZ

Payment date: 20230509

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230511

Year of fee payment: 19

Ref country code: SE

Payment date: 20230519

Year of fee payment: 19

Ref country code: PL

Payment date: 20230505

Year of fee payment: 19

Ref country code: GR

Payment date: 20230522

Year of fee payment: 19

Ref country code: AT

Payment date: 20230522

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230724

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230719

Year of fee payment: 19

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: DIEHL BRASS SOLUTIONS STIFTUNG & CO. KG

Effective date: 20240423