KR900006105B1 - Cu-alloy and method for cu-alloy sheet - Google Patents

Cu-alloy and method for cu-alloy sheet Download PDF

Info

Publication number
KR900006105B1
KR900006105B1 KR1019870006010A KR870006010A KR900006105B1 KR 900006105 B1 KR900006105 B1 KR 900006105B1 KR 1019870006010 A KR1019870006010 A KR 1019870006010A KR 870006010 A KR870006010 A KR 870006010A KR 900006105 B1 KR900006105 B1 KR 900006105B1
Authority
KR
South Korea
Prior art keywords
alloy
annealing
cold rolling
strength
copper alloy
Prior art date
Application number
KR1019870006010A
Other languages
Korean (ko)
Other versions
KR890000680A (en
Inventor
김영길
김호윤
류한익
박동규
Original Assignee
풍산금속 공업주식회사
이영세
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 풍산금속 공업주식회사, 이영세 filed Critical 풍산금속 공업주식회사
Priority to KR1019870006010A priority Critical patent/KR900006105B1/en
Publication of KR890000680A publication Critical patent/KR890000680A/en
Application granted granted Critical
Publication of KR900006105B1 publication Critical patent/KR900006105B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Abstract

Cu alloy consists of (in wt.%) 13.0-25.0 Zn, 2.0-4.0 Al, 0.3-5.0 Ni, 0.1-3.0 Si, 0.1-3.0 B, 0.5-3.0 Ti and balance Cu. The copper alloy has high strength, elasticity and heat resistance. The copper alloy sheet is made by hot rolling at 850-1000 deg.C, first cold rolling to 40-60%, annealing at 500-700 deg. C for 1-5 hrs., second cold rolling to 40-60%, annealing at 500-700 deg.C for 1-5 hrs., third cold rolling to 40-60%, annealing at 500-700 deg.C for 1-5 hrs., finish cold rolling to 40-60%, and low temperature annealing at 200-400 deg.C for 1-5 hrs.

Description

고강도, 고탄성, 고내열성, 동합금 및 동합금판의 제조방법High strength, high elasticity, high heat resistance, manufacturing method of copper alloy and copper alloy plate

제1도는 본 발명 합금에서 소둔온도에 따른 인장강도에 변화도.1 is a change in the tensile strength according to the annealing temperature in the alloy of the present invention.

제2도는 본 발명 합금과 기존 동합금과의 열변화 저항 비교도.2 is a heat resistance resistance comparison diagram of the present invention alloy and the existing copper alloy.

본 발명은, 고강도, 고탄성, 고내열성 동합금 및 동합금판의 제조방법에 관한 것으로, 더욱 상세하게는 전기, 전자 통신분야의 콘넥터(Connector), 릴레이(Relay), 스위치(Switch), 전기, 전자용 스프링(Electrical Spring)등에 사용되고, 더 나아가서는 자동차, 우주항공산업등의 첨단산업 분야에 사용되는 동합금 및 동합금판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing high strength, high elasticity, high heat resistant copper alloy and copper alloy plate, and more specifically, for connectors, relays, switches, electrical, electronics in the fields of electrical and electronic communication The present invention relates to a manufacturing method of copper alloy and copper alloy plate used in electric springs, and furthermore, used in high-tech industries such as automobiles and aerospace industries.

또한 본 발명에서 충분히 고려한 것은, 고강도, 고탄성, 고내열성 동합금의 가격을 낮추기 위하여 고가격 원소 Sn,Be을 사용하지 않았을 뿐만 아니라, 제조공정을 간단하게 할 수 있도록 하였고, 더우기, 특수한 설비를 사용하지 않아도 기존의 고강도, 고탄성, 고내열성 동합금과 그 특성이 동등하거나 또는 어떤 특성에서는 더욱더 우수한 특성이 유지되도록 한 것이다.In addition, the present invention fully considered not only did not use high-priced elements Sn and Be in order to lower the price of high strength, high elasticity and high heat resistant copper alloy, but also simplified the manufacturing process, and furthermore, without using special equipment. The characteristics of the existing high strength, high elasticity, high heat-resistant copper alloy is equivalent to, or in some properties even better properties to maintain.

일반적인, 고강도, 고탄성, 고내열성 동합금의 소재로서는, 인청동, 베릴륨동 등이고, 이들은 전기, 전자 부품에 주로 사용되었던 것이나, 이와같은 인청동은 Sn을 5-8% 함유함으로써 가격이 비쌀뿐만 아니라, 제조공정이 일반 황동에 비하여 어렵다는 단점과 약 500℃ 정도에서 소재가 연화되는 열연화 저항이 낮은 결점이 있었고, 또한 베릴륨동의 경우에는, 극히 고가의 베릴륨을 0.5-2.0% 함유하여야만 되기 때문에, 이 역시 가격이 비쌀뿐만 아니라 베릴륨은 극히 유독한 원소이어서 용해의 어려움은 물론 제조를 위한 특수장치가 필요하게 되었던 것이다.Typical materials of high strength, high elasticity and high heat resistant copper alloys include phosphor bronze and beryllium copper, which are mainly used for electric and electronic parts. Such phosphor bronze contains 5-8% Sn, which is not only expensive but also a manufacturing process. It was difficult to compare with this general brass and had the disadvantage of low thermal softening resistance at which the material softened at about 500 ° C. Also, in the case of beryllium copper, it must contain extremely expensive beryllium, which is also expensive. In addition to being expensive, beryllium is an extremely toxic element, so it is necessary to have special equipment for manufacturing as well as difficulty in dissolution.

따라서, 인청동과 베릴륨동은 고가이며 제조공정이 일반 황동에 비하여 어렵다는 문제점이 있으므로, 인청동, 베릴륨동과 동등한 강도 및 스프링 특성을 갖고, 제조공정이 간단하며, 가격이 저렴한 고강도, 고탄성, 고내열성 동합금의 신금속이 전기, 전자부품 소재 분야에 요구되고 있다.Therefore, phosphor bronze and beryllium copper are expensive, and the manufacturing process is difficult compared to general brass. Therefore, phosphor bronze and beryllium copper have the same strength and spring characteristics, and the manufacturing process is simple, and the high-strength, high elasticity, and high heat resistant copper alloy is inexpensive. New metals are required in the field of electrical and electronic component materials.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명은, 두가지 형태로 대별되는데, 첫째로는, 인청동의 스프링하드템퍼(Spring hard Temper)에 해당하는 강도(78kg/㎟)를 갖으면서 스프링성이 우수하게 하고, 동시에 내열성이 우수한 합금의 발명이며, 두번째로는 베릴륨동의 밀하든드 템퍼(Mill hardened Temper)(107kg/㎟이상)에 해당하는 강도를 갖는 고탄성 합금을 개발함에 있다.The present invention is to solve the above problems, the present invention is roughly divided into two forms, first, the spring having a strength (78kg / ㎜) corresponding to the spring hard temper of phosphor bronze The invention is an invention of an alloy having excellent heat resistance and excellent heat resistance, and secondly, to develop a high elastic alloy having a strength equivalent to that of a mill hardened temper (107 kg / mm 2 or more) of copper beryllium.

이와같은 본 발명의 합금조성은, 첫째로, 인청동의 스프링하드템퍼(Spring hard Temper)를 대체하기 위한 것으로는, Cu-Zn-Al-Ni계 합금에 소량의 Si, B 및 Ti을 따로 혹은 조합 첨가 한 것이며, 둘째로, 베릴륨동의 밀하든드템퍼(Mill hardened Temper)를 대체하기 위한 합금으로서는, Cu-Zn-Al-Ni계 합금에 소량의 Si,B 및 Ti을 동시에 함께 첨가하고, 석출 경화를 일으키게 하여서, 각각 기계적 성질이 크게 향상되게 한 것이다.The alloy composition of the present invention is, firstly, to replace the spring hard temper of phosphor bronze, a small amount of Si, B and Ti in a Cu-Zn-Al-Ni-based alloy separately or in combination Secondly, as an alloy to replace the mill hardened temper of copper beryllium, a small amount of Si, B, and Ti are simultaneously added to the Cu-Zn-Al-Ni-based alloy and precipitate hardened. In this case, the mechanical properties are greatly improved.

한편, 본 발명의 합금에서는, 기계적 성질을 향상시키기 위하여 Si, B 및 Ti을 첨가할뿐만 아니라, 냉간 가공 및 결정립 미세화 등의 강화기구가 응용되었다.On the other hand, in the alloy of the present invention, not only Si, B and Ti are added to improve mechanical properties, but also reinforcing mechanisms such as cold working and grain refinement have been applied.

즉, 용해주조후 주조괴를 균질화 열처리한후 열간 압연하고 냉간 압연-소둔-냉간압연-소둔등의 과정을 반복하여 두께를 줄이면서 최종 소재의 강도를 더욱 증가시키고, 동시에 결정립 미세화도 이루어지도록 하여 강도의 증가뿐만 아니라, 연성도 증가되게 하였다.That is, after melt casting, the casting ingot is homogenized and heat-treated, followed by hot rolling, cold rolling, annealing, cold rolling, and annealing, thereby reducing the thickness to further increase the strength of the final material, and at the same time, to refine the grain. In addition to increasing the strength, the ductility was also increased.

본 발명의 합금에서 합금원소 조성 범위는(중량% 비율), Cu-Zn(13.0~25.0%) -Al(2.0~4.0%) -Ni(0.3~5.0%) -Si(0.1~3.0%) -B(0.1~3.0%) -Ti(0.5~3.0%)인것과, Cu-Zn(13.0~25.0%) -Al(2.0~4.0%) -Ni(0.3~5.0%) -Si(0.1~3.0%) -B(0.1~3.0%) 및 Ti(0.5~3.0%)을 따로 또는 함께 첨가한 것이다. 각 원소의 첨가범위를 상기와 같이 설정한 이유는 다음과 같다.In the alloy of the present invention, the alloying element composition range is (% by weight), Cu-Zn (13.0 ~ 25.0%) -Al (2.0 ~ 4.0%) -Ni (0.3 ~ 5.0%) -Si (0.1 ~ 3.0%)- B (0.1 ~ 3.0%) -Ti (0.5 ~ 3.0%), Cu-Zn (13.0 ~ 25.0%) -Al (2.0 ~ 4.0%) -Ni (0.3 ~ 5.0%) -Si (0.1 ~ 3.0% ) -B (0.1-3.0%) and Ti (0.5-3.0%) are added separately or together. The reason why the range of addition of each element is set as described above is as follows.

Zn : 13.0~25.0%Zn: 13.0 ~ 25.0%

Zn은, Zn이 25% 이상이되면 취성 현상이 높은 BCC(체심입방조직)의 베타(β)상이 다량 생성되어 가공성 및 신율이 저하되고, 10% 이하 일때에는 FCC의 알파(α)상만이 생성되어 강도를 떨어뜨리게 되므로, 바람직하게 Zn을 13.0~25.0%로 설정한 것이다.When Zn is 25% or more, a large amount of beta (β) phase of the brittle phenomena of BCC (body centered cubic tissue) is generated, and the workability and elongation are decreased. Since strength falls, Zn is preferably set to 13.0 to 25.0%.

Al : 2.0~4.0%Al: 2.0 ~ 4.0%

Al은, 8.0% 이상이 되면 베타(β)상이 다량 생성되어 가공성 및 신율이 저하되며, 1.5% 이하가 되면 강도가 떨어지게 되므로 바람직하게는 Al을 2.0~4.0%로 설정한 것이다.When Al is 8.0% or more, a large amount of beta (β) phase is generated, and workability and elongation are lowered, and when it is 1.5% or less, strength is lowered. Preferably, Al is set to 2.0 to 4.0%.

Ni : 0.3~5.0%Ni: 0.3 ~ 5.0%

Ni은, Cu에 30%까지 고용 될 수 있으나, 다량 첨가는 경제적으로 불리할뿐만 아니라, 알파(α) 및 베타(β)의 복합조직을 얻기 어렵게 되며(본 발명에 필요한 합금의 조직은 알파(α)와 베타(β)의 복합조직임), 0.1% 이하일 경우에는 석출강화에 필요한 석출물인 NiSi와 Ni2Si등의 생성이 어렵게되므로 바람직하게 Ni을 0.3~5.0%을 설정한 것이다.Ni may be employed in Cu up to 30%, but a large amount of addition is economically disadvantageous, and it becomes difficult to obtain a complex structure of alpha (α) and beta (β). α) and beta (β) is a complex structure), if less than 0.1%, it is difficult to produce the precipitates necessary for precipitation strengthening NiSi and Ni 2 Si and the like is preferably set Ni to 0.3 to 5.0%.

Si : 0.1~3.0%Si: 0.1 ~ 3.0%

Si은, 고용강화 및 Ni2Si 석출물 생성에 필요한 원소인데, 5.0% 이상이 되면 강도는 증가하나 가공성 및 신율이 떨어지게 되므로, 바람직하게 Si을 0.1~3.0% 설정한 것이다.Si is an element required for solid solution strengthening and formation of Ni 2 Si precipitates. When the content is 5.0% or more, the strength is increased, but the workability and elongation are lowered. Therefore, Si is preferably 0.1 to 3.0%.

B : 0.1~3.0%B: 0.1-3.0%

B는, NiB 및 TiB등의 석출물 형성으로 석출강화 현상을 일으키며, 동시에 결정립 미세화를 유도하는 것인데, 3.0% 이상이 되면 강도가 너무 크게 증가되어 가공성 및 신율이 저하되며, 0.01% 이하가 되면 기능을 다하지 못한다.B causes precipitation strengthening by the formation of precipitates such as NiB and TiB, and at the same time induces grain refinement. When it is 3.0% or more, the strength is increased so much that workability and elongation are deteriorated. I can't do it.

따라서 바람직하게 B을 0.1~3.0% 설정한 것이다.Therefore, B is preferably 0.1 to 3.0%.

Ti : 0.5~3.0%Ti: 0.5 ~ 3.0%

Ti는, 합금내에서 TiB, TiSi, CuTi등의 석출물을 형성하여 강도를 증가시켜주나, 4.0% 이상이 되면 강도가 너무 크게 되어 가공성 및 신율을 떨어뜨리게 되므로 바람직하게 Ti을 0.5~3.0% 설정한 것이다.Ti increases the strength by forming precipitates such as TiB, TiSi, CuTi, etc. in the alloy. However, when Ti is 4.0% or more, the strength is too high to degrade workability and elongation. will be.

위와같은 범위의 합금들을 제조공정인 용해, 주조, 열간압연, 냉간압연, 소둔등을 행하였으며, 그 주요공정은 아래와 같다.The alloys in the above range was subjected to the manufacturing process of melting, casting, hot rolling, cold rolling, annealing, the main process is as follows.

1). 용해 방법은 Cu 지금을 장입하여 완전용해 한후 온도를 승온하여 Ni을 투입하며, 온도를 내린다음 Si을 투입하고, 이어서 Cu-B 모합금과 Cu-Ti 모합금을 차례로 투입하고, Al 및 Zn을 투입 용해한후 주조하여 주괴를 만들었다.One). The melting method is charged with Cu now and completely dissolved, and then the temperature is raised, Ni is added, the temperature is lowered, and then Si is added. Then, a Cu-B master alloy and a Cu-Ti master alloy are sequentially added, and Al and Zn are added. After melting, casting and casting were performed.

2). 열간압연은 850℃ ~1000℃에서 시행하여 용체하 처리후, 열간압연으로 두께 감소를 도모하였다. 열간압연후 석출물의 형성은 전체강도와 스프링성 및 내열성을 향상시키는데 중요한 영향을 차지하는 것으로, 열간압연 온도가 850℃ 미만에서는 석출물 형성 저하와 압연시 크래크(Crack) 발생의 원인이 되고, 1000℃ 이상에서는 불균일한 조직상태와 석출물 형성 저하에 영향을 미치는 것으로 나타났다.2). Hot rolling was performed at 850 ℃ ~ 1000 ℃ to reduce thickness by hot rolling. The formation of precipitates after hot rolling has an important influence on improving the overall strength, spring resistance and heat resistance. If the hot rolling temperature is lower than 850 ℃, it causes the formation of precipitates and causes cracks during rolling. The results showed that it affects the heterogeneous tissue state and decreased precipitate formation.

3).1차 냉간압연은 압하율 40~60%로 압연한후, 스프링 특성 향상과 조직의 균일화 처리를 위하여 500℃~700℃에서 1~5시간 소둔을 행하였다.3). After the primary cold rolling was rolled at a reduction ratio of 40 to 60%, annealing was performed at 500 ° C. to 700 ° C. for 1 to 5 hours to improve spring properties and homogenize the structure.

4). 2차 냉간압연은 압하율 40~60%로 압연한후, 500℃~700℃에서 1~5시간 소둔을 행하였다.4). After the secondary cold rolling was rolled at a reduction ratio of 40 to 60%, annealing was performed at 500 ° C to 700 ° C for 1 to 5 hours.

5). 3차 냉간압연은 압하율 40~60%로 압연한후, 500℃~700℃에서 1~5시간 소둔을 행하였다.5). After the third cold rolling was rolled at a reduction ratio of 40 to 60%, annealing was performed at 500 ° C to 700 ° C for 1 to 5 hours.

6). 최종 냉간압연은 압하율 40~60%로 압연한후, 500℃~700℃에서 1~5시간 저온 소둔을 행하였다.6). The final cold rolling was rolled at a reduction ratio of 40 to 60%, followed by low temperature annealing at 500 ° C to 700 ° C for 1 to 5 hours.

상기에서 냉간압연의 압하율은 소둔온도와 밀접한 관계를 가지고 있으며, 냉간 압연에서의 높은 압하율 60% 이상은 이방성이 심화되고 균열 가능성이 커지며, 40% 미만시에는 요구되는 강도를 만족시키기 어렵다.The reduction ratio of cold rolling is closely related to the annealing temperature, and the high reduction ratio of 60% or more in cold rolling increases anisotropy and increases the possibility of cracking, and when it is less than 40%, it is difficult to satisfy the required strength.

또한, 소둔온도가 700℃를 초과할 경우에는 강도저하에 영향을 미치고 결정립 성장에 따른 조직의 취약화를 초래하며, 500℃ 미만에서는 연화미비로 냉간 압연성을 해치게된다.In addition, when the annealing temperature exceeds 700 ℃ affects the decrease in strength and the weakening of the tissue due to grain growth, and less than 500 ℃ to the cold rolling properties to harm the soft rolling.

그리고, 소둔시간의 경우 5시간을 초과할 경우에는 결정립 성장에 따른 강도저하와 내열성 향상에 영향을 미치며, 1시간 미만일 경우에는 불안정한 석출물의 형성을 나타낸다.In addition, when the annealing time exceeds 5 hours, it affects the strength reduction and heat resistance improvement due to grain growth, and when less than 1 hour, the formation of unstable precipitates is shown.

또한, 스프링성의 향상과 방향성의 감소를 위해 가장 적합한 최종 소둔온도와 시간은 200℃~400℃에서 1~5시간으로나타났다.In addition, the most suitable final annealing temperature and time for improving spring property and decreasing directionality were shown as 1 ~ 5 hours at 200 ℃ ~ 400 ℃.

본 발명을 상기 방법에 의하여 하기와 같이 실시하였다.The present invention was carried out by the above method as follows.

[실시예 1]Example 1

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

상기 2가지 조성의 합금을 대기압 환원성 분위기에서 유도 용해 후 1300℃에서 주조 하였고, 주괴를 900℃에서 열간 압연후 압하율 40%로 1차 냉간 압연을 하고, 600℃에서 3시간 소둔을 행하였다.The alloys of the two compositions were cast at 1300 ° C. after induction melting in an atmospheric pressure reducing atmosphere, and the ingots were first cold rolled at a reduction ratio of 40% after hot rolling at 900 ° C., and then annealed at 600 ° C. for 3 hours.

3차 냉간 압연으로 두께를 60%로 줄인후 600℃에 소둔하고 최종압연하여 0.3mm의 최종 냉간 압연 판재를 제작하였으며, 저온소둔전 완재 냉간 압연판의 기계적 성질과 완재 냉간 압연판을 320℃에서 저온 소둔한 각각의 물성치를 표 2에 나타내었다.After reducing the thickness to 60% by 3rd cold rolling, annealing was performed at 600 ℃ and finally rolled to produce a final cold rolled sheet of 0.3mm.The mechanical properties of the finished cold rolled sheet before cold annealing and the finished cold rolled sheet at 320 ℃ The physical properties of the low temperature annealing are shown in Table 2.

[표 2]TABLE 2

Figure kpo00002
Figure kpo00002

소둔후에는 탄성한계치, 즉 스프링성이 약 2배 증가 되었음을 볼수 있으며, Si이 첨가된 No.2 합금은 No.1합금에 비해 동일 열간 및 냉간 압연공정으로 같은 두께 (0.3mm)로 제조하여 소둔 하였을 때 인장강도면에서 10%, 탄성한계치면에서 16%가 더높게 나타났다.After annealing, it can be seen that the elastic limit, that is, the spring property, has been increased by about 2 times.The No. 2 alloy containing Si is manufactured with the same thickness (0.3mm) by the same hot and cold rolling process than No.1 alloy. Ten percent higher in tensile strength and 16 percent higher in elastic limit.

[실시예 2]Example 2

[표 3]TABLE 3

Figure kpo00003
Figure kpo00003

상기의 합금 No.3를 대기압 환원성 분위기에서 용해후 Si과 Cu-B 모합금을 투입하였다. 용해된 것을 1350℃ 온도에서 주조한후 950℃로 가열하여 두께를 8mm로 열간 압연 하였으며, 열간 압연된 판을 3~4mm로 1차 냉간 압연후 550℃에서 소둔하였고, 50%압하율로 2차 냉간 압연하여 2mm한후 550℃ 소둔하였으며, 다시 1mm 두께까지 3차 냉간 압연하여 650℃에서 소둔하였다.After dissolving the alloy No. 3 above in an atmospheric reducing atmosphere, Si and a Cu—B mother alloy were added thereto. The molten product was cast at 1350 ° C. and then heated to 950 ° C. to hot roll the thickness to 8 mm, and the hot rolled plate was cold annealed to 3 to 4 mm at 1,550 ° C. and then annealed at 550 ° C., and the second to 50% reduction ratio. After cold rolling, 2 mm was annealed at 550 ° C., and thirdly cold rolled to 1 mm thickness was annealed at 650 ° C.

이어서 0.5mm로 최종 냉간 압연한후 320℃에서 약 1시간 저온 소둔하여 최종 압연판을 얻었으며, 이와같이 저온 소둔전의 최종 냉간 압연판과 320℃에서 1시간 저온 소둔한 압연판의 물성치(기계적 성질)를 표 4에 나타내었다.Subsequently, after the final cold rolling to 0.5mm, the final rolled sheet was obtained by low temperature annealing at 320 ° C. for about 1 hour. Thus, the physical properties of the final cold rolled sheet before low temperature annealing and the rolled sheet at low temperature at 320 ° C. for 1 hour (mechanical properties) Is shown in Table 4.

[표 4]TABLE 4

Figure kpo00004
Figure kpo00004

No.1 조성에 B를 약 0.2% 첨가시 인장강도 면에서는 별변화가 없으나, 탄성 한계치는 증가 되었음을 보여 주었다.It was shown that when 0.2% of B was added to No.1 composition, there was no change in tensile strength, but the elastic limit was increased.

[실시예 3]Example 3

[표 5]TABLE 5

Figure kpo00005
Figure kpo00005

상기 합금 No.4~No.7을 대기압 환원성 분위기에서 유도용해 하였으며, Cu-B 및 Cu-Ti의 모합금을 사용하여 B 및 Ti을 첨가하였고, Si는 순수 Si를 사용하여 첨가 하였다. 용탕의 온도가 1300℃가 되었을때 주조하여 주괴를 만들었으며, 이 주괴를 980℃로 가열하여 7~9mm로 열간 압연 하였고, 열간 압연된 소재를 50% 압하율로 1차 냉간 압연하여 판의 두께를 3~4mm로 한후 500~700℃에서 소둔하였다.The alloy Nos. 4 to 7 were induced and dissolved in an atmospheric reducing atmosphere, B and Ti were added using a master alloy of Cu-B and Cu-Ti, and Si was added using pure Si. When the temperature of the molten metal reached 1300 ℃, the ingot was cast to make an ingot.The ingot was heated to 980 ℃ and hot rolled to 7 ~ 9mm, and the hot rolled material was first cold rolled at 50% reduction rate to have a thickness of the plate. After 3 to 4mm and annealed at 500 ~ 700 ℃.

이어서 50% 압하율로 2차 냉간하여 판의 두께를 2mm로 한후 500~700℃에서 소둔하였다. 또한 1mm 두께까지 다시 3차 냉간 압연하여 500~700℃에서 소둔한후, 0.5mm까지 최종 냉간 압연한후 200~400℃에서 1시간 저온 소둔을 하였다. 한편 저온 소둔전의 최종 냉간 압연판과 320℃에서 1시간 저온 소둔한 압연판의 기계적 성질을 표 6에 나타내었다.Subsequently, the plate was cold-cold at 50% reduction rate to 2 mm and then annealed at 500 to 700 ° C. In addition, after the third cold rolling to 1mm thickness again annealing at 500 ~ 700 ℃, the final cold rolling to 0.5mm and then low temperature annealing at 200 ~ 400 ℃ for 1 hour. On the other hand, Table 6 shows the mechanical properties of the final cold rolled sheet before low temperature annealing and the rolled sheet subjected to low temperature annealing at 320 ° C. for 1 hour.

[표 6]TABLE 6

Figure kpo00006
Figure kpo00006

본 실시예에서와 같이, No.1 합금인 Cu-Zn-Al-Ni에 Si,B,Ti을 동시에 첨가한 No.6 No.7에서는 인장강도 및 탄성한계치가 크게 증가하였다.As in the present embodiment, the tensile strength and the elastic limit were greatly increased in No. 6, in which Si, B, and Ti were simultaneously added to Cu-Zn-Al-Ni, which is the No. 1 alloy.

No.6의 저온 소둔후의 강도는 베릴륨동의 석출경화 뒤 강도치와 대등하며, No.6의 높은 강도는 Ti(2.78%), B(2.74%)에 의한 것임을 알수 있었다.The strength after low temperature annealing of No. 6 is comparable with the strength value after precipitation hardening of copper beryllium, and the high strength of No. 6 is due to Ti (2.78%) and B (2.74%).

No.7합금의 강도(114kg/㎟)역시 베릴륨동의 밀하든드 템퍼(Mill hardened Temper)보다 높게 나타났으며, 탄성 한계치도 높게 나타났다.The strength of the alloy No. 7 (114kg / mm 2) was also higher than that of the mill hardened temper of beryllium copper, and the elastic limit was also high.

[실시예 4]Example 4

[표 7]TABLE 7

Figure kpo00007
Figure kpo00007

상기 No.8,9,10 합금을 대기압 환원성 분위기에서 유도 용해하였으며, Cu-B 및 Cu-Ti 모합금을 사용 B와 Ti를 첨가 하였고, Si는 순수 Si를 사용하여 첨가하였다.The Nos. 8, 9 and 10 alloys were inductively dissolved in an atmospheric reducing atmosphere, B and Ti were added using Cu-B and Cu-Ti master alloys, and Si was added using pure Si.

용탕의 온도가 1300℃일때 주조하여 주괴를 만들었다.The ingot was made by casting when the temperature of the molten metal was 1300 ° C.

900℃에서 열간 압연하여 8mm로 만든후, 1차 냉간 압연하여 4mm두께로 한후 600℃에서 소둔하고, 2mm까지 2차 냉간 압연한후 600℃에서 재차 소둔하였으며, 1mm까지 3차 냉간 압연하여 600℃에서 소둔한후, 최종 냉간 압연하여 0.5mm로 하였다.Hot rolled at 900 ℃ to make 8mm, first cold rolled to 4mm thickness, then annealed at 600 ℃, second cold rolled to 2mm, then annealed again at 600 ℃, third cold rolled to 1mm, 600 ℃ After annealing at, the final cold rolled to 0.5mm.

최종압연재를 350℃에서 저온 소둔 하였으며, 최종압연된 판재의 저온 소둔전과 소둔후의 기계적 성질은 표 8과 같다.The final rolled material was annealed at 350 ° C. at low temperature, and the mechanical properties before and after low temperature annealing of the final rolled sheet are shown in Table 8.

[표 8]TABLE 8

Figure kpo00008
Figure kpo00008

상기 표 8과 같이 합금조성이 Si와 Ti이 첨가되지 않은 합금 No.10은 인장강도가 저하되었고, Ti와 Si가 동시첨가된 합금 No.9와 Si와 B이 동시 첨가된 합금 No.8은 기계적 성질이 우수하였다.As shown in Table 8, alloy No. 10 in which the alloy composition is not added with Si and Ti is lowered in tensile strength, and alloy No. 9 with simultaneous addition of Ti and Si and alloy No. 8 with Si and B added The mechanical properties were excellent.

No.8과 No.9의 인장강도는 인청동의 스프링 하드템퍼(Spring hard Temper)에 해당하는 인장강도이다.The tensile strengths of Nos. 8 and 9 are the tensile strengths corresponding to the spring hard temper of phosphor bronze.

[실시예 5]Example 5

[표 9]TABLE 9

Figure kpo00009
Figure kpo00009

상기 조성합금 11을 대기압 환원성 분위기에서 용해 하였으며 Cu-Ti의 모합금을 사용하여 Ti을 첨가하였다.The composition alloy 11 was dissolved in an atmospheric reducing atmosphere, and Ti was added using a mother alloy of Cu-Ti.

용해된 것을 1350℃ 온도에서 주조한후 950℃로 가열하여 두께를 8mm 열간 압연 하였으며, 열간 압연된판을 3~4mm로 1차 냉간 압연후 550℃에서 소둔하였으며, 50%압하율로 2차 냉간 압연하여 2mm로 한후 550℃로 소둔 하였고, 다시 1mm두께까지 3차 냉간 압연하여 650℃에서 소둔하였다.The molten material was cast at 1350 ° C. and then heated to 950 ° C. to hot roll the thickness of 8 mm, and the hot rolled plate was cold rolled to 3 to 4 mm at the first cold annealing at 550 ° C., followed by secondary cold at 50% reduction. After rolling to 2mm, annealing was carried out at 550 ° C., followed by cold rolling 3 times to 1mm thickness, and annealing at 650 ° C.

0.5mm로 최종 냉간 압연한후 320℃에서 약 1시간 저온 소둔하여 최종 압연판을 얻었으며, 저온 소둔전의 최종 냉간 압연판과 320℃에서 1시간 저온 소둔한 압연판의 물성치(기계적 성질)를 표 10에 나타내었다.After final cold rolling to 0.5mm, the final rolled plate was obtained by low temperature annealing at 320 ℃ for about 1 hour, and the physical properties (mechanical properties) of the final cold rolled plate before low temperature annealing and the rolled sheet at low temperature at 320 ℃ for 1 hour 10 is shown.

[표 10]TABLE 10

Figure kpo00010
Figure kpo00010

합금 No.11의 기계적 성질은 인청동 보다 향상된 것을 알수 있었다.The mechanical properties of alloy No. 11 were found to be improved than that of phosphor bronze.

[실시예 6]Example 6

[표 11]TABLE 11

Figure kpo00011
Figure kpo00011

상기 조성합금 No.12을 대기압 환원성 분위기에서 용해 하였으며, Cu-B 및 Cu-Ti 모합금을 사용 B와 Ti를 첨가하였다.The composition alloy No. 12 was dissolved in an atmospheric reducing atmosphere, and B and Ti were added using a Cu-B and a Cu-Ti master alloy.

용탕의 온도가 1300℃일때 주조하여 주괴를 만들었으며, 900℃에서 열간 압연하여 8mm로 만든후, 1차 냉간 압연하여 4mm두께로 한후 600℃에서 소둔하였다.The molten metal was cast at a temperature of 1300 ° C. to make an ingot, and hot rolled at 900 ° C. to 8 mm, followed by primary cold rolling to a thickness of 4 mm, followed by annealing at 600 ° C.

2mm까지 2차 냉간 압연한후 600℃에서 재차 소둔하였고, 1mm까지 3차 냉간 압연하여 600℃에서 소둔한 후, 최종 냉간 압연하여 0.5mm로 하였다.After the second cold rolling to 2mm and annealing again at 600 ℃, the third cold rolling to 1mm and annealing at 600 ℃, the final cold rolling to 0.5mm.

최종 압연재를 350℃에서 저온 소둔하였으며, 최종 압연된 판재의 저온 소둔전과 소둔후의 기계적 성질은 표 12와 같다.The final rolled material was cold-annealed at 350 ° C., and the mechanical properties before and after low-temperature annealing of the final rolled sheet are shown in Table 12.

[표 12]TABLE 12

Figure kpo00012
Figure kpo00012

상기 표 12에서와 같이 합금 No.11의 기계적 성질은 Ti와 B의 동시 첨가에 의하여 우수하게 나타난 것을 볼수 있다.As shown in Table 12, the mechanical properties of Alloy No. 11 can be seen to be excellent by simultaneous addition of Ti and B.

실시예 1~6까지를 종합해 보면 실시예 1의 No.1합금 Cu-Zn-Al-Ni 조성에 Si를 0.3% 첨가한 No.2합금의 경우 인장강도에서 10%, 탄성한계치에서 16%가 증가했음을 볼수 있다.In total from Examples 1 to 6, the No. 2 alloy containing 0.3% Si in the No. 1 alloy Cu-Zn-Al-Ni composition of Example 1 was 10% at tensile strength and 16% at elastic limit. You can see that increased.

실시예 2의 No.3의 합금은 Cu-Zn-Al-Ni 조성에 B를 0.2%첨가한 것인데 인장강도는 No.2합금과 대등하고 탄성한계치는 다소증가 되었음을 보여 주었다.The alloy of No. 3 of Example 2 added B by 0.2% to the Cu-Zn-Al-Ni composition, and showed that the tensile strength was comparable with the No. 2 alloy and the elastic limit was slightly increased.

No.2, No.3의 인장강도는 인청동의 스프링 하드템퍼(Spring Hard Temper) (68~79kg/㎟)에 해당하여 연신율 및 탄상한계치는 이 보다 훨씬 우수하다.The tensile strengths of No. 2 and No. 3 correspond to Spring Hard Temper (68 ~ 79kg / mm2) of phosphor bronze, which has much better elongation and limit of impact.

실시예 3의 경우의 합금 No.4, No.5, No.6, No.7은 Cu-Zn-Al-Ni계 합금에 Si, B, Ti를 소량 첨가한 것인데, 이는 Si와 B만이 첨가되있는 No.2, No.3합금보다 기계적성질이 훨씬 우수한 것으로 나타냈으며,합금 No.6, No.7은 베릴륨동과의 동등한 인장강도로 나타났으며 탄성한계치는 베릴륨동의 탄성한계치인 90kg/㎟을 넘고 있다.Alloy No. 4, No. 5, No. 6, and No. 7 in Example 3 were obtained by adding a small amount of Si, B, and Ti to a Cu-Zn-Al-Ni-based alloy, which added only Si and B. The mechanical properties were much better than those of No. 2 and No. 3 alloys. Alloy No. 6 and No. 7 showed the same tensile strength as beryllium copper, and the elastic limit was 90kg /. It exceeds 2mm2.

결론적으로 본 발명에서 합금 No.1과 No.10을 제외한 합금은 인청동 및 베릴륨동과 대체할수 있는 것으로 No.2~No.5, No.8, No.9, No.11, No.12는 인청동을, No.6, No.7은 베릴륨동을 저가격으로 동등한 기계적 성질 혹은 그이상의 기계적성질로 대체할수 있는 것이다.In conclusion, in the present invention, the alloys except alloys No. 1 and No. 10 can be replaced with phosphor bronze and beryllium copper, and Nos. 2 to 5, No. 8, No. 9, No. 11, and No. 12 Phosphor Bronze, No. 6 and No. 7 replace beryllium copper at low cost with equivalent mechanical properties or more.

[실시예 7]Example 7

열연화 저항시험(Thermal Softening Resistance Test)본 발명 합금등의 열연화 저항(Thermal Softening Resistance)을 시험하기 위해 최종 소둔전 합금 No.1, No.2, No.7의 냉간 압연판재를 200, 300, 400, 500, 600, 650℃등의 온도에서 약 1시간 소둔처리한후, 상온에서 인장시험하여, 소둔처리 온도에 따라 인장강도의 변화를 측정하여 그 결과를 제1도에 나타내었다.Thermal Softening Resistance Test In order to test the thermal softening resistance of the alloy of the present invention, cold rolled sheet materials of alloys No. 1, No. 2, and No. 7 before final annealing were used. After annealing at temperatures of 400, 500, 600, 650 ° C. for about 1 hour, a tensile test was performed at room temperature, and the change in tensile strength was measured according to the annealing temperature. The results are shown in FIG.

제1도에서와 같이 Cu-Zn-Al-Ni만의 조성인 No.1합금보다 Si,B,Ti 등이 단독 혹은 함께 첨가된 No.2, No.7합금이 열연화 저항이 훨씬 높은 것으로 나타났다.As shown in FIG. 1, the No. 2 and No. 7 alloys in which Si, B, Ti, etc. were added alone or together were much higher than the No. 1 alloy of Cu-Zn-Al-Ni alone. .

제2도는 본 발명의 합금들과 일반황동(Cu 70-Zn 30)인청동 베릴륨동등과 열연화 저항치를 비교한 것으로서, 제1도에서와 같이 본 발명의 합금 No.2, No.7은 인청동 보다 내열성이 우수하고 베릴륨동과는 거의 대등한 것으로 나타났다.FIG. 2 compares the alloys of the present invention with general brass (Cu 70-Zn 30) phosphorous beryllium copper and the thermal softening resistance. As shown in FIG. 1, alloys No. 2 and No. 7 of the present invention are more than phosphor bronze. It was excellent in heat resistance and almost equal to beryllium copper.

이러한 열연화 저항은 결정립의 크기에 따라 결정되는데, 열연화 저항을 비교하기 위하여 여러합금을 500℃, 600℃, 650℃ 등에서 1시간 소둔후, 결정립 성장을 측정하여본 결과 No.1합금, 즉 Si,B,Ti가 없는 경우에는 결정립이 조대하게 성장하였고, Si,B,Ti가 첨가된 합금은 650℃에서도 결정립 크기가 0.01mm이하로 억제되는 것이 관찰되어 본 발명에서 Si,B,Ti의 첨가가 결정립 크기를 작게하여 열연화 저항을 우수하게 하는 것으로 나타났다.The thermal softening resistance is determined according to the size of the grains. In order to compare the thermal softening resistance, after annealing several alloys at 500 ° C, 600 ° C, and 650 ° C for 1 hour, the grain growth was measured. In the absence of Si, B, Ti, grains grew coarsely, and the alloys added with Si, B, Ti were observed to have a grain size of 0.01 mm or less even at 650 ° C. Addition has been shown to reduce the grain size, thereby making it excellent in thermal softening resistance.

본 발명의 합금과 기존합금의 물성치 및 가격을 아래표 표 13에 종합 정리 하였다.The physical properties and prices of the alloys and conventional alloys of the present invention are summarized in Table 13 below.

[표 13]TABLE 13

Figure kpo00013
Figure kpo00013

표 13과 같이 본 발명의 합금은 물성치면에서 인청동보다 우수하고, 베릴륨동과는 거의 유사하며, 가격면에서 인청동 및 베릴륨동 보다 훨씬 저렴하므로, 본 발명의 합금은 전기, 전자 및 통신분야의 고강도, 고탄성 및 특히 고내열성이 요구되는 분야에 주요 부품용 소재로써, 기존 합금중 고가인 스프링용 인청동 및 베릴륨동의 대체 소재로써 그 사용목적에 따라 Si,B,Ti를 조정첨가함으로써 용도에 맞게 다양하게 사용할 수 있는 것이다.As shown in Table 13, the alloy of the present invention is superior to phosphor bronze in physical properties, is almost similar to beryllium copper, and is much cheaper than phosphor bronze and beryllium copper in terms of price, so that the alloy of the present invention has high strength in electric, electronic and communication fields. It is a material for major parts in the field where high elasticity and high heat resistance are required, and it is a substitute material of expensive phosphor bronze and beryllium copper for spring, which is expensive among existing alloys. It can be used.

Claims (7)

합금의 화학성분 조성이 Zn 13.0~25.0%, Al 2.0~4.0%, Ni 0.3~5.0%, Si 0.1~3.0%, B 0.1~3.0%, Ti 0.5~3.0%이고, 나머지가 Cu로 구성된 것을 특징으로 하는 고강도, 고탄성, 고내열성 동합금.The chemical composition of the alloy is Zn 13.0 ~ 25.0%, Al 2.0 ~ 4.0%, Ni 0.3 ~ 5.0%, Si 0.1 ~ 3.0%, B 0.1 ~ 3.0%, Ti 0.5 ~ 3.0%, and the rest is composed of Cu High strength, high elasticity, high heat resistant copper alloy. 합금의 화학성분 조성이 Zn 13.0~25.0%, Al 2.0~4.0%, Ni 0.3~5.0%로 되는 것에 Si 0.1~3.0%, 첨가하고, 나머지가 Cu로 구성된 것을 특징으로 하는 고강도, 고탄성, 고내열성 동합금.High strength, high elasticity, high heat resistance, characterized in that the chemical composition of the alloy is Zn 13.0 ~ 25.0%, Al 2.0 ~ 4.0%, Ni 0.3 ~ 5.0%, Si 0.1 ~ 3.0%, and the remainder is composed of Cu Copper alloy. 합금의 화학성분 조성이 Zn 13.0~25.0%, Al 2.0~4.0%, Ni 0.3~5.0%로 되는 것에 Ti 0.5~3.0%첨가하고, 나머지가 Cu로 구성된 것을 특징으로 하는 고강도, 고탄성, 고내열성 동합금.High strength, high modulus, high heat resistant copper alloy characterized by adding 0.5 to 3.0% of Ti to the chemical composition of alloys of Zn 13.0 ~ 25.0%, Al 2.0 ~ 4.0%, Ni 0.3 ~ 5.0%, and the remainder composed of Cu. . 합금의 화학성분 조성이 Zn 13.0~25.0%, Al 2.0~4.0%, Ni 0.3~5.0%로 되는 것에 Si 0.1~3.0%, B 0.1~3.0% 첨가하고, 나머지가 Cu로 구성된 것을 특징으로 하는 고강도, 고탄성, 고내열성 동합금.The alloy has a chemical composition of Zn 13.0-25.0%, Al 2.0-4.0%, Ni 0.3-5.0%, and Si 0.1-3.0%, B 0.1-3.0% is added, and the remainder is composed of Cu. , High elasticity, high heat resistant copper alloy. 합금의 화학성분 조성이 Zn 13.0~25.0%, Al 2.0~4.0%, Ni 0.3~5.0%로 되는 것에 Si 0.1~3.0%, Ti 0.5~3.0% 첨가하고, 나머지가 Cu로 구성된 것을 특징으로 하는 고강도, 고탄성, 고내열성 동합금.The alloy has a chemical composition of Zn 13.0-25.0%, Al 2.0-4.0%, Ni 0.3-5.0%, and Si 0.1-3.0%, Ti 0.5-3.0%, and the remainder is composed of Cu. , High elasticity, high heat resistant copper alloy. 합금의 화학성분 조성이 Zn 13.0~25.0%, Al 2.0~4.0%, Ni 0.3~5.0%로 되는 것에 B 0.1~3.0%, Ti 0.5~3.0%, 첨가하고, 나머지가 Cu로 구성된 것을 특징으로 하는 고강도, 고탄성, 고내열성 동합금.It is characterized in that the chemical composition of the alloy is Zn 13.0-25.0%, Al 2.0-4.0%, Ni 0.3-5.0%, B 0.1-3.0%, Ti 0.5-3.0%, and the remainder is composed of Cu. High strength, high elasticity, high heat resistant copper alloy. 본 발명의 조성물로 되는 동합금을 용해 주조한후, 1) 850~1,000℃에서 열간압연, 2) 압하율 40~60%로 1차 냉간 압연, 3) 500~700℃에서 1~5시간 소둔, 4) 압하율 40~60%로 2차 냉간 압연, 5) 500~700℃에서 1~5시간 소둔, 6) 압하율 40~60%로 3차 냉간 압연, 7) 500~700℃에서 1~5시간 소둔, 8) 압하율 40~60%로 최종 냉간 압연, 9) 200~400℃에서 1~5시간 저온 소둔, 하여 되는 것을 특징으로 하는 고강도, 고탄성, 고내열성 동합금판의 제조방법.After melting and casting the copper alloy of the composition of the present invention, 1) hot rolling at 850 ~ 1,000 ℃, 2) primary cold rolling at a reduction ratio of 40 ~ 60%, 3) annealing for 1 to 5 hours at 500 ~ 700 ℃, 4) 2nd cold rolling at 40 ~ 60% reduction rate, 5) Annealing 1 ~ 5 hours at 500 ~ 700 ℃, 6) 3rd cold rolling at 40 ~ 60% reduction rate, 7) 1 ~ at 500 ~ 700 ℃ 5 hours annealing, 8) final cold rolling at a reduction ratio of 40 to 60%, 9) low temperature annealing at 200 to 400 ° C. for 1 to 5 hours, to produce a high strength, high elasticity and high heat resistant copper alloy sheet.
KR1019870006010A 1987-06-13 1987-06-13 Cu-alloy and method for cu-alloy sheet KR900006105B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019870006010A KR900006105B1 (en) 1987-06-13 1987-06-13 Cu-alloy and method for cu-alloy sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019870006010A KR900006105B1 (en) 1987-06-13 1987-06-13 Cu-alloy and method for cu-alloy sheet

Publications (2)

Publication Number Publication Date
KR890000680A KR890000680A (en) 1989-03-15
KR900006105B1 true KR900006105B1 (en) 1990-08-22

Family

ID=19262100

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019870006010A KR900006105B1 (en) 1987-06-13 1987-06-13 Cu-alloy and method for cu-alloy sheet

Country Status (1)

Country Link
KR (1) KR900006105B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100510132C (en) * 2004-10-11 2009-07-08 迪尔金属合作两合公司 Copper/zinc/silicon alloy, use and production thereof
CN102031413A (en) * 2010-12-23 2011-04-27 广州铜材厂有限公司 High-elasticity copper alloy and preparation method thereof
CN109338149A (en) * 2018-11-27 2019-02-15 北京北冶功能材料有限公司 High-strength CTB alloy bar and preparation method suitable for electrically conductive elastic component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695226B (en) * 2020-12-15 2021-11-30 西南科技大学 Preparation method and application of high-strength corrosion-resistant copper alloy composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100510132C (en) * 2004-10-11 2009-07-08 迪尔金属合作两合公司 Copper/zinc/silicon alloy, use and production thereof
CN102031413A (en) * 2010-12-23 2011-04-27 广州铜材厂有限公司 High-elasticity copper alloy and preparation method thereof
CN109338149A (en) * 2018-11-27 2019-02-15 北京北冶功能材料有限公司 High-strength CTB alloy bar and preparation method suitable for electrically conductive elastic component

Also Published As

Publication number Publication date
KR890000680A (en) 1989-03-15

Similar Documents

Publication Publication Date Title
KR20010080447A (en) Stress relaxation resistant brass
US11078554B2 (en) Lightweight steel and steel sheet with enhanced elastic modulus, and manufacturing method thereof
US4260432A (en) Method for producing copper based spinodal alloys
JPH0625388B2 (en) High strength, high conductivity copper base alloy
US8951371B2 (en) Copper alloy
KR102502373B1 (en) Copper alloy and producing method thereof
JPH0841612A (en) Copper alloy and its preparation
EP0189637B1 (en) Copper alloy and production of the same
CN112626375A (en) Preparation method of novel nickel-based material for petroleum valve rod
WO1998048068A1 (en) Grain refined tin brass
US5882442A (en) Iron modified phosphor-bronze
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
US4692192A (en) Electroconductive spring material
CA1119920A (en) Copper based spinodal alloys
JPH06264202A (en) Production of high strength copper alloy
KR900006105B1 (en) Cu-alloy and method for cu-alloy sheet
GB1562870A (en) Copper alloys
KR20020008710A (en) Cu-ni-sn-al, si, sr, ti, b alloys for high strength wire or plate and its manufacturing method
JPH03111529A (en) High-strength and heat-resistant spring copper alloy
JPH0457733B2 (en)
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
JPH06248375A (en) High strength and conductive copper alloy
KR910003882B1 (en) Cu-alloy for electric parts and the process for making
JPH06279894A (en) Copper alloy excellent in strength and electrical conductivity
JPH09316569A (en) Copper alloy for lead frame and its production

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee