EP1797539B1 - Sicherheitsdokument mit transparenten fenstern - Google Patents
Sicherheitsdokument mit transparenten fenstern Download PDFInfo
- Publication number
- EP1797539B1 EP1797539B1 EP05783032.5A EP05783032A EP1797539B1 EP 1797539 B1 EP1797539 B1 EP 1797539B1 EP 05783032 A EP05783032 A EP 05783032A EP 1797539 B1 EP1797539 B1 EP 1797539B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- microlens
- microlenses
- security document
- microlens field
- optical element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D25/00—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
- B42D25/30—Identification or security features, e.g. for preventing forgery
- B42D25/324—Reliefs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D25/00—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
- B42D25/20—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
- B42D25/29—Securities; Bank notes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D25/00—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
- B42D25/30—Identification or security features, e.g. for preventing forgery
- B42D25/328—Diffraction gratings; Holograms
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/003—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using security elements
- G07D7/0032—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using security elements using holograms
-
- B42D2033/24—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S283/00—Printed matter
- Y10S283/901—Concealed data
Definitions
- the invention relates to a security document, in particular a banknote or identity card, having a first optical element and a transparent window, in which a second optical element is arranged, wherein the first and the second optical element so spaced apart on a support of the security document are that the first and the second optical element can be brought into coincidence with each other.
- a self-checking banknote which consists of a flexible plastic carrier.
- the flexible plastic support is made of a transparent material and is provided with a clouded sheath, leaving a clear transparent surface as a window.
- an enlarging lens is arranged as a verification means. Furthermore, a microprint area is provided on the banknote, which shows a small character, a fine line or a filigree pattern. To check or inspect the banknote, the banknote is then folded, thus bringing the transparent window and the micro-printing area into coincidence. The magnifying lens can now be used to make the micro-pressure visible to the viewer and thus to verify the banknote.
- EP 0 930 979 B1 proposed to arrange in the transparent window, a distorting lens, an optical filter or a polarizing filter.
- EP 1 127 712 A1 describes a security element in which a lens grid consisting of cylindrical lenses with a distance of 200 microns is superimposed with an embossing to achieve a tilting effect.
- the US 2003/0193184 A1 describes inserting into a banknote a window with a lens by means of which a micro-typeface can be read.
- the WO 03/086775 A1 describes a security document in which a perforation pattern is introduced. If a mask with marking in coincidence with the perforation pattern brought, so an optically recognizable effect is generated.
- the invention is based on the object of specifying an improved security document.
- first and the second microlens field are overlapped, striking, memorable optical effects, which are very difficult to imitate with other technologies, are also strongly dependent on the spacing between the overlapping first and second microlens fields. Due to these properties of the first optical effect exhibiting overlapping of the first and second microlens arrays, the possibility of verifying the authenticity of the security document by means of clear and distinctive security features results when the microlens arrays are arranged in the transparent windows of a security document. This makes it possible by means of the invention to produce easily verifiable and difficult to imitate security documents.
- the lens spacing of the microlenses of the first microlens field and the lens spacing of the microlenses of the second microlens array are selected such that the individual light beams of the light beam split by the overlapping microlens fields meet in a common pixel.
- Lens spacing of the microlenses is understood to be the lateral spacing of the microlenses of the respective microlens field. This will achieve that the overlapping of the two microlens fields produces an integral image, and thus the overall system behaves more or less like a single macroscopic lens, the properties of which however differ significantly from those of a conventional macroscopic lens. With such a system, both real and virtual images can be generated, single images but also multiple images.
- the lens spacing of the microlenses of the two microlens arrays is preferably selected such that the change in the offset of the mutually associated lenses of the first and second microlens arrays is constant from the optical axis of the virtual macroscopic lens.
- This is achieved according to a preferred embodiment of the invention by two microlens fields, in which the microlenses each spaced according to a periodic grid with a constant lens spacing and in this case the lens pitch of the microlenses of the first microlens field of the lens pitch of the microlenses of the second Microlens field distinguishes.
- Such microlens fields are particularly easy to manufacture.
- the lens spacing of the microlenses of the first microlens field is preferably an integer multiple of the lens spacing of the microlenses of the second microlens field.
- the diameter of the microlenses smaller than the resolution of the human eye, so that the lens pitch of the microlenses of the first and second microlens fields according to the invention smaller than 300 microns is to choose. Furthermore, the focal length of the microlenses is small compared to the image and object width.
- the Kepler telescope type in imaging the plurality of split light bundles interact.
- a macroscopic lens system similar optical effect can be achieved, however, which exhibits properties that are significantly different from those of a conventional lens system. It can be so particularly striking and thus memorable optical effects.
- first microlens array of a plurality of positive-focus microlenses and the second microlens array of a plurality of negative-focus microlenses which cooperate in the manner of a Gallileo telescope.
- superimposing the first and second microlens fields produces effects similar to those of a macroscopic lens, but different from a conventional macroscopic lens system.
- the two microlens fields are not homogeneous and have locally different parameters such as lens spacing, diameter of the lenses or focal length of the lenses.
- One or more parameters of the first and / or the second microlens field preferably change periodically according to a (common) raster. Furthermore, parameters of the microlens fields can also vary virtually continuously in a predefined manner.
- the microlens field has two or more regions with different lens spacing of the microlenses and / or with different focal lengths of the microlenses.
- the resulting imaging function differs in first and second areas, thereby making the information encoded in the change in parameters of the microlens fields visible to the viewer.
- microlens fields in the manner of a moiré pattern by phase shifting the lens spacing of microlenses relative to a periodic basic grid and to make this information visible when the first and second microlens fields are superimposed.
- the measures described above for coding additional information into the first and second microlens field further improve the security against forgery of the security document.
- the security element has an opaque third optical element, wherein, when the first and / or the second microlens field is covered with the third optical element, one or more further optical effects are exhibited.
- additional security features can thus be achieved by covering the microlens fields, e.g. be generated with a reflective optically variable element or with a high-resolution pressure, the microlens field can serve as a moire analyzer, for example.
- the first and / or the second optical element each consist of two partial microlens fields, which are arranged one above the other in the first and second optical element.
- the two partial microlens fields are thus arranged, for example, on opposite sides of a film and thus form superimposed microlens surfaces of a film.
- the one surface of the first optical element is determined by the geometry of one partial microlens field and the surface of the first optical element opposite this surface is determined by the geometry of the other partial microlens field.
- the optical effect generated when the first and second optical elements are superimposed depends on the geometry Orientation of the first and second optical element, that is, depending on whether the security document is folded or bent in one direction or the other in order to bring the transparent window in the cover.
- a similar effect can also be achieved by arranging the microlens fields in the transparent windows of the security document in such a way that the distance between the lenses of the two microlens fields changes depending on the folding or bending direction.
- the first and / or the second optical element preferably has a replication lacquer layer into which a relief structure is formed, which forms the first or the second microlens field. Furthermore, an encapsulation of the relief structure by means of an additional optical separation layer and / or an impression of the relief structure by means of UV replication has proved to be advantageous.
- the microlenses of the first and / or second microlens field are preferably formed by a diffraction-optically effective relief structure which generates the effect of a microlens field by diffractive optical means.
- diffractive lenses can be formed by a diffractive binary relief structure whose profile depth is smaller than the wavelength of the visible light (binary, thin diffractive lens), formed by a continuous diffractive relief profile with a profile depth smaller than the wavelength of the visible light ( thin diffractive lens with continuous profile) and a diffractive continuous relief profile with a tread depth greater than the wavelength of the visible light (thick diffractive lens with continuous relief profile) are formed.
- the microlens field as a refractive macrostructure in the replication lacquer layer, which has a continuous, continuous surface profile without discontinuities.
- the profile depth of this macrostructure is in this case many times greater than the wavelength of the visible light.
- the first and / or the second optical element is formed by the transfer layer of a transfer film. This makes it possible to To meet the requirements of the quality of the microlens fields and the tolerances in terms of distances, flatness, etc.
- Fig. 1 shows a value document 1, for example a banknote or a check.
- the value document 1 it is also possible for the value document 1 to represent an identification document, for example an identity card.
- the security document 1 consists of a flexible carrier 11 with transparent windows 12 and 13.
- the carrier 11 is preferably a carrier made of paper material which is provided with an imprint and in which further security features, for example watermarks or security threads, are introduced.
- this paper carrier window-shaped openings are then introduced, for example, by punching or by means of a laser, so that the in Fig. 1 shown transparent window 12 and 13 arise.
- the transparent windows 12 and 13 are then resealed by optical elements having a transmissive microlens array.
- a first transmissive microlens field 15 and in the region of the transparent window 13 a second transmissive microlens field 16 are arranged.
- the carrier 11 is a plastic film or a laminate consisting of one or more paper and plastic layers.
- a transparent or partially transparent material is already used as the material for the carrier 11, and thus the carrier need not be partially removed by punching or cutting to generate the transparent windows 12 and 13. This is the case, for example, if the carrier 11 consists of a transparent plastic film which is not provided with a haze layer in the region of the transparent windows 12 and 13.
- the carrier 11 - for example in the case of a passport - consists of two connected by stitching or gluing pages.
- a strip-shaped patch 14 is further applied to the carrier 11, which covers the region of the transparent window 13.
- the transparent microlens array 16 is inserted in the patch 14.
- the patch 14 is preferably the transfer layer of a transfer film, for example a hot stamping foil, which is bonded to the carrier 11 under the action of pressure and heat by means of an adhesive layer.
- the patch 14 may also have one or more further optical elements, for example the one shown in FIG Fig. 1 further optical element shown 17.
- the transparent window 12 is not on the in Fig. 1 shown position is introduced into the carrier 11, but also in the region of the strip-shaped patch 14 is incorporated into the carrier 11 and the strip-like patch so covers both transparent window 12 and 13. Both microlens fields 15 and 16 can thus be introduced into a common film element, which significantly reduces the production of the value document 1.
- the security document 1 can also have further security features, for example applied by means of a transfer film, which can be brought into overlap with the transparent windows 12 and 13 by bending, folding or twisting the carrier 11.
- Fig. 1 an example another optical element 18, which is preferably a reflective, optically variable element or a security imprint.
- the transparent windows 12 and 13 of the carrier 11 are brought into the overlap, for example by folding the carrier 11, so that the microlens fields 15 and 16, as in FIG Fig. 2 shown, cover. Then the optical effect which results when viewed through the two superimposed microlens fields 15 and 16 is checked.
- an object 2 lying in the viewing direction 2 any desired graphic representation or a special verification pattern by the transmissive microlens fields 15 and 16 is considered.
- an optical element of the security document 1 is placed in the viewing direction and viewed through the transparent microlens fields 15 and 16.
- Fig. 3a shows a section of the microlens fields 15 and 16, the distance from each other at a distance d according to the viewing situation after Fig. 2 are arranged to each other.
- the microlens array 15 consists of a plurality of microlenses 21, which - as in Fig. 3c indicated - are arranged side by side.
- the microlens array 16 consists of a multiplicity of microlenses 22. If now two mutually associated lenses 21 and 22, which are at a distance r from an imaginary optical axis of the system formed by the microlens fields 15, 16, are considered have their parallel optical axes a deviation ⁇ r .
- the focal length F of the imaging system formed by the microlens fields 15 and 16 is constant, if the derivative ⁇ r l ⁇ r is constant, which is the case for example when the microlenses of the microlens fields 15 and 16 with a constant, differing lens spacing are spaced from each other.
- the focal length F of the imaging system formed by the microlens fields 15 and 16 is constant, if the derivative ⁇ r l ⁇ r is constant, which is the case for example when the microlenses of the microlens fields 15 and 16 with a constant, differing lens spacing are spaced from each other.
- Fig. 3a the example shown, where the microlenses 21 and 22 each with a constant lens pitch p 1 and p 2 are spaced from each other and, as in Fig. 3c shown aligned to each other according to a periodic grid.
- microlens fields for the microlens fields 15 and 16, which fulfill the conditions described above and thus their By cooperating to generate an optical function similar to a conventional lens, it is also possible to use microlens fields which do not fulfill the above-mentioned conditions. It is thus possible, for example, for the lens spacing of the microlenses of one or both microlens fields to change continuously in some areas, resulting in interesting and impressive distorting effects. It is likewise possible for the focal length of the microlenses of a microlens field to be changed continuously at least in a region of the microlens field, as a result of which such distorting effects can likewise be achieved.
- the resulting imaging function changes with lateral displacement of the two microlens fields 15 and 16 to each other , which can serve as another security feature in the verification of the security document 1.
- microlens arrays 15 and 16 in which the focal length of the microlenses and the spacing of the microlenses is constant but different from adjacent areas. If only one of the two microlens fields 15 and 16 is configured in this way, the result is an imaging function which corresponds to the several juxtaposed different conventional lenses.
- the optical mapping function valid in the individual sections is defined here by the relationships described above. If both microlens fields 15 and 16 are configured in this way, the optical imaging function changes with lateral displacement of the two microlens fields 15 and 16 relative to one another, which can be used as a further security feature for verification of the security document.
- the lens spacing of the microlens fields 15 and 16 is preferably selected so that the partial beams generated by the splitting of the incident light beam have a diameter which is below the resolution of the human eye.
- the distance of the microlens fields 15 and 16 is therefore preferably in a range between 250 ⁇ m and 25 ⁇ m. This ensures that the integral image generated by the microlens fields 15 and 16 has a good resolution. If small demands are placed on the optical quality of the imaging function generated by the microlens fields 15 and 16, then it is also possible to increase the lens spacing of the microlenses of the microlens fields 15 and 16.
- Fig. 4 shows the carrier 11, which consists of a paper material of a thickness of about 100 microns and in the region of the transparent window 12 has an opening produced by means of a punching or cutting operation.
- a film element 20 is preferably applied under heat and pressure to the paper material of the carrier 11 by an adhesive layer of the film element 20 is activated by heat and pressure. Due to the pressure exerted at the same time in the region of the optical element 20 in Fig. 4 created depression created.
- the film element 20 consists of a carrier film 22, an adhesion promoter layer 23, a replication lacquer layer 24, an optical separation layer 25 and an adhesive layer 26.
- the carrier film 22 consists of a PET or BOPP film with a layer thickness of 10 to 200 ⁇ m.
- the function of the carrier film 22 is to provide the necessary stability for bridging the opening of the carrier 11.
- the adhesion promoter layer 23 has a thickness of 0.2 to 2 ⁇ m and is applied to the carrier film 22 by means of a printing process.
- the replication lacquer layer 24 consists of a thermoplastic or crosslinked polymer in which a relief structure 27 is replicated by means of a replication tool under the action of heat and pressure or by UV replication.
- the optical separation layer 25 consists of a material whose refractive index differs significantly from the refractive index of the replication lacquer layer 24.
- the adhesive layer 26 it is also possible not to perform the microlens array 15 in such an encapsulated structure, and thus to dispense with the optical separation layer 25. Furthermore, it is also possible for the adhesive layer 26 to be omitted in the area of the relief structure 27 so that the relief structure 27 comes into direct contact with the air.
- the relief structure 27 is a relief structure that surrounds the microlens array 15 by means of a plurality of adjacent macroscopic lenses in the in Fig. 3c implied form implemented.
- the relief structure 27 it is also possible for the relief structure 27 to be a diffractive relief structure which produces the effect of a diffractive optical microlens field consisting of convex or concave microlenses.
- the effect of a convex or concave lens can be generated by a diffractive relief structure which continuously changes with respect to its grating frequencies and possibly further grating constants over a surface area.
- the effect of a convex lens can be generated by diffractive optics, starting from a paraboloidal central portion in the center of the lens a plurality of annularly arranged to this central portion furrows is provided, the grid frequency increases continuously, starting from the central portion.
- the effect of a concave lens can be made diffractive by an inverse structure.
- a plurality of such relief structures are arranged chequerboard side by side. Further, it is also possible that these relief structure are arranged hexagonal side by side.
- diffractive lenses to the chapter ... of the book
- Micro-optics Hans Peter Herzig, Taylor and Francis-Verlag, London, 1997 directed.
- the in Fig. 4 The structure shown and the arrangement of the optical element 20 has the advantage that the microlens field generating surface structure is largely protected from damage or tampering.
- Fig. 5 shows a schematic representation of a viewing situation of a security document 3, in which two arranged in transparent windows of the security document 3 microlens arrays 31 and 32 are kept in review for checking the security document 3.
- the microlens array 31 has a region 33 with microlenses arranged according to a periodic grid with a positive focal length. Further, the optical element implementing the microlens array 31 is configured in the region 33 such that the microlens array has a distance d 1 from the underside of the security document 3.
- the microlens array 32 has a region 34 in which a plurality of microlenses with a positive focal length are arranged according to a first grid and further has a region 35 surrounding this region in which a plurality of negative focal length microlenses are arranged according to a second periodic raster. Due to the design of the optical element implemented in the microlens field 32, the microlenses of the region 34 are here spaced from the underside of the security document 3 by a distance d 2 .
- the optical element in which the microlens arrays 31 and 32 are implemented consists of a thermoplastic film body, for example a PET or BOPP film having a layer thickness of 10 to 50 ⁇ m, into which the micro lens arrays 31 and 32 generate Surface structures as in Fig. 5 represented by means of a replication tool by heat and pressure are introduced.
- this film body is then coated with further layers, for example with an optical separating layer or a protective lacquer layer, and then applied to the support of the security document 3 in the region of the transparent optical window.
- the optical elements after Fig. 5 as the optical element 20 after Fig. 4 are constructed.
- the first optical imaging function here has the properties (Kepler telescope) discussed above, depending on the focal lengths of the microlenses of the region 33 and 34 and the spacing of the microlenses of the regions 33 and 34, whereas the second optical imaging function of FIG the focal lengths of the microlenses of the regions 33 and 35 and the spacing of the microlenses in the areas 33 and 35 is determined, of which has very different properties (Gallileo telescope).
- the distances d 1 and d 2 are in this case preferably selected such that, when the lower sides of the security document 3 lie directly on one another, the sum of the distances d 1 and d 2 corresponds to the sum of the focal lengths of the microlenses in the region 33 and 34 and the distance d 1 the sum of the focal lengths of the microlenses in the areas 33 and 35 corresponds.
- mapping function generated by the overlapping microlens arrays 31 and 32 is still determined by the spacing of the transparent window covering it, this change in the optical imaging function by altering the spacing of the optical windows from each other as an additional distinctive optical security feature ,
- the region 34 preferably forms a pattern region shaped in the form of a pattern, for example a graphic representation or a lettering, so that regions with different imaging functions receive additional coded information.
- a juxtaposition of patterned areas with different imaging functions is not imitated by a conventional lens system, so that can be generated by the invention memorable and difficult to imitate other technologies optical effects.
- the microlens field 32 has two regions in which the spacing and / or the focal length of the microlenses differs. It is also possible for the microlens array 31 to be designed in this way. In this case, the region-wise resulting optical imaging functions also depend on the lateral position of the microlens arrays 31 and 32 relative to each other, so that the optical imaging function with lateral displacement of the microlens fields 31 and 32 changed each other and the viewer different, coded in the mapping function information is made visible depending on the lateral position.
- FIG. 12 shows a viewing situation of a security document 4 in which two microlens arrays 41 and 42 arranged in transparent optical windows of the security document 4 are kept in registration for verification of the security document.
- the microlens field 41 has in a region 46 a multiplicity of microlenses of constant focal length aligned on a periodic grid.
- the microlens array 42 has areas 48 and 47 in which the focal length of the microlenses and the lens spacing of the microlenses differ. This will already be based on Fig. 5 described optical effects at coverage of the microlens fields 41 and 42 generated.
- the security document 4 has further optical elements 45 and 44 which, as in FIG Fig. 6 represented on the support of the security document 4 are applied.
- the optical element 45 is preferably an imprint in the form of a moiré pattern.
- the moiré pattern is matched to the microlens field 41 in such a way that the region 46 of the microlens field 41 can function as a moiré analyzer and, thus, when the optical element 45 overlaps the microlens field 41, a moire is formed in the moire.
- Pattern of the optical element 45 coded moiré image shows.
- the microlenses of the microlens array 41 in this case form a moiré magnifier and moire magnified coded (repititive small) information, whereby hidden (for example phase-coded) information is made visible.
- optical element 45 is an imprint in the form of a moire analyzer and the microlens array 41 forms a moiré pattern into which a hidden (e.g., phase encoded) moiré image is encoded.
- a moiré pattern is to be understood as meaning a pattern formed from repetitive structures which, when superposed with or in consideration another pattern formed by repetitive structures acting as a moiré analyzer shows a new pattern, namely a moiré image, hidden in the moiré pattern.
- this moiré effect results from the superimposition of two line grids, wherein one line grating is phase-shifted in regions to produce the moiré image.
- the lines of the line grid have curved areas, for example, are arranged wave-like or circular.
- the decoding of the moiré image in such a line grid also takes place by a region-wise phase shift of the line grid, whereby two or more different moiré images can be coded in such a moiré pattern.
- moiré patterns and moiré analyzers are also possible, called on. "Scrambled Indica ® 'technology or on a hole pattern (round, oval, square holes of various design) are based.
- the optical element 44 is a reflective optical element, such as a partial metallization in the form of a moiré pattern, or a partially metallized diffractive structure.
- the optical element 44 can also have a field of reflective microlenses, which, when covered by the microlens field arranged in the region 46, show interesting optical effects in reflection.
- Fig. 7a to Fig. 7c show different viewing situations of a security document 5.
- the security document 5 is folded so that transparent windows with microlens fields 51 and 52 of the security document 5 overlap.
- Fig. 7b is indicated, the security document 5 is now folded in the other direction, so that, in the viewing situation after Fig. 7c , not the undersides of the microlens fields 51 and 52, as in Fig. 7a shown, lie on top of each other, but now the tops of the microlens fields 51 and 52 are on top of each other.
- the microlens fields 51 and 52 each have a lens body of thickness d 1 and d 2 and are structured on both sides, so that the optical function of the microlens field 51 from the interaction of two overlapping partial microlens fields 53 and 54 in accordance with Fig. 3a to Fig. 3c explained relationships. Accordingly, the microlens array 52 is formed by two juxtaposed partial microlens arrays 55 and 56. As in further Fig. 7a to Fig. 7c indicated, the lens body of the microlens fields 51 and 52 is encapsulated and thus coated on both sides with an optical separating layer or a protective layer.
- the partial microlens fields 54 and 55 here have, as in Fig. 7a indicated an inverse geometry, so that cancel out of the partial microlens fields 54 and 55 generated optical imaging functions.
- an optical imaging function is generated as an optical effect, which results from the superposition of the partial microlens fields 53 and 56, ie from the lens distance and the focal length of these microlens fields.
- This is in the viewing situation Fig. 7c not the case, so that in this viewing situation, not a conventional lens similar effect is generated.
Landscapes
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Credit Cards Or The Like (AREA)
- Lenses (AREA)
- Burglar Alarm Systems (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102004044459A DE102004044459B4 (de) | 2004-09-15 | 2004-09-15 | Sicherheitsdokument mit transparenten Fenstern |
| PCT/EP2005/009584 WO2006029745A1 (de) | 2004-09-15 | 2005-09-07 | Sicherheitsdokument mit transparenten fenstern |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1797539A1 EP1797539A1 (de) | 2007-06-20 |
| EP1797539B1 true EP1797539B1 (de) | 2015-07-29 |
Family
ID=35432558
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP05783032.5A Expired - Lifetime EP1797539B1 (de) | 2004-09-15 | 2005-09-07 | Sicherheitsdokument mit transparenten fenstern |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US7931305B2 (enExample) |
| EP (1) | EP1797539B1 (enExample) |
| JP (1) | JP4939419B2 (enExample) |
| CN (1) | CN101019154B (enExample) |
| CA (1) | CA2580288C (enExample) |
| DE (1) | DE102004044459B4 (enExample) |
| ES (1) | ES2551689T3 (enExample) |
| RU (1) | RU2376642C2 (enExample) |
| TW (1) | TWI383340B (enExample) |
| WO (1) | WO2006029745A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2834818C1 (ru) * | 2024-03-04 | 2025-02-14 | Акционерное общество "Гознак" (АО "Гознак") | Защищенный носитель информации с оптически переменным эффектом, способ его получения и защищенный от подделки документ |
Families Citing this family (45)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102005028162A1 (de) † | 2005-02-18 | 2006-12-28 | Giesecke & Devrient Gmbh | Sicherheitselement und Verfahren zu seiner Herstellung |
| DE102006025334A1 (de) * | 2006-05-31 | 2007-12-06 | Giesecke & Devrient Gmbh | Refraktives Durchsichtssicherheitselement |
| US8056929B2 (en) * | 2006-10-02 | 2011-11-15 | Travel Tags, Inc. | Layered image display applications and methods |
| WO2008042348A1 (en) * | 2006-10-02 | 2008-04-10 | Travel Tags, Inc. | Layered image display sheet |
| US20080213528A1 (en) * | 2006-12-19 | 2008-09-04 | Hoffman Anthony L | Customized printing with depth effect |
| DE102007005414A1 (de) | 2007-01-30 | 2008-08-07 | Ovd Kinegram Ag | Sicherheitselement zur Sicherung von Wertdokumenten |
| DE102007029203A1 (de) | 2007-06-25 | 2009-01-08 | Giesecke & Devrient Gmbh | Sicherheitselement |
| DE102007029204A1 (de) | 2007-06-25 | 2009-01-08 | Giesecke & Devrient Gmbh | Sicherheitselement |
| FR2918311B1 (fr) * | 2007-07-06 | 2011-01-28 | Francois Charles Oberthur Fiduciaire | Document de securite en forme de livret, avec une page additionnelle de revelation d'une information cachee |
| DE102007062089A1 (de) | 2007-12-21 | 2009-07-02 | Giesecke & Devrient Gmbh | Verfahren zum Erzeugen einer Mikrostruktur |
| DE102008029638A1 (de) | 2008-06-23 | 2009-12-24 | Giesecke & Devrient Gmbh | Sicherheitselement |
| DE102008046511A1 (de) | 2008-09-10 | 2010-03-11 | Giesecke & Devrient Gmbh | Darstellungsanordnung |
| WO2010033836A2 (en) * | 2008-09-18 | 2010-03-25 | Taylor Corporation | Thin film high definition dimensional image display device and methods of making same |
| US8964297B2 (en) | 2008-09-18 | 2015-02-24 | Travel Tags, Inc. | Thin film high definition dimensional image display device and methods of making same |
| GB0822735D0 (en) * | 2008-12-12 | 2009-01-21 | Inst | Security document |
| DE102008062475A1 (de) * | 2008-12-16 | 2010-06-17 | Giesecke & Devrient Gmbh | Sicherheitselement und Sicherheitspapier |
| JP5361536B2 (ja) | 2009-05-26 | 2013-12-04 | 富士フイルム株式会社 | 複屈折パターン認証用ビューワ、複屈折パターン認証用キット、真正性認証媒体、および真正性認証方法 |
| EA013395B1 (ru) * | 2009-06-25 | 2010-04-30 | Открытое Акционерное Общество «Научно-Производственное Объединение "Криптен"» | Оптический защитный элемент, способ его изготовления и способ верификации аутентичности объекта с указанным защитным элементом |
| DE102009052538A1 (de) * | 2009-11-11 | 2011-05-12 | Giesecke & Devrient Gmbh | Herstellung eines mit gefärbten Mikrovertiefungen versehenen Sicherheitselementes |
| GB201002260D0 (en) * | 2010-02-10 | 2010-03-31 | Rue De Int Ltd | Security element for document of value |
| EA017394B1 (ru) * | 2010-03-09 | 2012-12-28 | Ооо "Центр Компьютерной Голографии" | Микрооптическая система формирования визуальных изображений |
| US9708773B2 (en) | 2011-02-23 | 2017-07-18 | Crane & Co., Inc. | Security sheet or document having one or more enhanced watermarks |
| JP5842495B2 (ja) * | 2011-09-16 | 2016-01-13 | 凸版印刷株式会社 | 情報記録媒体 |
| DE102011120850A1 (de) * | 2011-12-09 | 2013-06-13 | Giesecke & Devrient Gmbh | Sicherheitspapier, daraus erhältliches Wertdokument und Verfahren zum Herstellen derselben |
| WO2013143089A1 (zh) * | 2012-03-28 | 2013-10-03 | 中钞特种防伪科技有限公司 | 一种光学防伪元件及使用该光学防伪元件的产品 |
| DE102012211077A1 (de) * | 2012-06-27 | 2014-01-02 | Bundesdruckerei Gmbh | Sicherheitselement mit Beugungsstrukturen aufweisenden Mikrostrukturen sowie Verfahren zur Herstellung und Verifikation |
| AU2012384911B2 (en) * | 2012-07-12 | 2016-08-18 | Entrust Datacard Corporation | Secure identification document with ablated foil element |
| DE102012108169A1 (de) * | 2012-09-03 | 2014-05-28 | Ovd Kinegram Ag | Sicherheitselement sowie Sicherheitsdokument |
| JP2015535950A (ja) * | 2012-09-20 | 2015-12-17 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 光学装置、レンズ、照明装置、システム及び方法 |
| WO2014086454A1 (de) * | 2012-12-05 | 2014-06-12 | Merck Patent Gmbh | Elektronische vorrichtung mit sauerstoffionenpumpe |
| MX351238B (es) * | 2013-03-27 | 2017-10-05 | Ccl Secure Pty Ltd | Dispositivo de seguridad basado en láminas prismáticas. |
| AU2013100374B4 (en) * | 2013-03-27 | 2013-09-19 | Ccl Secure Pty Ltd | Lens-Foil Based Security Device |
| RU2510689C1 (ru) * | 2013-04-04 | 2014-04-10 | Федеральное Государственное Унитарное Предприятие "Гознак" (Фгуп "Гознак") | Многослойный полимерный материал с растровой структурой |
| GB2514338B (en) | 2013-05-17 | 2020-06-10 | De La Rue Int Ltd | Security documents and methods of manufacture |
| FR3014741A1 (fr) * | 2013-12-13 | 2015-06-19 | Arjowiggins Security | Structure de securite |
| WO2016044372A1 (en) * | 2014-09-16 | 2016-03-24 | Crane Security Technologies, Inc. | Secure lens layer |
| JP6204898B2 (ja) * | 2014-09-29 | 2017-09-27 | 日立オムロンターミナルソリューションズ株式会社 | 紙葉類識別装置、および紙葉類におけるモーションスレッドの有無を特定する方法 |
| DE102015102037A1 (de) * | 2015-02-12 | 2016-08-18 | Bundesdruckerei Gmbh | Dokument |
| KR20180008539A (ko) * | 2015-05-15 | 2018-01-24 | 씨씨엘 씨큐어 피티와이 엘티디 | 성형된 마이크로렌즈 |
| WO2016183635A1 (en) * | 2015-05-21 | 2016-11-24 | Innovia Security Pty Ltd | Combination microlens optical device |
| AU2015100670B4 (en) * | 2015-05-21 | 2015-10-08 | Ccl Secure Pty Ltd | Combination microlens optical device |
| US10286716B2 (en) | 2015-10-27 | 2019-05-14 | Ecole Polytechnique Fédérale Lausanne (EPFL) | Synthesis of superposition shape images by light interacting with layers of lenslets |
| DE102016005923A1 (de) * | 2016-05-13 | 2017-11-16 | Giesecke+Devrient Currency Technology Gmbh | Vorrichtung und Verfahren zur Echtheitsprüfung eines Sicherheitselements |
| DE102017130588A1 (de) * | 2017-12-19 | 2019-06-19 | Giesecke+Devrient Currency Technology Gmbh | Wertdokument |
| IT201800002811A1 (it) | 2018-02-19 | 2019-08-19 | St Poligrafico E Zecca Dello Stato S P A | Documento recante un elemento di sicurezza e relativo metodo |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1810151A1 (de) * | 1968-11-21 | 1970-06-04 | Antonius Kufferath | Papier mit Wasserzeichen |
| US3961956A (en) * | 1972-09-26 | 1976-06-08 | Fuji Photo Film Co., Ltd. | Method for production of and distinction between combined validification and identification photographs |
| US4498736A (en) * | 1981-02-02 | 1985-02-12 | Griffin Robert B | Method and apparatus for producing visual patterns with lenticular sheets |
| US6817532B2 (en) | 1992-02-12 | 2004-11-16 | Lenscard U.S., Llc | Wallet card with built-in light |
| DE4241753A1 (de) * | 1992-12-11 | 1994-06-16 | Basf Ag | Verwendung von Interferenzpigmenten zur Herstellung von fälschungssicheren Wertschriften |
| US5995638A (en) * | 1995-08-28 | 1999-11-30 | Ecole Polytechnique Federale De Lausanne | Methods and apparatus for authentication of documents by using the intensity profile of moire patterns |
| US6819775B2 (en) * | 1996-07-05 | 2004-11-16 | ECOLE POLYTECHNIQUE FéDéRALE DE LAUSANNE | Authentication of documents and valuable articles by using moire intensity profiles |
| AUPO289296A0 (en) * | 1996-10-10 | 1996-10-31 | Securency Pty Ltd | Self-verifying security documents |
| DE19758856B4 (de) | 1997-07-04 | 2010-08-05 | Securency International Pty Ltd., Craigieburn | Sicherheits- und/oder Wertdokument sowie Verfahren zum Verifizieren eines Sicherheits- und/oder Wertdokuments |
| US20020117845A1 (en) * | 2000-01-03 | 2002-08-29 | Bundesdruckerei Gmbh | Security and/or valve document |
| CN1222811C (zh) * | 1999-09-30 | 2005-10-12 | 皇家菲利浦电子有限公司 | 透镜装置 |
| DE19962413A1 (de) * | 1999-12-22 | 2001-06-28 | Kiener Maschinenbau Gmbh | Verfahren und Vorrichtung zum Herstellen eines zumindest eine Polymerfolie mit Informationen und zumindest eine Trägerschicht enthaltenden Verbundes zur Weiterverarbeitung für fälschungssichere Dokumente |
| TW480454B (en) * | 2000-01-15 | 2002-03-21 | Welon Tech Inc | High resolution finger print reader and finger print reading method |
| DE10040785A1 (de) * | 2000-08-21 | 2002-03-21 | Hsm Gmbh | Sicherheitssystem, insbesondere für Wertdokumente |
| JP2003257692A (ja) * | 2002-03-06 | 2003-09-12 | Koito Mfg Co Ltd | 放電灯点灯回路 |
| NL1020346C2 (nl) | 2002-04-09 | 2003-10-13 | Ind Automation Integrators I A | Van een vergelijkingsperforatie voorzien, tegen namaak beveiligd document. |
| US7535641B2 (en) | 2002-05-14 | 2009-05-19 | Leonhard Kurz Gmbh & Co., Kg | Optically variable element comprising a partial transparent element |
| US7194105B2 (en) | 2002-10-16 | 2007-03-20 | Hersch Roger D | Authentication of documents and articles by moiré patterns |
| DE10254499B4 (de) | 2002-11-22 | 2005-12-22 | Ovd Kinegram Ag | Schichtanordnung mit einer einen linsenartigen Effekt erzeugenden beugungsoptisch wirksamen Struktur |
| US7194104B2 (en) * | 2003-03-10 | 2007-03-20 | Sahyoun Joseph Y | Universal audio speaker connection block |
| DE102004039567A1 (de) * | 2004-08-13 | 2006-02-23 | Ovd Kinegram Ag | Individualisiertes Sicherheitsdokument |
-
2004
- 2004-09-15 DE DE102004044459A patent/DE102004044459B4/de not_active Expired - Fee Related
-
2005
- 2005-09-07 ES ES05783032.5T patent/ES2551689T3/es not_active Expired - Lifetime
- 2005-09-07 CA CA2580288A patent/CA2580288C/en not_active Expired - Fee Related
- 2005-09-07 CN CN2005800305776A patent/CN101019154B/zh not_active Expired - Fee Related
- 2005-09-07 RU RU2007114066/09A patent/RU2376642C2/ru not_active IP Right Cessation
- 2005-09-07 WO PCT/EP2005/009584 patent/WO2006029745A1/de not_active Ceased
- 2005-09-07 US US11/662,147 patent/US7931305B2/en not_active Expired - Fee Related
- 2005-09-07 JP JP2007531640A patent/JP4939419B2/ja not_active Expired - Fee Related
- 2005-09-07 EP EP05783032.5A patent/EP1797539B1/de not_active Expired - Lifetime
- 2005-09-07 TW TW094130676A patent/TWI383340B/zh not_active IP Right Cessation
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2834818C1 (ru) * | 2024-03-04 | 2025-02-14 | Акционерное общество "Гознак" (АО "Гознак") | Защищенный носитель информации с оптически переменным эффектом, способ его получения и защищенный от подделки документ |
Also Published As
| Publication number | Publication date |
|---|---|
| RU2007114066A (ru) | 2008-10-27 |
| CA2580288A1 (en) | 2006-03-23 |
| CN101019154A (zh) | 2007-08-15 |
| JP2008513817A (ja) | 2008-05-01 |
| ES2551689T3 (es) | 2015-11-23 |
| RU2376642C2 (ru) | 2009-12-20 |
| TW200614099A (en) | 2006-05-01 |
| DE102004044459B4 (de) | 2009-07-09 |
| JP4939419B2 (ja) | 2012-05-23 |
| CN101019154B (zh) | 2010-07-28 |
| US20080106091A1 (en) | 2008-05-08 |
| US7931305B2 (en) | 2011-04-26 |
| CA2580288C (en) | 2013-01-15 |
| EP1797539A1 (de) | 2007-06-20 |
| TWI383340B (zh) | 2013-01-21 |
| WO2006029745A1 (de) | 2006-03-23 |
| DE102004044459A1 (de) | 2006-03-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1797539B1 (de) | Sicherheitsdokument mit transparenten fenstern | |
| EP1800271B1 (de) | Sicherheitsdokument | |
| EP1853763B1 (de) | Sicherheitselement und verfahren zu seiner herstellung | |
| EP2200841B1 (de) | Mehrschichtkörper sowie verfahren zur herstellung eines mehrschichtkörpers | |
| DE102007023560B4 (de) | Mehrschichtkörper | |
| EP2303594B1 (de) | Sicherheitselement | |
| EP2773514B1 (de) | Optisch variables sicherheitselement | |
| EP2331343B1 (de) | Darstellungsanordnung | |
| EP2838737B1 (de) | Optisch variables sicherheitselement | |
| EP3406457B1 (de) | Sicherheitselement zur sicherung von wertdokumenten | |
| EP1965990B1 (de) | Sicherheitselement | |
| EP2451650B2 (de) | Mehrschichtkörper | |
| EP1127712B1 (de) | Sicherheits- und/oder Wertdokument | |
| EP2853411B1 (de) | Sicherheitselement mit Linsenrasterbild | |
| EP2385902B1 (de) | Sicherheitselement und sicherheitspapier | |
| EP2934904B1 (de) | Sicherheitselement mit linsenrasterbild | |
| EP2897812B1 (de) | Sicherheitselement mit darstellungsanordnung | |
| EP2727742B1 (de) | Sicherheitselement mit linsenrasterbild | |
| EP1718475B1 (de) | Sicherheitselement mit linsenraster und verfahren zu seiner herstellung | |
| DE102009004251B3 (de) | Sicherheitselement sowie Verfahren zur Herstellung eines Sicherheitselements | |
| EP4384401A1 (de) | Verfahren zur herstellung eines sicherheitsmerkmals, sicherheitsmerkmal für einen datenträger, datenträger und laminierblech | |
| DE29724867U1 (de) | Sicherheits- und/oder Wertdokument |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20070413 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| 17Q | First examination report despatched |
Effective date: 20071213 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: G07D0007120000 Ipc: G07D0007000000 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: G07D 7/00 20060101AFI20150226BHEP Ipc: B42D 25/29 20140101ALI20150226BHEP |
|
| INTG | Intention to grant announced |
Effective date: 20150323 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R108 Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 739830 Country of ref document: AT Kind code of ref document: T Effective date: 20150815 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: FIAMMENGHI-FIAMMENGHI, CH |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2551689 Country of ref document: ES Kind code of ref document: T3 Effective date: 20151123 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20150729 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151030 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151130 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151129 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150907 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| 26N | No opposition filed |
Effective date: 20160502 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150907 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20050907 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150930 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180921 Year of fee payment: 14 Ref country code: IT Payment date: 20180921 Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20180918 Year of fee payment: 14 Ref country code: TR Payment date: 20180828 Year of fee payment: 14 Ref country code: GB Payment date: 20180924 Year of fee payment: 14 Ref country code: CH Payment date: 20180924 Year of fee payment: 14 Ref country code: SE Payment date: 20180924 Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20181024 Year of fee payment: 14 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190908 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 739830 Country of ref document: AT Kind code of ref document: T Effective date: 20190907 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190907 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190907 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190907 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190907 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20210127 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190908 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190907 |