EP1769520A1 - Abschirmung einer röntgenquelle - Google Patents

Abschirmung einer röntgenquelle

Info

Publication number
EP1769520A1
EP1769520A1 EP05759475A EP05759475A EP1769520A1 EP 1769520 A1 EP1769520 A1 EP 1769520A1 EP 05759475 A EP05759475 A EP 05759475A EP 05759475 A EP05759475 A EP 05759475A EP 1769520 A1 EP1769520 A1 EP 1769520A1
Authority
EP
European Patent Office
Prior art keywords
shield
anode
tube
hollow body
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05759475A
Other languages
English (en)
French (fr)
Other versions
EP1769520B1 (de
Inventor
Geoffrey Harding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smiths Detection Inc
Original Assignee
Yxlon International Security GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yxlon International Security GmbH filed Critical Yxlon International Security GmbH
Publication of EP1769520A1 publication Critical patent/EP1769520A1/de
Application granted granted Critical
Publication of EP1769520B1 publication Critical patent/EP1769520B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/081Target material
    • H01J2235/082Fluids, e.g. liquids, gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1262Circulating fluids
    • H01J2235/1275Circulating fluids characterised by the fluid
    • H01J2235/1279Liquid metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • H01J2235/165Shielding arrangements
    • H01J2235/166Shielding arrangements against electromagnetic radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • H01J2235/165Shielding arrangements
    • H01J2235/167Shielding arrangements against thermal (heat) energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes

Definitions

  • the invention relates to a shielding of an X-ray source whose anode module is formed as a liquid metal X-ray source with ei ⁇ nem interaction module in a liquid metal circuit of tubular elements and is disposed within an anode housing.
  • a lead shield was placed around the X-ray tube, which has only one opening in the region of the X-ray exit window. Since the HaIb- value layer thickness when using this X-ray tube in Gepiere ⁇ test area due to the high voltage of some 100 kv is about 5 mm, this shield has an enormous Ge weight on. This is problematical for a CT application since the x-ray tube has to be rotated on a gantry around the piece of luggage to be examined. A solution attempt was to bring the lead shield as close as possible to the focus of the X-ray anode, and to minimize its spatial extent. mieren.
  • the object of the invention is therefore to present a shield for a liquid metal X-ray source, which is as light as possible, is not melted by scattered electrons and allows a good shielding of the scattered radiation.
  • a shield having the features of patent claim 1. Since the interaction module of the liquid metal X-ray source, which has the focus, is embedded in a liquid metal circuit and thus connect tube elements to the inlet and the outlet of the interaction module, these tube elements can be used to absorb the scattered radiation. The tube elements are bent in such a way that they only let through the part of the x-ray beam which corresponds to an exit window of the housing of the x-ray tube. The problem of melting the shield does not exist here, since the liquid metal in the tube elements is constantly circulated and subjected to constant cooling. Since the shielding takes place directly in the area of the anode, ie also around the focus, the shield has only a low weight due to the very small spatial extent.
  • the interaction module is arranged in a hollow body which consists of a material of good thermal conductivity, wherein the hollow body is connected to the anode housing at its side surfaces.
  • the hollow body can be assumed that the tube elements of the liquid metal circuit are wound onto this and thus a better mechanical stability of the shielding is given. Due to the good thermal conductivity an excellent removal of the resulting heat is ensured.
  • a further advantageous development of the invention provides that the tube elements at least partially cover the surface of the hollow body and are arranged on the inner surface of the anode housing. This in turn increases the stability of the entire shield, since it is arranged on the hollow body and on the anode housing.
  • the tube elements are particularly preferably arranged spirally on the surface of the hollow body and helically on the inner surface of the anode housing.
  • a further advantageous development of the invention provides that the tube elements are in good thermal contact with the surface of the hollow body. This avoids that the hollow body heats up so much that it begins to melt, since its heat is dissipated from the cooled liquid metal circuit.
  • a further advantageous development of the invention provides that the tube elements cover a solid angle of 50% to 75% in the region of the focus of the anode module. Thereby, it is possible that the released superfluous scattered radiation is effectively absorbed. Only a small opening must be present at the rear side of the anode, through which the electron beam can penetrate unhindered between the tube elements. At the front side, as little X-ray radiation as possible should escape in lateral directions, so that the tube elements here too do not cover only the smallest possible area.
  • a further advantageous development of the invention provides that the tube elements have bending radii greater than 10 mm, in particular in the range of 10 mm to 20 mm. If the tube elements have no sharp corners, no unnecessary pressure loss takes place within the liquid metal circuit and the pump for the liquid metal circuit does not have to be unnecessarily large.
  • a further advantageous development of the invention provides that the hollow body and / or the anode housing are made of copper. Since copper is a good heat conductor, overheating of both the hollow body and the anode housing is avoided. The heat generated there is transported away by the tube elements of the liquid circuit attached to them.
  • the tube elements are made of molybdenum with a diameter of 5 to 20 mm, in particular 10 mm.
  • Molybdenum has the advantage that it has a coefficient of thermal expansion auf ⁇ , which is perfectly matched to the remaining parts of the liquid metal circuit.
  • the other Given range of the diameter suitable that the required power of the pump motor for the circulation of the liquid metal is limited and thus the engine can be made very small.
  • the hollow body has a height of 7 to 20 mm, in particular 10 mm.
  • the focus of the X-ray anode in the form of the interaction module is well accommodated and at the same time the height is not too large, so that the shield in the form of the tube elements can still be arranged very close to the focus and thus cover only a small spatial area got to.
  • the weight of the shield is kept as low as possible.
  • FIG. 1 shows a schematic longitudinal section through a shield according to the invention in a liquid metal anode X-ray tube in the plane of the electron beam focus
  • Figure 2 shows an enlarged schematic cross-section through the anode of Figure 1 in egg ner plane perpendicular to the electron beam.
  • FIG. 1 shows an X-ray tube 1 in longitudinal section.
  • the x-ray tube 1 has a housing 2, in which a cathode 3 and an anode 5 are arranged.
  • the cathode 3 is designed in a known manner and is operated with a negative high voltage of about -250 kV.
  • an electron beam 4 is generated, which is positive charged anode 5 is accelerated.
  • At the anode 5 is a positive high voltage of about +250 kV.
  • the housing 2 is kept at ground potential. In such a case one obtains an X-ray spectrum which reaches up to 500 keV. This energy is sufficient to penetrate typical Heilfracht ⁇ container in a vertical projection.
  • Such an X-ray tube 1 is therefore suitable for luggage monitoring, in particular at airports.
  • a liquid metal anode is used, wherein the area of the focus is formed as an interaction module 9.
  • a tube element 10 connects, through which the liquid metal 20 (see FIG. 2) is circulated by means of elements which are shown in more detail in FIG.
  • tube elements 10 tubes of molybdenum are used with a diameter of 10 mm. Depending on the application, of course, other diameters and other materials for the tube elements 10 are possible.
  • the entire liquid metal anode is accommodated in an anode housing 6.
  • the anode housing 6 has an entrance aperture 7, through which the electron beam 4 passes. It impinges on the interaction module 9 in the region of the focus and produces an X-ray beam 12 there.
  • the X-ray beam 12 exits the anode 5 through an exit aperture 8 in the anode housing 6. He then leaves through a Aus ⁇ exit window 13, the housing 2 and is available for the examination of a piece of luggage (not shown).
  • the anode housing 2 has smooth contours, for example, it is cylindrical or spherical, and is po ⁇ profiled. This avoids high-voltage discharge due to peak effects, and there is no sparkover. Both the entrance aperture 7 and the exit aperture 8 can be kept very small, so that only a small electric field is present within the anode housing 6.
  • the shield 11 is arranged in the immediate vicinity of the interaction module 9 - and thus the focus. Since a significantly lower surface must therefore be covered at the same space angle required outside the housing 2, the total mass of the shield 11 is also significantly lower than the shields known from the prior art.
  • the shield 11 is inventively formed by the tube elements 10 itself. In this case, the tube elements 10 are so bent that only a small solid angle is available for the X-ray beam 12 generated in the forward direction in the forward direction to the incident electron beam 4 in order to be able to pass unhindered through the shield 11. The remaining generated X-radiation is scattered radiation and is absorbed by the shield 11.
  • FIG. 2 shows a cross section through the anode housing 6.
  • the electron beam 4 impinges on the interaction module 9, which is arranged in a hollow body 14.
  • the hollow body 14 is made of a material with good thermal conductivity, for example copper. It has a height of about 10 mm and is connected at its sides to the anode housing 6. Outside the hollow body 14 and within the anode housing 6, all components are un ⁇ accommodated, which are necessary for the liquid metal circuit.
  • a pump motor 15 which is connected via a drive shaft 19 to a magnetic disk 16.
  • the liquid metal 20 is pumped through the tube elements 10 and also flows through the interaction module 9 (see also FIG. 1).
  • a heat exchanger 18 is angeord ⁇ net, for example, a cross-flow heat exchanger, which emits the heat generated in the focus and in the shield 11 to a cooling liquid, such as an insulating oil.
  • an expansion chamber 17 is integrated into the liquid metal circuit, which keeps the pressure of the liquid metal 20 within the circuit constant. This is necessary because the liquid metal 20 expands or contracts depending on its temperature.
  • the tube elements 10 already designed for FIG.
  • the tube elements 10 are wound so that they rest in the form of a helix on the inside of the spherical anode housing 6. Both the connection of the tube elements 10 with the Hohlkör ⁇ per 14 and the anode housing 6 is thermally well conductive, so that possibly in the anode housing 6 or the hollow body 14 resulting heat immediately and well by the ge cooled liquid metal 20 in the tube elements 10th can be abtransported.
  • the individually matched components lead to the fact that the entire liquid metal circuit can be made very compact and thus can be arranged completely in ⁇ within the anode housing 6. This also results in a very low weight for the anode 5, which is of the utmost importance with regard to a rotating arrangement on a gantry about the item of luggage to be examined. Due to the shield 11 in the described form, it is possible to effectively absorb both the scattering rays which are also produced in the focus but not required for the examination of a piece of luggage, and also to dissipate the heat which, within the hollow body 14, due to the irradiation by means of secondary electrons, which are returned from the electron beam 4, is generated.
  • an X-ray tube 1 which enables equivalent shielding of scattered radiation with a significantly lower weight than the known X-ray tubes and thus is better rotated on a gantry about a piece of luggage to be examined can.

Landscapes

  • X-Ray Techniques (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

Abschirmung einer Röntgenquelle
Die Erfindung betrifft eine Abschirmung einer Röntgenquelle, deren Anodenmodul als eine Flüssigmetallröntgenquelle mit ei¬ nem Wechselwirkungsmodul in einem Flüssigmetallkreislauf aus Röhrenelementen ausgebildet ist und innerhalb eines Anodenge¬ häuses angeordnet ist.
Konventionelle Röntgensysteme ermöglichen es nicht, explosive Stoffe mit ausreichender Genauigkeit in Gepäckstücken zu de- tektieren. Dieses Problem wird nur unbefriedigend durch Com¬ putertomographie(CT)-Systeme gelöst, da diese eine hohe Falschalarmrate aufweisen. In diesen Fällen ist es nötig, zu¬ sätzlich eine molekülspezifische Analyse wie etwa die XDT (x- ray diffraction tomography) vorzunehmen. Deshalb wurde vor nicht allzu langer Zeit die Verwendung einer Hochleistungs- Flüssigmetallanode innerhalb des Röntgensystems vorgeschla¬ gen. Allerdings bleibt auch hier das Problem, dass ein gewis¬ ser Grad an Leckstrahlung generiert wird, der in irgendeiner Weise abgeschirmt werden muss, da nur der für die Analyse be¬ nötigte Röntgenstrahl aus der Röntgenröhre austreten darf. Deshalb wurde eine Abschirmung aus Blei um die Röntgenröhre herum angeordnet, die lediglich eine Öffnung im Bereich des Austrittsfensters der Röntgenstrahlung aufweist. Da die HaIb- wertsschichtdicke beim Einsatz dieser Röntgenröhre im Gepäck¬ prüfbereich aufgrund der hohen Spannung von einigen 100 kv bei ca. 5 mm liegt, weist diese Abschirmung ein enormes Ge¬ wicht auf. Für eine CT-Anwendung ist dies problematisch, da die Röntgenröhre an einer Gantry um das zu untersuchende Ge¬ päckstück rotiert werden muss. Ein Lösungsversuch war es, die Bleiabschirmung so nah wie möglich an den Fokus der Röntgen- anode heranzubringen, und seine räumliche Ausdehnung zu mini- mieren. Dies schlug jedoch fehl, da der Elektronenstrahl ei¬ ner Flüssigmetallanodenröntgen- quelle für die Anwendung im Gepäckprüfbereich sehr hohe Leis¬ tungen aufweist, die im Bereich von über 10 kW liegen und die bei der Röntgenstrahlerzeugung entstehenden Streuelektronen einen so hohen Fluss aufweisen, dass die Abschirmung schnell aufgeschmolzen wird.
Aufgabe der Erfindung ist es demnach, eine Abschirmung für eine Flüssigmetallröntgenquelle vorzustellen, die möglichst leicht ist, nicht durch Streuelektronen aufgeschmolzen wird und eine gute Abschirmung der Streustrahlung ermöglicht.
Diese Aufgabe wird durch eine Abschirmung mit den Merkmalen des Patentanspruchs 1 gelöst. Da das Wechselwirkungsmodul der Flüssigmetallröntgenquelle, das den Fokus aufweist, in einen Flüssigmetallkreislauf eingebettet ist und somit Röhrenele¬ mente an den Einlass und den Auslass des Wechselwirkungsmo¬ duls anschließen, können diese Röhrenelemente dazu verwendet werden, die Streustrahlung zu absorbieren. Die Röhrenelemente sind dabei so gebogen, dass sie lediglich den Teil des Rönt¬ genstrahls durchlassen, der einem Austrittsfenster des Gehäu¬ ses der Röntgenröhre entspricht. Das Problem des Aufschmel- zens der Abschirmung besteht hier nicht, da das Flüssigmetall in den Röhrenelementen ständig umgewälzt wird und einer stän¬ digen Kühlung unterzogen wird. Da die Abschirmung direkt im Bereich der Anode, also auch um den Fokus herum, erfolgt, weist die Abschirmung aufgrund der sehr geringen räumlichen Ausdehnung nur ein geringes Gewicht auf. Im Ergebnis erhält man somit eine Selbstabschirmung der Röntgenquelle durch den Flüssigmetallkreislauf, der sowieso bei Flüssigmetallanoden vorhanden ist. Als positiver Zusatzeffekt fällt auch die Küh¬ lung des Gehäuses der Röntgenröhre weg, da sämtliche Streu¬ elektronen schon im Flüssigmetallkreislauf, also der Abschir- mung, abgefangen werden. Da die bevorzugten und bekannten Flüssigmetalle für die Flüssigmetallanode Bleilegierungen sind, erfolgt eine sehr gute Abschirmung der im Fokus entste¬ henden Streustrahlung.
Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass das Wechselwirkungsmodul in einem Hohlkörper angeordnet ist, der aus einem Material guter Wärmeleitfähigkeit besteht, wo¬ bei der Hohlkörper an seinen Seitenflächen mit dem Anodenge- häuse verbunden ist. Der Hohlkörper kann dafür hergenommen werden, dass die Röhrenelemente des Flüssigmetallkreislaufs auf diesen aufgewickelt werden und somit eine bessere mecha¬ nische Stabilität der Abschirmung gegeben ist. Aufgrund der guten Wärmeleitfähigkeit wird ein hervorragender Abtransport der entstehenden Wärme gewährleistet.
Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Röhrenelemente die Oberfläche des Hohlkörpers zumindest teilweise bedecken und an der Innenfläche des Ano- dengehäuses angeordnet sind. Dadurch wird wiederum die Stabi¬ lität der gesamten Abschirmung erhöht, da sie zum einen auf dem Hohlkörper angeordnet ist und zum anderen am Anodengehäu¬ se. Besonders bevorzugt sind die Röhrenelemente spiralförmig an der Oberfläche des Hohlkörpers und schneckenförmig an der Innenfläche des Anodengehäuses angeordnet.
Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Röhrenelemente in guten thermischen Kontakt mit der Oberfläche des Hohlkörpers sind. Dadurch wird vermieden, dass sich der Hohlkörper so stark erhitzt, dass er zu schmel¬ zen beginnt, da seine Wärme von dem gekühlten Flüssigmetall¬ kreislauf abgeführt wird. Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Röhrenelemente einen Raumwinkel von 50% bis 75% im Bereich des Fokus des Anodenmoduls abdecken. Dadurch ist es möglich, dass die freigesetzte überflüssige Streustrahlung effektiv absorbiert wird. An der Rückseite der Anode muss le¬ diglich eine kleine Öffnung vorhanden sein, durch die der E- lektronenstrahl ungehindert zwischen den Röhrenelementen dringen kann. An der Vorderseite sollte in seitlichen Rich¬ tungen so wenig Röntgenstrahlung wie möglich entweichen, so dass die Röhrenelemente auch hier nur einen möglichst kleinen Bereich nicht abdecken.
Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Röhrenelemente Biegungsradien größer als 10 mm, insbesondere im Bereich von 10 mm bis 20 mm, aufweisen. Wenn die Röhrenelemente keine scharfen Ecken aufweisen, erfolgt kein unnötiger Druckverlust innerhalb des Flüssigmetallkreis¬ laufes und die Pumpe für den Flüssigmetallkreislauf muss nicht unnötig groß dimensioniert werden.
Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass der Hohlkörper und/oder das Anodengehäuse aus Kup¬ fer sind. Da Kupfer ein guter Wärmeleiter ist, wird eine Ü- berhitzung sowohl des Hohlkörpers als auch des Anodengehäuses vermieden. Die dort entstehende Wärme wird durch die an ihnen angebrachten Röhrenelemente des Flüssigkreislaufes abtrans¬ portiert.
Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Röhrenelemente aus Molybdän mit einem Durchmes¬ ser von 5 bis 20 mm, insbesondere 10 mm, sind. Molybdän hat den Vorteil, dass es einen Wärmeausdehnungskoeffizienten auf¬ weist, der hervorragend auf die restlichen Teile des Flüssig¬ metallkreislaufs abgestimmt ist. Darüber hinaus ist der an- gegebene Bereich des Durchmessers dafür geeignet, dass sich die benötigte Leistung des Pumpenmotors für die Umwälzung des Flüssigmetalls in Grenzen hält und somit der Motor sehr klein ausgebildet werden kann.
Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass der Hohlkörper eine Höhe von 7 bis 20 mm, insbeson¬ dere 10 mm, hat. In diesen Abmessungen ist der Fokus der Röntgenanode in Form des Wechselwirkungsmoduls gut unter- bringbar und gleichzeitig ist die Höhe nicht zu groß, so dass die Abschirmung in Form der Röhrenelemente immer noch sehr nahe am Fokus angeordnet werden kann und somit nur einen kleinen räumlichen Bereich abdecken muss. Dadurch wird das Gewicht der Abschirmung möglichst gering gehalten.
Eine vorteilhafte Ausgestaltung der Erfindung wird weiter an¬ hand der Zeichnungen erläutert. Im Einzelnen zeigen:
Figur 1 einen schematischen Längsschnitt durch eine erfindungsgemäße Abschirmung in einer Flüssig- metallanodenröntgenröhre in der Ebene des E- lektronenstrahlfokus und
Figur 2 einen vergrößert dargestellten schematischen Querschnitt durch die Anode der Figur 1 in ei¬ ner Ebene senkrecht zum Elektronenstrahl.
In Figur 1 ist eine Röntgenröhre 1 im Längsschnitt darge¬ stellt. Die Röntgenröhre 1 weist ein Gehäuse 2 auf, in dem eine Kathode 3 sowie eine Anode 5 angeordnet sind.
Die Kathode 3 ist in bekannter Art und Weise ausgeführt und wird mit negativer Hochspannung von ca. —250 kV betrieben. Im Filament wird ein Elektronenstrahl 4 erzeugt, der zur positiv geladenen Anode 5 hin beschleunigt wird. An der Anode 5 liegt eine positive Hochspannung von ca. +250 kV an. Dagegen wird das Gehäuse 2 auf Erdpotential gehalten. In einem solchen Fall erhält man ein Röntgenstrahlenspektrum, das bis zu 500 keV reicht. Diese Energie reicht aus, um typische Luftfracht¬ container in einer Vertikalprojektion zu durchdringen. Eine solche Röntgenröhre 1 ist somit für die Gepäcküberwachung ge¬ eignet, insbesondere auf Flughäfen.
Als Anode 5 wird eine Flüssigmetallanode verwendet, wobei der Bereich des Fokus als ein Wechselwirkungsmodul 9 ausgebildet ist. An dessen Ein- und Austritt schließt sich jeweils ein Röhrenelement 10 an, durch das das Flüssigmetall 20 (siehe Fig. 2) mittels Elementen, die näher in Figur 2 dargestellt sind, umgewälzt wird. Als Röhrenelemente 10 werden Röhren aus Molybdän mit einem Durchmesser von 10 mm verwendet. Je nach Anwendungsfall sind natürlich auch andere Durchmesser und an¬ dere Materialien für die Röhrenelemente 10 möglich. Die ge¬ samte Flüssigmetallanode ist in einem Anodengehäuse 6 unter- gebracht. Das Anodengehäuse 6 weist eine Eintrittsapertur 7 auf, durch die der Elektronenstrahl 4 hindurchtritt. Er trifft auf das Wechselwirkungsmodul 9 im Bereich des Fokus auf und produziert dort einen Röntgenstrahl 12. Der Röntgen¬ strahl 12 tritt durch eine Austrittsapertur 8 im Anodengehäu- se 6 aus der Anode 5 aus. Er verlässt dann durch ein Aus¬ trittsfenster 13 das Gehäuse 2 und steht für die Untersuchung eines Gepäckstücks (nicht gezeigt) zur Verfügung.
Das Anodengehäuse 2 weist glatte Konturen auf, beispielsweise ist es zylinder- oder kugelförmig ausgebildet, und ist po¬ liert. Dadurch wird eine Hochspannungsentladung aufgrund von Spitzeneffekten vermieden und es findet kein Funkenüberschlag statt. Sowohl die Eintrittsapertur 7 als auch die Austrittsapertur 8 können sehr klein gehalten werden, damit innerhalb des Ano¬ dengehäuses 6 nur ein kleines elektrisches Feld vorhanden ist.
Anders als bei Geräten gemäß dem Stand der Technik, wo die Abschirmung aus Blei gegen Streustrahlung außerhalb des Ge¬ häuses 2 angeordnet ist, ist erfindungsgemäß die Abschirmung 11 in der direkten Umgebung des Wechselwirkungsmoduls 9 - und somit des Fokus - angeordnet. Da somit bei demselben Raumwin¬ kel, der außerhalb des Gehäuses 2 benötigt wird, eine bedeu¬ tend geringere Oberfläche abgedeckt werden muss, ist auch die Gesamtmasse der Abschirmung 11 gegenüber den aus dem Stand der Technik bekannten Abschirmungen bedeutend geringer. Die Abschirmung 11 ist erfindungsgemäß durch die Röhrenelemente 10 selbst gebildet. Die Röhrenelemente 10 sind dabei so gebo¬ gen, dass in Vorwärtsrichtung zum einfallenden Elektronen¬ strahl 4 nur ein kleiner Raumwinkel für den in Vorwärtsrich¬ tung generierten Röntgenstrahl 12 zur Verfügung steht, um un- gehindert durch die Abschirmung 11 hindurchtreten zu können. Die restliche erzeugte Röntgenstrahlung ist Streustrahlung und wird durch die Abschirmung 11 absorbiert.
Dies ist möglich, da in den Molybdän-Leitungen der Röhrenele- mente 10 Bleiverbindungen zirkulieren. Diese weisen einen ho¬ hen Wirkungsquerschnitt mit Röntgenstrahlung auf, so dass ei¬ ne gute Absorption gewährleistet ist. Darüber hinaus werden auch Streuelektronen innerhalb der Abschirmung 11 effektiv absorbiert, so dass diese nicht gegen das Anodengehäuse 6 prallen. Eine Überhitzung der Röhrenelemente 10 oder sogar ein Aufschmelzen erfolgt nicht, da die in der Abschirmung 11 entstehende Wärme aufgrund des Umpumpens und Kühlens des Flüssigmetalls 20 (siehe Fig. 2) sofort abtransportiert wird. Die Röhrenelemente 10 sind dabei so gebogen, dass sie einen möglichst großen Biegeradius ohne Ecken aufweisen, in denen ein starker Druckabfall entstehen würde. Dadurch wird gewähr¬ leistet, dass der Pumpenmotor 15 (siehe Fig. 2) nur eine ge- ringe Leistungsaufnahme benötigt und somit auch nur eine ge¬ ringe räumliche Ausdehnung haben kann. Dies führt dazu, dass der Pumpenmotor 15 innerhalb des Anodengehäuses 6 unterge¬ bracht werden kann, was eine kompakte Bauweise der Anode 5 gewährleistet.
In Fig. 2 ist ein Querschnitt durch das Anodengehäuse 6 dar¬ gestellt. Der Elektronenstrahl 4 trifft auf das Wechselwir¬ kungsmodul 9 auf, das in einem Hohlkörper 14 angeordnet ist. Der Hohlkörper 14 ist dabei aus einem Material mit guter Wär- meleitfähigkeit, beispielsweise Kupfer, gefertigt. Er weist eine Höhe von ca. 10 mm auf und ist an seinen Seiten mit dem Anodengehäuse 6 verbunden. Außerhalb des Hohlkörpers 14 und innerhalb des Anodengehäuses 6 sind sämtliche Komponenten un¬ tergebracht, die für den Flüssigmetallkreislauf nötig sind.
Hierbei handelt es sich um einen Pumpenmotor 15, der über ei¬ ne Antriebswelle 19 mit einer Magnetscheibe 16 verbunden ist. Mittels des magnetohydrodynamischen Effekts wird das Flüssig¬ metall 20 durch die Röhrenelemente 10 gepumpt und durchströmt dabei auch das Wechselwirkungsmodul 9 (siehe auch Figur 1). Im Flüssigmetallkreislauf ist ein Wärmetauscher 18 angeord¬ net, beispielsweise ein Querstrom-Wärmetauscher, der die im Fokus und in der Abschirmung 11 entstehende Hitze an eine Kühlflüssigkeit, beispielsweise ein isolierendes Öl, abgibt. Neben dem Wärmetauscher 18 ist eine Expansionskammer 17 in den Flüssigmetallkreislauf integriert, die den Druck des Flüssigmetalls 20 innerhalb des Kreislaufes konstant hält. Dies ist nötig, da sich das Flüssigmetall 20 in Abhängigkeit seiner Temperatur ausdehnt oder zusammenzieht. Schließlich sind die zu Figur 1 schon ausgeführten Röhrenele¬ mente 10 so auf die Außenfläche des Hohlkörpers 14 aufgewi¬ ckelt, dass sie eine Spirale formen. Darüber hinaus sind die Röhrenelemente 10 gewunden, so dass sie in Form einer Helix an der Innenseite des sphärischen Anodengehäuses 6 anliegen. Sowohl die Verbindung der Röhrenelemente 10 mit dem Hohlkör¬ per 14 als auch mit dem Anodengehäuse 6 ist thermisch gut leitend, so dass eventuell in dem Anodengehäuse 6 oder dem Hohlkörper 14 entstehende Wärme sofort und gut durch das ge¬ kühlte Flüssigmetall 20 in den Röhrenelementen 10 abtranspor¬ tiert werden kann.
Um den magnetohydrodynamischen Effekt, der durch die Magnet- Scheibe 16 zu einer Umwälzung des Flüssigmetalls 20 innerhalb des Flüssigmetallkreislaufes führt, besonders gut zur Geltung zu bringen, ist die Form der Führung der Röhrenelemente 10 in dem Bereich, der der Magnetscheibe 16 gegenüberliegt, opti¬ miert. Da dies jedoch nicht Gegenstand der Erfindung ist und aus dem Stand der Technik bekannt ist, wird hierauf nicht nä¬ her eingegangen. Darüber hinaus ist für die Ausgestaltung der Röhrenelemente 10 darauf zu achten — wie oben zur Figur 1 schon erwähnt -, dass möglichst keine scharfen Ecken vorhan¬ den sind, um Druckverluste zu vermeiden.
Im Ergebnis führen die im Einzelnen aufeinander abgestimmten Komponenten dazu, dass der gesamte Flüssigmetallkreislauf sehr kompakt ausgeführt werden kann und somit vollständig in¬ nerhalb des Anodengehäuses 6 angeordnet sein kann. Damit er- gibt sich auch ein sehr geringes Gewicht für die Anode 5, was hinsichtlich einer rotierenden Anordnung an einer Gantry um das zu untersuchende Gepäckstück von größter Bedeutung ist. Aufgrund der Abschirmung 11 in der beschriebenen Form ist es möglich, sowohl die im Fokus auch entstehenden, aber für die Untersuchung eines Gepäckstücks nicht benötigten Streustrah¬ len effektiv zu absorbieren als auch die Wärme abzuführen, die innerhalb des Hohlkörpers 14 aufgrund der Bestrahlung mittels Sekundärelektronen, die aus dem Elektronenstrahl 4 rückgestrahlt werden, erzeugt wird.
Zusammenfassend kann gesagt werden, dass mittels der erfin- dungsgemäßen Abschirmung 11 eine Röntgenröhre 1 zur Verfügung gestellt wird, die mit einem bedeutend geringeren Gewicht als die bekannten Röntgenröhren eine gleichwertige Abschirmung von Streustrahlung ermöglicht und somit besser an einer Gantry um ein zu untersuchendes Gepäckstück rotiert werden kann.
Bezugszeichenliste
Röntgenröhre Gehäuse Kathode Elektronenstrahl Anode Anodengehäuse Eintrittsapertur Austrittsapertur Wechselwirkungsmodul (mit Fokus) Röhrenelement Abschirmung Röntgenstrahl Austrittsfenster Hohlkörper Pumpenmotor Magnetscheibe Expansionskammer Wärmetauscher Antriebswelle Flüssigmetall

Claims

Patentansprüche
1. Abschirmung (11) einer Röntgenröhre (1), deren Anodenmo- dul als eine Flüssigmetallröntgenguelle mit einem Wech¬ selwirkungsmodul (9) mit Fokus in einem Flüssigmetall¬ kreislauf aus Röhrenelementen (10) ausgebildet ist und innerhalb eines Anodengehäuses (6) angeordnet ist, da¬ durch gekennzeichnet, dass die Röhrenelemente (10) so gebogen sind, dass sie den entstehenden Röntgenstrahl ( 12) in unmittelbarer Nähe zum Wechselwirkungsmodul (9) noch innerhalb des Anoden¬ gehäuses (6) räumlich begrenzen.
2. Abschirmung (11) einer Röntgenröhre (1) nach Anspruch 1, dadurch gekennzeichnet, dass das Wechselwirkungsmodul
(9) in einem Hohlkörper (14) angeordnet ist, der aus ei¬ nem Material guter Wärmeleitfähigkeit besteht, wobei der Hohlkörper (14) an seinen Seitenflächen mit dem Anoden- gehäuse (6) verbunden ist.
3. Abschirmung (11) einer Röntgenröhre (1) nach Anspruch 2, dadurch gekennzeichnet, dass die Röhrenelemente (10) die Oberfläche des Hohlkörpers (14) zumindest teilweise be- decken und an der Innenfläche des Anodengehäuses (6) an¬ geordnet sind,
4. Abschirmung (11) einer Röntgenröhre (1) nach Anspruch 3, dadurch gekennzeichnet, dass die Röhrenelemente (10) spiralförmig an der Oberfläche des Hohlkörpers (14) an¬ geordnet und schneckenförmig an der Innenfläche des Ano¬ dengehäuses (6) angeordnet sind.
5. Abschirmung (11) einer Röntgenröhre (1) nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Röhrenelemente
(10) in gutem thermischen Kontakt mit der Oberfläche des Hohlkörpers (14) sind.
6. Abschirmung (11) einer Röntgenröhre (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Röhrenelemente (10) einen Raumwinkel von 50% bis 75% im Bereich des Fokus des Anodenmoduls abdecken.
7. Abschirmung (11) einer Röntgenröhre (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Röhrenelemente (10) Biegungsradien größer als 10 mm, insbesondere im Bereich von 10 mm bis 20 mm, aufweisen.
8. Abschirmung (11) einer Röntgenröhre (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Hohlkörper (14) und/oder das Anodengehäuse (6) aus Kup- fer sind.
9. Abschirmung (11) einer Röntgenröhre (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Röhrenelemente(10) aus Molybdän mit einem Durchmesser von 5 bis 20 mm sind.
10. Abschirmung (11) einer Röntgenröhre (1) nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass der Hohlkörper (14) eine Höhe von 7 bis 20 mm hat, insbeson- dere 10 mm.
EP05759475A 2004-07-01 2005-07-01 Abschirmung einer röntgenquelle Not-in-force EP1769520B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004031973A DE102004031973B4 (de) 2004-07-01 2004-07-01 Abschirmung einer Röntgenquelle
PCT/EP2005/007139 WO2006002958A1 (de) 2004-07-01 2005-07-01 Abschirmung einer röntgenquelle

Publications (2)

Publication Number Publication Date
EP1769520A1 true EP1769520A1 (de) 2007-04-04
EP1769520B1 EP1769520B1 (de) 2008-11-26

Family

ID=35311315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05759475A Not-in-force EP1769520B1 (de) 2004-07-01 2005-07-01 Abschirmung einer röntgenquelle

Country Status (4)

Country Link
EP (1) EP1769520B1 (de)
AT (1) ATE415699T1 (de)
DE (2) DE102004031973B4 (de)
WO (1) WO2006002958A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220189A1 (de) * 2013-10-07 2015-04-23 Siemens Aktiengesellschaft Röntgenquelle und Verfahren zur Erzeugung von Röntgenstrahlung
US9863342B2 (en) 2015-09-25 2018-01-09 General Electric Company System and method for controlling an engine air-fuel ratio

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE726594C (de) * 1939-05-13 1942-10-16 Dr Med Werner Koose Roentgenroehre mit Anode aus umlaufender Fluessigkeit
NL88347C (de) * 1951-08-18
GB897577A (en) * 1959-07-15 1962-05-30 Bristol Siddeley Engines Ltd Improvements in or relating to apparatus for producing a jet consisting of a plasma of ions and electrons
JPS63253854A (ja) * 1987-04-06 1988-10-20 Power Reactor & Nuclear Fuel Dev Corp タンク内挿入型電磁ポンプ
DE10062928A1 (de) * 2000-12-16 2002-06-20 Philips Corp Intellectual Pty Röntgenstrahler mit Flüssigmetall-Target
DE10106740A1 (de) * 2001-02-14 2002-08-22 Philips Corp Intellectual Pty Röntgenstrahler mit einem Target aus einem flüssigen Metall
DE10129463A1 (de) * 2001-06-19 2003-01-02 Philips Corp Intellectual Pty Röntgenstrahler mit einem Flüssigmetall-Target
DE10130070A1 (de) * 2001-06-21 2003-01-02 Philips Corp Intellectual Pty Röntgenstrahler mit Flüssigmetall-Target
JP3898029B2 (ja) * 2001-10-31 2007-03-28 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線発生装置
EP1485935A1 (de) * 2002-03-08 2004-12-15 Koninklijke Philips Electronics N.V. Gerät zur erzeugung von röntgenstrahlung mit flüssigmetallanode
JP2006510192A (ja) * 2002-12-11 2006-03-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 単色x線生成用x線源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006002958A1 *

Also Published As

Publication number Publication date
DE102004031973A1 (de) 2006-01-26
DE102004031973B4 (de) 2006-06-01
EP1769520B1 (de) 2008-11-26
DE502005006084D1 (de) 2009-01-08
ATE415699T1 (de) 2008-12-15
WO2006002958A1 (de) 2006-01-12

Similar Documents

Publication Publication Date Title
EP0584871B1 (de) Röntgenröhre mit einer Transmissionsanode
DE4425021B4 (de) Röntgenröhrenanordnung mit einer stationären Hülse
DE69814574T2 (de) Einrichtung zur Vermeidung einer Überhitzung des Fensters einer Röntgenröhre
DE19957559A1 (de) Wärmeenergiespeicher- und Übertragungsvorrichtung
DE69125591T2 (de) Röntgen-röhre
DE10037985A1 (de) Wärmerohrunterstütztes Kühlen von Röntgenstrahlfenstern in Röntgenröhren
EP1775541A1 (de) Wärmetauscher für einen diagnostischen Röntgengenerator mit einer Drehanodenröhre
DE102006060135A1 (de) Struktur zum Einfangen von gestreuten Elektronen
EP0777255A1 (de) Röntgenröhre, insbesondere Mikrofokusröntgenröhre
DE102013209447A1 (de) Röntgenquelle und Verfahren zur Erzeugung von Röntgenstrahlung
DE10346791A1 (de) Strahlgekühltes Röntgenröhrenfenster
EP0021441B1 (de) Elektronenbeschleuniger zur Röntgenstrahlentherapie
DE102004049642A1 (de) Kühlungsvorrichtung für Röntgenröhrenfenster
DE102017002210A1 (de) Kühlvorrichtung für Röntgengeneratoren
WO2015052039A1 (de) Röntgenquelle und verfahren zur erzeugung von röntgenstrahlung
EP1769520B1 (de) Abschirmung einer röntgenquelle
DE102009007871B4 (de) Röntgentarget, Röntgenröhre und Verfahren zur Erzeugung von Röntgenstrahlung
WO2013007484A1 (de) Monochromatische röntgenquelle
DE102008026938A1 (de) Strahlungsquelle und Verfahren zum Erzeugen von Röntgenstrahlung
DE748187C (de) Roentgenroehre mit auf Kugeln gelagerter Drehanode
DE102010030713B4 (de) Röntgenquelle zur Erzeugung von Röntgenstrahlen mit einem Hohlkörpertarget und ein Verfahren zur Erzeugung von Röntgenstrahlung in einem Hohlkörpertarget
DE102005018342B4 (de) Vorrichtung und Verfahren zur Erzeugung von Röntgenstrahlung
EP2979293A1 (de) Röntgenquelle und bildgebendes system
DE19805290C2 (de) Monochromatische Röntgenstrahlenquelle
DE69621894T2 (de) Röntgenröhre und Barrierevorrichtung dafür

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070504

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GE HOMELAND PROTECTION, INC.

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

R17C First examination report despatched (corrected)

Effective date: 20070504

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005006084

Country of ref document: DE

Date of ref document: 20090108

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090308

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090326

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090717

Year of fee payment: 5

26N No opposition filed

Effective date: 20090827

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090729

Year of fee payment: 5

Ref country code: GB

Payment date: 20090727

Year of fee payment: 5

BERE Be: lapsed

Owner name: GE HOMELAND PROTECTION, INC.

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005006084

Country of ref document: DE

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528