EP1754855B1 - Werkzeug, insbesondere für Tunnelbohrmaschinen - Google Patents

Werkzeug, insbesondere für Tunnelbohrmaschinen Download PDF

Info

Publication number
EP1754855B1
EP1754855B1 EP06017238A EP06017238A EP1754855B1 EP 1754855 B1 EP1754855 B1 EP 1754855B1 EP 06017238 A EP06017238 A EP 06017238A EP 06017238 A EP06017238 A EP 06017238A EP 1754855 B1 EP1754855 B1 EP 1754855B1
Authority
EP
European Patent Office
Prior art keywords
cutting ring
metal particles
hard metal
volume
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06017238A
Other languages
English (en)
French (fr)
Other versions
EP1754855A1 (de
Inventor
Fred Dipl.-Ing. Gutberlet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochtief Solutions AG
Original Assignee
Hochtief Solutions AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochtief Solutions AG filed Critical Hochtief Solutions AG
Publication of EP1754855A1 publication Critical patent/EP1754855A1/de
Application granted granted Critical
Publication of EP1754855B1 publication Critical patent/EP1754855B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C25/00Cutting machines, i.e. for making slits approximately parallel or perpendicular to the seam
    • E21C25/16Machines slitting solely by one or more rotating saws, cutting discs, or wheels
    • E21C25/18Saws; Discs; Wheels
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/08Roller bits
    • E21B10/12Roller bits with discs cutters
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts

Definitions

  • the invention relates to a roller bit, in particular for tunnel boring machines, with carrier body and with a connected to the support body and rotating over the circumference of the support body cutting ring, the cutting ring consists of a plurality of over the circumference of the cutting ring successively arranged cutting ring segments.
  • roller bits are also referred to as a disc chisel.
  • Roller bits are the main cutting tools of a cutting wheel of a tunnel boring machine (TBM).
  • TBM tunnel boring machine
  • the roller bits generally have a cylindrical carrier body and over the circumference of this carrier body of the cutting ring runs around.
  • the cutting ring is usually made of a hard material and in practice, in particular cutting rings made of alloyed steels with high carbon content, but also cutting rings with carbide inserts.
  • Known from practice cutting rings are subject to an undesirably high wear, so that the relevant roller bits must be replaced after relatively short periods of time.
  • Such an exchange of tools is very expensive and it must be taken in particular disadvantageous tunneling interruptions in the tunneling of the tunnel boring machine in purchasing.
  • a roller chisel of the type described above is out US 3,981,370 A. known.
  • this roller chisel distributed cutting ring segments are provided over the circumference of a support body, which are keyed to the support body.
  • - Out DE 26 30 932 A is a wear-resistant composite known. This composite material consists of hard materials and a metal matrix and carbides are mentioned among other things as hard materials.
  • the invention is based on the technical problem of specifying a roller bit of the type mentioned, the cutting ring has a high resistance and a relatively low wear and thus achieved a long service life.
  • the invention teaches a roller bit, in particular for tunnel boring machines, comprising a carrier body and a cutting ring connected to the carrier body and circulating around the circumference of the carrier body, the cutting ring consisting of a steel matrix and hard metal particles distributed therein, the grain size of the hard metal particles 1 mm to 10 mm, wherein the hard metal particles to at least 70 vol .-% of tungsten carbide and at least one binder, said cutting ring consists of a plurality of over the circumference of the cutting ring successively arranged cutting ring segments and wherein the cutting ring segments are welded to the carrier body ,
  • the hard metal particles consist of at least 70% by volume of tungsten carbide and the remainder consists exclusively of at least one binder.
  • the cemented carbide particles comprise 90% tungsten carbide by volume, they consist of 10% by volume binder.
  • hard metal particles are meant in the context of the invention, moreover, defined particles which consist of a different material than the steel matrix of the cutting element.
  • the cutting ring surrounds the carrier body annular or with a circular cross-section.
  • the cutting ring consists of a plurality of cutting ring segments arranged one behind the other along the cutting ring or over the circumference of the carrier body. It is expediently to curved cutting ring segments, which are located on the support body Add to the cutting ring. Preferably, a gap or gap is provided between two cutting ring segments. By realizing such gaps between the cutting ring segments, in particular fluctuations caused by temperature fluctuation can be avoided.
  • the length of a cutting ring segment preferably corresponds to 1/5 to 1/15, preferably 1/8 to 1/12 of the circumference of the cutting ring.
  • the length of a cutting ring segment corresponds to 1/10 or approximately 1/10 of the circumference of the cutting ring. It should also be noted that in particular roller bits are used with roller bit diameters of 10 to 20 inches, having the aforementioned cutting ring segments.
  • the cutting ring is welded onto the carrier body or the cutting ring segments are welded onto the carrier body.
  • the support body is expediently made of steel or of a steel alloy, which does not differ significantly from the common steel alloys that are currently used.
  • the steel matrix of the cutting ring or the cutting ring segments is welded to the carrier body.
  • the welding of the cutting ring and the cutting ring segments with the carrier body is essential and advantageous in the context of the invention. As a result, a very strong composite of the cutting ring according to the invention or, the cutting ring segments according to the invention with the carrier body is achieved.
  • a cutting ring segment ceremonisch doendes carrier body side two in cross-section (transverse to the longitudinal direction of the cutting ring segment) obliquely to the center of the cutting ring segment and the carrier body toward each other on welding surfaces.
  • a cutting ring segment expediently has a triangular or approximately triangular tulip-shaped carrier body-side section or welding section.
  • the triangle tip is arranged carrier body side.
  • this carrier body section has a cross-sectionally triangular or approximately triangular or tulip-shaped cutting-ring segment-side section or welding section.
  • the triangle tip is arranged schneidringsegment Mon. Tailoring segment and associated carrier body portion are then welded so that the two triangle tips are opposite.
  • the triangle tips can be formed flattened.
  • the triangle sides can also be formed more or less curved, so that in particular the already mentioned tulip-shaped cross-section can result.
  • a wedge-shaped welding gap is formed, into which the weld seam is introduced.
  • the root layer is welded through during welding in the region of the triangle tips.
  • the carrier body expediently consists of a common steel or of a common steel alloy.
  • the steel matrix of the cutting element of the stationary tool is welded to the carrier body.
  • the welding is carried out as described above for welding the cutting ring or for welding the cutting ring segments.
  • the steel matrix of the cutting ring of the roller bit according to the invention is expediently a high-alloyed steel.
  • the steel matrix of the cutting ring expediently contains 0.34 to 0.39 wt .-%, preferably 0.34 to 0.38 wt .-% and preferably 0.35 to 0.37 wt .-% carbon and expediently 0.85 to 1.80 wt .-%, preferably 0.9 to 1.75 wt.% and preferably 0.95 to 1.70 wt.% chromium.
  • the steel matrix preferably contains 1.0 to 1.7 wt .-%, preferably 1.1 to 1.65 wt .-% and preferably 1.15 to 1.60 wt .-% silicon and 1.2 to 4, 0 wt .-%, preferably 1.25 to 3.95 wt .-% and preferably 1.35 to 3.90 wt .-% nickel.
  • this steel matrix advantageously contains 0.18 to 0.33 wt .-%, preferably 0.20 to 0.31 wt .-% and preferably 0.21 to 0.30 wt .-% molybdenum and suitably 0.38 to 1 , 65 wt .-%, preferably 0.40 to 1.60 wt .-% and preferably 0.43 to 1.55 wt .-% manganese.
  • this steel matrix expediently contains 0.02 to 0.18% by weight, preferably 0.02 to 0.16% by weight and preferably 0.03 to 0.15% by weight of aluminum and more preferably 0.01 to 0 , 05 wt .-%, preferably 0.01 to 0.04 wt .-% and preferably 0.01 to 0.03 wt .-% vanadium.
  • the remainder of the steel matrix consists of iron and the weight percentages for carbon, chromium, silicon, nickel, molybdenum, manganese, aluminum, vanadium and iron must add up to 100 wt.% For a specific composition of the steel matrix.
  • the steel matrix contains the weight percentages given above for carbon, molybdenum and vanadium, and this steel matrix expediently contains 0.8 to 1.2 wt.%, Preferably 0.8 to 1.1 Wt .-%, preferably 0.9 to 1.05 wt .-% chromium and expediently 1.3 to 1.8 wt .-%, preferably 1.4 to 1.7 wt .-% and preferably 1.5 bis 1.6 wt .-% silicon and further advantageously 1.2 to 2.0 wt .-%, preferably 1.2 to 1.9 wt .-%, preferably 1.3 to 1.75 wt .-% nickel.
  • the steel matrix according to this first embodiment furthermore advantageously contains 1.1 to 1.8% by weight, preferably 1.2 to 1.7% by weight, preferably 1.3 to 1.6% by weight of manganese, and 0, 01 to 0.08 wt .-%, preferably 0.02 to 0.07 wt .-%, preferably 0.03 to 0.06 wt .-% aluminum and the rest of the steel matrix of this first embodiment consists made of iron.
  • the wt .-% - have to add in each case to 100 wt .-%.
  • the steel matrix also contains the weight percentages given above for carbon, molybdenum and vanadium and 1.3 to 1.9% by weight, preferably 1.45 to 1.8% by weight. %, preferably 1.55 to 1.75 wt .-% chromium and further 0.8 to 1.4 wt .-%, preferably 0.9 to 1.3 wt .-%, preferably 1.05 to 1.25 Wt .-% silicon.
  • the steel matrix according to this second embodiment contains 3.5 to 4.2 wt .-%, preferably 3.6 to 4.1 wt .-%, preferably 3.75 to 4.0 wt .-% nickel and 0.25 to 0.65 wt.%, preferably 0.3 to 0.6 wt.%, preferably 0.35 to 0.55 wt.% manganese.
  • the steel matrix of the second embodiment contains 0.1 to 0.18 wt%, preferably 0.11 to 0.17 wt%, preferably 0.12 to 0.16 wt% of aluminum and the remainder of the steel matrix consists of iron. It is understood that the wt .-% - information must add up to 100 wt .-% here.
  • the hardness of the steel matrix of the cutting ring is preferably 450 to 600 HV.
  • Hardness of the steel matrix here means the hardness of the steel matrix alone, d. H. without carbide particles.
  • a very preferred embodiment is characterized in that the steel matrix of the cutting ring is potted with the hard metal particles.
  • the production of the cutting ring thus takes place by casting.
  • the carbide particles are poured into the steel matrix as it were.
  • the casting of the steel matrix takes place with the proviso that hard metal particles are present only or mainly in the wear-exposed surfaces of the steel matrix of the cutting ring.
  • the proportion of hard metal particles in the cutting ring is more than 25% by volume, preferably more than 30% by volume and preferably more than 35% by volume.
  • the rest of the cutting ring is formed in each case by the steel matrix. More preferably, more than 40% by volume, preferably more than 50% by volume, of hard metal particles are contained in the half of the cutting ring facing away from the carrier body or in the weld seam facing away from it.
  • the hard metal particles to at least 80 vol .-%, preferably at least 85 vol .-% and preferably at least 87 vol .-% of tungsten carbide, balance binder.
  • Remaining binder means that the remaining vol, -% - content of at least one binder is formed.
  • the hard metal particles from 90 vol .-% or from about 90 vol .-% tungsten carbide they consist of 10 vol .-% or about 10 vol .-% of at least one Binder.
  • the term tungsten carbide according to one embodiment of the invention means only actual tungsten carbide having the chemical formula WC. According to another embodiment of the invention, the term tungsten carbide also means tungsten carbide (WSC, WC / W 2 C).
  • the binder for the cemented carbide particles is cobalt or substantially cobalt.
  • the hard metal particles are introduced as hard metal granules in the steel matrix of the cutting ring, preferably poured.
  • a particularly preferred embodiment of the invention is characterized in that the grain size of the hard metal particles is 1 to 10 mm, preferably 2 to 8 mm, preferably 2.5 to 7 mm and very preferably 3 to 6 mm.
  • the grain size of the hard metal particles is 3.5 to 5.5 mm.
  • the hardness of the hard metal particles is suitably 800 to 1800 HV, preferably 1000 to 1600 HV and preferably 1400 to 1600 HV. It is understood that the components or the composition of the hard metal particles is selected so that the above-mentioned hardnesses can be adjusted.
  • MMC Metal Matrix Composites
  • the invention is based on the finding that a roller chisel according to the invention or the cutting ring of a roller chisel according to the invention is subject to surprisingly low wear. Accordingly, a tool change or cutting ring change must be made only after relatively long periods of time and to that extent considerable advantages are achieved compared to the known from the prior art roller bits.
  • the invention is based in particular on the recognition that the cutting ring of a roller bit according to the invention not only has to have a high hardness but also sufficient toughness.
  • the inventive design of the cutting ring an optimal compromise between the required hardness and the necessary toughness of the cutting ring is achieved.
  • an inventively designed cutting ring can be brought by welding in a surprisingly strong bond with the carrier body.
  • FIGS. 1 to 4 show a roller bit for tunnel boring machines.
  • This roller bit has a carrier body 1 and a circumferential over the circumference of the carrier body 1 cutting ring 2.
  • the cutting ring 2 consists of a steel matrix 3 and hard metal particles 4 distributed therein.
  • the hard metal particles 4 preferably consist of about 90% by volume tungsten carbide and about 10% by volume of a binder in the form of cobalt.
  • the cutting ring 2 consists of a plurality of over the circumference of the carrier body 1 successively arranged cutting ring segments 5.
  • Fig. 1 was indicated that between the cutting ring segments 5 preferably gaps 6 are formed.
  • Fig. 2 shows that a cutting ring segment 5 is formed bent and is positively adapted to the circumference of the carrier body 1.
  • the length of a cutting ring segment 5 preferably corresponds to 1/10 or about 1/10 of the circumference of the cutting element 2.
  • cutting ring segments 5 are welded onto the carrier body 1.
  • Fig. 3 on the one hand shows a cutting ring segment 5 and on the other hand the correspondingly assigned portion of the carrier body 1 prior to the production of the welded joint.
  • the cutting ring segment 5 to be welded on has, on the carrier body side, two welding surfaces 7 tapering towards one another in cross-section obliquely to the center of the cutting ring segment 5 and towards the carrier body 1.
  • the portion of the carrier body 1 assigned to the cutting-ring segment 5 to be welded on also has two welding surfaces 8 converging towards one another in cross-section obliquely to the center of the carrier body 1 and to the cutting-ring segment 5.
  • Cutting ring segment 5 and associated carrier body portion each have a cross-sectionally approximately triangular or tulip-shaped welding section 10, 11. They are welded together with opposite triangular tips. Between the welding surfaces 7 and 8, the weld 9 is produced.
  • Fig. 4 shows the finished welded joint between the cutting ring segment 5 and support body 1 with the weld 9 between the welding surfaces 7, 8.
  • the root pass is suitably welded through in the region of the triangle tips, which in Fig. 4 was hinted at.
  • the carrier body side - in the embodiment In cross section triangular - Welding portion 10 of the cutting ring segment 5 is made of a different steel than the steel matrix 3, which receives the hard metal particles 4. It is within the scope of the invention that the welding section 10 consists of a weldable steel or of a good weldable steel.
  • hard metal particles 4 are arranged homogeneously in the outer or wear-exposed area of a cutting ring segment 5. It is then within the scope of the invention that preferably more than 40% by volume, preferably more than 50% by volume, of hard metal particles 4 are present in the cutting ring segment 5 in this region.
  • the hard metal particles 4 are arranged in a very preferred embodiment in the steel matrix 3 with the proviso that the hard metal particles 4 as possible have no direct contact with each other or that corresponding filled by the steel matrix distances between the hard metal particles 4th available.
  • the hard metal particles 4 are introduced with the proviso in the steel matrix 3, that at least 90%, preferably at least 95% of the hard metal particles 4 have no direct contact with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Earth Drilling (AREA)
  • Powder Metallurgy (AREA)

Description

  • Die Erfindung betrifft einen Rollenmeißel, insbesondere für Tunnelbohrmaschinen, mit Trägerkörper und mit einem an den Trägerkörper angeschlossenen und über den Umfang des Trägerkörpers umlaufenden Schneidring, wobei der Schneidring aus einer Mehrzahl von über den Umfang des Schneidringes hintereinander angeordneten Schneidringsegmenten besteht. Derartige Rollenmeißel werden auch als Diskenmeißel bezeichnet.
  • Rollenmeißel sind die Hauptschneidwerkzeuge eines Schneidrades einer Tunnelbohrmaschine (TBM). Die Rollenmeißel weisen in der Regel einen zylinderförmigen Trägerkörper auf und über den Umfang dieses Trägerkörpers läuft der Schneidring um. Der Schneidring besteht regelmäßig aus einem harten Werkstoff und in der Praxis sind insbesondere Schneidringe aus legierten Stählen mit hohem Kohlenstoffgehalt bekannt, aber auch Schneideringe mit Hartmetalleinlagen. Die aus der Praxis bekannten Schneidringe unterliegen einem unerwünscht hohen Verschleiß, so dass die betreffenden Rollenmeißel nach verhältnismäßig kurzen Zeitspannen ausgetauscht werden müssen. Ein solcher Austausch von Werkzeugen ist sehr aufwendig und es müssen insbesondere nachteilhafte Vortriebsunterbrechungen beim Vortrieb der Tunnelbohrmaschine in Kauf genommen werden.
  • Ein Rollenmeißel der eingangs beschriebenen Art ist aus US 3 981 370 A bekannt. Bei diesem Rollenmeißel sind über den Umfang eines Trägerkörpers verteiltes Schneidringsegmente vorgesehen, die an dem Trägerkörper verkeilt sind. - Aus DE 26 30 932 A ist ein verschleißfester Verbundwerkstoff bekannt. Dieser Verbundwerkstoff besteht aus Hartstoffen und einer Metallmatrix und als Hartstoffe werden unter anderem Carbide erwähnt.
  • Der Erfindung liegt das technische Problem zugrunde, einen Rollenmeißel der eingangs genannten Art anzugeben, dessen Schneidring eine hohe Widerstandsfähigkeit und einen relativ geringen Verschleiß aufweist und somit eine hohe Standzeit erreicht.
  • Zur Lösung dieses technischen Problems lehrt die Erfindung einen Rollenmeißel, insbesondere für Tunnelbohrmaschinen, mit einem Trägerkörper und einem an den Trägerkörper angeschlossenen und über den Umfang des Trägerkörpers umlaufenden Schneidring, wobei der Schneidring aus einer Stahlmatrix und darin verteilten Hartmetallteilchen besteht, wobei die Korngröße der Hartmetallteilchen 1 mm bis 10 mm beträgt, wobei die Hartmetallteilchen zu mindestens 70 Vol.-% aus Wolframcarbid und zumindest einem Bindemittel bestehen, wobei der Schneidring aus einer Mehrzahl von über den Umfang des Schneidringes hintereinander angeordneten Schneidringsegmenten besteht und wobei die Schneidringsegmente auf den Trägerkörper aufgeschweißt sind.
  • Vorzugsweise bestehen dabei die Hartmetallteilchen zu mindestens 70 Vol.-% aus Wolframcarbid und der Rest besteht ausschließlich aus zumindest einem Bindemittel. Wenn also beispielsweise die Hartmetallteilchen 90 Vol.-% Wolframcarbid aufweisen, bestehen sie zu 10 Vol.-% aus Bindemittel. Mit dem Begriff Hartmetallteilchen sind im Rahmen der Erfindung im Übrigen definierte Teilchen gemeint, die aus einem anderen Material bestehen als die Stahlmatrix des Schneidelementes.
  • Der Schneidring umgibt den Trägerkörper ringförmig bzw. mit kreisförmigem Querschnitt. Erfindungsgemäß besteht der Schneidring aus einer Mehrzahl von entlang des Schneidringes bzw. über den Umfang des Trägerkörpers hintereinander angeordneten Schneidringsegmenten. Es handelt sich dabei zweckmäßigerweise um gebogene Schneidringsegmente, die sich auf dem Trägerkörper zum Schneidring ergänzen. Vorzugsweise ist zwischen zwei Schneidringsegmenten ein Spalt bzw. eine Lücke vorgesehen. Durch die Verwirklichung solcher Lücken zwischen den Schneidringsegmenten können insbesondere temperaturschwankungsbedingte Zwänge vermieden werden. Die Länge eines Schneidringsegmentes entspricht vorzugsweise 1/5 bis 1/15, bevorzugt 1/8 bis 1/12 des Umfanges des Schneidringes. Gemäß einem bevorzugten Ausführungsbeispiel entspricht die Länge eines Schneidringsegmentes 1/10 bzw. in etwa 1/10 des Umfanges des Schneidringes. Es ist noch darauf hinzuweisen, dass insbesondere Rollenmeißel mit Rollenmeißeldurchmessern von 10 bis 20 Zoll eingesetzt werden, die die vorgenannten Schneidringsegmente aufweisen.
  • Erfindungsgemäß ist der Schneidring auf den Trägerkörper aufgeschweißt bzw. sind die Schneidringsegmente auf den Trägerkörper aufgeschweißt. Der Trägerkörper besteht zweckmäßigerweise aus Stahl bzw. aus einer Stahllegierung, die sich nicht wesentlich unterscheidet von den gebräuchlichen Stahllegierungen, die zurzeit zur Anwendung kommen. Die Stahlmatrix des Schneidringes bzw. der Schneidringsegmente wird mit dem Trägerkörper verschweißt. Die Verschweißung des Schneidringes bzw. der Schneidringsegmente mit dem Trägerkörper ist im Rahmen der Erfindung wesentlich und vorteilhaft. Hierdurch wird ein sehr fester Verbund des erfindungsgemäßen Schneidringes bzw, der erfindungsgemäßen Schneidringsegmente mit dem Trägerkörper erzielt. Nach sehr bevorzugter Ausführungsform der Erfindung weist ein aufzuschweißendes Schneidringsegment trägerkörperseitig zwei im Querschnitt (quer zur Längsrichtung des Schneidringsegmentes) schräg zur Mitte des Schneidringsegmentes und zum Trägerkörper hin aufeinander zulaufende Schweißflächen auf. Zweckmäßigerweise weist ein Schneidringsegment einen im Querschnitt dreieckförmigen oder in etwa dreieckförmigen tulpenförmigen trägerkörperseitigen Abschnitt bzw. Schweißabschnitt auf. Die Dreieckspitze ist dabei trägerkörperseitig angeordnet. Vorzugsweise weist dann der dem aufzuschweißenden Schneidringsegment zugeordnete Trägerkörperabschnitt schneidringsegmentseitig ebenfalls zwei im Querschnitt schräg zur Mitte des Trägerkörpers und zum Schneidringsegment hin aufeinander zulaufende Schweißflächen auf. Zweckmäßigerweise weist dieser Trägerkörperabschnitt einen im Querschnitt dreieckförmigen oder in etwa dreieckförmigen oder tulpenförmigen schneidringsegmentseitigen Abschnitt bzw. Schweißabschnitt auf. Die Dreieckspitze ist dabei schneidringsegmentseitig angeordnet. Schneideringsegment und zugeordneter Trägerkörperabschnitt werden dann so verschweißt, dass sich die beiden Dreieckspitzen gegenüberliegen. Die Dreieckspitzen können abgeflacht ausgebildet sein. Außerdem können die Dreieckseiten auch mehr oder weniger gebogen ausgebildet sein, so dass sich insbesondere der bereits genannte tulpenförmige Querschnitt ergeben kann. An den beiden Seiten der gegenüberliegenden Dreieckspitzen wird jeweils ein im Querschnitt keilförmiger Schweißspalt gebildet, in den die Schweißnaht eingebracht wird. Nach besonders bevorzugter Ausführungsform wird beim Verschweißen im Bereich der Dreieckspitzen die Wurzellage durchgeschweißt.
  • Der Trägerkörper besteht zweckmäßigerweise aus einem gebräuchlichen Stahl bzw. aus einer gebräuchlichen Stahllegierung. Die Stahlmatrix des Schneidelementes des stehenden Werkzeuges wird mit dem Trägerkörper verschweißt. Vorzugsweise erfolgt die Verschweißung dabei wie vorstehend zum Verschweißen des Schneidringes bzw. zur Verschweißung der Schneidringsegmente beschrieben.
  • Bei der Stahlmatrix des Schneidringes des erfindungsgemäßen Rollenmeißels handelt es sich zweckmäßigerweise um einen hochlegierten Stahl. Die Stahlmatrix des Schneidringes enthält zweckmäßigerweise 0,34 bis 0,39 Gew.-%, vorzugsweise 0,34 bis 0,38 Gew.-% und bevorzugt 0,35 bis 0,37 Gew.-% Kohlenstoff sowie zweckmäßigerweise 0,85 bis 1,80 Gew.-%, vorzugsweise 0,9 bis 1,75 Gew.-% und bevorzugt 0,95 bis 1,70 Gew.-% Chrom. Fernerhin enthält die Stahlmatrix zweckmäßigerweise 1,0 bis 1,7 Gew.-%, vorzugsweise 1,1 bis 1,65 Gew.-% und bevorzugt 1,15 bis 1,60 Gew.-% Silicium sowie 1,2 bis 4,0 Gew.-%, vorzugsweise 1,25 bis 3,95 Gew.-% und bevorzugt 1,35 bis 3,90 Gew.-% Nickel. Weiterhin enthält diese Stahlmatrix zweckmäßigerweise 0,18 bis 0,33 Gew.-%, vorzugsweise 0,20 bis 0,31 Gew.-% und bevorzugt 0,21 bis 0,30 Gew.-% Molybdän sowie zweckmäßigerweise 0,38 bis 1,65 Gew.-%, vorzugweise 0,40 bis 1,60 Gew.-% und bevorzugt 0,43 bis 1,55 Gew.-% Mangan. Außerdem enthält diese Stahlmatrix zweckmäßigerweise 0,02 bis 0,18 Gew.-%, vorzugsweise 0,02 bis 0,16 Gew.-% und bevorzugt 0,03 bis 0,15 Gew.-% Aluminium sowie zweckmäßiger 0,01 bis 0,05 Gew.-%, vorzugsweise 0,01 bis 0,04 Gew.-% und bevorzugt 0,01 bis 0,03 Gew.-% Vanadium. Der Rest der Stahlmatrix besteht aus Eisen und die Gew.-%-Angaben für Kohlenstoff, Chrom, Silicium, Nickel, Molybdän, Mangan, Aluminium, Vanadium und Eisen müssen sich für eine bestimmte Zusammensetzung der Stahlmatrix zu 100 Gew.-% addieren.
  • Gemäß einer ersten bevorzugten Ausführungsform der Erfindung enthält die Stahlmatrix die oben angegebenen Gew.-%-Werte für Kohlenstoff, Molybdän und Vanadium und diese Stahlmatrix enthält zweckmäßigerweise 0,8 bis 1,2 Gew.-%, vorzugsweise 0,8 bis 1,1 Gew.-%, bevorzugt 0,9 bis 1,05 Gew.-% Chrom sowie zweckmäßigerweise 1,3 bis 1,8 Gew.-%, vorzugsweise 1,4 bis 1,7 Gew.-% und bevorzugt 1,5 bis 1,6 Gew.-% Silicium und weiterhin zweckmäßigerweise 1,2 bis 2,0 Gew.-%, vorzugsweise 1,2 bis 1,9 Gew.-%, bevorzugt 1,3 bis 1,75 Gew.-% Nickel. Die Stahlmatrix nach dieser ersten Ausführungsform enthält weiterhin zweckmäßigerweise 1,1 bis 1,8 Gew.-%, vorzugsweise 1,2 bis 1,7 Gew.-%, bevorzugt 1,3 bis 1,6 Gew.-% Mangan sowie 0,01 bis 0,08 Gew.-%, vorzugsweise 0,02 bis 0,07 Gew.-%, bevorzugt 0,03 bis 0,06 Gew.-% Aluminium und der Rest der Stahlmatrix dieser ersten Ausführungsform besteht aus Eisen. Auch hier müssen sich die Gew.-%-Angaben jeweils zu 100 Gew.-% addieren.
  • Bei einer zweiten bevorzugten Ausführungsform der Erfindung enthält die Stahlmatrix ebenfalls die oben angegebenen Gew.-%-Werte für Kohlenstoff, Molybdän und Vanadium sowie 1,3 bis 1,9 Gew.-%, vorzugsweise 1,45 bis 1,8 Gew.-%, bevorzugt 1,55 bis 1,75 Gew.-% Chrom und weiterhin 0,8 bis 1,4 Gew.-%, vorzugsweise 0,9 bis 1,3 Gew.-%, bevorzugt 1,05 bis 1,25 Gew.-% Silicium. Außerdem enthält die Stahlmatrix gemäß dieser zweiten Ausführungsform 3,5 bis 4,2 Gew.-%, vorzugsweise 3,6 bis 4,1 Gew.-%, bevorzugt 3,75 bis 4,0 Gew.-% Nickel sowie 0,25 bis 0,65 Gew.-%, vorzugsweise 0,3 bis 0,6 Gew.- %, bevorzugt 0,35 bis 0,55 Gew.-% Mangan. Zusätzlich enthält die Stahlmatrix der zweiten Ausführungsform 0,1 bis 0,18 Gew.-%, vorzugsweise 0,11 bis 0,17 Gew.-%, bevorzugt 0,12 bis 0,16 Gew.-% Aluminium und der Rest der Stahlmatrix besteht aus Eisen. Es versteht sich, dass sich die Gew.-%-Angaben auch hier zu 100 Gew.-% addieren müssen.
  • Die Härte der Stahlmatrix des Schneidringes beträgt vorzugweise 450 bis 600 HV. Härte der Stahlmatrix meint hier die Härte der Stahlmatrix allein, d. h. ohne Hartmetallteilchen.
  • Eine sehr bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass die Stahlmatrix des Schneidringes mit den Hartmetallteilchen vergossen ist. Gemäß dieser Ausführungsform erfolgt die Herstellung des Schneidringes also durch Gießen. Die Hartmetallteilchen werden dabei gleichsam in die Stahlmatrix eingegossen. Gemäß einer bevorzugten Ausführungsform erfolgt das Gießen der Stahlmatrix mit der Maßgabe, dass Hartmetallteilchen nur oder hauptsächlich in den verschleißbeaufschlagten Oberflächen der Stahlmatrix des Schneidringes vorhanden sind.
  • Es liegt im Rahmen der Erfindung, dass der Anteil an Hartmetallteilchen im Schneidring mehr als 25 Vol.-%, vorzugsweise mehr als 30 Vol.-% und bevorzugt mehr als 35 Vol.-% beträgt. Der Rest des Schneidringes wird dabei jeweils durch die Stahlmatrix gebildet. Vorzugsweise sind insbesondere in der trägerkörperabgewandten bzw. in der schweißnahtabgewandten Hälfte des Schneidringes mehr als 40 Vol.-%, bevorzugt mehr als 50 Vol.-% an Hartmetallteilchen enthalten.
  • Zweckmäßigerweise bestehen die Hartmetallteilchen zu mindestens 80 Vol.-%, vorzugsweise zu mindestens 85 Vol.-% und bevorzugt zu mindestens 87 Vol.-% aus Wolframcarbid, Rest Bindemittel. Rest Bindemittel meint dabei, dass der restliche Vol,-%-Gehalt von zumindest einem Bindemittel gebildet wird. Wenn also nach bevorzugter Ausführungsform der Erfindung die Hartmetallteilchen aus 90 Vol.-% bzw. aus ca. 90 Vol.-% Wolframcarbid bestehen, so bestehen sie zu 10 Vol.-% bzw. zu ca. 10 Vol.-% aus zumindest einem Bindemittel. Mit dem Begriff Wolframcarbid ist gemäß einer Ausführungsform der Erfindung lediglich eigentliches Wolframcarbid mit der chemischen Formel WC gemeint. Gemäß einer anderen Ausführungsform der Erfindung meint der Begriff Wolframcarbid auch Wolframschmelzcarbide (WSC, WC/W2C). Vorzugsweise besteht das Bindemittel für die Hartmetallteilchen aus Kobalt oder im wesentlichen aus Kobalt.
  • Es liegt im Rahmen der Erfindung, dass die Hartmetallteilchen als Hartmetallgranulat in die Stahlmatrix des Schneidringes eingebracht, vorzugsweise eingegossen werden. Eine besonders bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die Korngröße der Hartmetallteilchen 1 bis 10 mm, vorzugsweise 2 bis 8 mm, bevorzugt 2,5 bis 7 mm und sehr bevorzugt 3 bis 6 mm beträgt. Nach ganz besonders bevorzugter Ausführungsform der Erfindung beträgt die Korngröße der Hartmetallteilchen 3,5 bis 5,5 mm. Die Härte der Hartmetallteilchen beträgt zweckmäßigerweise 800 bis 1800 HV, vorzugsweise 1000 bis 1600 HV und bevorzugt 1400 bis 1600 HV. Es versteht sich, dass die Komponenten bzw. die Zusammensetzung der Hartmetallteilchen so ausgewählt wird, dass die vorstehend angegebenen Härten eingestellt werden können.
  • Die Art des erfindungsgemäß hergestellten Materials für den Schneidring nennt man im englischsprachigen Raum "Metal Matrix Composites (MMC)". In Deutschland verwendet man den Begriff "Hartstoff-Matrix-Verbundwerkstoff". Bei einem solchen Material werden die "guten" Eigenschaften von mindestens zwei oder mehr verschiedenen Werkstoffen miteinander kombiniert.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass ein erfindungsgemäßer Rollenmeißel bzw. der Schneidring eines erfindungsgemäßen Rollenmeißels einem überraschend geringen Verschleiß unterliegt. Dementsprechend muss ein Werkzeugwechsel bzw. Schneidringwechsel erst nach relativ langen Zeitspannen vorgenommen werden und insoweit werden beachtliche Vorteile im Vergleich zu den aus dem Stand der Technik bekannten Rollenmeißeln erzielt. Der Erfindung liegt insbesondere die Erkenntnis zugrunde, dass der Schneidring eines erfindungsgemäßen Rollenmeißels nicht nur eine hohe Härte, sondern auch eine ausreichende Zähigkeit aufweisen muss. Durch die erfindungsgemäße Ausgestaltung des Schneidringes wird ein optimaler Kompromiss zwischen der erforderlichen Härte und der notwendigen Zähigkeit des Schneidringes erreicht. Weiterhin lässt sich ein erfindungsgemäß ausgebildeter Schneidring durch Aufschweißen in überraschend festen Verbund mit dem Trägerkörper bringen. Es muss auch betont werden, dass die Herstellung des Verbundes zwischen dem erfindungsgemäßen Schneidring und dem Trägerkörper auf einfache Weise möglich ist. Weiterhin ist hervorzuheben, dass der Trägerkörper eines erfindungsgemäßen Rollenmeißels immer wieder verwendet werden kann, indem nach längerem Betrieb und entsprechendem Verschleiß ein neuer Schneidring einfach auf den Trägerkörper aufgeschweißt werden kann. Auch das ist ein beachtlicher Vorteil gegenüber bekannten Rollenmeißeln, die nach Auftreten von Verschleißerscheinungen in der Regel vollständig ausgewechselt werden müssen.
  • Nachfolgend wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert. Es zeigen in schematischer Darstellung:
  • Fig. 1
    eine Seitenansicht eines erfindungsgemäßen Rollenmeißels,
    Fig. 2
    ein einzelnes Schneidringsegment in einer Seitenansicht,
    Fig. 3
    das Schneidringsegment gemäß Fig. 2 im Querschnitt und ein zugeordneter Trägerkörperabschnitt im Querschnitt (vor der Verschweißung), und
    Fig. 4
    das Schneidringsegment und zugeordneter Trägerkörperabschnitt im Querschnitt nach der Verschweißung.
  • Die Figuren 1 bis 4 zeigen einen Rollenmeißel für Tunnelbohrmaschinen. Dieser Rollenmeißel weist einen Trägerkörper 1 und einen über den Umfang des Trägerkörpers 1 umlaufenden Schneidring 2 auf. Der Schneidring 2 besteht aus einer Stahlmatrix 3 und darin verteilten Hartmetallteilchen 4. Die Hartmetallteilchen 4 bestehen vorzugsweise zu ca. 90 Vol.-% aus Wolframcarbid sowie zu ca. 10 Vol.-% aus einem Bindemittel in Form von Kobalt.
  • Erfindungsgemäß besteht der Schneidring 2 aus einer Mehrzahl von über den Umfang des Trägerkörpers 1 hintereinander angeordneten Schneidringsegmenten 5. In der Fig. 1 wurde angedeutet, dass zwischen den Schneidringsegmenten 5 vorzugsweise Lücken 6 ausgebildet sind. Fig. 2 zeigt, dass ein Schneidringsegment 5 gebogen ausgebildet ist und formschlüssig an den Umfang des Trägerkörpers 1 angepasst ist. Die Länge eines Schneidringsegmentes 5 entspricht vorzugsweise 1/10 bzw. etwa 1/10 des Umfanges des Schneidelementes 2.
  • Erfindungsgemäß werden Schneidringsegmente 5 auf den Trägerkörper 1 aufgeschweißt. Fig. 3 zeigt einerseits ein Schneidringsegment 5 und andererseits den entsprechend zugeordneten Abschnitt des Trägerkörpers 1 vor der Herstellung der Schweißverbindung. Es ist erkennbar, dass das aufzuschweißende Schneidringsegment 5 trägerkörperseitig zwei im Querschnitt schräg zur Mitte des Schneidringsegmentes 5 und zum Trägerkörper 1 hin aufeinander zulaufende Schweißflächen 7 aufweist. Dementsprechend weist der dem aufzuschweißenden Schneidringsegment 5 zugeordnete Abschnitt des Trägerkörpers 1 schneidringsegmentseitig ebenfalls zwei im Querschnitt schräg zur Mitte des Trägerkörpers 1 und zum Schneidringsegment 5 hin aufeinander zulaufende Schweißflächen 8 auf. Schneidringsegment 5 und zugeordneter Trägerkörperabschnitt haben jeweils einen im Querschnitt etwa dreieckförmigen bzw. tulpenförmigen Schweißabschnitt 10, 11. Sie werden mit gegenüberliegenden Dreieckspitzen miteinander verschweißt. Zwischen den Schweißflächen 7 und 8 wird die Schweißnaht 9 hergestellt. Fig. 4 zeigt die fertiggestellte Schweißverbindung zwischen Schneidringsegment 5 und Trägerkörper 1 mit der Schweißnaht 9 zwischen den Schweißflächen 7, 8. Bei der Herstellung dieser Schweißverbindung wird zweckmäßigerweise die Wurzellage im Bereich der Dreieckspitzen durchgeschweißt, was in Fig. 4 angedeutet wurde. Es ist im Übrigen darauf hinzuweisen, dass zweckmäßigerweise der trägerkörperseitige - im Ausführungsbeispiel im Querschnitt dreieckförmige - Schweißabschnitt 10 des Schneidringsegmentes 5 aus einem anderen Stahl besteht als die Stahlmatrix 3, die die Hartmetallteilchen 4 aufnimmt. Es liegt im Rahmen der Erfindung, dass der Schweißabschnitt 10 aus einem schweißbaren Stahl bzw. aus einem gut schweißbaren Stahl besteht.
  • In den Fig. 3 und 4 ist im Übrigen erkennbar, dass Hartmetallteilchen 4 homogen in dem äußeren bzw. verschleißbeaufschlagten Bereich eines Schneidringsegmentes 5 angeordnet sind. Es liegt dann im Rahmen der Erfindung, dass in diesem Bereich vorzugsweise mehr als 40 Vol.-%, bevorzugt mehr als 50 Vol.- % Hartmetallteilchen 4 in dem Schneidringsegment 5 vorliegen. Der Rest besteht dann jeweils aus der Stahlmatrix 3. Die Hartmetallteilchen 4 werden nach sehr bevorzugter Ausführungsform in der Stahlmatrix 3 mit der Maßgabe angeordnet, dass die Hartmetallteilchen 4 möglichst keinen direkten Kontakt miteinander haben bzw. dass entsprechende von der Stahlmatrix ausgefüllte Abstände zwischen den Hartmetallteilchen 4 vorhanden sind. Nach besonders bevorzugter Ausführungsform werden die Hartmetallteilchen 4 mit der Maßgabe in die Stahlmatrix 3 eingebracht, dass zumindest 90 %, vorzugsweise zumindest 95 % der Hartmetallteilchen 4 keinen direkten Kontakt miteinander haben.

Claims (8)

  1. Rollenmeißel, insbesondere für Tunnelbohrmaschinen, mit einem Trägerkörper (1) und mit einem an den Trägerkörper (1) angeschlossenen und über dem Umfang des Trägerkörpers (1) umlaufenden Schneidring (2),
    wobei der Schneidring (2) aus einer Mehrzahl von über den Umfang des Schneidringes (2) hintereinander angeordneten Schneidringsegmenten (5) besteht, dadurch gekennzeichnet, dass der Schneidring (2) aus einer Stahlmatrix (3) und darin verteilten Hartmetallteilchen (4) besteht,
    wobei die Korngröße der Hartmetallteilchen 1 mm bis 10 mm beträgt,
    wobei die Hartmetallteilchen (4) zu mindestens 70 Vol.-% aus Wolframcarbid und aus zumindest einem Bindemittel bestehen,
    und wobei die Schneidringsegmente (5) auf den Trägerkörper (1) aufgeschweißt sind.
  2. Rollenmeißel nach Anspruch 1, wobei die Stahlmatrix (3) des Schneidringes aus 0,35 bis 0,37 Gew.-% Kohlenstoff, 0,95 bis 1,70 Gew.-% Chrom, 1,15 bis 1,60 Gew.-% Silicium, 1,35 bis 3,9 Gew.-% Nickel, 0,21 bis 0,30 Gew.-& Molybdän, 0,43 bis 1,55 Gew.-% Mangan, 0,03 bis 0,15 Gew.-% Aluminium und 0,01 bis 0,03 Gew.-% Vanadium sowie aus Eisen besteht.
  3. Rollenmeißel nach Anspruch 1 oder 2, wobei die Stahlmatrix (3) mit den Hartmetallteilchen (4) vergossen ist.
  4. Rollenmeißel nach einem der Ansprüche 1 bis 3, wobei der Anteil an Hartmetallteilchen (4) im Schneidring mehr als 25 Vol.-%, vorzugsweise mehr als 30 Vol.-% und bevorzugt mehr als 35 Vol.-% beträgt.
  5. Rollenmeißel nach einem der Ansprüche 1 bis 4, wobei die Hartmetallteilchen (4) zu mindestens 80 Vol.-%, vorzugsweise zu mindestens 85 Vol.-% und bevorzugt zu mindestens 87 Vol.-% aus Wolframcarbid, Rest Bindemittel, bestehen.
  6. Rollenmeißel nach einem der Ansprüche 1 bis 5, wobei das Bindemittel der Hartmetallteilchen (4) aus Kobalt besteht.
  7. Rollenmeißel nach einem der Ansprüche 1 bis 6, wobei die Korngröße der Hartmetallteilchen (4) 2 bis 8 mm und bevorzugt 2,5 bis 7 mm beträgt.
  8. Rollenmeißel nach einem der Ansprüche 1 bis 7, wobei die Härte der Hartmetallteilchen (4) 800 bis 1800 HV, vorzugsweise 1000 bis 1600 HV, bevorzugt 1400 bis 1600 HV beträgt.
EP06017238A 2005-08-18 2006-08-18 Werkzeug, insbesondere für Tunnelbohrmaschinen Not-in-force EP1754855B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005039036A DE102005039036C5 (de) 2005-08-18 2005-08-18 Rollenmeißel, insbesondere für Tunnelbohrmaschinen

Publications (2)

Publication Number Publication Date
EP1754855A1 EP1754855A1 (de) 2007-02-21
EP1754855B1 true EP1754855B1 (de) 2013-01-23

Family

ID=37295650

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06017238A Not-in-force EP1754855B1 (de) 2005-08-18 2006-08-18 Werkzeug, insbesondere für Tunnelbohrmaschinen

Country Status (2)

Country Link
EP (1) EP1754855B1 (de)
DE (1) DE102005039036C5 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT13797U1 (de) * 2013-02-15 2014-08-15 Herbert Dipl Ing Hölzl Schneidring für Rollenmeißel aus Gussmetall mit Keramikpartikelverstärkung in der Verschleißzone
AT514133B1 (de) 2013-04-12 2017-06-15 Feistritzer Bernhard Ringförmiges Werkzeug

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2630932A1 (de) * 1976-07-09 1978-01-12 Krupp Gmbh Verschleissfester verbundwerkstoff

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2811367A (en) * 1967-10-05 1969-04-17 Hughes Tool Company Gage hardfacing on rolling cutter rock bits
DE1558979B1 (de) * 1967-10-27 1971-04-08 Hughes Tool Co Meisselrolle fuer einen Gesteinsbohrer mit Massteil,Hartmetallauflage fuer das Massteil und Schweissstab zum Auftragen des Hartmetallauftrags
US3800891A (en) * 1968-04-18 1974-04-02 Hughes Tool Co Hardfacing compositions and gage hardfacing on rolling cutter rock bits
US3679009A (en) * 1971-02-02 1972-07-25 Kennametal Inc Rotary cutter for excavation, especially for use with raise boring and tunnel boring machines
ZA723776B (en) 1972-06-02 1974-01-30 Hard Metals Ltd Disc cutting unit for use on rock boring machines
US4398952A (en) * 1980-09-10 1983-08-16 Reed Rock Bit Company Methods of manufacturing gradient composite metallic structures
US4608318A (en) * 1981-04-27 1986-08-26 Kennametal Inc. Casting having wear resistant compacts and method of manufacture
CA1336387C (en) * 1988-06-29 1995-07-25 Madapusi Kande Keshavan Rod for applying hard surfacing to a surface and method of making same
US5064007A (en) * 1988-11-23 1991-11-12 Norvic S.A. Three disc drill bit
SE9702845L (sv) * 1996-08-01 1998-02-02 Smith International Dubbelhårdmetallkompositer
US5785135B1 (en) * 1996-10-03 2000-05-02 Baker Hughes Inc Earth-boring bit having cutter with replaceable kerf ring with contoured inserts
US7303030B2 (en) * 2003-11-25 2007-12-04 Smith International, Inc. Barrier coated granules for improved hardfacing material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2630932A1 (de) * 1976-07-09 1978-01-12 Krupp Gmbh Verschleissfester verbundwerkstoff

Also Published As

Publication number Publication date
DE102005039036B3 (de) 2006-11-16
EP1754855A1 (de) 2007-02-21
DE102005039036C5 (de) 2009-01-22

Similar Documents

Publication Publication Date Title
EP2012961B1 (de) Verfahren zur aufschweissung einer einzigen nutzschicht auf einen grundwerkstoff unter verwendung mehrerer fülldrahtelektroden, metallpulver und schweisspulver
DE1502019A1 (de) Werkzeuge und Werkzeugbestueckungen aus gesintertem Hartmetall
DE3123857C2 (de)
DE2831322A1 (de) Verfahren zur herstellung von gesteinsmeisseln und nach dem verfahren hergestellte gesteinsmeissel
DE102016120913A1 (de) Riss- und bruchbeständige Schweissverbindung und Schweissverfahren
DE2916347C3 (de) Lagerstuhl für Direktantriebe von Tiefbohrmeißeln o.dgl. in einem Bohrloch arbeitenden Werkzeugen oder Geräten
DE2423963A1 (de) Werkzeug zur erdbearbeitung
EP2444184A1 (de) Schneidwerkzeug und Herstellungsverfahren
DE10037031A1 (de) Sägeblattspitzen und Legierungen hierfür
EP1754855B1 (de) Werkzeug, insbesondere für Tunnelbohrmaschinen
EP1771273B1 (de) Gutbett-walzenmühle
EP1332822B1 (de) Bandsäge
DE102013213752B4 (de) Verfahren zur Herstellung eines Werkzeugs für die Bearbeitung von Blechen sowie Werkzeug
DE102005028568B4 (de) Verfahren zur Herstellung eines Verschleißteiles für einen Kegelbrecher und ein Verschleißteil
WO2013144043A1 (de) Werkstück und ein verfahren zur herstellung eines werkstückes
DE2530054A1 (de) Schweissbarer hartmetallkoerper
DE102019207962A1 (de) Zahn zum Anbringen an eine Baggerschaufel
DE3007503A1 (de) Schweisselektrode
DE102005028567B4 (de) Verfahren zur Herstellung eines Verschleißteiles für einen Kegelbrecher und ein Verschleißteil
DE1758053C (de) Schweißzusatzwerkstoff
DE2231924A1 (de) Dorn zum lochen von rohlingen beim herstellen von rohren
DE959786C (de) Verfahren zur Herstellung von verschleissfesten Auftragsschweissungen
DE2044208B2 (de) Schweisstab fuer schmelzschweissungen
AT166600B (de) Verfahren zur Herstellung von Werkzeugen
WO2020144028A1 (de) Zahn zum anbringen an eine baggerschaufel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070808

17Q First examination report despatched

Effective date: 20070910

AKX Designation fees paid

Designated state(s): AT CH DE ES FR LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HOCHTIEF SOLUTIONS AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 595093

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006012447

Country of ref document: DE

Effective date: 20130321

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER AND PARTNER PATENTANWAELTE AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130504

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20131024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006012447

Country of ref document: DE

Effective date: 20131024

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140820

Year of fee payment: 9

Ref country code: DE

Payment date: 20140806

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140813

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: EIGERSTRASSE 2 POSTFACH, 3000 BERN 14 (CH)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006012447

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 595093

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301