EP1752513B1 - Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit - Google Patents

Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit Download PDF

Info

Publication number
EP1752513B1
EP1752513B1 EP06013803A EP06013803A EP1752513B1 EP 1752513 B1 EP1752513 B1 EP 1752513B1 EP 06013803 A EP06013803 A EP 06013803A EP 06013803 A EP06013803 A EP 06013803A EP 1752513 B1 EP1752513 B1 EP 1752513B1
Authority
EP
European Patent Office
Prior art keywords
ppm
alkyl
alkylphenol
composition
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06013803A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1752513A2 (de
EP1752513A3 (de
Inventor
Matthias Krull
Klaus Mikulecky
Carsten Cohrs
Hildegard Freundl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Clariant Produkte Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Produkte Deutschland GmbH filed Critical Clariant Produkte Deutschland GmbH
Priority to PL06013803T priority Critical patent/PL1752513T3/pl
Publication of EP1752513A2 publication Critical patent/EP1752513A2/de
Publication of EP1752513A3 publication Critical patent/EP1752513A3/de
Application granted granted Critical
Publication of EP1752513B1 publication Critical patent/EP1752513B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/1641Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aliphatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • C10L10/16Pour-point depressants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1981Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1985Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/223Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • C10L1/233Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring containing nitrogen and oxygen in the ring, e.g. oxazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to the use of alkylphenol-aldehyde resins and salts of organic aromatic bases with sulfonic acids to improve the conductivity of low-sulfur mineral oil distillates, and the additive mineral oil distillates.
  • additives are added to such oils with low electrical conductivity, which increase the conductivity and facilitate the potential equalization between the oil and its environment.
  • a conductivity greater than 50 pS / m is generally considered sufficient for the safe handling of mineral oil distillates. Methods for determining the conductivity are described, for example, in DIN 51412-T02-79 and ASTM 2624.
  • alkylphenol resins and their derivatives which can be prepared by condensation of alkyl-containing phenols with aldehydes under acidic or basic conditions.
  • alkylphenol resins are described as Cold flow improvers, lubricity improvers, oxidation inhibitors, corrosion inhibitors and asphalt dispersants and alkoxylated alkylphenol resins are used as demulsifiers in crude oils and middle distillates.
  • alkylphenol resins are used as stabilizers for jet fuel.
  • Resins of benzoic acid esters with aldehydes or ketones are also used as cold additives for fuel oils.
  • the effect of the known resins and the additive systems containing them is not yet satisfactory, especially in many low-sulfur or sulfur-free oils.
  • GB-A-2 305 437 and GB-A-2 308 129 disclose alkylphenol-formaldehyde resins as pour point depressants for waxy liquids such as diesel, lubricating oil, hydraulic oil, crude oils.
  • the condensation of the alkylphenols with formaldehyde in a ratio of 2: 1 to 1: 1.5 can be carried out in the presence of acidic catalysts such as sulfuric acid, sulfonic acids or carboxylic acids.
  • the resin can then be treated with NaOH as needed to convert the acidic catalyst to the sodium salt and separate by, for example, filtration.
  • working with concentrated sulfuric acid which is filtered off after the condensation as the sodium salt.
  • EP-A-0 857 776 discloses the use of alkylphenol resins in combination with ethylene copolymers and nitrogen-containing paraffin dispersants to improve the cold properties of middle distillates.
  • the condensation of the resins can be carried out under catalysis by inorganic or organic acids, which optionally remain after not further specified neutralization in the product.
  • the condensation of the resins takes place under catalysis by alkylbenzenesulfonic acid, which is subsequently neutralized with KOH or NaOH.
  • EP-A-1 088 045 discloses that alkylphenol resins can be combined with amines bearing at least one hydrocarbon radical. According to the examples, these are salts of alkylphenol resins in which just under half of the phenolic OH groups are neutralized with secondary alkylamines.
  • EP-A-0 381 966 discloses a process for the preparation of novolacs by condensation of phenols with aldehydes with azeotropic culling of Water.
  • Suitable catalysts are strong mineral acids, especially sulfuric acid and its acidic derivatives. These can be neutralized before working up the reaction mixture, preferably with metal hydroxides or amines. In the examples, all is catalyzed with sulfuric acid, which is then neutralized with sodium hydroxide solution.
  • EP-A-0 311 452 discloses alkylphenol-formaldehyde condensates as refrigerants for fuels and lubricating oils.
  • the catalyst used is p-toluenesulfonic acid, which remains as such in the resin.
  • EP-A-1482024 discloses condensates of p-hydroxybenzoic acid esters and aldehydes or ketones as cold additives for fuel oils. The condensation takes place here in the presence of acidic catalysts such as p-toluenesulfonic acid, which remain as such in the product.
  • alkylphenol resins are understood as meaning all polymers which are accessible by condensation of an alkyl radical-carrying phenol with aldehydes or ketones.
  • the alkyl radical can be bonded directly to the aryl radical of the phenol via a C-C bond or via functional groups such as esters or ethers.
  • catalysts for the condensation reactions of alkylphenol and aldehyde in addition to carboxylic acids such as acetic acid and oxalic acid in particular strong mineral acids such as hydrochloric acid, phosphoric acid and sulfuric acid and sulfonic acids are common catalysts. Usually, these remain after completion of the reaction as such or in neutralized form in the product.
  • mineral oils which contain phenol resins carrying alkyl radicals can be significantly improved in their electrical conductivity by adding small amounts of oil-soluble salts of organic aromatic bases and sulfonic acids.
  • the effect achievable with salts of aromatic bases is also more pronounced than with corresponding alkali metal salts and ammonium salts based on aliphatic amines.
  • the salt formation in the mixtures according to the invention is much more selective and the weak in comparison to alkali metal bases and aliphatic amines aromatic bases prefer a salt formation with the strong sulfonic acids and less with the only weakly acidic phenolic OH groups.
  • the oils thus additized show a greatly increased conductivity and are thus much safer to handle.
  • compositions comprising at least one alkylphenol resin (constituent I) and, based on the alkylphenol resin, from 0.005 to 10% by weight of at least one salt of an aromatic base and a sulfonic acid (constituent II).
  • the invention further relates to mineral oil distillates having a sulfur content of less than 350 ppm, containing 5 to 500 ppm of a composition comprising at least one alkylphenol resin (constituent I) and, based on the alkylphenol resin, 0.05 to 10 wt .-% of at least one salt of an aromatic base and a sulfonic acid (component II).
  • a composition comprising at least one alkylphenol resin (constituent I) and, based on the alkylphenol resin, 0.05 to 10 wt .-% of at least one salt of an aromatic base and a sulfonic acid (component II).
  • compositions comprising at least one alkylphenol resin (component I) and, based on the alkylphenol resin, 0.05 to 10 wt .-% of at least one salt of an aromatic base and a sulfonic acid (component II), for improving the electrical conductivity of mineral oil distillates having a sulfur content of less than 350 ppm.
  • compositions comprising at least one alkylphenol resin (component I) and, based on the alkylphenol resin, 0.05 to 10 wt .-% of at least one salt of an aromatic base and a sulfonic acid (component II), for improving the cold flowability of mineral oil distillates having a sulfur content of less than 350 ppm.
  • the sulfonic acid salts of the invention can be added to the mineral oil distillate or the alkylphenol-aldehyde resin as such. They are preferably prepared by reacting the sulphonic acid used as the catalyst for the acidic condensation of the alkylphenol-aldehyde resin with the corresponding aromatic base in the presence of the alkylphenol-aldehyde resins. Alternatively, they can be prepared by reacting an aromatic base used as catalyst for basic condensation of the alkylphenol-aldehyde resin with corresponding sulfonic acids in the presence of the alkylphenol-aldehyde resins.
  • compositions according to the invention based on the alkylphenol resin, 0.05 to 5 wt .-% and in particular 0.1 to 5 wt .-% such as 0.5 to 4 wt .-% of at least one salt of an aromatic base and a sulfonic acid.
  • the mineral oil distillates according to the invention preferably contain from 10 to 150 and especially from 10 to 100 ppm of at least one alkylphenol resin and from 0.1 to 5% by weight, particularly preferably 0.5 to 5 wt .-%. such as 1 to 4 wt .-% of at least one sulfonic acid salt based on the alkylphenol resin.
  • compositions comprising at least one alkylphenol resin and, based on the alkylphenol resin, 0.1 to 5 wt .-%, particularly preferably 0.5 to 5 wt .-% such as 1 to 4 wt .-% of at least one salt of an aromatic base and a sulfonic acid.
  • the mineral oil distillates of the invention which are improved in their electrical conductivity have an electrical conductivity of preferably at least 50 pS / m, especially of at least 70 pS / m, for example of at least 90 pS / m.
  • Particularly suitable sulfonic acids for the preparation of the sulfonic acid salts are all oil-soluble compounds containing at least one sulfonic acid group and at least one saturated or unsaturated, linear, branched and / or cyclic hydrocarbon radical having 1 to 40 carbon atoms and preferably having 3 to 24 carbon atoms.
  • Particularly preferred are aromatic sulfonic acids, especially alkylaromatic mono-sulfonic acids having one or more C 1 -C 28 -alkyl radicals and in particular those having C 3 -C 22 -alkyl radicals.
  • the alkylaromatic sulfonic acids preferably carry one or two alkyl radicals, in particular an alkyl radical.
  • the underlying aryl groups are preferably monocyclic and bicyclic, in particular monocyclic.
  • the aryl groups carry no carboxyl groups, and especially they carry only sulfonic acid and alkyl groups. Suitable examples are methanesulfonic acid, butanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, xylenesulfonic acid, 2-mesitylenesulfonic acid, 4-ethylbenzenesulfonic acid, isopropylbenzenesulfonic acid, 4-butylbenzenesulfonic acid, 4-octylbenzenesulfonic acid; Dodecylbenzenesulfonic acid, didodecylbenzenesulfonic acid, naphthalenesulfonic acid. Mixtures of these sulfonic acids are suitable. Oil-soluble here means that said compounds are at least 1 wt .-% soluble
  • Suitable aromatic bases are in particular oil-soluble compounds which are a cyclic, Anlagenkonjugêtides hydrocarbon skeleton with 4n + 2 ⁇ -electrons, where n is an integer between 1 and 6, preferably between 2 and 4 and in particular 1 or 2, and at least one capable of salt formation Heteroatom included.
  • This heteroatom may e.g. be part of the aromatic ring system in so-called heteroaromatics, but it may also be bound to this ring. It is preferably part of the aromatic ring system.
  • Suitable heteroatoms are nitrogen, oxygen and sulfur, particularly preferred heteroatom is nitrogen.
  • at least one free electron pair of the heteroatom is not involved in the formation of the aromatic ⁇ -electron system.
  • the aromatic system may be mono-, di- or even polycyclic. It preferably contains one or more five- and / or six-membered rings with a ⁇ -electron septet. It is particularly preferably monocyclic and five- or six-membered. It may carry further substituents such as, for example, alkyl, alkylene and / or phenyl radicals, but also functional groups such as, for example, hydroxy, ester, amide and / or amino groups, provided these do not impair salt formation.
  • substituents such as, for example, alkyl, alkylene and / or phenyl radicals, but also functional groups such as, for example, hydroxy, ester, amide and / or amino groups, provided these do not impair salt formation.
  • alkyl and alkenyl radicals may be linear, branched or cyclic and linked to the aromatic system at one or two sites.
  • aromatic monocyclic bases examples include pyridine, picoline, lutidine, collidine, nicotinamide, dihydroquinoline, aminopyridine, aniline, N, N-dimethylaniline, toluidine, phenylenediamine, pyrimidine, pyrazine, pyridazine, imidazole, pyrazole, histamine, triazine, triazole, oxazole, Isoxazole, thiazole and isothiazole, and p-phenylenediamine, 2- (N, N-dimethylamino) pyridine, 4- (N, N-dimethylamino) pyridine and 2,4-diamino-6-hydroxypyrimidine.
  • Suitable aromatic polycyclic bases are, for example, quinoline, isoquinoline, 6-methylquinoline, 2-aminoquinoline, 5-dimethylaminochinoline, 7-dimethylaminoquinoline, benzimidazole, purine, cinnoline, phthalazine, quinazoline, quinoxaline, acridine, phenanthroline and phenazine and 1,5-diaminonaphthalene. 1,8-diaminonaphthalene and diaminoquinazoline.
  • Particularly preferred bases are mono- and bicyclic nitrogen-containing aromatics such as pyridine, quinoline, imidazole and derivatives thereof.
  • the sulfonic acid salts of the invention are prepared by reacting the sulfonic acids with 0.8 to 10 moles of aromatic base, preferably 0.9 to 5 moles of aromatic base, more preferably 0.95 to 2 moles of aromatic base, such as about equimolar.
  • aromatic base preferably 0.9 to 5 moles of aromatic base, more preferably 0.95 to 2 moles of aromatic base, such as about equimolar.
  • the additives according to the invention and the mineral oil distillates containing them can accordingly also contain more than equimolar amounts of aromatic base, based on the sulfonic acid.
  • Alkylphenol-aldehyde resins are known in principle and, for example in the Rompp Chemie Lexikon, 9th edition, Thieme Verlag 1988-92, Volume 4, p 3351 et seq. described. Particularly suitable according to the invention are those alkylphenol-aldehyde resins which are derived from alkylphenols having one or two alkyl radicals in the ortho and / or para position to the OH group. Particularly preferred as starting materials are alkylphenols which carry at least two hydrogen atoms capable of condensation with aldehydes on the aromatic and in particular monoalkylated phenols. Particularly preferably, the alkyl radical is in the para position to the phenolic OH group.
  • alkyl radicals (which are understood as meaning in general hydrocarbon radicals as defined below for the constituent 1) may be identical or different in the alkylphenol-aldehyde resins which can be used in the process according to the invention, they may be saturated or unsaturated and have 1 to 200, preferably 1 to 20, in particular 4-16, such as 6-12 carbon atoms; it is preferably n-, iso- and tert-butyl, n- and iso-pentyl, n- and iso-hexyl, n- and iso-octyl, n- and iso-nonyl-, n - and iso-decyl, n- and iso-dodecyl, tetradecyl, hexadecyl, octadecyl, tripropenyl, tetrapropenyl, poly (propenyl) - and poly (isobutenyl) radicals.
  • mixtures of alkylphenols having different alkyl radicals are used for the preparation of the alkylphenol resins.
  • resins based on butyphenol on the one hand and octyl, nonyl and / or dodecylphenol in a molar ratio of 1:10 to 10: 1 on the other hand have proven particularly useful.
  • Suitable alkylphenol resins may also contain or consist of structural units of other phenol analogs such as salicylic acid, hydroxybenzoic acid and derivatives thereof such as esters, amides and salts.
  • Suitable aldehydes for the alkylphenol-aldehyde resins are those having 1 to 12 carbon atoms and preferably those having 1 to 4 carbon atoms such as formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, 2-ethylhexanal, benzaldehyde, glyoxalic acid and their reactive equivalents such as paraformaldehyde and trioxane.
  • Particularly preferred is formaldehyde in the form of paraformaldehyde and especially formalin.
  • the molecular weight of the alkylphenol-aldehyde resins measured by gel permeation chromatography against poly (styrene) standards in THF is preferably 500-25,000 g / mol, more preferably 800-10,000 g / mol and especially 1,000-5,000 g / mol such as 1500-3,000 g / mol.
  • the prerequisite here is that the alkylphenol-aldehyde resins, at least in application-relevant concentrations of 0.001 to 1 wt .-% are oil-soluble.
  • alkylphenol-formaldehyde resins the oligo- or polymers having a repetitive structural unit of the formula wherein R 5 is C 1 -C 200 alkyl or C 2 -C 200 alkenyl, OR 6 or OC (O) -R 6 , R 6 is C 1 -C 200 alkyl or C 2 -C 200 alkenyl and n is a number from 2 to 100.
  • R 6 is preferably C 1 -C 20 -alkyl or C 2 -C 20 -alkenyl and in particular C 4 -C 16 -alkyl or C 2 -C 20 -alkenyl, for example C 6 -C 12 -alkyl or C C 2 -C 20 alkenyl.
  • R 5 is particularly preferably C 1 -C 20 -alkyl or -alkenyl and in particular C 4 -C 16 -alkyl or alkenyl, such as for example C 6 -C 12 alkyl or alkenyl.
  • n is a number from 2 to 50 and especially a number from 3 to 25, such as a number from 5 to 15.
  • alkyl radicals of the alkylphenol preferably with C 4 -C 20 alkyl radicals such as C 6 -C 12 alkyl radicals.
  • the alkyl radicals can be linear or branched, preferably they are linear.
  • Particularly suitable alkylphenol-aldehyde resins are derived from linear alkyl radicals having 8 and 9 C atoms.
  • alkylphenol-aldehyde resins whose alkyl radicals carry 4 to 200 carbon atoms, preferably 10 to 180 carbon atoms, and oligomers or polymers of olefins having 2 to 6 carbon atoms, such as .alpha for example, derived from poly (isobutylene). They are thus preferably branched.
  • the degree of polymerization (n) here is preferably between 2 and 20, preferably between 3 and 10 alkylphenol units.
  • alkylphenol-aldehyde resins are accessible by known methods, for example by condensation of the corresponding alkylphenols with formaldehyde, ie with 0.5 to 1.5 moles, preferably 0.8 to 1.2 moles of formaldehyde per mole of alkylphenol.
  • the condensation can be carried out solvent-free, but preferably it is carried out in the presence of an inert or only partially water-miscible inert organic solvent such as mineral oils, alcohols, ethers and the like. Particularly preferred are solvents which can form azeotropes with water.
  • solvents in particular aromatics such as toluene, xylene diethylbenzene and higher-boiling commercial solvent mixtures such as ®Shellsol AB, and solvent naphtha are used.
  • the condensation is preferably carried out between 70 and 200 ° C such as between 90 and 160 ° C. It is usually catalyzed by 0.05 to 5 wt .-% bases or acids.
  • aromatic bases such as, for example, pyridine
  • organic sulfonic acid leads to the mixtures according to the invention.
  • the catalysis by organic sulfonic acids which after completion of the condensation with aromatic bases to the oil-soluble sulfonic acid salts according to the invention are reacted.
  • compositions according to the invention are preferably used as concentrates which contain from 10 to 90% by weight and preferably from 20 to 60% by weight of solvent.
  • Preferred solvents are higher-boiling aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, esters, ethers and mixtures thereof.
  • the additives of the invention increase the conductivity of mineral oils such as gasoline, kerosene, jet fuel, diesel, and low sulfur fuel oil of less than 350 ppm, especially less than 50 ppm, such as less than 10 or less than 5 ppm. At the same time, they improve the cold properties, in particular of middle distillates such as kerosene, jet fuel, diesel and heating oil.
  • the additives according to the invention may also be added to mineral oil distillates for improving cold flowability in combination with further additives such as, for example, ethylene copolymers, polar nitrogen compounds, comb polymers, polyoxyalkylene compounds and / or olefin copolymers.
  • the present invention thus provides a new additive package which simultaneously improves the cold properties and antistatic properties of low sulfur mineral oils.
  • additives according to the invention are used for mineral oil distillates, then in a preferred embodiment they contain, in addition to the constituents I and II, one or more of the constituents III to VII.
  • ethylene copolymers are, in particular, those which, in addition to ethylene, contain 6 to 21 mol%, in particular 10 to 18 mol%, of comonomers.
  • the olefinically unsaturated compounds are preferably vinyl esters, acrylic esters, methacrylic esters, alkyl vinyl ethers and / or alkenes, it being possible for the abovementioned compounds to be substituted by hydroxyl groups.
  • One or more comonomers may be included in the polymer.
  • said alkyl groups may be substituted with one or more hydroxyl groups.
  • R 1 is a branched alkyl radical or a neoalkyl radical having 7 to 11 carbon atoms, in particular having 8, 9 or 10 carbon atoms.
  • Particularly preferred vinyl esters are derived from secondary and especially tertiary carboxylic acids whose branching is in the alpha position to the carbonyl group.
  • Suitable vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl hexanoate, vinyl heptanoate, vinyl octanoate, vinyl pivalate, vinyl 2-ethylhexanoate, vinyl laurate, vinyl stearate and versatic acid esters such as vinyl neononanoate, vinyl neodecanoate, vinyl neoundecanoate.
  • these ethylene copolymers contain vinyl acetate and at least one further vinyl ester of the formula 1 in which R 1 is C 4 to C 30 -alkyl, preferably C 4 to C 16 -alkyl, especially C 6 - to C 12 -alkyl ,
  • Suitable acrylic esters include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n- and Iso-butyl (meth) acrylate, hexyl, octyl, 2-ethylhexyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl (meth) acrylate and mixtures of these comonomers.
  • said alkyl groups may be substituted with one or more hydroxyl groups.
  • An example of such an acrylic ester is hydroxyethyl methacrylate.
  • the alkenes are preferably simple unsaturated hydrocarbons having 3 to 30 carbon atoms, especially 4 to 16 carbon atoms and especially 5 to 12 carbon atoms.
  • Suitable alkenes include propene, butene, isobutylene, pentene, hexene, 4-methylpentene, octene, diisobutylene and norbornene and its derivatives such as methylnorbornene and vinylnorbornene.
  • said alkyl groups may be substituted with one or more hydroxyl groups.
  • terpolymers which, apart from ethylene, have from 3.5 to 20 mol%, in particular from 8 to 15 mol% of vinyl acetate and from 0.1 to 12 mol%, in particular from 0.2 to 5 mol%, of at least one longer-chain and preferably branched one Vinyl esters such as vinyl 2-ethylhexanoate, vinyl neononanoate or vinyl neodecanoate, the total comonomer content being between 8 and 21 mol%, preferably between 12 and 18 mol%.
  • copolymers contain, in addition to ethylene and 8 to 18 mol% of vinyl esters, 0.5 to 10 mol% of olefins such as propene, butene, isobutylene, hexene, 4-methylpentene, octene, diisobutylene and / or norbornene.
  • olefins such as propene, butene, isobutylene, hexene, 4-methylpentene, octene, diisobutylene and / or norbornene.
  • these ethylene-co- and terpolymers have melt viscosities at 140 ° C of from 20 to 10,000 mPas, especially from 30 to 5,000 mPas, especially of 50 up to 2,000 mPas.
  • the means of 1 H-NMR spectroscopy, certain degrees of branching are preferably between 1 and 9 CH 3/100 CH 2 groups, especially between 2 and 6 CH 3/100 CH 2 groups, which do not stem from the comonomers.
  • the polymers underlying the mixtures differ in at least one characteristic.
  • they may contain different comonomers, have different comonomer contents, molecular weights and / or degrees of branching.
  • the mixing ratio between the additives according to the invention and ethylene copolymers as constituent III can vary within wide limits depending on the application, with the ethylene copolymers III often representing the greater proportion.
  • Such additive mixtures preferably contain from 2 to 70% by weight, preferably from 5 to 50% by weight, of the inventive additive combination of I and II and from 30 to 98% by weight, preferably from 50 to 95% by weight, of ethylene copolymers.
  • the oil-soluble polar nitrogen compounds (constituent IV) which are suitable according to the invention as further constituents are preferably reaction products of fatty amines with compounds which contain an acyl group.
  • the alkyl and alkenyl radicals can be linear or branched and contain up to two double bonds. They are preferably linear and substantially saturated, ie they have iodine numbers of less than 75 gl 2 / g, preferably less than 60 gl 2 / g and in particular between 1 and 10 gl 2 / g. Particularly preferred are secondary fatty amines in which two of the groups R 6 , R 7 and R 8 are C 8 -C 36 -alkyl, C 6 -C 36 -cycloalkyl, C 8 -C 36 -alkenyl, in particular C 12 -C 24 alkyl, C 12 -C 24 alkenyl or cyclohexyl.
  • Suitable fatty amines are, for example Octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, eicosylamine, behenylamine, didecylamine, didodecylamine, ditetradecylamine, dihexadecylamine, dioctadecylamine, dieicosylamine, dibehenylamine and mixtures thereof.
  • the amines contain chain cuts based on natural raw materials such as coco fatty amine, tallow fatty amine, hydrogenated tallow fatty amine, dicocosfettamine, ditallow fatty amine and di (hydrogenated tallow fatty amine).
  • Particularly preferred amine derivatives are amine salts, imides and / or amides such as, for example, amide ammonium salts of secondary fatty amines, in particular dicocosfettamine, ditallow fatty amine and distearylamine.
  • Particularly preferred paraffin dispersants as constituent IV contain at least one acyl group converted to an ammonium salt. Specifically, they contain at least two, for example at least three or at least four and in the case of polymeric paraffin dispersants also five or more ammonium groups.
  • Suitable carbonyl compounds for the reaction with amines are both monomeric and polymeric compounds having one or more carboxyl groups. In the case of the monomeric carbonyl compounds, preference is given to those having 2, 3 or 4 carbonyl groups. They can also contain heteroatoms such as oxygen, sulfur and nitrogen.
  • carboxylic acids examples include maleic, fumaric, crotonic, itaconic, succinic, C 1 -C 40 -alkenylsuccinic, adipic, glutaric, sebacic, and malonic acids and benzoic, phthalic, trimellitic and pyromellitic acid, nitrilotriacetic acid , Ethylenediaminetetraacetic acid and their reactive derivatives such as esters, anhydrides and acid halides.
  • Copolymers of ethylenically unsaturated acids such as, for example, acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid, have proven particularly suitable as polymeric carbonyl compounds, particular preference is given to copolymers of maleic anhydride.
  • Suitable comonomers are those which impart oil solubility to the copolymer. Oil-soluble means here that the copolymer dissolves without residue in the mineral oil distillate to be added after reaction with the fatty amine in practice-relevant metering rates.
  • Suitable comonomers are, for example Olefins, alkyl esters of acrylic acid and methacrylic acid, alkyl vinyl esters and alkyl vinyl ethers having 2 to 75, preferably 4 to 40 and in particular 8 to 20 carbon atoms in the alkyl radical.
  • the carbon number refers to the alkyl radical attached to the double bond.
  • Particularly suitable comonomers are olefins with a terminal double bond.
  • the molecular weights of the polymeric carbonyl compounds are preferably between 400 and 20,000, more preferably between 500 and 10,000, for example between 1,000 and 5,000.
  • Oil-soluble polar nitrogen compounds which have been obtained by reaction of aliphatic or aromatic amines, preferably long-chain aliphatic amines, with aliphatic or aromatic mono-, di-, tri- or tetracarboxylic acids or their anhydrides have proven particularly suitable (cf. US 4 211 534 ).
  • amides and ammonium salts of aminoalkylene polycarboxylic acids such as nitrilotriacetic acid or ethylenediaminetetraacetic acid with secondary amines are suitable as oil-soluble polar nitrogen compounds (cf. EP 0 398 101 ).
  • oil-soluble polar nitrogen compounds are copolymers of maleic anhydride and ⁇ , ⁇ -unsaturated compounds which can optionally be reacted with primary monoalkylamines and / or aliphatic alcohols (cf. EP-A-0 154 177 . EP 0 777 712 ), the reaction products of Alkenylspirobislactonen with amines (see. EP-A-0 413 279 B1) and after EP-A-0 606 055 A2 reaction products of terpolymers based on ⁇ , ⁇ -unsaturated dicarboxylic acid anhydrides, ⁇ , ⁇ -unsaturated compounds and polyoxyalkylene ethers of lower unsaturated alcohols.
  • the mixing ratio between the additives of the invention and oil-soluble polar nitrogen compounds as constituent IV may vary depending on the application.
  • Such additive mixtures preferably contain from 10 to 90% by weight, preferably from 20 to 80% by weight, of the inventive additive combination of I and II and from 10 to 90% by weight, preferably from 20 to 80% by weight, of oil-soluble polar nitrogen compounds.
  • Suitable polyoxyalkylene compounds are esters, ethers and ethers / esters of polyols which carry at least one alkyl radical having 12 to 30 carbon atoms.
  • the alkyl groups are derived from an acid, the remainder is derived from a polyhydric alcohol; If the alkyl radicals come from a fatty alcohol, the remainder of the compound derives from a polyacid.
  • Suitable comb polymers are, for example, copolymers of ethylenically unsaturated dicarboxylic acids such as maleic or fumaric acid with other ethylenically unsaturated monomers such as olefins or vinyl esters such as vinyl acetate.
  • Particularly suitable olefins are ⁇ -olefins having 10 to 24 carbon atoms such as 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and mixtures thereof.
  • olefins based on oligomerized C 2 -C 6 -olefins such as poly (isobutylene) with a high proportion of terminal double bonds are suitable as comonomers.
  • these copolymers are at least 50% esterified with alcohols having 10 to 22 carbon atoms. Suitable alcohols include n-decen-1-ol, n-dodecan-1-ol, n-tetradecan-1-ol, n-hexadecan-1-ol, n-octadecan-1-ol, n-eicosan-1-ol and mixtures thereof.
  • comb polymers are poly (alkyl acrylates), poly (alkyl methacrylates) and poly (alkyl vinyl ethers) derived from alcohols containing 12 to 20 carbon atoms and poly (vinyl esters) derived from fatty acids containing 12 to 20 carbon atoms. Derive atoms.
  • Suitable polyols are polyethylene glycols, polypropylene glycols, polybutylene glycols and their copolymers having a molecular weight of about 100 to about 5000, preferably 200 to 2000.
  • alkoxylates of polyols such as glycerol, trimethylolpropane, pentaerythritol, neopentyl glycol, as well as from them Condensation accessible oligomers having 2 to 10 monomer units, such as Polyglycerol.
  • Preferred alkoxylates are those having from 1 to 100, in particular from 5 to 50, mol of ethylene oxide, propylene oxide and / or butylene oxide per mole of polyol. Esters are especially preferred.
  • Fatty acids containing 12 to 26 carbon atoms are preferred for reaction with the polyols to form the ester additives, more preferably C 18 to C 24 fatty acids, especially stearic and behenic acid.
  • the esters can also be prepared by esterification of polyoxyalkylated alcohols. Preference is given to completely esterified polyoxyalkylated polyols having molecular weights of from 150 to 2,000, preferably from 200 to 600. Particularly suitable are PEG-600 dibehenate and glycerol-ethylene glycol tribehenate.
  • Suitable olefin copolymers as further constituent of the additive according to the invention can be derived directly from monoethylenically unsaturated monomers or can be prepared indirectly by hydrogenation of polymers derived from polyunsaturated monomers such as isoprene or butadiene.
  • preferred copolymers contain structural units which are derived from ⁇ -olefins having 3 to 24 carbon atoms and have molecular weights of up to 120,000 g / mol.
  • Preferred ⁇ -olefins are propylene, butene, isobutene, n-hexene, isohexene, n-octene, isooctene, n-decene, isodecene.
  • the comonomer content of ⁇ -olefins having 3 to 24 C atoms is preferably between 15 and 50 mol%, more preferably between 20 and 35 mol% and especially between 30 and 45 mol%.
  • These copolymers can also be small amounts, eg up to 10 mol% further comonomers such as non-terminal olefins or non-conjugated olefins.
  • Preferred are ethylene-propylene copolymers.
  • the olefin copolymers can be prepared by known methods, for example by Ziegler or metallocene catalysts.
  • olefin copolymers are block copolymers containing blocks of olefinically unsaturated aromatic monomers A and blocks of hydrogenated polyolefins B.
  • Particularly suitable are block copolymers of the structure (AB) nA and (AB) m, where n is a number between 1 and 10 and m is a number between 2 and 10.
  • the additives can be used alone or together with other additives, e.g. with other pour point depressants or dewaxing aids, with antioxidants, cetane number improvers, dehazers, demulsifiers, detergents, dispersants, defoamers, dyes, corrosion inhibitors, lubricity additives, sludge inhibitors, odorants and / or cloud point depressants.
  • other pour point depressants or dewaxing aids with antioxidants, cetane number improvers, dehazers, demulsifiers, detergents, dispersants, defoamers, dyes, corrosion inhibitors, lubricity additives, sludge inhibitors, odorants and / or cloud point depressants.
  • the mixing ratio between the inventive additive combinations of I and II and the further constituents V, VI and VII is generally in each case between 1:10 and 10: 1, preferably between 1: 5 and 5: 1.
  • the additives according to the invention increase the conductivity of mineral oil distillates such as gasoline, kerosene, jet fuel, diesel and heating oil, preferably having a low aromatic content of less than 21% by weight, in particular less than 19% by weight, especially less than 18% by weight. % such as less than 17% by weight. Since they also improve the cold flow properties, especially of mineral oil distillates such as kerosene, jet fuel, diesel and heating oil, their use can be achieved a significant saving in the total additives of the oils, since no additional conductivity improvers must be used.
  • the additives of the invention can be set in areas or at times in which due to the climatic conditions so far no cold additives are used by admixing paraffin-rich, cheaper mineral oil fractions such as Cloud Point and / or CFPP of the oils to be upgraded to higher, which the economy of the refinery improved.
  • the additives of the invention also contain no Metals, which could lead to ashes during combustion and thus deposits in the combustion chamber or exhaust gas system and particulate pollutants in the environment.
  • the conductivity of the oils according to the invention does not drop when the temperature drops, and in many cases even a rise in conductivity not known from additives of the prior art has been observed with decreasing temperature, so that safe handling is ensured even at low ambient temperatures.
  • Another advantage of the additives of the invention is the preservation of the electrical conductivity even during prolonged, that is several weeks storage of the additized oils.
  • the additives according to the invention are particularly advantageous in mineral oil distillates which contain less than 350 ppm of sulfur, more preferably less than 100 ppm of sulfur, in particular less than 50 ppm of sulfur and in special cases less than 10 ppm of sulfur.
  • the water content of such oils is below 150 ppm, sometimes below 100 ppm, such as below 80 ppm.
  • the electrical conductivity of such oils is usually below 10 pS / m and often even below 5 pS / m.
  • Particularly preferred mineral oil distillates are middle distillates.
  • the middle distillate is in particular those mineral oils which are obtained by distillation of crude oil and boil in the range of 120 to 450 ° C, for example kerosene, jet fuel, diesel and fuel oil. Their preferred sulfur, aromatics and water contents are as already stated above.
  • the compositions according to the invention are particularly advantageous in middle distillates which have 90% distillation points below 360 ° C., in particular 350 ° C. and in special cases below 340 ° C.
  • aromatic compounds the sum of mono-, di- and polycyclic aromatic compounds as determinable by HPLC according to DIN EN 12916 (Edition 2001).
  • the middle distillates may also contain minor amounts, for example up to 40% by volume, preferably 1 to 20% by volume, especially 2 to 15, for example 3 to 10% by volume of the oils of animal and / or vegetable origin described in more detail below such as fatty acid methyl esters.
  • compositions according to the invention are likewise suitable for improving the electrostatic properties of fuels based on renewable raw materials (biofuels).
  • biofuels is meant oils obtained from animal and preferably vegetable material or both, and derivatives thereof, which can be used as fuel and especially as diesel or fuel oil.
  • These are, in particular, triglycerides of fatty acids having 10 to 24 carbon atoms and the fatty acid esters of lower alcohols, such as methanol or ethanol, which are obtainable by transesterification.
  • biofuels examples include rapeseed oil, coriander oil, soybean oil, cottonseed oil, sunflower oil, castor oil, olive oil, peanut oil, corn oil, almond oil, palm kernel oil, coconut oil, mustard seed oil, beef tallow, bone oil, fish oils and used edible oils.
  • Other examples include oils derived from wheat, jute, sesame, shea nut, arachis oil and linseed oil.
  • the fatty acid alkyl esters, also referred to as biodiesel can be derived from these oils by methods known in the art.
  • Rapeseed oil which is a mixture of glycerol esterified fatty acids, is preferred because it is available in large quantities and is readily available by squeezing rapeseed.
  • sunflower and soybeans and their mixtures with rapeseed oil are preferred.
  • Particularly suitable as biofuels are lower alkyl esters of fatty acids.
  • commercially available mixtures of the ethyl, propyl, butyl and especially methyl esters of fatty acids having 14 to 22 carbon atoms for example of lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, elaidic acid, petroselinic acid, ricinoleic acid, Elaeostearic, linoleic, linolenic, eicosanoic, gadoleic, docosanoic or erucic acid into consideration.
  • Preferred esters have an iodine value of from 50 to 150 and in particular from 90 to 125.
  • Mixtures with particularly advantageous properties are those which contain mainly, ie at least 50% by weight of methyl esters of fatty acids having 16 to 22 carbon atoms and 1, 2 or 3 double bonds contain.
  • the preferred lower alkyl esters of fatty acids are the methyl esters of oleic, linoleic, linolenic and erucic acids.
  • the additives of the invention are also useful for improving the electrostatic properties of turbine fuels. These are fuels boiling in the temperature range of about 65 ° C to about 330 ° C and marketed, for example, under the designations JP-4, JP-5, JP-7, JP-8, Jet A and Jet A-1. JP-4 and JP-5 are disclosed in U.S. Pat. Military Specification MIL-T-5624-N and JP-8 in U.S. Pat. Military Specification MIL-T-83133-D specified; Jet A, Jet A-1 and Jet B are specified in the ASTM D1655.
  • the additives of the invention are suitable for improving the electrical conductivity of hydrocarbons, which are used as solvents z. B. in the textile cleaning or for the production of paints and varnishes.
  • Test oils were current oils from European refineries.
  • the CFPP value is determined in accordance with EN 116 and the determination of the cloud point in accordance with ISO 3015.
  • the determination of the aromatic hydrocarbon groups is carried out in accordance with DIN EN 12916 (November 2001 edition) Test oil 1
  • Test oil 2 Test oil 3 distillation IBP [° C] 169 193 173 20% [° C] 223 229 208 90% [° C] 337 329 334 FBP [° C] 359 351 359 Cloud point [° C] -5.9 -5.7 -7.2 CFPP [° C] -11 -9 -9 sulfur [Ppm] 30 19 8th Density @ 15 ° C [g / cm 3 ] .8361 .8313 .8261 aromatics [Wt .-%] 18.4 18.2 18.5 of which mono [Wt .-%] 15.5 17.0 17.3 di [Wt .-%] 2.5 1.2 1.1 poly [Wt .-%]
  • the mixtures A1) to A8) were used as 50% settings in Solvent Naphtha, a commercial mixture of high-boiling aromatic hydrocarbons.
  • the additives were dissolved with the given concentration in 2 l of the test oil 1 with shaking.
  • An electrical conductivity meter MLA 900 was used to determine the electrical conductivity in accordance with DIN 51412-T02-79.
  • the unit of electrical conductivity is picosiemens / m (pS / m).
  • a conductivity of at least 50 pS / m is generally considered sufficient for the safe handling of oils.
  • Table 2 Electrical conductivity of test oil 1 with the addition of sulfonic acid salts example additive 0 ppm 1 ppm 2 ppm 3 ppm 1 (See) Imidazolium dodecylbenzenesulfonate 6 10 11 13 2 (Cf.) Pyridinium dodecylbenzenesulfonate 6 9 12 14 3 (Cf.) Pyridinium p-toluenesulfonate 6 9 12 16 4 (Cf.) Sodium dodecylbenzenesulfonate 6 8th 10 11 5 (Cf.) Tributylammonium dodecylbenzenesulfonate 6 9 11 13
  • the additives (A) according to the invention with various co-additives were used.
  • the ethylene copolymers (B) and paraffin dispersants (C) used are commercial products with the characteristics given below.
  • the lower 20% by volume is isolated and the cloud point determined according to IP 3015. Only a small deviation of the cloud point of the lower phase (CP KS ) from the blank value of the oil shows a good paraffin dispersion.
  • the mixtures according to the invention thus make it possible to improve the conductivity of oils doped with alkylphenol resins to more than 50 pS / m with only small amounts of sulfonic acid ammonium salt and thus to ensure safe handling of the additized oils.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lubricants (AREA)
EP06013803A 2005-07-28 2006-07-04 Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit Active EP1752513B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06013803T PL1752513T3 (pl) 2005-07-28 2006-07-04 Oleje mineralne o polepszonym przewodnictwie elektrycznym i zdolności do płynięcia na zimno

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005035276A DE102005035276B4 (de) 2005-07-28 2005-07-28 Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit

Publications (3)

Publication Number Publication Date
EP1752513A2 EP1752513A2 (de) 2007-02-14
EP1752513A3 EP1752513A3 (de) 2009-09-16
EP1752513B1 true EP1752513B1 (de) 2010-11-10

Family

ID=37561296

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06013803A Active EP1752513B1 (de) 2005-07-28 2006-07-04 Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit

Country Status (9)

Country Link
US (1) US8133852B2 (ja)
EP (1) EP1752513B1 (ja)
JP (1) JP5492368B2 (ja)
KR (1) KR101474224B1 (ja)
AT (1) ATE487779T1 (ja)
CA (1) CA2554354C (ja)
DE (2) DE102005035276B4 (ja)
ES (1) ES2351197T3 (ja)
PL (1) PL1752513T3 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005035276B4 (de) 2005-07-28 2007-10-11 Clariant Produkte (Deutschland) Gmbh Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit
DE102005035277B4 (de) * 2005-07-28 2007-10-11 Clariant Produkte (Deutschland) Gmbh Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit
DE102005035275B4 (de) * 2005-07-28 2007-10-11 Clariant Produkte (Deutschland) Gmbh Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit
US20080256849A1 (en) * 2007-04-19 2008-10-23 Kulinowski Alexander M Conductivity of middle distillate fuels with a combination of detergent and cold flow improver
JP5723532B2 (ja) * 2009-01-30 2015-05-27 三洋化成工業株式会社 帯電防止剤
US8323702B2 (en) * 2010-01-28 2012-12-04 Okoro Chuks I Composition and method for treating ulcers
TWI601792B (zh) * 2013-01-30 2017-10-11 湛新智財有限公司 單份低溫固化塗布組成物、其製備方法及其使用方法
EP3093332B1 (en) * 2015-05-14 2018-03-14 Infineum International Limited Improvements to additive compositions and to fuel oils
EP3093333B1 (en) * 2015-05-14 2018-03-14 Infineum International Limited Improvements to additive compositions and to fuel oils

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3488284A (en) * 1959-12-10 1970-01-06 Lubrizol Corp Organic metal compositions and methods of preparing same
US3917466A (en) * 1974-10-29 1975-11-04 Du Pont Compositions of olefin-sulfur dioxide copolymers and polyamines as antistatic additives for hydrocarbon fuels
US4211534A (en) 1978-05-25 1980-07-08 Exxon Research & Engineering Co. Combination of ethylene polymer, polymer having alkyl side chains, and nitrogen containing compound to improve cold flow properties of distillate fuel oils
US4356002A (en) * 1978-12-11 1982-10-26 Petrolite Corporation Anti-static compositions
US4234435A (en) * 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
DE3266117D1 (en) 1981-03-31 1985-10-17 Exxon Research Engineering Co Two-component flow improver additive for middle distillate fuel oils
JPS5876432A (ja) * 1981-10-30 1983-05-09 Chugoku Kako Kk 吸水性及び保水性に優れたレゾ−ル型フエノ−ル樹脂発泡体の製造方法
JPS58127755A (ja) * 1982-01-26 1983-07-29 Mitsui Toatsu Chem Inc フエノ−ル樹脂組成物
US4537601A (en) 1982-05-17 1985-08-27 Petrolite Corporation Antistats containing acrylonitrile copolymers and polyamines
DE3405843A1 (de) 1984-02-17 1985-08-29 Bayer Ag, 5090 Leverkusen Copolymere auf basis von maleinsaeureanhydrid und (alpha), (beta)-ungesaettigten verbindungen, ein verfahren zu ihrer herstellung und ihre verwendung als paraffininhibitoren
DE3640613A1 (de) 1986-11-27 1988-06-09 Ruhrchemie Ag Verfahren zur herstellung von ethylen-mischpolymerisaten und deren verwendung als zusatz zu mineraloel und mineraloelfraktionen
US5039437A (en) 1987-10-08 1991-08-13 Exxon Chemical Patents, Inc. Alkyl phenol-formaldehyde condensates as lubricating oil additives
DE3901930A1 (de) 1989-01-24 1990-07-26 Hoechst Ag Verfahren zur herstellung von novolaken und deren verwendung
DE3916366A1 (de) 1989-05-19 1990-11-22 Basf Ag Neue umsetzungsprodukte von aminoalkylenpolycarbonsaeuren mit sekundaeren aminen und erdoelmitteldestillatzusammensetzungen, die diese enthalten
DE3926992A1 (de) 1989-08-16 1991-02-21 Hoechst Ag Verwendung von umsetzungsprodukten von alkenylspirobislactonen und aminen als paraffindispergatoren
GB9013142D0 (en) * 1990-06-13 1990-08-01 Ciba Geigy Ag Chemical compounds useful as metal deactivators
JP3244195B2 (ja) * 1992-08-11 2002-01-07 住友ベークライト株式会社 メラミン・フェノール樹脂組成物
DK0606055T3 (da) 1993-01-06 1998-04-14 Clariant Gmbh Terpolymerer på basis af alfa,beta-umættede dicarboxylsyreanhydrider, alfa-beta-umættede forbindelser og polyoxyalkylenethere af lavere umættede alkoholer
DE4430294A1 (de) 1994-08-26 1996-02-29 Basf Ag Polymermischungen und ihre Verwendung als Zusatz für Erdölmitteldestillate
US6310011B1 (en) * 1994-10-17 2001-10-30 The Lubrizol Corporation Overbased metal salts useful as additives for fuels and lubricants
US5707946A (en) 1996-04-08 1998-01-13 The Lubrizol Corporation Pour point depressants and their use
US5851429A (en) 1996-04-08 1998-12-22 The Lubrizol Corporation Dispersions of waxy pour point depressants
DE19622052A1 (de) 1996-05-31 1997-12-04 Basf Ag Paraffindispergatoren für Erdölmitteldestillate
US5750052A (en) * 1996-08-30 1998-05-12 Betzdearborn Inc. Foam control method
ES2183073T5 (es) 1997-01-07 2007-10-16 Clariant Produkte (Deutschland) Gmbh Mejoramiento de la fluidez de aceites minerales y destilados de aceites minerales mediando utilizacion de resinas de alquil-fenoles y aldehidos.
DE19816797C2 (de) 1998-04-16 2001-08-02 Clariant Gmbh Verwendung von stickstoffhaltigen Ethylencopolymeren zur Herstellung von Brennstoffölen mit verbesserter Schmierwirkung
JPH11349654A (ja) * 1998-06-10 1999-12-21 Sumitomo Durez Kk フォトレジスト用フェノール樹脂の製造方法
US6391070B2 (en) 2000-04-20 2002-05-21 Baker Hughes Incorporated Anti-static additive compositions for hydrocarbon fuels
US6821933B2 (en) * 2000-06-15 2004-11-23 Clariant International Ltd. Additives for improving the cold flow properties and the storage stability of crude oil
DE10155774B4 (de) 2001-11-14 2020-07-02 Clariant Produkte (Deutschland) Gmbh Additive für schwefelarme Mineralöldestillate, umfassend einen Ester alkoxylierten Glycerins und einen polaren stickstoffhaltigen Paraffindispergator
JP2003183342A (ja) * 2001-12-17 2003-07-03 Mitsubishi Gas Chem Co Inc フェノール類変性芳香族炭化水素ホルムアルデヒド樹脂の製造方法
CA2489007A1 (en) 2002-06-14 2003-12-24 The Lubrizol Corporation Jet fuel additive concentrate composition and fuel composition and methods thereof
ATE491013T1 (de) 2003-05-29 2010-12-15 Infineum Int Ltd Eine brennstoffölzusammensetzung
EP1502938B1 (en) * 2003-07-03 2010-06-16 Infineum International Limited Fuel oil composition
ATE471362T1 (de) 2003-07-03 2010-07-15 Infineum Int Ltd Kraftstoffzusammensetzung
DE10333043A1 (de) 2003-07-21 2005-03-10 Clariant Gmbh Brennstofföladditive und additivierte Brennstofföle mit verbesserten Kälteeigenschaften
DE102004035157B3 (de) * 2004-07-20 2005-11-17 Clariant Gmbh Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit
EP1640438B1 (en) 2004-09-17 2017-08-30 Infineum International Limited Improvements in Fuel Oils
DE102005035276B4 (de) 2005-07-28 2007-10-11 Clariant Produkte (Deutschland) Gmbh Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit
DE102005035275B4 (de) 2005-07-28 2007-10-11 Clariant Produkte (Deutschland) Gmbh Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit

Also Published As

Publication number Publication date
CA2554354A1 (en) 2007-01-28
PL1752513T3 (pl) 2011-04-29
DE502006008265D1 (de) 2010-12-23
DE102005035276A1 (de) 2007-02-08
EP1752513A2 (de) 2007-02-14
ES2351197T3 (es) 2011-02-01
JP2007031716A (ja) 2007-02-08
KR101474224B1 (ko) 2014-12-18
JP5492368B2 (ja) 2014-05-14
ATE487779T1 (de) 2010-11-15
US20070027040A1 (en) 2007-02-01
EP1752513A3 (de) 2009-09-16
KR20070015087A (ko) 2007-02-01
DE102005035276B4 (de) 2007-10-11
CA2554354C (en) 2014-01-21
US8133852B2 (en) 2012-03-13

Similar Documents

Publication Publication Date Title
EP1801187B1 (de) Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefliessfähigkeit
EP2516604B1 (de) Multifunktionelle kälteadditive für mitteldestillate mit verbesserter fliessfähigkeit
EP1752513B1 (de) Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit
DE102005035277B4 (de) Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit
EP1808449B1 (de) Additive für schwefelarme Mineralöldestillate, umfassend Pfropfcopolymere auf Basis von Ethylen-Vinylester-Copolymeren
EP1749874B1 (de) Verwendung von alkylphenol-aldehydharzen zur herstellung von mineralölen mit verbesserter leitfähigkeit und kältefliessfähikeit
EP2516605B1 (de) Multifunktionelle kälteadditive für mitteldestillate mit verbesserter fliessfähigkeit
EP1674554A1 (de) Additive für schwefelarme Mineralöldestillate, umfassend Pfropfcopolymer auf Basis von Ethylen-Vinylacetat-Copolymeren
EP1808450A1 (de) Additive für schwefelarme Mineralöldestillate, umfassend Pfropfcopolymere auf Basis von Ethylen-Vinylester-Copolymeren
DE102006033150B4 (de) Additive zur Verbesserung der Kälteeigenschaften von Brennstoffölen
EP1621600B1 (de) Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit
EP2162512B1 (de) Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfähigkeit
EP2162513B1 (de) Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfähigkeit
DE102007028306A1 (de) Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
EP1767610B1 (de) Additive zur Verbesserung der Kältefliessfähigkeit und Schmierfähigkeit von Brennstoffölen
DE102007028307A1 (de) Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
EP1717296A1 (de) Additive für schwefelarme Mineralöldestillate, umfassend Aromaten, welche eine Hydroxygruppe, eine Methoxygruppe und eine Säurefunktion tragen
DE102005061465B4 (de) Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: C10L 1/198 20060101AFI20070109BHEP

Ipc: C10L 1/24 20060101ALI20090807BHEP

Ipc: C10L 1/222 20060101ALI20090807BHEP

Ipc: C09K 3/16 20060101ALI20090807BHEP

17P Request for examination filed

Effective date: 20100316

17Q First examination report despatched

Effective date: 20100413

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: C09K 3/16 20060101ALI20100518BHEP

Ipc: C10L 1/222 20060101ALI20100518BHEP

Ipc: C10L 1/198 20060101AFI20100518BHEP

Ipc: C10L 1/24 20060101ALI20100518BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AT BE DE ES FI FR GB NL PL SE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FI FR GB NL PL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502006008265

Country of ref document: DE

Date of ref document: 20101223

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110120

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006008265

Country of ref document: DE

Effective date: 20110811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130617

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140617

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140616

Year of fee payment: 9

Ref country code: NL

Payment date: 20140616

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20140618

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140626

Year of fee payment: 9

Ref country code: FI

Payment date: 20140718

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 487779

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140704

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150704

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150705

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150704

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150704

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200807

Year of fee payment: 15

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220727

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220725

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006008265

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201