EP1752513A2 - Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit - Google Patents

Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit Download PDF

Info

Publication number
EP1752513A2
EP1752513A2 EP06013803A EP06013803A EP1752513A2 EP 1752513 A2 EP1752513 A2 EP 1752513A2 EP 06013803 A EP06013803 A EP 06013803A EP 06013803 A EP06013803 A EP 06013803A EP 1752513 A2 EP1752513 A2 EP 1752513A2
Authority
EP
European Patent Office
Prior art keywords
ppm
alkyl
alkylphenol
composition according
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06013803A
Other languages
English (en)
French (fr)
Other versions
EP1752513B1 (de
EP1752513A3 (de
Inventor
Matthias Krull
Klaus Mikulecky
Carsten Cohrs
Hildegard Freundl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Clariant Produkte Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Produkte Deutschland GmbH filed Critical Clariant Produkte Deutschland GmbH
Priority to PL06013803T priority Critical patent/PL1752513T3/pl
Publication of EP1752513A2 publication Critical patent/EP1752513A2/de
Publication of EP1752513A3 publication Critical patent/EP1752513A3/de
Application granted granted Critical
Publication of EP1752513B1 publication Critical patent/EP1752513B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/1641Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aliphatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1981Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1985Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/223Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • C10L10/16Pour-point depressants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • C10L1/233Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring containing nitrogen and oxygen in the ring, e.g. oxazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to the use of alkylphenol-aldehyde resins and salts of organic aromatic bases with sulfonic acids to improve the conductivity of low-sulfur mineral oil distillates, and the additive mineral oil distillates.
  • additives are added to such oils with low electrical conductivity, which increase the conductivity and facilitate the potential equalization between the oil and its environment.
  • a conductivity greater than 50 pS / m is generally considered sufficient for the safe handling of mineral oil distillates. Methods for determining the conductivity are described, for example, in DIN 51412-T02-79 and ASTM 2624.
  • alkylphenol resins and their derivatives which can be prepared by condensation of alkyl-containing phenols with aldehydes under acidic or basic conditions.
  • alkylphenol resins are described as Cold flow improvers, lubricity improvers, oxidation inhibitors, corrosion inhibitors and asphalt dispersants and alkoxylated alkylphenol resins are used as demulsifiers in crude oils and middle distillates.
  • alkylphenol resins are used as stabilizers for jet fuel.
  • Resins of benzoic acid esters with aldehydes or ketones are also used as cold additives for fuel oils.
  • the effect of the known resins and the additive systems containing them is not yet satisfactory, especially in many low-sulfur or sulfur-free oils.
  • GB-A-2 305 437 and GB-A-2 308 129 disclose alkylphenol-formaldehyde resins as pour point depressants for waxy liquids such as diesel, lubricating oil, hydraulic oil, crude oils.
  • the condensation of the alkylphenols with formaldehyde in a ratio of 2: 1 to 1: 1.5 can be carried out in the presence of acidic catalysts such as sulfuric acid, sulfonic acids or carboxylic acids.
  • the resin can then be treated with NaOH as needed to convert the acidic catalyst to the sodium salt and separate by, for example, filtration.
  • working with concentrated sulfuric acid which is filtered off after the condensation as the sodium salt.
  • EP-A-0 857 776 discloses the use of alkylphenol resins in combination with ethylene copolymers and nitrogen-containing paraffin dispersants to improve the cold properties of middle distillates.
  • the condensation of the resins can be carried out under catalysis by inorganic or organic acids, which optionally remain after not further specified neutralization in the product.
  • the condensation of the resins takes place under catalysis by alkylbenzenesulfonic acid, which is subsequently neutralized with KOH or NaOH.
  • EP-A-1 088 045 discloses that alkylphenol resins can be combined with amines bearing at least one hydrocarbon radical. According to the examples, these are salts of alkylphenol resins in which just under half of the phenolic OH groups are neutralized with secondary alkylamines.
  • EP-A-0 381 966 discloses a process for the preparation of novolacs by condensation of phenols with aldehydes with azeotropic culling of Water.
  • Suitable catalysts are strong mineral acids, especially sulfuric acid and its acidic derivatives. These can be neutralized before working up the reaction mixture, preferably with metal hydroxides or amines. In the examples, all is catalyzed with sulfuric acid, which is then neutralized with sodium hydroxide solution.
  • EP-A-0 311 452 discloses alkylphenol-formaldehyde condensates as refrigerants for fuels and lubricating oils.
  • the catalyst used is p-toluenesulfonic acid, which remains as such in the resin.
  • EP-A-1482024 discloses condensates of p-hydroxybenzoic acid esters and aldehydes or ketones as cold additives for fuel oils. The condensation takes place here in the presence of acidic catalysts such as p-toluenesulfonic acid, which remain as such in the product.
  • alkylphenol resins are understood as meaning all polymers which are accessible by condensation of an alkyl radical-carrying phenol with aldehydes or ketones.
  • the alkyl radical can be bonded directly to the aryl radical of the phenol via a C-C bond or via functional groups such as esters or ethers.
  • catalysts for the condensation reactions of alkylphenol and aldehyde in addition to carboxylic acids such as acetic acid and oxalic acid in particular strong mineral acids such as hydrochloric acid, phosphoric acid and sulfuric acid and sulfonic acids are common catalysts. Usually, these remain after completion of the reaction as such or in neutralized form in the product.
  • mineral oils which contain phenol resins carrying alkyl radicals can be significantly improved in their electrical conductivity by adding small amounts of oil-soluble salts of organic aromatic bases and sulfonic acids.
  • the effect achievable with salts of aromatic bases is also more pronounced than with corresponding alkali metal salts and ammonium salts based on aliphatic amines.
  • the salt formation in the mixtures according to the invention is much more selective and the weak in comparison to alkali metal bases and aliphatic amines aromatic bases prefer a salt formation with the strong sulfonic acids and less with the only weakly acidic phenolic OH groups.
  • the oils thus additized show a greatly increased conductivity and are thus much safer to handle.
  • compositions comprising at least one alkylphenol resin (constituent I) and, based on the alkylphenol resin, from 0.005 to 10% by weight of at least one salt of an aromatic base and a sulfonic acid (constituent II).
  • the invention further relates to mineral oil distillates having a sulfur content of less than 350 ppm, containing 5 to 500 ppm of a composition comprising at least one alkylphenol resin (constituent I) and, based on the alkylphenol resin, 0.05 to 10 wt .-% of at least one salt of an aromatic base and a sulfonic acid (component II).
  • a composition comprising at least one alkylphenol resin (constituent I) and, based on the alkylphenol resin, 0.05 to 10 wt .-% of at least one salt of an aromatic base and a sulfonic acid (component II).
  • compositions comprising at least one alkylphenol resin (component I) and, based on the alkylphenol resin, 0.05 to 10 wt .-% of at least one salt of an aromatic base and a sulfonic acid (component II), for improving the electrical conductivity of mineral oil distillates having a sulfur content of less than 350 ppm.
  • compositions comprising at least one alkylphenol resin (component I) and, based on the alkylphenol resin, 0.05 to 10 wt .-% of at least one salt of an aromatic base and a sulfonic acid (component II), for improving the cold flowability of mineral oil distillates having a sulfur content of less than 350 ppm.
  • the sulfonic acid salts of the invention can be added to the mineral oil distillate or the alkylphenol-aldehyde resin as such. They are preferably prepared by reacting the sulphonic acid used as the catalyst for the acidic condensation of the alkylphenol-aldehyde resin with the corresponding aromatic base in the presence of the alkylphenol-aldehyde resins. Alternatively, they can be prepared by reacting an aromatic base used as catalyst for basic condensation of the alkylphenol-aldehyde resin with corresponding sulfonic acids in the presence of the alkylphenol-aldehyde resins.
  • compositions according to the invention based on the alkylphenol resin, 0.05 to 5 wt .-% and in particular 0.1 to 5 wt .-% such as 0.5 to 4 wt .-% of at least one salt of an aromatic base and a sulfonic acid.
  • the mineral oil distillates according to the invention preferably contain from 10 to 150 and especially from 10 to 100 ppm of at least one alkylphenol resin and from 0.1 to 5% by weight, particularly preferably 0.5 to 5 wt .-%. such as 1 to 4 wt .-% of at least one sulfonic acid salt based on the alkylphenol resin.
  • compositions comprising at least one alkylphenol resin and, based on the alkylphenol resin, 0.1 to 5 wt .-%, particularly preferably 0.5 to 5 wt .-% such as 1 to 4 wt .-% of at least one salt of an aromatic base and a sulfonic acid.
  • the mineral oil distillates of the invention which are improved in their electrical conductivity have an electrical conductivity of preferably at least 50 pS / m, especially of at least 70 pS / m, for example of at least 90 pS / m.
  • Particularly suitable sulfonic acids for the preparation of the sulfonic acid salts are all oil-soluble compounds containing at least one sulfonic acid group and at least one saturated or unsaturated, linear, branched and / or cyclic hydrocarbon radical having 1 to 40 carbon atoms and preferably having 3 to 24 carbon atoms.
  • Particularly preferred are aromatic sulfonic acids, especially alkylaromatic mono-sulfonic acids having one or more C 1 -C 28 -alkyl radicals and in particular those having C 3 -C 22 -alkyl radicals.
  • the alkylaromatic sulfonic acids preferably carry one or two alkyl radicals, in particular an alkyl radical.
  • the underlying aryl groups are preferably monocyclic and bicyclic, in particular monocyclic.
  • the aryl groups carry no carboxyl groups, and especially they carry only sulfonic acid and alkyl groups. Suitable examples are methanesulfonic acid, butanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, xylenesulfonic acid, 2-mesitylenesulfonic acid, 4-ethylbenzenesulfonic acid, isopropylbenzenesulfonic acid, 4-butylbenzenesulfonic acid, 4-octylbenzenesulfonic acid; Dodecylbenzenesulfonic acid, didodecylbenzenesulfonic acid, naphthalenesulfonic acid. Mixtures of these sulfonic acids are suitable. Oil-soluble here means that said compounds are at least 1 wt .-% soluble
  • Suitable aromatic bases are in particular oil-soluble compounds which are a cyclic, Anlagenkonjugêtides hydrocarbon skeleton with 4n + 2 ⁇ -electrons, where n is an integer between 1 and 6, preferably between 2 and 4 and in particular 1 or 2, and at least one capable of salt formation Heteroatom included.
  • This heteroatom may e.g. be part of the aromatic ring system in so-called heteroaromatics, but it may also be bound to this ring. It is preferably part of the aromatic ring system.
  • Suitable heteroatoms are nitrogen, oxygen and sulfur, particularly preferred heteroatom is nitrogen.
  • at least one free electron pair of the heteroatom is not involved in the formation of the aromatic ⁇ -electron system.
  • the aromatic system may be mono-, di- or even polycyclic. It preferably contains one or more five- and / or six-membered rings with a ⁇ -electron septet. It is particularly preferably monocyclic and five- or six-membered. It may carry further substituents such as, for example, alkyl, alkylene and / or phenyl radicals, but also functional groups such as, for example, hydroxy, ester, amide and / or amino groups, provided these do not impair salt formation.
  • substituents such as, for example, alkyl, alkylene and / or phenyl radicals, but also functional groups such as, for example, hydroxy, ester, amide and / or amino groups, provided these do not impair salt formation.
  • alkyl and alkenyl radicals may be linear, branched or cyclic and linked to the aromatic system at one or two sites.
  • aromatic monocyclic bases examples include pyridine, picoline, lutidine, collidine, nicotinamide, dihydroquinoline, aminopyridine, aniline, N, N-dimethylaniline, toluidine, phenylenediamine, pyrimidine, pyrazine, pyridazine, imidazole, pyrazole, histamine, triazine, triazole, oxazole, Isoxazole, thiazole and isothiazole, and p-phenylenediamine, 2- (N, N-dimethylamino) pyridine, 4- (N, N-dimethylamino) pyridine and 2,4-diamino-6-hydroxypyrimidine.
  • Suitable aromatic polycyclic bases are, for example, quinoline, isoquinoline, 6-methylquinoline, 2-aminoquinoline, 5-dimethylaminochinoline, 7-dimethylaminoquinoline, benzimidazole, purine, cinnoline, phthalazine, quinazoline, quinoxaline, acridine, phenanthroline and phenazine and 1,5-diaminonaphthalene. 1,8-diaminonaphthalene and diaminoquinazoline.
  • Particularly preferred bases are mono- and bicyclic nitrogen-containing aromatics such as pyridine, quinoline, imidazole and derivatives thereof.
  • the sulfonic acid salts of the invention are prepared by reacting the sulfonic acids with 0.8 to 10 moles of aromatic base, preferably 0.9 to 5 moles of aromatic base, more preferably 0.95 to 2 moles of aromatic base, such as about equimolar.
  • aromatic base preferably 0.9 to 5 moles of aromatic base, more preferably 0.95 to 2 moles of aromatic base, such as about equimolar.
  • the additives according to the invention and the mineral oil distillates containing them can accordingly also contain more than equimolar amounts of aromatic base, based on the sulfonic acid.
  • Alkylphenol-aldehyde resins are known in principle and, for example in the Rompp Chemie Lexikon, 9th edition, Thieme Verlag 1988-92, Volume 4, p 3351 et seq. described. Particularly suitable according to the invention are those alkylphenol-aldehyde resins which are derived from alkylphenols having one or two alkyl radicals in the ortho and / or para position to the OH group. Particularly preferred as starting materials are alkylphenols which carry at least two hydrogen atoms capable of condensation with aldehydes on the aromatic and in particular monoalkylated phenols. Particularly preferably, the alkyl radical is in the para position to the phenolic OH group.
  • alkyl radicals (which are understood as meaning in general hydrocarbon radicals as defined below for the constituent 1) may be identical or different in the alkylphenol-aldehyde resins which can be used in the process according to the invention, they may be saturated or unsaturated and have 1 to 200, preferably 1 to 20, in particular 4-16, such as 6-12 carbon atoms; it is preferably n-, iso- and tert-butyl, n- and iso-pentyl, n- and iso-hexyl, n- and iso-octyl, n- and iso-nonyl-, n - and iso-decyl, n- and iso-dodecyl, tetradecyl, hexadecyl, octadecyl, tripropenyl, tetrapropenyl, poly (propenyl) - and poly (isobutenyl) radicals.
  • mixtures of alkylphenols having different alkyl radicals are used for the preparation of the alkylphenol resins.
  • resins based on butyphenol on the one hand and octyl, nonyl and / or dodecylphenol in a molar ratio of 1:10 to 10: 1 on the other hand have proven particularly useful.
  • Suitable alkylphenol resins may also contain or consist of structural units of other phenol analogs such as salicylic acid, hydroxybenzoic acid and derivatives thereof such as esters, amides and salts.
  • Suitable aldehydes for the alkylphenol-aldehyde resins are those having 1 to 12 carbon atoms and preferably those having 1 to 4 carbon atoms such as formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, 2-ethylhexanal, benzaldehyde, glyoxalic acid and their reactive equivalents such as paraformaldehyde and trioxane.
  • Particularly preferred is formaldehyde in the form of paraformaldehyde and especially formalin.
  • the molecular weight of the alkylphenol-aldehyde resins measured by gel permeation chromatography against poly (styrene) standards in THF is preferably 500-25,000 g / mol, more preferably 800-10,000 g / mol and especially 1,000-5,000 g / mol such as 1500-3,000 g / mol.
  • the prerequisite here is that the alkylphenol-aldehyde resins, at least in application-relevant concentrations of 0.001 to 1 wt .-% are oil-soluble.
  • these are alkylphenol-formaldehyde resins, the oligo- or polymers having a repetitive structural unit of the formula wherein R 5 is C 1 -C 200 alkyl or C 2 -C 200 alkenyl, OR 6 or OC (O) -R 6 , R 6 is C 1 -C 200 alkyl or C 2 -C 200 alkenyl and n is a number from 2 to 100.
  • R 6 is preferably C 1 -C 20 -alkyl or C 2 -C 20 -alkenyl and in particular C 4 -C 16 -alkyl or C 2 -C 20 -alkenyl, for example C 6 -C 12 -alkyl or C C 2 -C 20 alkenyl.
  • R 5 is particularly preferably C 1 -C 20 -alkyl or -alkenyl and in particular C 4 -C 16 -alkyl or alkenyl, such as for example C 6 -C 12 alkyl or alkenyl.
  • n is a number from 2 to 50 and especially a number from 3 to 25, such as a number from 5 to 15.
  • alkylphenol-aldehyde resins having C 2 -C 40 -alkyl radicals of the alkylphenol, preferably having C 4 -C 20 -alkyl radicals such as, for example, C 6 -C 12 -alkyl radicals.
  • the alkyl radicals can be linear or branched, preferably they are linear.
  • Particularly suitable alkylphenol-aldehyde resins are derived from linear alkyl radicals having 8 and 9 C atoms.
  • alkylphenol-aldehyde resins whose alkyl radicals carry 4 to 200 carbon atoms, preferably 10 to 180 carbon atoms, and oligomers or polymers of olefins having 2 to 6 carbon atoms, such as .alpha for example, derived from poly (isobutylene). They are thus preferably branched.
  • the degree of polymerization (n) here is preferably between 2 and 20, preferably between 3 and 10 alkylphenol units.
  • alkylphenol-aldehyde resins are accessible by known methods, for example by condensation of the corresponding alkylphenols with formaldehyde, ie with 0.5 to 1.5 moles, preferably 0.8 to 1.2 moles of formaldehyde per mole of alkylphenol.
  • the condensation can be carried out solvent-free, but preferably it is carried out in the presence of an inert or only partially water-miscible inert organic solvent such as mineral oils, alcohols, ethers and the like. Particularly preferred are solvents which can form azeotropes with water.
  • solvents in particular aromatics such as toluene, xylene diethylbenzene and higher-boiling commercial solvent mixtures such as ®Shellsol AB, and solvent naphtha are used.
  • the condensation is preferably carried out between 70 and 200 ° C such as between 90 and 160 ° C. It is usually catalyzed by 0.05 to 5 wt .-% bases or acids.
  • aromatic bases such as, for example, pyridine
  • organic sulfonic acid leads to the mixtures according to the invention.
  • the catalysis by organic sulfonic acids which after completion of the condensation with aromatic bases to the oil-soluble sulfonic acid salts according to the invention are reacted.
  • compositions according to the invention are preferably used as concentrates which contain from 10 to 90% by weight and preferably from 20 to 60% by weight of solvent.
  • Preferred solvents are higher-boiling aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, esters, ethers and mixtures thereof.
  • the additives of the invention increase the conductivity of mineral oils such as gasoline, kerosene, jet fuel, diesel, and low sulfur fuel oil of less than 350 ppm, especially less than 50 ppm, such as less than 10 or less than 5 ppm. At the same time, they improve the cold properties, in particular of middle distillates such as kerosene, jet fuel, diesel and heating oil.
  • the additives according to the invention may also be added to mineral oil distillates for improving cold flowability in combination with further additives such as, for example, ethylene copolymers, polar nitrogen compounds, comb polymers, polyoxyalkylene compounds and / or olefin copolymers.
  • the present invention thus provides a new additive package which simultaneously improves the cold properties and antistatic properties of low sulfur mineral oils.
  • additives according to the invention are used for mineral oil distillates, then in a preferred embodiment they contain, in addition to the constituents I and II, one or more of the constituents III to VII.
  • ethylene copolymers are, in particular, those which, in addition to ethylene, contain 6 to 21 mol%, in particular 10 to 18 mol%, of comonomers.
  • the olefinically unsaturated compounds are preferably vinyl esters, acrylic esters, methacrylic esters, alkyl vinyl ethers and / or alkenes, it being possible for the abovementioned compounds to be substituted by hydroxyl groups.
  • One or more comonomers may be included in the polymer.
  • said alkyl groups may be substituted with one or more hydroxyl groups.
  • R 1 is a branched alkyl radical or a neoalkyl radical having 7 to 11 carbon atoms, in particular having 8, 9 or 10 carbon atoms.
  • Particularly preferred vinyl esters are derived from secondary and especially tertiary carboxylic acids whose branching is in the alpha position to the carbonyl group.
  • Suitable vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl hexanoate, vinyl heptanoate, vinyl octanoate, vinyl pivalate, vinyl 2-ethylhexanoate, vinyl laurate, vinyl stearate and versatic acid esters such as vinyl neononanoate, vinyl neodecanoate, vinyl neoundecanoate.
  • these ethylene copolymers contain vinyl acetate and at least one further vinyl ester of the formula 1 in which R 1 is C 4 to C 30 -alkyl, preferably C 4 to C 16 -alkyl, especially C 6 - to C 12 -alkyl ,
  • Suitable acrylic esters include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n- and Iso-butyl (meth) acrylate, hexyl, octyl, 2-ethylhexyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl (meth) acrylate and mixtures of these comonomers.
  • said alkyl groups may be substituted with one or more hydroxyl groups.
  • An example of such an acrylic ester is hydroxyethyl methacrylate.
  • the alkenes are preferably simple unsaturated hydrocarbons having 3 to 30 carbon atoms, especially 4 to 16 carbon atoms and especially 5 to 12 carbon atoms.
  • Suitable alkenes include propene, butene, isobutylene, pentene, hexene, 4-methylpentene, octene, diisobutylene and norbornene and its derivatives such as methylnorbornene and vinylnorbornene.
  • said alkyl groups may be substituted with one or more hydroxyl groups.
  • terpolymers which, apart from ethylene, have from 3.5 to 20 mol%, in particular from 8 to 15 mol% of vinyl acetate and from 0.1 to 12 mol%, in particular from 0.2 to 5 mol%, of at least one longer-chain and preferably branched one Vinyl esters such as vinyl 2-ethylhexanoate, vinyl neononanoate or vinyl neodecanoate, the total comonomer content being between 8 and 21 mol%, preferably between 12 and 18 mol%.
  • copolymers contain, in addition to ethylene and 8 to 18 mol% of vinyl esters, 0.5 to 10 mol% of olefins such as propene, butene, isobutylene, hexene, 4-methylpentene, octene, diisobutylene and / or norbornene.
  • olefins such as propene, butene, isobutylene, hexene, 4-methylpentene, octene, diisobutylene and / or norbornene.
  • these ethylene-co- and terpolymers have melt viscosities at 140 ° C of from 20 to 10,000 mPas, especially from 30 to 5,000 mPas, especially of 50 up to 2,000 mPas.
  • the means of 1 H-NMR spectroscopy, certain degrees of branching are preferably between 1 and 9 CH 3/100 CH 2 groups, especially between 2 and 6 CH 3/100 CH 2 groups, which do not stem from the comonomers.
  • the polymers underlying the mixtures differ in at least one characteristic.
  • they may contain different comonomers, have different comonomer contents, molecular weights and / or degrees of branching.
  • the mixing ratio between the additives according to the invention and ethylene copolymers as constituent III can vary within wide limits depending on the application, with the ethylene copolymers III often representing the greater proportion.
  • Such additive mixtures preferably contain from 2 to 70% by weight, preferably from 5 to 50% by weight, of the inventive additive combination of I and II and from 30 to 98% by weight, preferably from 50 to 95% by weight, of ethylene copolymers.
  • the oil-soluble polar nitrogen compounds (constituent IV) which are suitable according to the invention as further constituents are preferably reaction products of fatty amines with compounds which contain an acyl group.
  • the alkyl and alkenyl radicals can be linear or branched and contain up to two double bonds. They are preferably linear and substantially saturated, ie they have iodine numbers of less than 75 gl 2 / g, preferably less than 60 gl 2 / g and in particular between 1 and 10 gl 2 / g. Particularly preferred are secondary fatty amines in which two of the groups R 6 , R 7 and R 8 are C 8 -C 36 -alkyl, C 6 -C 36 -cycloalkyl, C 8 -C 36 -alkenyl, in particular C 12 -C 24 alkyl, C 12 -C 24 alkenyl or cyclohexyl.
  • Suitable fatty amines are, for example Octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, eicosylamine, behenylamine, didecylamine, didodecylamine, ditetradecylamine, dihexadecylamine, dioctadecylamine, dieicosylamine, dibehenylamine and mixtures thereof.
  • the amines contain chain cuts based on natural raw materials such as coco fatty amine, tallow fatty amine, hydrogenated tallow fatty amine, dicocosfettamine, ditallow fatty amine and di (hydrogenated tallow fatty amine).
  • Particularly preferred amine derivatives are amine salts, imides and / or amides such as, for example, amide ammonium salts of secondary fatty amines, in particular dicocosfettamine, ditallow fatty amine and distearylamine.
  • Particularly preferred paraffin dispersants as constituent IV contain at least one acyl group converted to an ammonium salt. Specifically, they contain at least two, for example at least three or at least four and in the case of polymeric paraffin dispersants also five or more ammonium groups.
  • Suitable carbonyl compounds for the reaction with amines are both monomeric and polymeric compounds having one or more carboxyl groups. In the case of the monomeric carbonyl compounds, preference is given to those having 2, 3 or 4 carbonyl groups. They can also contain heteroatoms such as oxygen, sulfur and nitrogen.
  • carboxylic acids examples include maleic, fumaric, crotonic, itaconic, succinic, C 1 -C 40 -alkenylsuccinic, adipic, glutaric, sebacic, and malonic acids and benzoic, phthalic, trimellitic and pyromellitic acid, nitrilotriacetic acid , Ethylenediaminetetraacetic acid and their reactive derivatives such as esters, anhydrides and acid halides.
  • Copolymers of ethylenically unsaturated acids such as, for example, acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid, have proven particularly suitable as polymeric carbonyl compounds, particular preference is given to copolymers of maleic anhydride.
  • Suitable comonomers are those which impart oil solubility to the copolymer. Oil-soluble means here that the copolymer dissolves without residue in the mineral oil distillate to be added after reaction with the fatty amine in practice-relevant metering rates.
  • Suitable comonomers are, for example Olefins, alkyl esters of acrylic acid and methacrylic acid, alkyl vinyl esters and alkyl vinyl ethers having 2 to 75, preferably 4 to 40 and in particular 8 to 20 carbon atoms in the alkyl radical.
  • the carbon number refers to the alkyl radical attached to the double bond.
  • Particularly suitable comonomers are olefins with a terminal double bond.
  • the molecular weights of the polymeric carbonyl compounds are preferably between 400 and 20,000, more preferably between 500 and 10,000, for example between 1,000 and 5,000.
  • Oil-soluble polar nitrogen compounds which have been obtained by reaction of aliphatic or aromatic amines, preferably long-chain aliphatic amines, with aliphatic or aromatic mono-, di-, tri- or tetracarboxylic acids or their anhydrides have proved particularly suitable (cf. US 4 211 534 ).
  • amides and ammonium salts of aminoalkylene polycarboxylic acids such as nitrilotriacetic acid or ethylenediaminetetraacetic acid with secondary amines are suitable as oil-soluble polar nitrogen compounds (cf. EP 0 398 101 ).
  • oil-soluble polar nitrogen compounds are copolymers of maleic anhydride and ⁇ , ⁇ -unsaturated compounds which can optionally be reacted with primary monoalkylamines and / or aliphatic alcohols (cf. EP-A-0 154 177 . EP 0 777 712 ), the reaction products of Alkenylspirobislactonen with amines (see. EP-A-0 413 279 B1) and after EP-A-0 606 055 A2 Reaction products of terpolymers based on ⁇ , ⁇ -unsaturated dicarboxylic acid anhydrides, ⁇ , ⁇ -unsaturated compounds and polyoxyalkylene ethers of lower unsaturated alcohols.
  • the mixing ratio between the additives of the invention and oil-soluble polar nitrogen compounds as constituent IV may vary depending on the application.
  • Such additive mixtures preferably contain from 10 to 90% by weight, preferably from 20 to 80% by weight, of the inventive additive combination of I and II and from 10 to 90% by weight, preferably from 20 to 80% by weight, of oil-soluble polar nitrogen compounds.
  • Suitable polyoxyalkylene compounds are esters, ethers and ethers / esters of polyols which carry at least one alkyl radical having 12 to 30 carbon atoms.
  • the alkyl groups are derived from an acid, the remainder is derived from a polyhydric alcohol; If the alkyl radicals come from a fatty alcohol, the remainder of the compound derives from a polyacid.
  • Suitable comb polymers are, for example, copolymers of ethylenically unsaturated dicarboxylic acids such as maleic or fumaric acid with other ethylenically unsaturated monomers such as olefins or vinyl esters such as vinyl acetate.
  • Particularly suitable olefins are ⁇ -olefins having 10 to 24 carbon atoms such as 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and mixtures thereof.
  • olefins based on oligomerized C 2 -C 6 -olefins such as poly (isobutylene) with a high proportion of terminal double bonds are suitable as comonomers.
  • these copolymers are at least 50% esterified with alcohols having 10 to 22 carbon atoms. Suitable alcohols include n-decen-1-ol, n-dodecan-1-ol, n-tetradecan-1-ol, n-hexadecan-1-ol, n-octadecan-1-ol, n-eicosan-1-ol and mixtures thereof.
  • comb polymers are poly (alkyl acrylates), poly (alkyl methacrylates) and poly (alkyl vinyl ethers) derived from alcohols containing 12 to 20 carbon atoms and poly (vinyl esters) derived from fatty acids containing 12 to 20 carbon atoms. Derive atoms.
  • Suitable polyols are polyethylene glycols, polypropylene glycols, polybutylene glycols and their copolymers having a molecular weight of about 100 to about 5000, preferably 200 to 2000.
  • alkoxylates of polyols such as glycerol, trimethylolpropane, pentaerythritol, neopentyl glycol, as well as the thereof Condensation accessible oligomers having 2 to 10 monomer units, such as Polyglycerol.
  • Preferred alkoxylates are those having from 1 to 100, in particular from 5 to 50, mol of ethylene oxide, propylene oxide and / or butylene oxide per mole of polyol. Esters are especially preferred.
  • Fatty acids containing 12 to 26 carbon atoms are preferred for reaction with the polyols to form the ester additives, more preferably C 18 to C 24 fatty acids, especially stearic and behenic acid.
  • the esters can also be prepared by esterification of polyoxyalkylated alcohols. Preference is given to completely esterified polyoxyalkylated polyols having molecular weights of from 150 to 2,000, preferably from 200 to 600. Particularly suitable are PEG-600 dibehenate and glycerol-ethylene glycol tribehenate.
  • Suitable olefin copolymers as further constituent of the additive according to the invention can be derived directly from monoethylenically unsaturated monomers or can be prepared indirectly by hydrogenation of polymers derived from polyunsaturated monomers such as isoprene or butadiene.
  • preferred copolymers contain structural units which are derived from ⁇ -olefins having 3 to 24 carbon atoms and have molecular weights of up to 120,000 g / mol.
  • Preferred ⁇ -olefins are propylene, butene, isobutene, n-hexene, isohexene, n-octene, isooctene, n-decene, isodecene.
  • the comonomer content of ⁇ -olefins having 3 to 24 C atoms is preferably between 15 and 50 mol%, more preferably between 20 and 35 mol% and especially between 30 and 45 mol%.
  • These copolymers can also be small amounts, eg up to 10 mol% further comonomers such as non-terminal olefins or non-conjugated olefins.
  • Preferred are ethylene-propylene copolymers.
  • the olefin copolymers can be prepared by known methods, for example by Ziegler or metallocene catalysts.
  • olefin copolymers are block copolymers containing blocks of olefinically unsaturated aromatic monomers A and blocks of hydrogenated polyolefins B.
  • Particularly suitable are block copolymers of the structure (AB) nA and (AB) m, where n is a number between 1 and 10 and m is a number between 2 and 10.
  • the additives can be used alone or together with other additives, e.g. with other pour point depressants or dewaxing aids, with antioxidants, cetane number improvers, dehazers, demulsifiers, detergents, dispersants, defoamers, dyes, corrosion inhibitors, lubricity additives, sludge inhibitors, odorants and / or cloud point depressants.
  • other pour point depressants or dewaxing aids with antioxidants, cetane number improvers, dehazers, demulsifiers, detergents, dispersants, defoamers, dyes, corrosion inhibitors, lubricity additives, sludge inhibitors, odorants and / or cloud point depressants.
  • the mixing ratio between the inventive additive combinations of I and II and the further constituents V, VI and VII is generally in each case between 1:10 and 10: 1, preferably between 1: 5 and 5: 1.
  • the additives according to the invention increase the conductivity of mineral oil distillates such as gasoline, kerosene, jet fuel, diesel and heating oil, preferably having a low aromatic content of less than 21% by weight, in particular less than 19% by weight, especially less than 18% by weight. % such as less than 17% by weight. Since they also improve the cold flow properties, especially of mineral oil distillates such as kerosene, jet fuel, diesel and heating oil, their use can be achieved a significant saving in the total additives of the oils, since no additional conductivity improvers must be used.
  • the additives of the invention can be set in areas or at times in which due to the climatic conditions so far no cold additives are used by admixing paraffin-rich, cheaper mineral oil fractions such as Cloud Point and / or CFPP of the oils to be upgraded to higher, which the economy of the refinery improved.
  • the additives of the invention also contain no Metals, which could lead to ashes during combustion and thus deposits in the combustion chamber or exhaust gas system and particulate pollutants in the environment.
  • the conductivity of the oils according to the invention does not drop when the temperature drops, and in many cases even a rise in conductivity not known from additives of the prior art has been observed with decreasing temperature, so that safe handling is ensured even at low ambient temperatures.
  • Another advantage of the additives of the invention is the preservation of the electrical conductivity even during prolonged, that is several weeks storage of the additized oils.
  • the additives according to the invention are particularly advantageous in mineral oil distillates which contain less than 350 ppm of sulfur, more preferably less than 100 ppm of sulfur, in particular less than 50 ppm of sulfur and in special cases less than 10 ppm of sulfur.
  • the water content of such oils is below 150 ppm, sometimes below 100 ppm, such as below 80 ppm.
  • the electrical conductivity of such oils is usually below 10 pS / m and often even below 5 pS / m.
  • Particularly preferred mineral oil distillates are middle distillates.
  • the middle distillate is in particular those mineral oils which are obtained by distillation of crude oil and boil in the range of 120 to 450 ° C, for example kerosene, jet fuel, diesel and fuel oil. Their preferred sulfur, aromatics and water contents are as already stated above.
  • the compositions according to the invention are particularly advantageous in middle distillates which have 90% distillation points below 360 ° C., in particular 350 ° C. and in special cases below 340 ° C.
  • aromatic compounds the sum of mono-, di- and polycyclic aromatic compounds as determinable by HPLC according to DIN EN 12916 (Edition 2001).
  • the middle distillates may also contain minor amounts, for example up to 40% by volume, preferably 1 to 20% by volume, especially 2 to 15, for example 3 to 10% by volume of the oils of animal and / or vegetable origin described in more detail below such as fatty acid methyl esters.
  • compositions according to the invention are likewise suitable for improving the electrostatic properties of fuels based on renewable raw materials (biofuels).
  • biofuels is meant oils obtained from animal and preferably vegetable material or both, and derivatives thereof, which can be used as fuel and especially as diesel or fuel oil.
  • These are, in particular, triglycerides of fatty acids having 10 to 24 carbon atoms and the fatty acid esters of lower alcohols, such as methanol or ethanol, which are obtainable by transesterification.
  • biofuels examples include rapeseed oil, coriander oil, soybean oil, cottonseed oil, sunflower oil, castor oil, olive oil, peanut oil, corn oil, almond oil, palm kernel oil, coconut oil, mustard seed oil, beef tallow, bone oil, fish oils and used edible oils.
  • Other examples include oils derived from wheat, jute, sesame, shea nut, arachis oil and linseed oil.
  • the fatty acid alkyl esters, also referred to as biodiesel can be derived from these oils by methods known in the art.
  • Rapeseed oil which is a mixture of glycerol esterified fatty acids, is preferred because it is available in large quantities and is readily available by squeezing rapeseed.
  • sunflower and soybeans and their mixtures with rapeseed oil are preferred.
  • Particularly suitable as biofuels are lower alkyl esters of fatty acids.
  • commercially available mixtures of the ethyl, propyl, butyl and especially methyl esters of fatty acids having 14 to 22 carbon atoms for example of lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, elaidic acid, petroselinic acid, ricinoleic acid, Elaeostearic, linoleic, linolenic, eicosanoic, gadoleic, docosanoic or erucic acid into consideration.
  • Preferred esters have an iodine value of from 50 to 150 and in particular from 90 to 125.
  • Mixtures with particularly advantageous properties are those which contain mainly, ie at least 50% by weight of methyl esters of fatty acids having 16 to 22 carbon atoms and 1, 2 or 3 double bonds contain.
  • the preferred lower alkyl esters of fatty acids are the methyl esters of oleic, linoleic, linolenic and erucic acids.
  • the additives of the invention are also useful for improving the electrostatic properties of turbine fuels. These are fuels boiling in the temperature range of about 65 ° C to about 330 ° C and marketed, for example, under the designations JP-4, JP-5, JP-7, JP-8, Jet A and Jet A-1. JP-4 and JP-5 are disclosed in U.S. Pat. Military Specification MIL-T-5624-N and JP-8 in U.S. Pat. Military Specification MIL-T-83133-D specified; Jet A, Jet A-1 and Jet B are specified in the ASTM D1655.
  • the additives of the invention are suitable for improving the electrical conductivity of hydrocarbons, which are used as solvents z. B. in the textile cleaning or for the production of paints and varnishes.
  • test oils used were current oils from European refineries.
  • the CFPP value is determined in accordance with EN 116 and the determination of the cloud point in accordance with ISO 3015.
  • the determination of the aromatic hydrocarbon groups is carried out in accordance with DIN EN 12916 (November 2001 edition) Test oil 1 Test oil 2
  • FBP [° C] 359 351 359 Cloud point [° C] -5.9 -5.7 -7.2 CFPP [° C] -11 -9 -9 sulfur [Ppm] 30 19 8th Density @ 15 ° C [g / cm 3 ] .8361 .8313 .8261 aromatics [Wt .-%] 18.4 18.2 18.5 of which mono [Wt .-%] 15.5 17.0 17.3 di [Wt .-%] 2.5 1.2 1.1 poly [Wt .-%] 0.4
  • the mixtures A1) to A8) were used as 50% settings in Solvent Naphtha, a commercial mixture of high-boiling aromatic hydrocarbons.
  • the additives were dissolved with the given concentration in 2 l of the test oil 1 with shaking.
  • An electrical conductivity meter MLA 900 was used to determine the electrical conductivity in accordance with DIN 51412-T02-79.
  • the unit of electrical conductivity is picosiemens / m (pS / m).
  • a conductivity of at least 50 pS / m is generally considered sufficient for the safe handling of oils.
  • Table 2 Electrical conductivity of test oil 1 with the addition of sulfonic acid salts example additive 0 ppm 1 ppm 2 ppm 3 ppm 1 (See) Imidazolium dodecylbenzenesulfonate 6 10 11 13 2 (Cf.) Pyridinium dodecylbenzenesulfonate 6 9 12 14 3 (Cf.) Pyridinium p-toluenesulfonate 6 9 12 16 4 (Cf.) Sodium dodecylbenzenesulfonate 6 8th 10 11 5 (Cf.) Tributylammonium dodecylbenzenesulfonate 6 9 11 13
  • the additives (A) according to the invention with various co-additives were used.
  • the ethylene copolymers (B) and paraffin dispersants (C) used are commercial products with the characteristics given below.
  • the lower 20% by volume is isolated and the cloud point determined according to IP 3015. Only a small deviation of the cloud point of the lower phase (CP KS ) from the blank value of the oil shows a good paraffin dispersion.
  • the mixtures according to the invention thus make it possible to improve the conductivity of oils doped with alkylphenol resins to more than 50 pS / m with only small amounts of sulfonic acid ammonium salt and thus to ensure safe handling of the additized oils.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lubricants (AREA)

Abstract

Gegenstand der Erfindung sind Zusammensetzungen, enthaltend mindestens ein Alkylphenolharz (Bestandteil I) und, bezogen auf das Alkylphenolharz, 0,05 bis 10 Gew.-% mindestens eines Salzes aus einer aromatischen Base und einer Sulfonsäure (Bestandteil II).

Description

  • Die vorliegende Erfindung betrifft die Verwendung von Alkylphenol-Aldehydharzen und Salzen organischer aromatischer Basen mit Sulfonsäuren zur Verbesserung der Leitfähigkeit schwefelarmer Mineralöldestillate, sowie die additivierten Mineralöldestillate.
  • Der Gehalt von Mineralöldestillaten an schwefelhaltigen Verbindungen und Aromaten muss im Zuge der sich verschärfenden Umweltgesetzgebung immer weiter abgesenkt werden. Bei den zur Herstellung spezifikationsgerechter Mineralölqualitäten eingesetzten Raffinerieprozessen werden gleichzeitig aber auch andere polare sowie aromatische Verbindungen entfernt. Als Nebeneffekt wird dadurch die elektrische Leitfähigkeit dieser Mineralöldestillate stark abgesenkt. Dadurch können elektrostatische Aufladungen, wie sie insbesondere unter hohen Fließgeschwindigkeiten, beispielsweise beim Umpumpen in Leitungen und Filtern in der Raffinerie, in der Distributionskette wie auch beim Verbraucher auftreten, nicht ausgeglichen werden. Derartige Potentialdifferenzen zwischen dem Öl und seiner Umgebung bergen aber das Risiko der Funkenentladung, die zur Selbstentzündung bzw. Explosion der leichtentzündlichen Flüssigkeiten führen kann. Daher werden solchen Ölen mit geringer elektrischer Leitfähigkeit Additive zugesetzt, die die Leitfähigkeit erhöhen und den Potentialausgleich zwischen dem Öl und seiner Umgebung erleichtern. Eine Leitfähigkeit von mehr als 50 pS/m wird allgemein als ausreichend für eine sichere Handhabung von Mineralöldestillaten angesehen. Verfahren zur Bestimmung der Leitfähigkeit sind beispielsweise in DIN 51412-T02-79 und ASTM 2624 beschrieben.
  • Eine für vielfältige Zwecke in Mineralölen eingesetzte Verbindungsklasse sind Alkylphenolharze und deren Derivate, die durch Kondensation von Alkylresten tragenden Phenolen mit Aldehyden unter sauren bzw. basischen Bedingungen hergestellt werden können. Beispielsweise werden Alkylphenolharze als Kaltfließverbesserer, Schmierverbesserer, Oxidationsinhibitoren, Korrosionsinhibitoren sowie Asphaltendispergatoren und alkoxilierte Alkylphenolharze als Demulgatoren in Rohölen und Mitteldestillaten eingesetzt. Des weiteren werden Alkylphenolharze als Stabilisatoren für Jet-fuel eingesetzt. Des gleichen werden Harze aus Benzoesäureestern mit Aldehyden bzw. Ketonen als Kälteadditive für Brennstofföle eingesetzt. Die Wirkung der bekannten Harze und der sie enthaltenden Additivsysteme ist aber insbesondere in vielen schwefelarmen bzw. schwefelfreien Ölen noch nicht befriedigend.
  • GB-A-2 305 437 und GB-A-2 308 129 offenbaren Alkylphenol-Formaldehydharze als Pour Point Depressants für wachshaltige Flüssigkeiten wie Diesel, Schmieröl, Hydrauliköl, Rohöle. Die Kondensation der Alkylphenole mit Formaldehyd im Verhältnis 2:1 bis 1:1,5 kann in Gegenwart saurer Katalysatoren wie Schwefelsäure, Sulfonsäuren oder Carbonsäuren durchgeführt werden. Das Harz kann anschließend bei Bedarf mit NaOH behandelt werden, um den sauren Katalysator in das Natriumsalz zu überführen und beispielsweise durch Filtration abzutrennen. In den Beispielen wird mit konzentrierter Schwefelsäure gearbeitet, die nach der Kondensation als Natriumsalz abfiltriert wird.
  • EP-A-0 857 776 offenbart die Verwendung von Alkylphenolharzen in Kombination mit Ethylen-Copolymeren und stickstoffhaltigen Paraffindispergatoren zur Verbesserung der Kälteeigenschaften von Mitteldestillaten. Die Kondensation der Harze kann dabei unter Katalyse durch anorganische oder organische Säuren erfolgen, die gegebenenfalls nach nicht weiter spezifizierter Neutralisation im Produkt verbleiben. In den Beispielen erfolgt die Kondensation der Harze unter Katalyse durch Alkylbenzolsulfonsäure, die anschließend mit KOH bzw. NaOH neutralisiert wird.
  • EP-A-1 088 045 offenbart, dass Alkylphenolharze mit Aminen, die mindestens einen Kohlenwasserstoffrest tragen, kombiniert werden können. Gemäß den Beispielen handelt es sich dabei um Salze der Alkylphenolharze, bei denen knapp die Hälfte der phenolischen OH-Gruppen mit sekundären Alkylaminen neutralisiert werden.
  • EP-A-0 381 966 offenbart ein Verfahren zur Herstellung von Novolaken durch Kondensation von Phenolen mit Aldehyden unter azeotropem Auskreisen von Wasser. Als geeignete Katalysatoren werden starke Mineralsäuren, insbesondere Schwefelsäure und ihre sauren Derivate, genannt. Diese können vor der Aufarbeitung des Reaktionsgemischs neutralisiert werden, vorzugsweise mit Metallhydroxiden oder Aminen. In den Beispielen wird durchweg mit Schwefelsäure katalysiert, die anschließend mit Natronlauge neutralisiert wird.
  • EP-A-0 311 452 offenbart Alkylphenol-Formaldehyd-Kondensate als Kälteadditive für Brennstoffe und Schmieröle. Als Katalysator wird p-Toluolsulfonsäure verwendet, die als solche im Harz verbleibt.
  • EP-A-1482024 offenbart Kondensate aus p-Hydroxybenzoesäureestern und Aldehyden bzw. Ketonen als Kälteadditive für Brennstofföle. Die Kondensation erfolgt hierbei in Gegenwart saurer Katalysatoren wie p-Toluolsulfonsäure, die als solche im Produkt verbleiben.
  • Im Rahmen der vorliegenden Erfindung werden unter Alkylphenolharzen alle Polymere verstanden, die durch Kondensation eines Alkylreste tragenden Phenols mit Aldehyden bzw. Ketonen zugänglich sind. Der Alkylrest kann dabei direkt über eine C-C-Bindung an den Arylrest des Phenols gebunden sein oder auch über funktionelle Gruppen wie Ester oder Ether.
  • Als Katalysatoren für die Kondensationsreaktionen von Alkylphenol und Aldehyd sind neben Carbonsäuren wie Essigsäure und Oxalsäure insbesondere starke Mineralsäuren wie Salzsäure, Phosphorsäure und Schwefelsäure sowie Sulfonsäuren gebräuchliche Katalysatoren. Üblicherweise verbleiben diese nach Beendigung der Reaktion als solche oder in neutralisierter Form im Produkt.
  • Aus dem Stand der Technik ist bekannt, den für die Kondensation des Alkylphenolharzes eingesetzten Katalysator mit einer Base zu neutralisieren. In der Praxis werden dazu üblicherweise Basen wie Natronlauge oder Kalilauge eingesetzt, die zur Bildung von Natrium- bzw. Kaliumsalzen dieser starken Säuren führen. Für den Einsatz als Brennstoffadditive sind derartige Salze jedoch unerwünscht, da sie aus dem Öl in kristalliner Form ausfallen und Leitungs- bzw. Filterverstopfungen verursachen können sowie bei der Verbrennung zu unerwünschten Rückständen (Asche) führen.
    Aufgabe vorliegender Erfindung war es somit, ein Additiv zur Verbesserung sowohl der Leitfähigkeit als auch der Kälteeigenschaften von Mineralöldestillaten zu finden.
  • Überraschenderweise wurde nun gefunden, dass Mineralöle, die Alkylreste tragende Phenolharze enthalten durch Zugabe geringer Mengen öllöslicher Salze aus organischen aromatischen Basen und Sulfonsäuren deutlich in ihrer elektrischen Leitfähigkeit verbessert werden können. Der mit Salzen aromatischer Basen erzielbare Effekt ist dabei zudem ausgeprägter als bei entsprechenden Alkalisalzen und Ammoniumsalzen auf Basis aliphatischer Amine. Vermutlich ist die Salzbildung in den erfindungsgemäßen Mischungen wesentlich selektiver und die im Vergleich zu Alkalibasen und aliphatischen Aminen schwachen aromatischen Basen bevorzugen eine Salzbildung mit den starken Sulfonsäuren und weniger mit den nur schwach sauren phenolischen OH-Gruppen. Die so additivierten Öle zeigen eine stark erhöhte Leitfähigkeit und sind somit wesentlich sicherer zu handhaben.
  • Weiterhin wurde gefunden, dass durch Zugabe geringer Mengen öllöslicher Salze aus aromatischen Basen und Sulfonsäuren gleichzeitig die Wirksamkeit der Alkylreste tragenden Phenol-Aldehydharze als Kälteadditive, insbesondere als Paraffindispergatoren, gesteigert wird und zudem auch nach längerer Lagerung des Alkylphenol-Aldehydharzes bzw. eines das Alkylphenol-Aldehydharz enthaltenden Additivpakets erhalten bleibt. Vermutlich beruht dies auf einer Unterdrückung der Zersetzung der Alkylphenolharze zu intensiv gefärbten Phenoxy- und Phenoxonium-Radikalen.
  • Gegenstand der Erfindung sind somit Zusammensetzungen, enthaltend mindestens ein Alkylphenolharz (Bestandteil I) und, bezogen auf das Alkylphenolharz, 0,005 bis 10 Gew.-% mindestens eines Salzes aus einer aromatischen Base und einer Sulfonsäure (Bestandteil II).
  • Ein weiterer Gegenstand der Erfindung sind Mineralöldestillate mit einem Schwefelgehalt von weniger als 350 ppm, enthaltend 5 bis 500 ppm einer Zusammensetzung, enthaltend mindestens ein Alkylphenolharz (Bestandteil I) und, bezogen auf das Alkylphenolharz, 0,05 bis 10 Gew.-% mindestens eines Salzes aus einer aromatischen Base und einer Sulfonsäure (Bestandteil II).
  • Ein weiterer Gegenstand der Erfindung ist die Verwendung von Zusammensetzungen, enthaltend mindestens ein Alkylphenolharz (Bestandteil I) und, bezogen auf das Alkylphenolharz, 0,05 bis 10 Gew.-% mindestens eines Salzes aus einer aromatischen Base und einer Sulfonsäure (Bestandteil II), zur Verbesserung der elektrischen Leitfähigkeit von Mineralöldestillaten mit einem Schwefelgehalt von weniger als 350 ppm.
  • Ein weiterer Gegenstand der Erfindung ist die Verwendung von Zusammensetzungen, enthaltend mindestens ein Alkylphenolharz (Bestandteil I) und, bezogen auf das Alkylphenolharz, 0,05 bis 10 Gew.-% mindestens eines Salzes aus einer aromatischen Base und einer Sulfonsäure (Bestandteil II), zur Verbesserung der Kaltfließfähigkeit von Mineralöldestillaten mit einem Schwefelgehalt von weniger als 350 ppm.
  • Die erfindungsgemäßen Sulfonsäuresalze können dem Mineralöldestillat bzw. dem Alkylphenol-Aldehydharz als solches zugesetzt werden. Bevorzugt werden sie durch Umsetzung der zur sauren Kondensation des Alkylphenol-Aldehydharzes als Katalysator eingesetzten Sulfonsäure mit der entsprechenden aromatischen Base in Gegenwart der Alkylphenol-Aldehydharze hergestellt. Alternativ können sie durch Umsetzung einer zur basischen Kondensation des Alkylphenol-Aldehydharzes als Katalysator eingesetzten aromatischen Base mit entsprechenden Sulfonsäuren in Gegenwart der Alkylphenol-Aldehydharze hergestellt werden.
  • Bevorzugt enthalten die erfindungsgemäßen Zusammensetzungen, bezogen auf das Alkylphenolharz, 0,05 bis 5 Gew.-% und insbesondere 0,1 bis 5 Gew.-% wie beispielsweise 0,5 bis 4 Gew.-% mindestens eines Salzes aus einer aromatischen Base und einer Sulfonsäure.
  • Bevorzugt enthalten die erfindungsgemäßen Mineralöldestillate 10 bis 150 und speziell 10 bis 100 ppm mindestens eines Alkylphenolharzes sowie 0,1 bis 5 Gew.-%, besonders bevorzugt 0,5 bis 5 Gew.-%. wie beispielsweise 1 bis 4 Gew.-% mindestens eines Sulfonsäuresalzes bezogen auf das Alkylphenolharz.
  • Zur Verbesserung von Leitfähigkeit und/oder Kaltfließfähigkeit von Mineralöldestillaten werden bevorzugt Zusammensetzungen verwendet, die mindestens ein Alkylphenolharz und, bezogen auf das Alkylphenolharz, 0,1 bis 5 Gew.-%, besonders bevorzugt 0,5 bis 5 Gew.-% wie beispielsweise 1 bis 4 Gew.-% mindestens eines Salzes aus einer aromatischen Base und einer Sulfonsäure enthalten.
  • Die in ihrer elektrischen Leitfähigkeit verbesserten erfindungsgemäßen Mineralöldestillate besitzen eine elektrische Leitfähigkeit von bevorzugt mindestens 50 pS/m, speziell von mindestens 70 pS/m wie beispielsweise von mindestens 90 pS/m.
  • Zur Herstellung der Sulfonsäuresalze besonders geeignete Sulfonsäuren sind alle öllöslichen Verbindungen, die mindestens eine Sulfonsäuregruppe und mindestens einen gesättigten oder ungesättigten, linearen, verzweigten und/oder cyclischen Kohlenwasserstoffrest mit 1 bis 40 C-Atomen und bevorzugt mit 3 bis 24 C-Atomen enthalten. Besonders bevorzugt sind aromatische Sulfonsäuren, speziell alkylaromatische Mono-Sulfonsäuren mit einem oder mehreren C1-C28-Alkylresten und insbesondere solche mit C3-C22-Alkylresten. Bevorzugt tragen die alkylaromatischen Sulfonsäuren ein oder zwei Alkylreste, insbesondere einen Alkylrest. Die zu Grunde liegenden Arylgrupen sind bevorzugt mono- und bizyklisch, insbesondere monozyklisch. In einer bevorzugten Ausführungsform tragen die Arylgruppen keine Carboxylgruppen und speziell tragen sie nur Sulfonsäure- und Alkylgruppen. Geeignete Beispiele sind Methansulfonsäure, Butansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure, Xylolsulfonsäure, 2-Mesitylensulfonsäure, 4-Ethylbenzolsulfonsäure, Isopropylbenzolsulfonsäure, 4-Butylbenzolsulfonsäure, 4-Octylbenzolsulfonsäure; Dodecylbenzolsulfonsäure, Didodecylbenzolsulfonsäure, Naphthalinsulfonsäure. Auch Mischungen dieser Sulfonsäuren sind geeignet. Öllöslich bedeutet hier, dass die genannten Verbindungen mindestens zu 1 Gew.-% in aromatischen Lösemitteln wie beispielsweise Toluol löslich sind.
  • Geeignete aromatische Basen sind insbesondere öllösliche Verbindungen, die ein cyclisches, durchkonjugiertes Kohlenwasserstoffgerüst mit 4n+2 π-Elektronen, wobei n eine ganze Zahl zwischen 1 und 6, bevorzugt zwischen 2 und 4 und insbesondere 1 oder 2 ist, sowie mindestens ein zur Salzbildung befähigtes Heteroatom enthalten. Dieses Heteroatom kann z.B. bei sogenannten Heteroaromaten Bestandteil des aromatischen Ringsystems sein, es kann aber auch an diesen Ring gebunden sein. Bevorzugt ist es Bestandteil des aromatischen Ringsystems. Geeignete Heteroatome sind Stickstoff, Sauerstoff und Schwefel, besonders bevorzugtes Heteroatom ist Stickstoff. Bevorzugt ist mindestens ein freies Elektronenpaar des Heteroatoms nicht an der Ausbildung des aromatischen π-Elektronensystems beteiligt.
  • Das aromatische System kann mono-, di- oder auch polyzyklisch sein. Bevorzugt enthält es einen oder mehrere fünf- und/oder sechsgliedrige Ringe mit einem π-Elektronensextett. Besonders bevorzugt ist es monocyclisch und fünf- oder sechsgliedrig. Es kann weitere Substituenten wie beispielsweise Alkyl-, Alkylen- und/oder Phenylreste, aber auch funktionelle Gruppen wie beispielsweise Hydroxy-, Ester-, Amid- und/oder Aminogruppen tragen, soweit diese eine Salzbildung nicht beeinträchtigen. Gegebenenfalls anwesende Alkyl- und Alkenylreste können linear, verzweigt oder cyclisch sein und mit dem aromatischen System an einer oder zwei Stellen verknüpft sein.
  • Geeignete aromatische monocyclische Basen sind beispielsweise Pyridin, Picolin, Lutidin, Collidin, Nicotinamid, Dihydrochinolin, Aminopyridin, Anilin, N,N-Dimethylanilin, Toluidin, Phenylendiamin, Pyrimidin, Pyrazin, Pyridazin, Imidazol, Pyrazol, Histamin, Triazin, Triazol, Oxazol, Isoxazol, Thiazol und Isothiazol sowie p-Phenylendiamin, 2-(N,N-Dimethylamino)pyridin, 4-(N,N-Dimethylamino)pyridin und 2,4-Diamino-6-hydroxypyrimidin.
  • Geeignete aromatische polycylische Basen sind beispielsweise Chinolin, Isochinolin, 6-Methylchinolin, 2-Aminochinolin, 5-Dimethylaminochinolin, 7-Dimethylaminochinolin, Benzimidazol, Purin, Cinnolin, Phthalazin, Chinazolin, Chinoxalin, Acridin, Phenanthrolin und Phenazin sowie 1,5-Diaminonaphthalin, 1,8-Diaminonaphthalin und Diaminochinazolin.
  • Besonders bevorzugte Basen sind mono- und bicyclische stickstoffhaltige Aromaten wie Pyridin, Chinolin, Imidazol sowie deren Derivate.
  • Die erfindungsgemäßen Sulfonsäuresalze werden durch Umsetzung der Sulfonsäuren mit 0,8 bis 10 Mol aromatischer Base, bevorzugt 0,9 bis 5 Mol aromatischer Base, besonders bevorzugt 0,95 bis 2 Mol aromatischer Base, wie beispielsweise etwa equimolar, hergestellt. Dabei wird insbesondere bei mehrbasischen Sulfonsäuren und/oder Basen die Molzahl der insgesamt umgesetzten Säure- und Basengruppen betrachtet. Die erfindungsgemäßen Additive und die sie enthaltenden Mineralöldestillate können demzufolge bezogen auf die Sulfonsäure auch mehr als equimolare Mengen an aromatischer Base enthalten. Alkylphenol-Aldehyd-Harze sind prinzipiell bekannt und beispielsweise im Römpp Chemie Lexikon, 9. Auflage, Thieme Verlag 1988-92, Band 4, S. 3351 ff. beschrieben. Erfindungsgemäß geeignet sind insbesondere solche Alkylphenol-Aldehydharze, die sich von Alkylphenolen mit ein oder zwei Alkylresten in ortho- und/oder para-Position zur OH-Gruppe ableiten. Besonders bevorzugt als Ausgangsmaterialien sind Alkylphenole, die am Aromaten mindestens zwei zur Kondensation mit Aldehyden befähigte Wasserstoffatome tragen und insbesondere monoalkylierte Phenole. Besonders bevorzugt befindet sich der Alkylrest in der paraStellung zur phenolischen OH-Gruppe. Die Alkylreste (darunter werden für den Bestandteil 1 generell Kohlenwasserstoffreste gemäß nachstehender Definition verstanden) können bei den im erfindungsgemäßen Verfahren einsetzbaren Alkylphenol-Aldehyd-Harzen gleich oder verschieden sein, sie können gesättigt oder ungesättigt sein und besitzen 1 - 200, vorzugsweise 1 - 20, insbesondere 4 - 16 wie beispielsweise 6-12 Kohlenstoffatome; bevorzugt handelt es sich um n-, iso- und tert.-Butyl-, n- und iso-Pentyl-, n- und iso-Hexyl-, n- und iso-Octyl-, n- und iso-Nonyl-, n- und iso-Decyl-, n- und iso-Dodecyl-, Tetradecyl-, Hexadecyl-, Octadecyl-, Tripropenyl-, Tetrapropenyl-, Poly(propenyl)- und Poly(isobutenyl)reste. In einer bevorzugten Ausführungsform werden zur Herstellung der Alkylphenolharze Mischungen von Alkylphenolen mit unterschiedlichen Alkylresten eingesetzt. So haben sich beispielsweise Harze auf Basis von Butyphenol einerseits und Octyl-, Nonyl- und/oder Dodecylphenol im molaren Verhältnis von 1:10 bis 10:1 andererseits besonders bewährt.
  • Geeignete Alkylphenolharze können auch Struktureinheiten weiterer Phenolanaloga wie Salicylsäure, Hydroxybenzoesäure sowie deren Derivate wie Ester, Amide und Salze enthalten oder aus ihnen bestehen.
  • Geeignete Aldehyde für die Alkylphenol-Aldehydharze sind solche mit 1 bis 12 Kohlenstoffatomen und vorzugsweise solche mit 1 bis 4 Kohlenstoffatomen wie beispielsweise Formaldehyd, Acetaldehyd, Propionaldehyd, Butyraldehyd, 2-Ethylhexanal, Benzaldehyd, Glyoxalsäure sowie deren reaktive Equivalente wie Paraformaldehyd und Trioxan. Besonders bevorzugt ist Formaldehyd in Form von Paraformaldehyd und insbesondere Formalin.
  • Das mittels Gelpermeationschromatographie gegen Poly(styrol)-Standards in THF gemessene Molekulargewicht der Alkylphenol-Aldehyd-Harze beträgt bevorzugt 500 - 25.000 g/mol, besonders bevorzugt 800- 10.000 g/mol und speziell 1.000 - 5.000 g/mol wie beispielsweise 1500 - 3.000 g/mol. Voraussetzung ist hierbei, dass die Alkylphenol-Aldehydharze zumindest in anwendungsrelevanten Konzentrationen von 0,001 bis 1 Gew.-% öllöslich sind.
  • In einer bevorzugten Ausführungsform der Erfindung handelt es sich dabei um Alkylphenol-Formaldehydharze, die Oligo- oder Polymere mit einer repetitiven Struktureinheit der Formel
    Figure imgb0001
    worin R5 für C1-C200-Alkyl oder C2-C200-Alkenyl, O-R6 oder O-C(O)-R6, R6 für C1-C200-Alkyl oder C2-C200-Alkenyl und n für eine Zahl von 2 bis 100 steht, enthalten. R6 steht bevorzugt für C1-C20-Alkyl oder C2-C20-Alkenyl und insbesondere für C4-C16-Alkyl oder C2-C20-Alkenyl wie beispielsweise für C6-C12-Alkyl oder C2-C20-Alkenyl. Besonders bevorzugt steht R5 für C1-C20-Alkyl oder -Alkenyl und insbesondere für C4-C16-Alkyl oder -Alkenyl wie beispielsweise für C6-C12-Alkyl oder -Alkenyl. Bevorzugt steht n für eine Zahl von 2 bis 50 und speziell für eine Zahl von 3 bis 25 wie beispielsweise eine Zahl von 5 bis 15.
  • Für den Einsatz in Mitteldestillaten wie Diesel und Heizöl besonders bevorzugt sind Alkylphenol-Aldehydharze mit C2-C40-Alkylresten des Alkylphenols, bevorzugt mit C4-C20-Alkylresten wie beispielsweise C6-C12-Alkylresten. Die Alkylreste können linear oder verzweigt sein, bevorzugt sind sie linear. Besonders geeignete Alkylphenol-Aldehydharze leiten sich von linearen Alkylresten mit 8 und 9 C-Atomen ab.
  • Für den Einsatz in Benzin und Jet-Fuel besonders bevorzugt sind Alkylphenol-Aldehydharze, deren Alkylreste 4 bis 200 C-Atome, bevorzugt 10 bis 180 C-Atome tragen und sich von Oligomeren oder Polymeren von Olefinen mit 2 bis 6-C-Atomen wie beispielsweise von Poly(isobutylen) ableiten. Sie sind somit bevorzugt verzweigt. Der Polymerisationsgrad (n) liegt hier bevorzugt zwischen 2 und 20, bevorzugt zwischen 3 und 10 Alkylphenoleinheiten.
  • Diese Alkylphenol-Aldehydharze sind nach bekannten Verfahren zugänglich, z.B. durch Kondensation der entsprechenden Alkylphenole mit Formaldehyd, d.h. mit 0,5 bis 1,5 Mol, bevorzugt 0,8 bis 1,2 Mol Formaldehyd pro Mol Alkylphenol. Die Kondensation kann lösemittelfrei erfolgen, bevorzugt erfolgt sie jedoch in Gegenwart eines nicht oder nur teilweise wassermischbaren inerten organischen Lösemittels wie Mineralöle, Alkohole, Ether und ähnliches. Besonders bevorzugt sind Lösemittel, die mit Wasser Azeotrope bilden können. Als derartige Lösemittel werden insbesondere Aromaten wie Toluol, Xylol Diethylbenzol und höher siedende kommerzielle Lösemittelgemische wie beispielsweise ®Shellsol AB, und Solvent Naphtha eingesetzt. Die Kondensation erfolgt bevorzugt zwischen 70 und 200°C wie beispielsweise zwischen 90 und 160°C. Sie wird üblicherweise durch 0,05 bis 5 Gew.-% Basen oder Säuren katalysiert. So führt beispielsweise die durch aromatische Basen wie beispielsweise Pyridin katalysierte Kondensation mit nachfolgender Neutralisation mittels organischer Sulfonsäure zu den erfindungsgemäßen Mischungen. Erfindungsgemäß bevorzugt wird die Katalyse durch organische Sulfonsäuren, die nach Abschluss der Kondensation mit aromatischen Basen zu den erfindungsgemäßen öllöslichen Sulfonsäuresalzen umgesetzt werden.
  • Die erfindungsgemäßen Zusammensetzungen werden zwecks einfacher Handhabung bevorzugt als Konzentrate eingesetzt, die 10 bis 90 Gew.-% und bevorzugt 20 bis 60 Gew.-% an Lösemittel enthalten. Bevorzugte Lösemittel sind höhersiedende aliphatische Kohlenwasserstoffe, aromatische Kohlenwasserstoffe, Alkohole, Ester, Ether und deren Gemische.
  • Die erfindungsgemäßen Additive erhöhen die Leitfähigkeit von Mineralölen wie Benzin, Kerosin, Jet-Fuel, Diesel und Heizöl mit niedrigem Schwefelgehalt von weniger als 350 ppm, insbesondere weniger als 50 ppm wie beispielsweise weniger als 10 oder weniger als 5 ppm. Gleichzeitig verbessern sie die Kälteeigenschaften insbesondere von Mitteldestillaten wie Kerosin, Jet-Fuel, Diesel und Heizöl.
  • Die erfindungsgemäßen Additive können Mineralöldestillaten zur Verbesserung der Kaltfließfähigkeit auch in Kombination mit weiteren Additiven wie beispielsweise Ethylen-Copolymeren, polaren Stickstoffverbindungen, Kammpolymeren, Polyoxyalkylenverbindungen und/oder Olefincopolymeren zugesetzt werden.
  • Die vorliegende Erfindung stellt somit ein neues Additivpaket zur Verfügung, das gleichzeitig die Kälteeigenschaften und die antistatischen Eigenschaften von schwefelarmen Mineralölen verbessert.
  • Werden die erfindungsgemäßen Additive für Mineralöldestillate verwendet, so enthalten sie in einer bevorzugten Ausführungsform neben den Bestandteilen I und II noch ein oder mehrere der Bestandteile III bis VII.
  • So enthalten sie bevorzugt Copolymere aus Ethylen und olefinisch ungesättigten Verbindungen als Bestandteil III. Als Ethylen-Copolymere eignen sich insbesondere solche, die neben Ethylen 6 bis 21 mol-%, insbesondere 10 bis 18 mol-% Comonomere enthalten.
  • Bei den olefinisch ungesättigten Verbindungen handelt es sich vorzugsweise um Vinylester, Acrylester, Methacrylester, Alkylvinylether und/oder Alkene, wobei die genannten Verbindungen mit Hydroxylgruppen substituiert sein können. Es können ein oder mehrere Comonomere im Polymer enthalten sein.
  • Bei den Vinylestern handelt es sich vorzugsweise um solche der Formel 1

             CH2=CH-OCOR1     (1)

    worin R1 C1 bis C30-Alkyl, vorzugsweise C4 bis C16-Alkyl, speziell C6- bis C12-Alkyl bedeutet. In einer weiteren Ausführungsform können die genannten Alkylgruppen mit einer oder mehreren Hydroxylgruppen substituiert sein.
  • In einer weiteren bevorzugten Ausführungsform steht R1 für einen verzweigten Alkylrest oder einen Neoalkylrest mit 7 bis 11 Kohlenstoffatomen, insbesondere mit 8, 9 oder 10 Kohlenstoffatomen. Besonders bevorzugte Vinylester leiten sich von sekundären und insbesondere tertiären Carbonsäuren ab, deren Verzweigung sich in alpha-Position zur Carbonylgruppe befindet. Geeignete Vinylester umfassen Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylisobutyrat, Vinylhexanoat, Vinylheptanoat, Vinyloctanoat, Pivalinsäurevinylester, 2-Ethylhexansäurevinylester, Vinyllaurat, Vinylstearat sowie Versaticsäureester wie Neononansäurevinylester, Neodecansäurevinylester, Neoundecansäurevinylester.
  • In einer weiteren bevorzugten Ausführungsform enthalten diese Ethylen-Copolymere Vinylacetat und mindestens einen weiteren Vinylester der Formel 1 worin R1 für C4 bis C30-Alkyl, vorzugsweise C4 bis C16-Alkyl, speziell C6- bis C12-Alkyl steht.
  • Bei den Acrylestern handelt es sich vorzugsweise um solche der Formel 2

             CH2=CR2-COOR3     (2)

    worin R2 Wasserstoff oder Methyl und R3 C1- bis C30-Alkyl, vorzugsweise C4- bis C16-Alkyl, speziell C6- bis C12-Alkyl bedeutet. Geeignete Acrylester umfassen z.B. Methyl(meth)acrylat, Ethyl(meth)acrylat, Propyl(meth)acrylat, n- und iso-Butyl(meth)acrylat, Hexyl-, Octyl-, 2-Ethylhexyl-, Decyl-, Dodecyl-, Tetradecyl-, Hexadecyl-, Octadecyl(meth)acrylat sowie Mischungen dieser Comonomere. In einer weiteren Ausführungsform können die genannten Alkylgruppen mit einer oder mehreren Hydroxylgruppen substituiert sein. Ein Beispiel für einen solchen Acrylester ist Hydroxyethylmethacrylat.
  • Bei den Alkylvinylethern handelt es sich vorzugsweise um Verbindungen der Formel 3

             CH2=CH-OR4     (3)

    worin R4 C1- bis C30-Alkyl, vorzugsweise C4- bis C16-Alkyl, speziell C6- bis C12-Alkyl bedeutet. Beispielsweise seien genannt Methylvinylether, Ethylvinylether, iso-Butylvinylether. In einer weiteren Ausführungsform können die genannten Alkylgruppen mit einer oder mehreren Hydroxylgruppen substituiert sein.
  • Bei den Alkenen handelt es sich vorzugsweise um einfache ungesättigte Kohlenwasserstoffe mit 3 bis 30 Kohlenstoffatomen, insbesondere 4 bis 16 Kohlenstoffatomen und speziell 5 bis 12 Kohlenstoffatomen. Geeignete Alkene umfassen Propen, Buten, Isobutylen, Penten, Hexen, 4-Methylpenten, Octen, Diisobutylen sowie Norbornen und seine Derivate wie Methylnorbornen und Vinylnorbornen. In einer weiteren Ausführungsform können die genannten Alkylgruppen mit einer oder mehreren Hydroxylgruppen substituiert sein.
  • Besonders bevorzugt sind Terpolymerisate, die außer Ethylen 3,5 bis 20 mol-%, insbesondere 8 bis 15 mol-% Vinylacetat und 0,1 bis 12 mol-%, insbesondere 0,2 bis 5 mol-% mindestens eines längerkettigen und bevorzugt verzweigten Vinylesters wie beispielsweise 2-Ethylhexansäurevinylester, Neononansäurevinylester oder Neodecansäurevinylester enthalten, wobei der gesamte Comonomergehalt zwischen 8 und 21 mol-%, bevorzugt zwischen 12 und 18 mol-% liegt. Weitere besonders bevorzugte Copolymere enthalten neben Ethylen und 8 bis 18 mol-% Vinylestern noch 0,5 bis 10 mol-% Olefine wie Propen, Buten, Isobutylen, Hexen, 4-Methylpenten, Octen, Diisobutylen und/oder Norbornen.
  • Vorzugsweise haben diese Ethylen-Co- und Terpolymere Schmelzviskositäten bei 140°C von 20 bis 10.000 mPas, insbesondere von 30 bis 5.000 mPas, speziell von 50 bis 2.000 mPas. Die Mittels 1H-NMR-Spektroskopie bestimmten Verzweigungsgrade liegen bevorzugt zwischen 1 und 9 CH3/100 CH2-Gruppen, insbesondere zwischen 2 und 6 CH3/100 CH2-Gruppen, die nicht aus den Comonomeren stammen.
  • Bevorzugt werden Mischungen aus zwei oder mehr der oben genannten Ethylen-Copolymere eingesetzt. Besonders bevorzugt unterscheiden sich die den Mischungen zu Grunde liegenden Polymere in mindestens einem Charakteristikum. Beispielsweise können sie unterschiedliche Comonomere enthalten, unterschiedliche Comonomergehalte, Molekulargewichte und/oder Verzweigungsgrade aufweisen.
  • Das Mischungsverhältnis zwischen den erfindungsgemäßen Additiven und Ethylencopolymeren als Bestandteil III kann je nach Anwendungsfall in weiten Grenzen variieren, wobei die Ethylencopolymere III oftmals den größeren Anteil darstellen. Bevorzugt enthalten derartige Additivmischungen 2 bis 70 Gew.-%, bevorzugt 5 bis 50 Gew.-% der erfindungsgemäßen Additivkombination aus I und II sowie 30 bis 98 Gew.-%, bevorzugt 50 bis 95 Gew.-% Ethylencopolymere. Bei den als weitere Komponente erfindungsgemäß geeigneten öllöslichen polaren Stickstoffverbindungen (Bestandteil IV) handelt es sich vorzugsweise um Umsetzungsprodukte von Fettaminen mit Verbindungen, die eine Acylgruppe enthalten. Bei den bevorzugten Aminen handelt es sich um Verbindungen der Formel NR6R7R8, worin R6, R7 und R8 gleich oder verschieden sein können, und wenigstens eine dieser Gruppen für C8-C36-Alkyl, C6-C36-Cycloalkyl, C8-C36-Alkenyl, insbesondere C12-C24-Alkyl, C12-C24-Alkenyl oder Cyclohexyl steht, und die übrigen Gruppen entweder Wasserstoff, C1-C36-Alkyl, C2-C36-Alkenyl, Cyclohexyl, oder eine Gruppe der Formeln -(A-O)x-E oder -(CH2)n-NYZ bedeuten, worin A für eine Ethyl- oder Propylgruppe steht, x eine Zahl von 1 bis 50, E = H, C1-C30-Alkyl, C5-C12-Cycloalkyl oder C6-C30-Aryl, und n = 2, 3 oder 4 bedeuten, und Y und Z unabhängig voneinander H, C1-C30-Alkyl oder -(A-O)x bedeuten. Die Alkyl- und Alkenylreste können linear oder verzweigt sein und bis zu zwei Doppelbindungen enthalten. Bevorzugt sind sie linear und weitgehend gesättigt, das heißt sie haben Jodzahlen von weniger als 75 gl2/g, bevorzugt weniger als 60 gl2/g und insbesondere zwischen 1 und 10 gl2/g. Besonders bevorzugt sind sekundäre Fettamine, in denen zwei der Gruppen R6, R7und R8 für C8-C36-Alkyl, C6-C36-Cycloalkyl, C8-C36-Alkenyl, insbesondere für C12-C24-Alkyl, C12-C24-Alkenyl oder Cyclohexyl stehen. Geeignete Fettamine sind beispielsweise Octylamin, Decylamin, Dodecylamin, Tetradecylamin, Hexadecylamin, Octadecylamin, Eicosylamin, Behenylamin, Didecylamin, Didodecylamin, Ditetradecylamin, Dihexadecylamin, Dioctadecylamin, Dieicosylamin, Dibehenylamin sowie deren Mischungen. Speziell enthalten die Amine Kettenschnitte auf Basis natürlicher Rohstoffe wie z.B. Cocosfettamin, Talgfettamin, hydriertes Talgfettamin, Dicocosfettamin, Ditalgfettamin und Di(hydriertes Talgfettamin). Besonders bevorzugte Aminderivate sind Aminsalze, Imide und/oder Amide wie beispielsweise Amid-Ammoniumsalze sekundärer Fettamine, insbesondere von Dicocosfettamin, Ditalgfettamin und Distearylamin. Besonders bevorzugte Paraffindispergatoren als Bestandteil IV enthalten mindestens eine zu einem Ammoniumsalz umgesetzte Acylgruppe. Speziell enthalten sie mindestens zwei wie beispielsweise mindestens drei oder mindestens vier und bei polymeren Paraffindispergatoren auch fünf und mehr Ammoniumgruppen.
  • Unter Acylgruppe wird hier eine funktionelle Gruppe folgender Formel verstanden:

             >C=O

  • Für die Umsetzung mit Aminen geeignete Carbonylverbindungen sind sowohl monomere wie auch polymere Verbindungen mit einer oder mehreren Carboxylgruppen. Bei den monomeren Carbonylverbindungen werden solche mit 2, 3 oder 4 Carbonylgruppen bevorzugt. Sie können auch Heteroatome wie Sauerstoff, Schwefel und Stickstoff enthalten. Geeignete Carbonsäuren sind beispielsweise Malein-, Fumar-, Croton-, Itacon-, Bernsteinsäure, C1-C40-Alkenylbernsteinsäure, Adipin-, Glutar-, Sebacin-, und Malonsäure sowie Benzoe-, Phthal-, Trimellit- und Pyromellitsäure, Nitrilotriessigsäure, Ethylendiamintetra-essigsäure und deren reaktive Derivate wie beispielsweise Ester, Anhydride und Säurehalogenide. Als polymere Carbonylverbindungen haben sich insbesondere Copolymere ethylenisch ungesättigter Säuren wie beispielsweise Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure erwiesen, besonders bevorzugt sind Copolymere des Maleinsäureanhydrids. Als Comonomere sind solche geeignet, die dem Copolymer Öllöslichkeit verleihen. Unter öllöslich wird hier verstanden, dass sich das Copolymer nach Umsetzung mit dem Fettamin in praxisrelevanten Dosierraten rückstandsfrei im zu additivierenden Mineralöldestillat löst. Geeignete Comonomere sind beispielsweise Olefine, Alkylester der Acrylsäure und Methacrylsäure, Alkylvinylester sowie Alkylvinylether mit 2 bis 75, bevorzugt 4 bis 40 und insbesondere 8 bis 20 Kohlenstoffatomen im Alkylrest. Bei Olefinen bezieht sich die Kohlenstoffzahl auf den an die Doppelbindung gebundenen Alkylrest. Besonders geeignete Comonomere sind Olefine mit endständiger Doppelbindung. Die Molekulargewichte der polymeren Carbonylverbindungen liegen bevorzugt zwischen 400 und 20.000, besonders bevorzugt zwischen 500 und 10.000 wie beispielsweise zwischen 1.000 und 5.000.
  • Besonders bewährt haben sich öllösliche polare Stickstoffverbindungen, die durch Reaktion aliphatischer oder aromatischer Amine, vorzugsweise langkettiger aliphatischer Amine, mit aliphatischen oder aromatischen Mono-, Di-, Tri- oder Tetracarbonsäuren oder deren Anhydriden erhalten werden (vgl. US 4 211 534 ). Des gleichen sind Amide und Ammoniumsalze von Aminoalkylenpolycarbonsäuren wie Nitrilotriessigsäure oder Ethylendiamintetraessigsäure mit sekundären Aminen als öllösliche polare Stickstoffverbindungen geeignet (vgl. EP 0 398 101 ). Andere öllösliche polare Stickstoffverbindungen sind Copolymere des Maleinsäureanhydrids und α,β-ungesättigten Verbindungen, die gegebenenfalls mit primären Monoalkylaminen und/oder aliphatischen Alkoholen umgesetzt werden können (vgl. EP-A-0 154 177 , EP 0 777 712 ), die Umsetzungsprodukte von Alkenylspirobislactonen mit Aminen (vgl. EP-A-0 413 279 B1) und nach EP-A-0 606 055 A2 Umsetzungsprodukte von Terpolymeren auf Basis a,β-ungesättigter Dicarbonsäureanhydride, α,β-ungesättigter Verbindungen und Polyoxyalkylenethern niederer ungesättigter Alkohole.
    Das Mischungsverhältnis zwischen den erfindungsgemäßen Additiven und öllöslichen polaren Stickstoffverbindungen als Bestandteil IV kann je nach Anwendungsfall variieren. Bevorzugt enthalten derartige Additivmischungen 10 bis 90 Gew.-%, bevorzugt 20 bis 80 Gew.-% der erfindungsgemäßen Additivkombination aus I und II sowie 10 bis 90 Gew.-%, bevorzugt 20 bis 80 Gew.-% öllösliche polare Stickstoffverbindungen.
  • Als weitere Komponente geeignete Kammpolymere (Bestandteil V) können beispielsweise durch die Formel
    Figure imgb0002
    beschrieben werden. Darin bedeuten
  • A
    R', COOR', OCOR', R"-COOR', OR';
    D
    H, CH3, A oder R";
    E
    H, A;
    G
    H, R", R"-COOR', einen Arylrest oder einen heterocyclischen Rest;
    M
    H, COOR", OCOR", OR", COOH;
    N
    H, R", COOR", OCOR, einen Arylrest;
    R'
    eine Kohlenwasserstoffkette mit 8 bis 50 Kohlenstoffatomen;
    R"
    eine Kohlenwasserstoffkette mit 1 bis 10 Kohlenstoffatomen;
    m
    eine Zahl zwischen 0,4 und 1,0; und
    n
    eine Zahl zwischen 0 und 0,6.
  • Als weitere Komponente geeignete Polyoxyalkylenverbindungen (Bestandteil VI) sind beispielsweise Ester, Ether und Ether/Ester von Polyolen, die mindestens einen Alkylrest mit 12 bis 30 C-Atomen tragen. Wenn die Alkylgruppen von einer Säure stammen, stammt der Rest von einem mehrwertigen Alkohol; kommen die Alkylreste von einem Fettalkohol, so stammt der Rest der Verbindung von einer Polysäure.
  • Geeignete Kammpolymere sind beispielsweise Copolymere ethylenisch ungesättigter Dicarbonsäuren wie Malein- oder Fumarsäure mit anderen ethylenisch ungesättigten Monomeren wie Olefinen oder Vinylestern wie beispielsweise Vinylacetat. Besonders geeignete Olefine sind dabei α-Olefine mit 10 bis 24 C-Atomen wie beispielsweise 1-Decen, 1-Dodecen, 1-Tetradecen, 1-Hexadecen, 1-Octadecen und deren Mischungen. Auch längerkettige Olefine auf Basis oligomerisierter C2-C6-Olefine wie beispielsweise Poly(isobutylen) mit hohem Anteil endständiger Doppelbindungen sind als Comonomere geeignet. Üblicherweise werden diese Copolymere zu mindestens 50 % mit Alkoholen mit 10 bis 22 C-Atomen verestert. Geeignete Alkohole umfassen n-Decen-1-ol, n-Dodecan-1-ol, n-Tetradecan-1-ol, n-Hexadecan-1-ol, n-Octadecan-1-ol, n-Eicosan-1-ol und deren Mischungen. Besonders bevorzugt sind Mischungen aus n-Tetradecan-1-ol und n-Hexadcan-1-ol. Als Kammpolymere ebenfalls geeignet sind Poly(alkylacrylate), Poly(alkylmethacrylate) und Poly(alkyl-vinylether), die sich von Alkoholen mit 12 bis 20 C-Atomen ableiten sowie Poly(vinylester), die sich von Fettsäuren mit 12 bis 20 C-Atomen ableiten.
  • Geeignete Polyole sind Polyethylenglykole, Polypropylenglykole, Polybutylenglykole und deren Mischpolymerisate mit einem Molekulargewicht von ca. 100 bis ca. 5000, vorzugsweise 200 bis 2000. Weiterhin geeignet sind Alkoxylate von Polyolen, wie beispielsweise von Glycerin, Trimethylolpropan, Pentaerythrit, Neopentylglykol, sowie die daraus durch Kondensation zugänglichen Oligomere mit 2 bis 10 Monomereinheiten, wie z.B. Polyglycerin. Bevorzugte Alkoxylate sind solche mit 1 bis 100, insbesondere 5 bis 50 mol Ethylenoxid, Propylenoxid und/oder Butylenoxid pro mol Polyol. Ester sind besonders bevorzugt.
  • Fettsäuren mit 12 bis 26 C-Atomen sind zur Umsetzung mit den Polyolen zur Bildung der Esteradditive bevorzugt, wobei besonders bevorzugt C18- bis C24-Fettsäuren verwendet werden, speziell Stearin- und Behensäure. Die Ester können auch durch Veresterung von polyoxyalkylierten Alkoholen hergestellt werden. Bevorzugt sind vollständig veresterte polyoxyalkylierte Poylole mit Molekulargewichten von 150 bis 2000, bevorzugt 200 bis 600. Besonders geeignet sind PEG-600-Dibehenat und Glycerin-Ethylenglykol-Tribehenat.
  • Geeignete Olefincopolymere (Bestandteil VII) als weiterer Bestandteil des erfindungsgemäßen Additivs können sich direkt von monoethylenisch ungesättigten Monomeren ableiten oder indirekt durch Hydrierung von Polymeren, die sich von mehrfach ungesättigten Monomeren wie Isopren oder Butadien ableiten, hergestellt werden. Bevorzugte Copolymere enthalten neben Ethylen Struktureinheiten, die sich von α-Olefinen mit 3 bis 24 C-Atomen ableiten und Molekulargewichte von bis zu 120.000 g/mol aufweisen. Bevorzugte α-Olefine sind Propylen, Buten, Isobuten, n-Hexen, Isohexen, n-Octen, Isoocten, n-Decen, Isodecen. Der Comonomergehalt an α-Olefinen mit 3 bis 24 C-Atomen liegt bevorzugt zwischen 15 und 50 mol-%, besonders bevorzugt zwischen 20 und 35 mol-% und speziell zwischen 30 und 45 mol-%. Diese Copolymeren können auch geringe Mengen, z.B. bis zu 10 mol-% weiterer Comonomere wie z.B. nicht endständige Olefine oder nicht konjugierte Olefine enthalten. Bevorzugt sind Ethylen-Propylen-Copolymere. Die Olefincopolymere können nach bekannten Methoden hergestellt werden, z.B. mittels Ziegler- oder Metallocen-Katalysatoren.
  • Weitere geeignete Olefincopolymere sind Blockcopolymere, die Blöcke aus olefinisch ungesättigten, aromatischen Monomeren A und Blöcke aus hydrierten Polyolefinen B enthalten. Besonders geeignet sind Blockcopolymere der Struktur (AB)nA und (AB)m, wobei n eine Zahl zwischen 1 und 10 und m eine Zahl zwischen 2 und 10 ist.
  • Die Additive können allein oder auch zusammen mit anderen Additiven verwendet werden, z.B. mit anderen Stockpunkterniedrigern oder Entwachsungshilfsmitteln, mit Antioxidantien, Cetanzahlverbesserern, Dehazern, Demulgatoren, Detergenzien, Dispergatoren, Entschäumern, Farbstoffen, Korrosionsinhibitoren, Lubricity-Additiven, Schlamminhibitoren, Odorantien und/oder Zusätzen zur Erniedrigung des Cloud-Points.
  • Das Mischungsverhältnis zwischen den erfindungsgemäßen Additivkombinationen aus I und II sowie den weiteren Bestandteilen V, VI und VII ist im allgemeinen jeweils zwischen 1:10 und 10:1, bevorzugt zwischen 1: 5 und 5:1.
  • Die erfindungsgemäßen Additive erhöhen die Leitfähigkeit von Mineralöldestillaten wie Benzin, Kerosin, Jet-Fuel, Diesel und Heizöl, vorzugsweise mit niedrigem Aromatengehalt von weniger als 21 Gew.-%, insbesondere weniger als 19 Gew.-%, speziell weniger als 18 Gew.-% wie beispielsweise weniger als 17 Gew.-%. Da sie gleichzeitig die Kaltfließeigenschaften insbesondere von Mineralöldestillaten wie Kerosin, Jet-Fuel, Diesel und Heizöl verbessern, kann durch ihren Einsatz eine deutliche Einsparung bei der Gesamtadditivierung der Öle erreicht werden, da keine zusätzlichen Leitfähigkeitsverbesserer eingesetzt werden müssen. Darüber hinaus können in Gebieten bzw. zu Zeiten, in denen auf Grund der klimatischen Bedingungen bisher keine Kälteadditive eingesetzt werden, durch Beimischung paraffinreicher, preiswerterer Mineralölfraktionen z.B. Cloud Point und/oder CFPP der zu additivierenden Öle auf höher eingestellt werden, was die Wirtschaftlichkeit der Raffinerie verbessert. Die erfindungsgemäßen Additive enthalten zudem keine Metalle, die bei der Verbrennung zu Asche und damit Ablagerungen im Brennraum bzw. Abgassystem und Partikelbelastungen der Umwelt führen könnten.
  • Dabei fällt die Leitfähigkeit der erfindungsgemäß additivierten Öle bei sinkender Temperatur nicht ab und in vielen Fällen wurde sogar ein von Additiven des Standes der Technik nicht bekannter Anstieg der Leitfähigkeit mit sinkender Temperatur beobachtet, so dass auch bei niedrigen Umgebungstemperaturen eine sichere Handhabung gewährleistet ist. Ein weiterer Vorteil der erfindungsgemäßen Additive ist der Erhalt der elektrischen Leitfähigkeit auch während längerer, das heißt mehrwöchiger Lagerung der additivierten Öle. Darüber hinaus gibt es im Bereich der erfindungsgemäß geeigneten Mischungsverhältnisse keine Unverträglichkeiten zwischen den Bestandteilen I und II, so dass sie im Gegensatz zu den Additiven der US 4 356 002 problemlos als Konzentrate formuliert werden können.
  • Besonders geeignet sind sie für die Verbesserung der elektrostatischen Eigenschaften von Mineralöldestillaten wie Jet-Fuel, Benzin, Kerosin, Diesel und Heizöl, die zwecks Absenkung des Schwefelgehalts einer hydrierenden Raffination unterzogen wurden und die daher nur geringe Anteile an polyaromatischen und polaren Verbindungen enthalten. Besonders vorteilhaft sind die erfindungsgemäßen Additive in Mineralöldestillaten, die weniger als 350 ppm Schwefel, besonders bevorzugt weniger als 100 ppm Schwefel insbesondere weniger als 50 ppm Schwefel und in speziellen Fällen weniger als 10 ppm Schwefel enthalten. Der Wassergehalt solcher Öle liegt unter 150 ppm, teilweise unter 100 ppm wie beispielsweise unter 80 ppm. Die elektrische Leitfähigkeit derartiger Öle liegt üblicherweise unterhalb 10 pS/m und oftmals sogar unterhalb 5 pS/m.
  • Besonders bevorzugte Mineralöldestillate sind Mitteldestillate. Als Mitteldestillat bezeichnet man insbesondere solche Mineralöle, die durch Destillation von Rohöl gewonnen werden und im Bereich von 120 bis 450°C sieden, beispielsweise Kerosin, Jet-Fuel, Diesel und Heizöl. Ihre bevorzugten Schwefel-, Aromaten- und Wassergehalte sind wie bereits oben angegeben. Besonders vorteilhaft sind die erfindungsgemäßen Zusammensetzungen in solchen Mitteldestillaten, die 90 %-Destillationspunkte unter 360°C, insbesondere 350°C und in Spezialfällen unter 340°C aufweisen. Unter aromatischen Verbindungen wird die Summe aus mono-, di- und polyzyklischen aromatischen Verbindungen verstanden, wie sie mittels HPLC gemäß DIN EN 12916 (Ausgabe 2001) bestimmbar ist. Die Mitteldestillate können auch untergeordnete Mengen wie beispielsweise bis zu 40 Vol.-%, bevorzugt 1 bis 20 Vol.-%, speziell 2 bis 15 wie beispielsweise 3 bis 10 Vol.-% der weiter unten näher beschriebenen Öle tierischen und/oder pflanzlichen Ursprungs wie beispielsweise Fettsäuremethylester enthalten.
  • Die erfindungsgemäßen Zusammensetzungen sind ebenfalls zur Verbesserung der elektrostatischen Eigenschaften von Kraftstoffen auf Basis nachwachsender Rohstoffe (Biokraftstoffe) geeignet. Unter Biokraftstoffen werden Öle verstanden, die aus tierischem und bevorzugt aus pflanzlichem Material oder beidem erhalten werden sowie Derivate derselben, welche als Kraftstoff und insbesondere als Diesel oder Heizöl verwendet werden können. Dabei handelt es sich insbesondere um Triglyceride von Fettsäuren mit 10 bis 24 C-Atomen sowie die aus ihnen durch Umesterung zugänglichen Fettsäureester niederer Alkohole wie Methanol oder Ethanol.
  • Beispiele für geeignete Biokraftstoffe sind Rapsöl, Korianderöl, Sojaöl, Baumwollsamenöl, Sonnenblumenöl, Ricinusöl, Olivenöl, Erdnussöl, Maisöl, Mandelöl, Palmkernöl, Kokosnussöl, Senfsamenöl, Rindertalg, Knochenöl, Fischöle und gebrauchte Speiseöle. Weitere Beispiele schließen Öle ein, die sich von Weizen, Jute, Sesam, Scheabaumnuß, Arachisöl und Leinöl ableiten. Die auch als Biodiesel bezeichneten Fettsäurealkylester können aus diesen Ölen nach im Stand der Technik bekannten Verfahren abgeleitet werden. Rapsöl, das eine Mischung von mit Glycerin veresterten Fettsäuren ist, ist bevorzugt, da es in großen Mengen erhältlich ist und in einfacher Weise durch Auspressen von Rapssamen erhältlich ist. Des weiteren sind die ebenfalls weit verbreiteten Öle von Sonnenblumen und Soja sowie deren Mischungen mit Rapsöl bevorzugt.
  • Besonders geeignet als Biokraftstoffe sind niedrige Alkylester von Fettsäuren. Hier kommen beispielsweise handelsübliche Mischungen der Ethyl-, Propyl-, Butyl- und insbesondere Methylester von Fettsäuren mit 14 bis 22 Kohlenstoffatomen, beispielsweise von Laurinsäure, Myristinsäure, Palmitinsäure, Palmitolsäure, Stearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Ricinolsäure, Elaeostearinsäure, Linolsäure, Linolensäure, Eicosansäure, Gadoleinsäure, Docosansäure oder Erucasäure in Betracht. Bevorzugte Ester haben eine Iodzahl von 50 bis 150 und insbesondere von 90 bis 125. Mischungen mit besonders vorteilhaften Eigenschaften sind solche, die hauptsächlich, d. h. zu mindestens 50 Gew.-% Methylester von Fettsäuren mit 16 bis 22 Kohlenstoffatomen und 1, 2 oder 3 Doppelbindungen enthalten. Die bevorzugten niedrigeren Alkylester von Fettsäuren sind die Methylester von Ölsäure, Linolsäure, Linolensäure und Erucasäure.
  • Die erfindungsgemäßen Additive sind gleichfalls zur Verbesserung der elektrostatischen Eigenschaften von Turbinenkraftstoffen geeignet. Dies sind Treibstoffe, die im Temperaturbereich von etwa 65°C bis etwa 330°C sieden und beispielsweise unter den Bezeichnungen JP-4, JP-5, JP-7, JP-8, Jet A und Jet A-1 vermarktet werden. JP-4 und JP-5 sind in der U.S. Military Specification MIL-T-5624-N und JP-8 in der U.S. Military Specification MIL-T-83133-D spezifiziert; Jet A, Jet A-1 und Jet B sind in der ASTM D1655 spezifiziert.
  • Gleichfalls sind die erfindungsgemäßen Additive zur Verbesserung der elektrischen Leitfähigkeit von Kohlenwasserstoffen geeignet, die als Lösemittel z. B. in der Textilreinigung oder zur Herstellung von Farben und Lacken verwendet werden.
  • Beispiele Tabelle 1: Charakterisierung der Testöle:
  • Als Testöle wurden aktuelle Öle aus europäischen Raffinerien herangezogen. Die Bestimmung des CFPP-Werts erfolgt gemäß EN 116 und die Bestimmung des Cloud Points gemäß ISO 3015. Die Bestimmung der aromatischen Kohlenwasserstoffgruppen erfolgt gemäß DIN EN 12916 (Ausgabe November 2001)
    Testöl 1 Testöl 2 Testöl 3
    Destillation
    IBP [°C] 169 193 173
    20% [°C] 223 229 208
    90% [°C] 337 329 334
    FBP [°C] 359 351 359
    Cloud Point [°C] -5,9 -5,7 -7,2
    CFPP [°C] -11 -9 -9
    Schwefel [ppm] 30 19 8
    Dichte @15°C [g/cm3] 0,8361 0,8313 0,8261
    Aromatengehalt [Gew.-%] 18,4 18,2 18,5
    davon mono [Gew.-%] 15,5 17,0 17,3
    di [Gew.-%] 2,5 1,2 1,1
    poly [Gew.-%] 0,4 0,1 0,1
  • Folgende Additive wurden eingesetzt:
  • (A)
    Mischungen aus Alkylphenolharzen und Sulfonsäuresalzen
    A1)
    Sauer katalysiertes Nonylphenol-Formaldehydharz (Mw 1300 g/mol)
    mit 2,2 Gew.-% Imidazolium-Dodecylbenzolsulfonat
    A2)
    Sauer katalysiertes Nonylphenol-Formaldehydharz (Mw 1300 g/mol)
    mit 2,3 Gew.-% Pyridinium-Dodecylbenzolsulfonat
    A3)
    Sauer katalysiertes Nonylphenol-Formaldehydharz (Mw 2200 g/mol)
    mit 2,0 Gew.-% Pyridinium-p-Toluolsulfonat
    A4)
    Sauer katalysiertes Dodecylphenol-Formaldehydharz (Mw 1400 g/mol)
    mit 0,3 Gew.-% Imidazolium-Dodecylbenzolsulfonat
    A5)
    Alkalisch katalysiertes Dodecylphenol-Formaldehydharz (Mw 1450 g/mol)
    mit 2,0 Gew.-% Pyridinium-p-Toluolsulfonat
    A6)
    Sauer katalysiertes Nonylphenol-Formaldehydharz (Mw 1300 g/mol);
    (Vergleich).
    A7)
    Sauer katalysiertes Nonylphenol-Formaldehydharz (Mw 1300 g/mol) mit
    1,6 Gew.-% Natrium-Dodecylbenzolsulfonat (Vergleich)
    A8)
    Sauer katalysiertes Nonylphenol-Formaldehydharz (Mw 1300 g/mol) mit
    1,8 Gew.-% Tributylammonium-Dodecylbenzolsulfonat (Vergleich)
  • Die Mischungen A1) bis A8) wurden als 50 %ige Einstellungen in Solvent Naphtha, einem kommerziellen Gemisch hochsiedender aromatischer Kohlenwasserstoffe eingesetzt.
  • Verbesserung der elektrischen Leitfähigkeit von Mitteldestillaten
  • Für Leitfähigkeitsmessungen wurden die Additive mit der jeweils angegebenen Konzentration in 2 l des Testöls 1 unter Schütteln gelöst. Mit einem automatischen Conductivity Meter MLA 900 wurde darin die elektrische Leitfähigkeit gemäß DIN 51412-T02-79 bestimmt. Die Einheit für die elektrische Leitfähigkeit ist Picosiemens/m (pS/m). Eine Leitfähigkeit von mindestens 50 pS/m wird allgemein als ausreichend für die eine sichere Handhabung von Ölen angesehen. Tabelle 2: Elektrische Leitfähigkeit von Testöl 1 unter Zusatz von Sulfonsäuresalzen
    Beispiel Additiv 0 ppm 1 ppm 2 ppm 3 ppm
    1 (Vgl.) Imidazolium-Dodecylbenzolsulfonat 6 10 11 13
    2 (Vgl.) Pyridinium-Dodecylbenzolsulfonat 6 9 12 14
    3 (Vgl.) Pyridinium-p-toluolsulfonat 6 9 12 16
    4 (Vgl.) Natrium-Dodecylbenzolsulfonat 6 8 10 11
    5 (Vgl.) Tributylammonium-Dodecylbenzolsulfonat 6 9 11 13
  • Die Sulfonsäuresalze wurden der besseren Vergleichbarkeit halber ebenfalls als 50 %ige Einstellungen in Solvent Naphtha eingesetzt. Tabelle 3: Elektrische Leitfähigkeit von Testöl 1 unter Zusatz erfindungsgemäßer Additive
    Beispiel Additiv 0 ppm 50 ppm 100 ppm 150 ppm
    6 A1 6 51 112 172
    7 A2 6 54 105 151
    8 A3 6 43 92 143
    9 A5 6 46 98 157
    10 (Vgl.) A6 6 9 21 33
    11 (Vgl.) A7 6 10 24 37
    12 (Vgl.) A8 6 36 84 112
  • Wirksamkeit der Additive als Kaltfließverbesserer
  • Zur Beurteilung des Effekts der erfindungsgemäßen Additive auf die Kaltfließeigenschaften von Mitteldestillaten wurden die erfindungsgemäßen Additive (A) mit verschiedenen Coadditiven eingesetzt. Bei den eingesetzten Ethylen-Copolymeren (B) und Paraffindispergatoren (C) handelt es sich um kommerzielle Produkte mit unten angegebenen Charakteristika.
  • Die überlegene Wirksamkeit der erfindungsgemäßen Additive zusammen mit Ethylen-Copolymeren und Paraffindispergatoren für Mineralöle und Mineralöldestillate wird zum einen an Hand des CFPP-Tests (Cold Filter Plugging Test nach EN 116) beschrieben.
  • Des weiteren wird die Paraffindispergierung in Mitteldestillaten wie folgt im Kurzsedimenttest bestimmt:
    • 150 ml der mit den in der Tabelle angegebenen Additivkomponenten versetzten Mitteldestillate wurden in 200 ml-Messzylindern in einem Kälteschrank mit -2°C/Stunde auf -13°C abgekühlt und 16 Stunden bei dieser Temperatur gelagert. Anschließend werden visuell Volumen und Aussehen sowohl der sedimentierten Paraffinphase wie auch der darüber stehenden Ölphase bestimmt und beurteilt. Eine geringe Sedimentmenge und eine trübe Ölphase zeigen eine gute Paraffindispergierung.
  • Zusätzlich werden die unteren 20 Vol.-% isoliert und der Cloud Point gemäß IP 3015 bestimmt. Eine nur geringe Abweichung des Cloud Points der unteren Phase (CPKS) vom Blindwert des Öls zeigt eine gute Paraffindispergierung.
  • (B) Charakterisierung der eingesetzten Ethylen-Copolymere
  • B1
    Copolymer aus Ethylen und 13,6 mol-% Vinylacetat mit einer bei 140°C gemessenen Schmelzviskosität von 120 mPas; 65 %ig in Kerosin
    B2
    Terpolymer aus Ethylen, 13,7 mol-% Vinylacetat und 1,4 mol-% Neodecansäurevinylester mit einer bei 140°C gemessenen Schmelzviskosität von 98 mPas, 65 %ig in Kerosin.
    B3
    Mischung aus zwei Teilen B1 und einem Teil B2, 65 %ig in Kerosin
  • (C) Charakterisierung der eingesetzten Paraffindispergatoren C
  • C1
    Umsetzungsprodukt eines Dodecenyl-Spirobislactons mit einer Mischung aus primärem und sekundärem Talgfettamin, 60 %ig in Solvent Naphtha (hergestellt gemäß EP 0413279 )
    C2
    Umsetzungsprodukt eines Terpolymers aus C14/16-α-Olefin, Maleinsäureanhydrid und Allylpolyglykol mit 2 Equivalenten Ditalgfettamin, 50 %ig in Solvent Naphtha (hergestellt gemäß EP 0606055 )
    C3
    Umsetzungsprodukt aus Phthalsäureanhydrid und 2 Equivalenten Di(hydriertem Talgfett)amin, 50 %ig in Solvent Naphtha (hergestellt gemäß EP 0 061 894 )
    C4
    Umsetzungsprodukt aus Ethylendiamintetraessigsäure mit 4 Equivalenten Ditalgfettamin zum Amid-Ammoniumsalz, 50 %ig in Solvent Naphtha (hergestellt gemäß EP 0 398 101 )
    Tabelle 4: Prüfung als Kaltfließverbesserer in Testöl 1
    Beispiel Additive Testöl 1 (CP -5,9°C)
    A B C Sediment [Vol.-%] Aussehen Ölphase CPKS [°C]
    13 (Vgl.) 50 ppm A6 350 ppm B1 100 ppm C2 4 trüb -3,6
    14 (Vgl.) 40 ppm A6 350 ppm B1 80 ppm C2 7 wolkig -2,9
    15 (Vgl.) 50 ppm A8 350 ppm B1 100 ppm C2 1 trüb -3,9
    16 50 ppm A1 350 ppm B1 100 ppm C2 0 trüb -5,7
    17 40 ppm A1 350 ppm B1 80 ppm C2 2 trüb -4,4
    18 50 ppm A2 350 ppm B1 100 ppm C2 0 trüb -5,2
    19 50 ppm A3 350 ppm B1 100 ppm C2 0 trüb -5,4
    20 50 ppm A4 350 ppm B1 100 ppm C2 0 trüb -4,5
    21 50 ppm A5 350 ppm B1 100 ppm C2 0 trüb -5,2
    22 50 ppm A1 350 ppm B2 100 ppm C3 0 trüb -5,3
    23 50 ppm A1 350 ppm B2 100 ppm C4 0 trüb -5,7
    Tabelle 5: Prüfung als Kaltfließverbesserer in Testöl 2
    Beispiel Additive Testöl 2 (CP -5,7°C)
    A B C Sediment [Vol.-%] Aussehen Ölphase CPKS [°C]
    24 (Vgl.) 50 ppm A6 200 ppm B1 100 ppm C2 5 klar 4,2
    25 (Vgl.) 50 ppm A6 400 ppm B1 100 ppm C2 1 trüb -3,2
    26 50 ppm A1 200 ppm B1 100 ppm C2 2 wolkig 1,4
    27 50 ppm A2 400 ppm B1 100 ppm C2 0 trüb -5,2
    28 50 ppm A3 400 ppm B1 100 ppm C2 0 trüb -4,9
    29 50 ppm A5 400 ppm B1 100 ppm C2 0 trüb -5,1
    30 50 ppm A1 200 ppm B2 100 ppm C3 0 trüb -5,3
    31 50 ppm A1 200 ppm B2 100 ppm C4 0 trüb -5,2
    Tabelle 6: Prüfung als Kaltfließverbesserer in Testöl 3 Die Bestimmung von CFPP-Wert und Paraffindispergierung im Kurzsedimenttest erfolgte nach Additivierung des Testöls mit 200 ppm Fließverbesserer B3 und 100 ppm Paraffindispergator C2.
    Beispiel Additiv A CFPP [°C] Sediment [Vol.-%] Aussehen Ölphase CPKS [°C]
    32 (Vgl.) 50 ppm A6 -24 0 trüb -2,0
    33 50 ppm A1 -26 0 trüb -4,5
    34 50 ppm A2 -27 0 trüb -4,7
    35 50 ppm A3 -28 0 trüb -4,1
    36 50 ppm A4 -25 0 trüb -3,6
    37 50 ppm A5 -27 0 trüb -3,9
    Langzeitstabilität der Additive
  • Die Langzeitstabilität der erfindungsgemäßen Additive wurde an den Additiven A1 und A2 direkt nach Herstellung auf seine Performance im Kurzsedimenttest geprüft und mit der Wirkung der gleichen Muster nach fünfwöchiger Lagerung bei 50°C verglichen. Zum Vergleich wurde ein Alkylphenol-Aldehydharz ohne Zusatz (A6) unter den gleichen Bedingungen geprüft. Dieses war im Gegensatz zum erfindungsgemäßen Additiv nach der Lagerung deutlich dunkler geworden.
  • Der Kurzsedimenttest wurde in Testöl 3, das 200 ppm B3 und 100 ppm C1 enthielt, mit jeweils 50 ppm des Harzes A6, A1 bzw. A2 durchgeführt. Tabelle 7: Kurzsedimenttest in Testöl 3
    Beispiel Additiv A Testöl 3 (CP -7,2°C)
    CFPP [°C] Sediment [Vol.-%] Aussehen Ölphase CPKS [°C]
    38 (Vgl.) 50 ppm A6 (sofort) -24 0 trüb -2,0
    39 (Vgl.) 50 ppm A6 (nach 5 Wochen) -22 2 trüb 0,2
    40 50 ppm A1 (sofort) -28 0 trüb -4,5
    41 50 ppm A1 (nach 5 Wochen) -27 0 trüb -4,3
    42 50 ppm A2 (sofort) -26 0 trüb -4,7
    43 50 ppm A2 (nach 5 Wochen) -26 0 trüb -4,4
  • Die Versuche zeigen, dass die erfindungsgemäßen Additive hinsichtlich der Verbesserung der Kaltfließfähigkeit und insbesondere der Paraffindispergierung von Mitteldestillaten den Additiven des Standes der Technik überlegen sind. Sie bewirken eine verbesserte Paraffindispergierung oder, alternativ eine vergleichbare Paraffindispergierung bei niedrigerer Additivdosierung. Darüber hinaus zeigen sie, dass die erfindungsgemäßen Mischungen gleichzeitig einen ausgeprägten synergistischen Effekt hinsichtlich der Verbesserung der elektrischen Leitfähigkeit von Mitteldestillaten aufweisen. Dagegen haben weder Sulfonsäuresalze alleine noch Alkylphenolharze alleine einen signifikanten Einfluß auf die Leitfähigkeit schwefelarmer Mitteldestillate. Die erfindungsgemäßen Mischungen erlauben es somit, mit nur geringen Mengen Sulfonsäure-Ammoniumsalz die Leitfähigkeit von mit Alkylphenolharzen additivierten Ölen auf mehr als 50 pS/m zu verbessern und damit eine gefahrlose Handhabung der additivierten Öle sicherzustellen.

Claims (17)

  1. Zusammensetzungen, enthaltend mindestens ein Alkylphenolharz (Bestandteil 1) und, bezogen auf das Alkylphenolharz, 0,05 bis 10 Gew.-% mindestens eines Salzes aus einer aromatischen Base und einer Sulfonsäure (Bestandteil II).
  2. Zusammensetzung nach Anspruch 1, worin der zur Kondensation des Alkylphenol-Aldehydharzes verwendete Aldehyd 1 bis 12 Kohlenstoffatome umfasst.
  3. Zusammensetzung nach Anspruch 1 und/oder 2, worin die Alkylgruppe des Alkylphenol-Aldehydharzes 1 bis 200 Kohlenstoffatome umfasst.
  4. Zusammensetzung nach einem oder mehreren der Ansprüche 1 bis 3, worin das Molekulargewicht der Alkylphenol-Aldehydharze 400 bis 20.000 g/mol beträgt.
  5. Zusammensetzung nach einem oder mehreren der Ansprüche 1 bis 4, worin das Alkylphenol-Aldehydharz eine repetitive Struktureinheit der Formel
    Figure imgb0003
    umfasst, worin R5 für C1-C200-Alkyl oder C2-C200-Alkenyl, O-R6 oder O-C(O)-R6, worin R6 für C1-C200-Alkyl oder C2-C200-Alkenyl, und n für eine Zahl von 2 bis 100 steht.
  6. Zusammensetzung nach einem oder mehreren der Ansprüche 1 bis 5, worin die zur Herstellung der Sulfonsäuresalze verwendete Sulfonsäure öllöslich ist, und mindestens eine Sulfonsäuregruppe und mindestens einen gesättigten oder ungesättigten, linearen, verzweigten und/oder cyclischen Kohlenwasserstoffrest mit 1 bis 40 C-Atomen enthält.
  7. Zusammensetzung nach einem oder mehreren der Ansprüche 1 bis 6, worin die zur Herstellung der Sulfonsäuresalze verwendeten aromatischen Basen öllösliche Verbindungen sind, die ein cyclisches, durchkonjugiertes Kohlenwasserstoffgerüst mit 4n+2 π-Elektronen sowie mindestens ein zur Salzbildung befähigtes Heteroatom enthalten.
  8. Zusammensetzung nach Anspruch 7, worin das zur Salzbildung befähigte Heteroatom Bestandteil des aromatischen Ringsystems ist.
  9. Zusammensetzung nach einem oder mehreren der Ansprüche 1 bis 8, worin zusätzlich Copolymere aus Ethylen und 6 bis 21 mol-% Vinylester, Acrylester, Methacrylester, Alkylvinylether und/oder Alkene enthalten sind.
  10. Zusammensetzung nach einem oder mehreren der Ansprüche 1 bis 9, worin zusätzlich Umsetzungsprodukte von Verbindungen der Formel NR6R7R8, worin R6, R7 und R8 gleich oder verschieden sein können, und wenigstens eine dieser Gruppen für C8-C36-Alkyl, C6-C36-Cycloalkyl, C8-C36-Alkenyl, insbesondere C12-C24-Alkyl, C12-C24-Alkenyl oder Cyclohexyl steht, und die übrigen Gruppen entweder Wasserstoff, C1-C36-Alkyl, C2-C36-Alkenyl, Cyclohexyl, oder eine Gruppe der Formeln -(A-O)x-E oder -(CH2)n-NYZ bedeuten, worin A für eine Ethyl- oder Propylgruppe steht, x eine Zahl von 1 bis 50, E = H, C1-C30-Alkyl, C5-C12-Cycloalkyl oder C6-C30-Aryl, und n = 2, 3 oder 4 bedeuten, und Y und Z unabhängig voneinander H, C1-C30-Alkyl oder -(A-O)x bedeuten, mit Verbindungen, die eine funktionelle Gruppe der Formel

             >C=O

    umfassen, enthalten sind.
  11. Zusammensetzung nach einem oder mehreren der Ansprüche 1 bis 10, worin zusätzlich Kammpolymere der Formel
    Figure imgb0004
    enthalten sind, worin
    A R', COOR', OCOR', R"-COOR', OR';
    D H, CH3, A oder R";
    E H, A;
    G H, R", R"-COOR', einen Arylrest oder einen heterocyclischen Rest;
    M H, COOR", OCOR", OR", COOH;
    N H, R", COOR", OCOR, einen Arylrest;
    R' eine Kohlenwasserstoffkette mit 8 bis 50 Kohlenstoffatomen;
    R" eine Kohlenwasserstoffkette mit 1 bis 10 Kohlenstoffatomen;
    m eine Zahl zwischen 0,4 und 1,0; und
    n eine Zahl zwischen 0 und 0,6
    bedeuten.
  12. Zusammensetzung nach einem oder mehreren der Ansprüche 1 bis 11, worin zusätzlich Polyoxyalkylenverbindungen enthalten sind, die Ester, Ether und Ether/Ester sind, welche mindestens einen Alkylrest mit 12 bis 30 C-Atomen tragen.
  13. Zusammensetzung nach einem oder mehreren der Ansprüche 1 bis 12, worin zusätzlich Copolymere enthalten sind, die neben Struktureinheiten von Ethylen Struktureinheiten, die sich von α-Olefinen mit 3 bis 24 C-Atomen ableiten, enthalten, und die Molekulargewichte von bis zu 120.000 g/mol aufweisen.
  14. Mineralöldestillate mit einer Leitfähigkeit von mehr als 50 pS/m dadurch gekennzeichnet, dass sie Zusammensetzungen gemäß einem oder mehreren der Ansprüche 1 bis 13 enthalten.
  15. Mineralöldestillate mit einem Aromatengehalt von weniger als 25 Gew.-%, enthaltend 5 bis 5000 ppm der Zusammensetzung nach einem oder mehreren der Ansprüche 1 bis 13.
  16. Verwendung von Zusammensetzungen nach einem oder mehreren der Ansprüche 1 bis 13 zur Verbesserung der elektrischen Leitfähigkeit von Mineralöldestillaten mit einem Aromatengehalt von weniger als 25 Gew.-%.
  17. Verwendung von Zusammensetzungen, enthaltend mindestens ein Alkylphenolharz (Bestandteil I) und, bezogen auf das Alkylphenolharz, 0,05 bis 10 Gew.-% mindestens eines Salzes aus einer aromatischen Base und einer Sulfonsäure (Bestandteil II), zur Verbesserung der Kaltfließfähigkeit von Mineralöldestillaten mit einem Schwefelgehalt von weniger als 350 ppm.
EP06013803A 2005-07-28 2006-07-04 Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit Active EP1752513B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06013803T PL1752513T3 (pl) 2005-07-28 2006-07-04 Oleje mineralne o polepszonym przewodnictwie elektrycznym i zdolności do płynięcia na zimno

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005035276A DE102005035276B4 (de) 2005-07-28 2005-07-28 Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit

Publications (3)

Publication Number Publication Date
EP1752513A2 true EP1752513A2 (de) 2007-02-14
EP1752513A3 EP1752513A3 (de) 2009-09-16
EP1752513B1 EP1752513B1 (de) 2010-11-10

Family

ID=37561296

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06013803A Active EP1752513B1 (de) 2005-07-28 2006-07-04 Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit

Country Status (9)

Country Link
US (1) US8133852B2 (de)
EP (1) EP1752513B1 (de)
JP (1) JP5492368B2 (de)
KR (1) KR101474224B1 (de)
AT (1) ATE487779T1 (de)
CA (1) CA2554354C (de)
DE (2) DE102005035276B4 (de)
ES (1) ES2351197T3 (de)
PL (1) PL1752513T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1985686A1 (de) * 2007-04-19 2008-10-29 Afton Chemical Corporation Verbesserung der Leitfähigkeit von Mitteldestillatbrennstoffen durch eine Kombination aus einem Detergens und einem Fließverbesserer
EP3093333A1 (de) * 2015-05-14 2016-11-16 Infineum International Limited Verbesserungen an additivzusammensetzungen und an brennstoffölen

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005035276B4 (de) 2005-07-28 2007-10-11 Clariant Produkte (Deutschland) Gmbh Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit
DE102005035275B4 (de) * 2005-07-28 2007-10-11 Clariant Produkte (Deutschland) Gmbh Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit
DE102005035277B4 (de) * 2005-07-28 2007-10-11 Clariant Produkte (Deutschland) Gmbh Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit
JP5723532B2 (ja) * 2009-01-30 2015-05-27 三洋化成工業株式会社 帯電防止剤
US8323702B2 (en) * 2010-01-28 2012-12-04 Okoro Chuks I Composition and method for treating ulcers
TWI601792B (zh) * 2013-01-30 2017-10-11 湛新智財有限公司 單份低溫固化塗布組成物、其製備方法及其使用方法
EP3093332B1 (de) * 2015-05-14 2018-03-14 Infineum International Limited Verbesserungen an additivzusammensetzungen und an brennstoffölen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917466A (en) * 1974-10-29 1975-11-04 Du Pont Compositions of olefin-sulfur dioxide copolymers and polyamines as antistatic additives for hydrocarbon fuels
US4356002A (en) * 1978-12-11 1982-10-26 Petrolite Corporation Anti-static compositions
EP0311452A2 (de) * 1987-10-08 1989-04-12 Exxon Chemical Patents Inc. Alkylphenol-formaldehyd-Kondensate als Brennstoff- und Schmierölzusätze
DE19622052A1 (de) * 1996-05-31 1997-12-04 Basf Ag Paraffindispergatoren für Erdölmitteldestillate
EP1502938A1 (de) * 2003-07-03 2005-02-02 Infineum International Limited Kraftstoffzusammensetzung
EP1621600A2 (de) * 2004-07-20 2006-02-01 Clariant GmbH Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3488284A (en) * 1959-12-10 1970-01-06 Lubrizol Corp Organic metal compositions and methods of preparing same
US4211534A (en) * 1978-05-25 1980-07-08 Exxon Research & Engineering Co. Combination of ethylene polymer, polymer having alkyl side chains, and nitrogen containing compound to improve cold flow properties of distillate fuel oils
US4234435A (en) * 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
ATE15496T1 (de) 1981-03-31 1985-09-15 Exxon Research Engineering Co Zwei-komponentenzusatz zur verbesserung der fliessfaehigkeit von mittleren destillat-heizoelen.
JPS5876432A (ja) * 1981-10-30 1983-05-09 Chugoku Kako Kk 吸水性及び保水性に優れたレゾ−ル型フエノ−ル樹脂発泡体の製造方法
JPS58127755A (ja) * 1982-01-26 1983-07-29 Mitsui Toatsu Chem Inc フエノ−ル樹脂組成物
US4537601A (en) * 1982-05-17 1985-08-27 Petrolite Corporation Antistats containing acrylonitrile copolymers and polyamines
DE3405843A1 (de) * 1984-02-17 1985-08-29 Bayer Ag, 5090 Leverkusen Copolymere auf basis von maleinsaeureanhydrid und (alpha), (beta)-ungesaettigten verbindungen, ein verfahren zu ihrer herstellung und ihre verwendung als paraffininhibitoren
DE3640613A1 (de) 1986-11-27 1988-06-09 Ruhrchemie Ag Verfahren zur herstellung von ethylen-mischpolymerisaten und deren verwendung als zusatz zu mineraloel und mineraloelfraktionen
DE3901930A1 (de) * 1989-01-24 1990-07-26 Hoechst Ag Verfahren zur herstellung von novolaken und deren verwendung
DE3916366A1 (de) 1989-05-19 1990-11-22 Basf Ag Neue umsetzungsprodukte von aminoalkylenpolycarbonsaeuren mit sekundaeren aminen und erdoelmitteldestillatzusammensetzungen, die diese enthalten
DE3926992A1 (de) * 1989-08-16 1991-02-21 Hoechst Ag Verwendung von umsetzungsprodukten von alkenylspirobislactonen und aminen als paraffindispergatoren
GB9013142D0 (en) * 1990-06-13 1990-08-01 Ciba Geigy Ag Chemical compounds useful as metal deactivators
JP3244195B2 (ja) * 1992-08-11 2002-01-07 住友ベークライト株式会社 メラミン・フェノール樹脂組成物
DE59404053D1 (de) * 1993-01-06 1997-10-23 Hoechst Ag Terpolymere auf Basis von alpha,beta-ungesättigten Dicarbonsäureanhydriden, alpha,beta-ungesättigten Verbindungen und Polyoxyalkylenethern von niederen, ungesättigten Alkoholen
DE4430294A1 (de) * 1994-08-26 1996-02-29 Basf Ag Polymermischungen und ihre Verwendung als Zusatz für Erdölmitteldestillate
US6310011B1 (en) * 1994-10-17 2001-10-30 The Lubrizol Corporation Overbased metal salts useful as additives for fuels and lubricants
US5707946A (en) * 1996-04-08 1998-01-13 The Lubrizol Corporation Pour point depressants and their use
US5851429A (en) * 1996-04-08 1998-12-22 The Lubrizol Corporation Dispersions of waxy pour point depressants
US5750052A (en) * 1996-08-30 1998-05-12 Betzdearborn Inc. Foam control method
DE59708189D1 (de) * 1997-01-07 2002-10-17 Clariant Gmbh Verbesserung der Fliessfähigkeit von Mineralölen und Mineralöldestillaten unter Verwendung von Alkylphenol-Aldehydharzen
DE19816797C2 (de) 1998-04-16 2001-08-02 Clariant Gmbh Verwendung von stickstoffhaltigen Ethylencopolymeren zur Herstellung von Brennstoffölen mit verbesserter Schmierwirkung
JPH11349654A (ja) * 1998-06-10 1999-12-21 Sumitomo Durez Kk フォトレジスト用フェノール樹脂の製造方法
US6391070B2 (en) * 2000-04-20 2002-05-21 Baker Hughes Incorporated Anti-static additive compositions for hydrocarbon fuels
DE50103554D1 (de) * 2000-06-15 2004-10-14 Clariant Internat Ltd Muttenz Additive zur verbesserung von kaltfliesseigenschaften und lagerstabilität von rohölen
DE10155774B4 (de) 2001-11-14 2020-07-02 Clariant Produkte (Deutschland) Gmbh Additive für schwefelarme Mineralöldestillate, umfassend einen Ester alkoxylierten Glycerins und einen polaren stickstoffhaltigen Paraffindispergator
JP2003183342A (ja) * 2001-12-17 2003-07-03 Mitsubishi Gas Chem Co Inc フェノール類変性芳香族炭化水素ホルムアルデヒド樹脂の製造方法
US20050274063A1 (en) 2002-06-14 2005-12-15 Forester David R Jet fuel additive concentrate composition and fuel composition and methods thereof
DE602004030391D1 (de) * 2003-05-29 2011-01-20 Infineum Int Ltd Eine Brennstoffölzusammensetzung
DE602004027686D1 (de) * 2003-07-03 2010-07-29 Infineum Int Ltd Kraftstoffzusammensetzung
DE10333043A1 (de) * 2003-07-21 2005-03-10 Clariant Gmbh Brennstofföladditive und additivierte Brennstofföle mit verbesserten Kälteeigenschaften
EP1640438B1 (de) 2004-09-17 2017-08-30 Infineum International Limited Verbesserungen in Brennölen.
DE102005035276B4 (de) 2005-07-28 2007-10-11 Clariant Produkte (Deutschland) Gmbh Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit
DE102005035275B4 (de) * 2005-07-28 2007-10-11 Clariant Produkte (Deutschland) Gmbh Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917466A (en) * 1974-10-29 1975-11-04 Du Pont Compositions of olefin-sulfur dioxide copolymers and polyamines as antistatic additives for hydrocarbon fuels
US4356002A (en) * 1978-12-11 1982-10-26 Petrolite Corporation Anti-static compositions
EP0311452A2 (de) * 1987-10-08 1989-04-12 Exxon Chemical Patents Inc. Alkylphenol-formaldehyd-Kondensate als Brennstoff- und Schmierölzusätze
DE19622052A1 (de) * 1996-05-31 1997-12-04 Basf Ag Paraffindispergatoren für Erdölmitteldestillate
EP1502938A1 (de) * 2003-07-03 2005-02-02 Infineum International Limited Kraftstoffzusammensetzung
EP1621600A2 (de) * 2004-07-20 2006-02-01 Clariant GmbH Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1985686A1 (de) * 2007-04-19 2008-10-29 Afton Chemical Corporation Verbesserung der Leitfähigkeit von Mitteldestillatbrennstoffen durch eine Kombination aus einem Detergens und einem Fließverbesserer
EP3093333A1 (de) * 2015-05-14 2016-11-16 Infineum International Limited Verbesserungen an additivzusammensetzungen und an brennstoffölen
US10294437B2 (en) 2015-05-14 2019-05-21 Infineum International Limited Additive compositions and to fuel oils

Also Published As

Publication number Publication date
EP1752513B1 (de) 2010-11-10
CA2554354A1 (en) 2007-01-28
DE102005035276B4 (de) 2007-10-11
JP5492368B2 (ja) 2014-05-14
ATE487779T1 (de) 2010-11-15
CA2554354C (en) 2014-01-21
DE102005035276A1 (de) 2007-02-08
KR20070015087A (ko) 2007-02-01
KR101474224B1 (ko) 2014-12-18
EP1752513A3 (de) 2009-09-16
JP2007031716A (ja) 2007-02-08
ES2351197T3 (es) 2011-02-01
US8133852B2 (en) 2012-03-13
DE502006008265D1 (de) 2010-12-23
US20070027040A1 (en) 2007-02-01
PL1752513T3 (pl) 2011-04-29

Similar Documents

Publication Publication Date Title
EP1801187B1 (de) Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefliessfähigkeit
EP2516604B1 (de) Multifunktionelle kälteadditive für mitteldestillate mit verbesserter fliessfähigkeit
EP1752513B1 (de) Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit
DE102005035277B4 (de) Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit
EP1749874B1 (de) Verwendung von alkylphenol-aldehydharzen zur herstellung von mineralölen mit verbesserter leitfähigkeit und kältefliessfähikeit
EP2516605B1 (de) Multifunktionelle kälteadditive für mitteldestillate mit verbesserter fliessfähigkeit
EP1674554A1 (de) Additive für schwefelarme Mineralöldestillate, umfassend Pfropfcopolymer auf Basis von Ethylen-Vinylacetat-Copolymeren
EP1808450A1 (de) Additive für schwefelarme Mineralöldestillate, umfassend Pfropfcopolymere auf Basis von Ethylen-Vinylester-Copolymeren
EP1808449A1 (de) Additive für schwefelarme Mineralöldestillate, umfassend Pfropfcopolymere auf Basis von Ethylen-Vinylester-Copolymeren
EP1621600B1 (de) Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit
EP2162512B1 (de) Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfähigkeit
EP2162513B1 (de) Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfähigkeit
DE102007028306A1 (de) Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
EP1767610B1 (de) Additive zur Verbesserung der Kältefliessfähigkeit und Schmierfähigkeit von Brennstoffölen
DE102007028307A1 (de) Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
EP1717296A1 (de) Additive für schwefelarme Mineralöldestillate, umfassend Aromaten, welche eine Hydroxygruppe, eine Methoxygruppe und eine Säurefunktion tragen
DE102005061465B4 (de) Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: C10L 1/198 20060101AFI20070109BHEP

Ipc: C10L 1/24 20060101ALI20090807BHEP

Ipc: C10L 1/222 20060101ALI20090807BHEP

Ipc: C09K 3/16 20060101ALI20090807BHEP

17P Request for examination filed

Effective date: 20100316

17Q First examination report despatched

Effective date: 20100413

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: C09K 3/16 20060101ALI20100518BHEP

Ipc: C10L 1/222 20060101ALI20100518BHEP

Ipc: C10L 1/198 20060101AFI20100518BHEP

Ipc: C10L 1/24 20060101ALI20100518BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AT BE DE ES FI FR GB NL PL SE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FI FR GB NL PL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502006008265

Country of ref document: DE

Date of ref document: 20101223

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110120

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006008265

Country of ref document: DE

Effective date: 20110811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130617

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140617

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140616

Year of fee payment: 9

Ref country code: NL

Payment date: 20140616

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20140618

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140626

Year of fee payment: 9

Ref country code: FI

Payment date: 20140718

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 487779

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140704

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150704

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150705

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150704

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150704

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200807

Year of fee payment: 15

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220727

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220725

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006008265

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201