EP1751077A2 - Procede de fabrication de pieces de forme a base de beta-sic pour utilisation dans des milieux agressifs - Google Patents

Procede de fabrication de pieces de forme a base de beta-sic pour utilisation dans des milieux agressifs

Info

Publication number
EP1751077A2
EP1751077A2 EP05770958A EP05770958A EP1751077A2 EP 1751077 A2 EP1751077 A2 EP 1751077A2 EP 05770958 A EP05770958 A EP 05770958A EP 05770958 A EP05770958 A EP 05770958A EP 1751077 A2 EP1751077 A2 EP 1751077A2
Authority
EP
European Patent Office
Prior art keywords
sic
resin
receptacle
precursor
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05770958A
Other languages
German (de)
English (en)
Inventor
Charlotte Pham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SICAT Societe Industrielle de Creations et d'Applications Textiles SARL
Original Assignee
SICAT Societe Industrielle de Creations et d'Applications Textiles SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SICAT Societe Industrielle de Creations et d'Applications Textiles SARL filed Critical SICAT Societe Industrielle de Creations et d'Applications Textiles SARL
Publication of EP1751077A2 publication Critical patent/EP1751077A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/085Cell construction, e.g. bottoms, walls, cathodes characterised by its non electrically conducting heat insulating parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/383Alpha silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/3834Beta silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining

Definitions

  • the present invention relates to ceramic materials based on ⁇ -SiC for use in aggressive media, such as they arise in particular in chemical and electrometallurgical engineering, and more particularly refractory pieces or bricks used in incineration furnaces or electrolysis tanks. It relates more particularly to a simplified manufacturing process for such parts or bricks.
  • EP 0 356 800 (Shin-Etsu Chemical Co) describes a binder composition for silicon carbide, comprising fine powders of silicon carbide, silicon and carbon and carbon resins. This composition is compressed between two pieces of SiC and the assembly is heated to 1500 ° C. to react the components of the binder and obtain a solid interface between the two pieces.
  • the heat treatment is preferably carried out under inert gas or under vacuum. An example produced by heating the parts in air shows that the mechanical resistance of the interface is less good than when the treatment is carried out under argon.
  • the methods according to the prior art require heat treatment under an atmosphere of inert gas, typically nitrogen or argon , or under vacuum, because the chemical resistance of the parts obtained in air is not satisfactory. This results in additional investment and operating costs, which is linked to the management of vacuum or inert gases, the consumption of inert gases and the maintenance of vacuum pumps. It would be desirable to have a process for manufacturing these parts in air and at normal pressure, without sacrificing the functional performance of the parts obtained.
  • inert gas typically nitrogen or argon
  • the problem is solved according to the present invention by confining the intermediate parts to be treated in a box, typically made of ceramic material, making it possible to isolate them from the atmosphere of the furnace.
  • the method according to the invention comprises (a) the preparation of a so-called “precursor mixture” comprising at least one ⁇ -SiC precursor with at least one carbonaceous resin, preferably thermosetting, (b) the shaping of said mixture precursor, in particular in granules, plates, tubes or bricks, to form an intermediate piece; (c) polymerizing the resin; (d) introducing said intermediate parts into a receptacle; (e) closing said receptacle by a closing means allowing a gas overpressure to escape; (f) the heat treatment of said intermediate parts at a temperature between 1100 and 1500 ° C to remove the organic constituents from the resin and form ⁇ -SiC in the final part.
  • ⁇ -SiC precursor is used here to mean a compound which forms under the conditions of the heat treatment (step (e)) with the constituents of the ⁇ -SiC resin.
  • precursor of ⁇ -SiC silicon is preferred, and more particularly in the form of a powder.
  • This silicon powder can be a commercial powder, of known particle size and purity.
  • the particle size of the silicon powder is preferably between 0.1 and 20 ⁇ m, preferably between 2 and 20 ⁇ m and more especially between 5 and 20 ⁇ m.
  • Said precursors can also be used in the form of grains or fibers.
  • carbon resin is used here to mean any resin containing carbon atoms. It is neither necessary nor useful for it to contain silicon atoms. It is advantageous that the silicon is provided only by the precursor of ⁇ -SiC.
  • the resin is advantageously selected from thermosetting resins containing carbon, and in particular from phenolic, acrylic or furfuryl resins. A phenolic type resin is preferred.
  • the respective amounts of resin and ⁇ -SiC precursor are adjusted so as to transform the ⁇ -SiC precursor quantitatively into ⁇ -SiC. To this end, the quantity of carbon contained in the resin is calculated.
  • Part of the carbon can also be provided by direct addition of a carbon powder into the mixture of carbon resin and the precursor of ⁇ -SiC.
  • This carbon powder can be a commercial powder, for example carbon black, of known particle size and purity. For reasons of homogeneity of the mixture, a particle size of less than 50 ⁇ m is preferred.
  • the choice of the composition of the mixture results from a compromise between the viscosity, the cost of the raw materials and the desired final porosity.
  • a slight excess of carbon is preferred in the precursor mixture. This excess carbon can then be burned in air. However, the excess carbon should not be too high so as not to generate too large a porosity inside the material after combustion of the residual carbon, thus inducing embrittlement in the mechanical strength of the final part.
  • the precursor mixture can be shaped by any known process such as molding, extrusion, rolling or pressing between at least two surfaces, to obtain three-dimensional shapes such as granules, tubes, bricks, plates, or tiles.
  • the method chosen will be adapted to the viscosity of the precursor mixture, itself a function of the viscosity of the resin and of the composition of the precursor mixture.
  • You can also make bricks with dimensions from a few centimeters to a few decimeters or more. Parts of more complex shapes can also be obtained, in particular by molding. To make bricks, pressing is preferred.
  • Said precursor mixture is then heated in air to a temperature between 100 ° C and 300 ° C, preferably between 150 ° C and 300 ° C, more preferably between 150 ° C and 250 ° C, and even more preferably between 150 ° C and 210 ° C.
  • the duration of this treatment, during which the polymerization of the resin takes place and the hardening of the part, is typically between 0.5 hours and 10 hours at the temperature level, preferably between 1 h and 5 h, and even more preferably between 2 and 3 hours.
  • the material gives off volatile organic compounds which create a variable residual porosity as a function of the level of carbon present in the composition of the precursor mixture and of the conditions applied during the polymerization.
  • An intermediate part is thus obtained which has a certain mechanical strength and which can therefore be easily handled.
  • Said intermediate piece thus obtained is introduced into a receptacle, as will be explained below, and heated to a temperature between 1100 ° C and 1500 ° C for a period ranging from 1 to 10 hours, preferably between 1 and 5 hours and especially between 1 and 3 hours.
  • the optimum temperature range is preferably between 1200 ° C and 1500 ° C, more especially between 1250 ° C and 1450 ° C.
  • the most preferred range is between 1250 ° C and 1400 ° C.
  • the SiC formed from the carbon originating from the resin and from the precursor of ⁇ -SiC is ⁇ -SiC.
  • the temperature of the parts gradually rises and causes the carbonaceous resin to decompose.
  • This decomposition is accompanied by the generation of volatile organic compounds which effectively expel the air initially present between the parts, and in their possible porosity.
  • the gassing that accompanies the decomposition of the carbonaceous resin is complete at around 800 ° C.
  • the essential step of the present invention is the introduction of the intermediate parts into a receptacle, which is then closed by a closure means allowing a gas overpressure to escape.
  • the receptacle is preferably made of inert ceramic material, for example refractory bricks.
  • said receptacle is filled in a fairly compact manner, while minimizing the unoccupied volume. If the load is too low, it can be supplemented by filling the volume of the receptacle which is not occupied by said intermediate parts to be treated with an inert solid, preferably easily separable and recoverable.
  • They can be, for example, bricks made of ⁇ -SiC or ⁇ -SiC, or grains of ⁇ -SiC.
  • the volume occupied by the gas inside the receptacle is not more than more than 50% to the external volume of the intermediate parts, preferably not more than 20% and even more preferably not more than 10%.
  • the term “external volume” is understood here to mean the volume calculated from the external dimensions of the intermediate parts to be treated, without taking into account their internal surface linked to the porosity. It is moreover preferable for the gas evolution generated by the intermediate parts between the ambient temperature and 800 ° C. to be at least equal to twice the volume occupied by the gas inside the receptacle, preferably at least five times, and even more preferably at least ten times.
  • volume occupied by the gas inside the receptacle means here the difference between the internal volume of the receptacle and the sum of the external volume of the intermediate parts to be treated and the volume of any inert solids added.
  • the receptacle must then be closed by an appropriate closing means, for example by a cover or plug of ceramic material.
  • an appropriate closing means for example by a cover or plug of ceramic material.
  • the Applicant has discovered that it is not only unnecessary for this closure to be waterproof, but even annoying. In fact, it is necessary for the closure means to escape the gas overpressure (carbon monoxide, volatile organic compounds, etc.) which forms during cooking. In most cases, and in particular when the edges of the receptacle and of the cover are of fairly flat and smooth shape, it is sufficient to simply place the cover visually tight on the opening of the receptacle. It is also possible to provide a sealed closure means provided with a valve.
  • the gas overpressure can escape, and at the same time, the ambient air does not appreciably access the products, or in any case not during cooking at high temperature.
  • the pressure inside the receptacle drops; the Applicant has found that it is no longer annoying that the air can access the products, since the temperature will be low enough for the ambient air
  • the method according to the invention allows the production of refractory bricks or plates based on ⁇ -SiC without binder, with a density greater than 1.5 g / cm and a thickness of at least 1 mm, preferably at least at least 3 mm, and even more preferably at least 5 mm.
  • the smallest section of said plates is advantageously at least 15 mm, and preferably at least 50 mm, with a ratio of length or width to thickness of at least 10 and preferably at least 15.
  • bricks are made.
  • the smallest dimension of said bricks is advantageously at least 10 mm, and preferably at least 50 mm or even 100 mm.
  • the smallest section of said bricks is advantageously at least 20 cm 2 , preferably at least 75 cm 2 and even more advantageously at least 150 cm 2 , with a ratio of length or width to thickness of at least 3
  • the density of the material can reach 2.8 g / cm 3 .
  • a density of at least 2.4 g / cm 3 is preferred.
  • the most preferred density for this use is between 2.45 and 2.75 g / cm 3 .
  • inclusions are added to the precursor mixture, at least part of which consists of ⁇ -SiC. In this case, step (a) indicated above is replaced by step (aa):
  • ⁇ -SiC ⁇ -SiC
  • ⁇ -SiC ⁇ -SiC
  • ⁇ -SiC with a variable particle size ranging from 0.01 to a few millimeters is used as inclusions.
  • a grain size of between a few tens of ⁇ m and 3 mm is suitable.
  • This silicon carbide can consist of any of the silicon carbides known to date.
  • Part of the ⁇ -SiC can be replaced by alumina, silica, TiN, Si 3 N 4 or other inorganic solids which do not decompose and do not sublimate at the synthesis temperature of the final composite.
  • the weight fraction of said inclusions can reach 80 and even 95% relative to the total mass of the precursor mixture.
  • the products are intended for use as a lining for molten salt electrolysis cells (for example for the production of aluminum from a molten mixture of alumina and cryolite), it is preferred that at least 50 % by weight of the inclusions, and preferably at least 70%, consist of ⁇ -SiC. The same applies to products intended for the lining of incineration furnaces.
  • the solid constituting the inclusions is not limited to a precise macroscopic form but can be used in different forms such as powder, grains, fibers.
  • the fibers based on ⁇ -SiC are preferred as inclusions. These fibers can have a length that exceeds 100 ⁇ m.
  • inclusions are mixed with a carbonaceous resin, preferably thermosetting, containing a given amount of a ⁇ -SiC precursor, preferably in the form of a powder with a particle size ranging from 0.1 to several micrometers.
  • a composite material of the ⁇ -SiC / ⁇ -SiC type is thus obtained, comprising particles of ⁇ -SiC in a matrix of ⁇ -SiC, which does not need to contain other binders or additives.
  • the additional infiltration treatment can be carried out according to the same procedure described: soaking of said material in a mold containing the resin, polymerization then finally, carburetion treatment.
  • Said resin must contain a sufficient amount of the ⁇ -SiC precursor, for example in the form of silicon powder.
  • pure and porous ⁇ -SiC is obtained, which can be used as a catalyst support or as a catalyst.
  • the carbon and the silicon are intimately mixed in the following manner: the silicon powder (average grain size of approximately 10 ⁇ m), is mixed with a phenolic resin which, after polymerization, provides the carbon source necessary for the ⁇ -SiC formation reaction. The inclusions are then mixed with the resin and the whole is poured into a mold having the shape of the desired final composite. After polymerization, the solid formed is transferred to a receptacle placed in an oven allowing the final carburetion of the matrix to be carried out. If the receptacle is not full, you can add inert material, for example refractory bricks of the same type already cooked. The receptacle is closed by a closing means such as a cover or a plug made of ceramic material.
  • a closing means such as a cover or a plug made of ceramic material.
  • the method according to the present invention makes it possible to produce materials or composites with a matrix based on ⁇ -SiC which may contain inside inclusions based on silicon carbide or other materials resistant to use in aggressive, highly acidic or basic, and under strong temperature constraints.
  • the advantages which flow from the present invention are numerous compared to the methods of the prior art, and include in particular the following: (i) The material according to the invention can be manufactured with a significantly lower cost price compared to the methods known. This is due to three factors: First, the low cost and the limited number of raw materials (resin constituting the carbon source, silicon powder).
  • the process according to the invention can be carried out at relatively low temperatures, ie ⁇ 1400 ° C., compared to those used in the prior art.
  • the method according to the invention avoids the additional investment and operating costs associated with the management of the vacuum or inert gases, the consumption of inert gases and the maintenance of the vacuum pumps.
  • the shaping of the mixture can be carried out preferably before the polymerization by extrusion, by pressing or by molding. It is easy taking into account the nature of the starting material, namely a viscous matrix based on resin and silicon powder, which can contain dispersed ⁇ -SiC powder.
  • the part can be shaped by machining after polymerization of the resin, preferably before the heat treatment (step (d)).
  • step (d) the part can be shaped by machining after polymerization of the resin, preferably before the heat treatment.
  • the material or composite according to the invention has an extremely high resistance to corrosive media, in particular to fluorinated media, to concentrated acids or to alkaline media.
  • the parts made from this new material or composite according to the invention therefore allow better economy of use. More particularly, in a given aggressive medium, the lifetime of the parts according to the invention is greater than that of the known SiC-based parts. This also improves the safety of use of the SiC parts, in particular their sealing, and opens other applications impossible to envisage with SiC-based materials according to the state of the art whose binders are not chemically inert. (v) By varying the chemical and physical nature of the inclusions, the process according to the present invention also makes it possible to prepare other types of composite containing not only only silicon carbide but other materials such as alumina, silica or any other compound, provided that they can be dispersed in the resin and that they are not altered during synthesis.
  • this ceramic material has many applications. It can be used, in particular in the form of refractory plates or bricks, as a coating material in various applications relating to thermal engineering, chemical engineering and / or electrometallurgical engineering which must respond to high mechanical and thermal stresses, and / or in the presence corrosive liquids or gases.
  • the material according to the invention can be used as an interior lining for ovens, such as aluminum smelting ovens, and as a lining for salt electrolysis cells. molten, for example for the production of aluminum by electrolysis from a mixture of alumina and cryolite.
  • the method according to the invention also allows the manufacture of parts of complex shape, in particular by molding, and of tubes, in particular by extrusion, as well as of granules.
  • a homogeneous paste is produced by mixing 49% of fine powder of metallic silicon, 18% of carbon black and 33% of phenolic resin. This paste is formed into granules of 3mm in diameter by extrusion, then heated in air for 3 hours at 200 ° C in order to harden the resin. Precursor granules are then obtained which can be transformed into SiC by heating under suitable conditions.
  • Example No. 2 15 cm 3 (16.3 g) of precursor extrudates prepared according to Example No. 1 are loaded into an alumina cartridge of 23 cm 3 . 16 g of ⁇ -SiC powder with a particle size of less than 200 ⁇ m are added thereto, then the assembly is subjected to vibrations so that the powder comes to fill the space left free between the extrudates. The cartridge is then closed with a ceramic felt packed to a thickness of 1 cm. The cartridge is then heated for 1 hour at 1400 ° C in a tabular oven through which a continuous stream of argon is passed. After treatment, the cartridge is emptied and the extrudates are separated from the ⁇ -SiC powder by sieving. Analysis by X-ray diffraction shows that the precursor granules have been transformed into ⁇ -SiC.
  • ⁇ -SiC granules are immersed in a 40% HF solution - vol. for 24 hours, then are rinsed with water and dried.
  • the treatment of the granules with HF leads to a loss of mass of approximately 6% without any incidence on the morphology of the grains.
  • Example 2 The test of Example 2 is repeated, except for the heating of the cartridge for 1 hour at 1400 ° C. which is carried out in an oven containing air in place of argon.
  • Comparative Example No. 1 15 cm 3 of precursor extracts prepared according to Example No. 1 are placed in an oven and then treated for 1 hour at 1400 ° C. in the open air. After treatment in the oven, the granules are immersed in the HF solution at 40% vol. for 24 hours. This HF treatment leads to a drastic transformation of the morphology of the granules which have dissolved almost entirely in the HF solution, a non-quantifiable solid residue being observed in the form of powder at the bottom of the HF tank.
  • Example No. 4 A binder is prepared by mixing 55% of phenolic resin and 45% of fine powder of metallic silicon. This binder is then used in admixture with ⁇ -SiC grains in respective proportions of 12% and 88%. The mixture thus formed is then pressed to form a brick which is hardened by heating for 3 hours at 150 ° C in air. At this stage, the brick consists of grains of ⁇ -SiC trapped in a precursor matrix which can be transformed into ⁇ -SiC by heating under suitable conditions.
  • Example 5 A binder is prepared by mixing 55% of phenolic resin and 45% of fine powder of metallic silicon. This binder is then used in admixture with ⁇ -SiC grains in respective proportions of 12% and 88%. The mixture thus formed is then pressed to form a brick which is hardened by heating for 3 hours at 150 ° C in air. At this stage, the brick consists of grains of ⁇ -SiC trapped in a precursor matrix which can be transformed into ⁇ -SiC by heating under suitable
  • a brick prepared according to Example 4 is treated for 1 hour at 1360 ° C in an inert oven by continuous scanning of argon. On leaving the oven, the brick exhibits good mechanical strength which is preserved after a stay of 24 hours in a hydrofluoric acid bath at 40% by volume. The mass loss during this HF treatment is less than 1%.
  • X-ray diffraction analysis also shows the presence of ⁇ -SiC which has formed from the binder and makes it possible to maintain the cohesion between the grains of ⁇ -SiC.
  • a brick prepared according to example n ° 4 is placed in a ceramic box covered with a cover and adjusted to the size of the room. The whole is then treated for 5 hours at 1380 ° C. in an oven swept by an oxidizing atmosphere. On leaving the oven, the brick exhibits good mechanical strength which is preserved after a stay of 24 hours in a hydrofluoric acid bath at 40% by volume. The loss of mass during this treatment with HF is of the order of 1.5%.
  • Comparative example n ° 2 A brick prepared according to example n ° 4 is treated directly for 5 hours at 1380 ° C in an oven swept by an oxidizing atmosphere, without confinement in a ceramic box. At the exit of the oven, the brick has good mechanical strength but it is completely reduced in grains after a stay of only 2 hours in a hydrofluoric acid bath at 40% by volume. Contrary to Examples 5 and 6, the cohesion between the grains of ⁇ -SiC is no longer ensured after treatment in HF medium because the precursor of ⁇ -SiC could not be correctly transformed by binding ⁇ -SiC during cooking at high temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un matériau composite à base de β-­SiC comprenant (a) la préparation d'un mélange dit « mélange précurseur » comprenant au moins un précurseur du β-SiC avec au moins une résine carbonée, de préférence thermodurcissable, (b) la mise en forme dudit mélange précurseur, notamment en granulés, plaques, tubes ou briques, pour former une pièce intermédiaire ; (c) la polymérisation de la résine ; (d) l'introduction desdites pièces intermédiaires dans un réceptacle ; (e) la fermeture dudit réceptacle par un moyen de fermeture laissant échapper une surpression de gaz ; (f) le traitement thermique desdites pièces intermédiaires à une température entre 1100 et 1500°C pour éliminer les constituants organiques de la résine et former du β-SiC dans la pièce finale.

Description

Procédé de fabrication de pièces de forme à base de β-SiC pour utilisation dans des milieux agressifs
Domaine technique de l'invention
La présente invention concerne les matériaux céramiques à base de β-SiC pour utilisation dans des milieux agressifs, tels qu'ils se présentent notamment en génie chimique et électrométallurgique, et plus particulièrement les pièces ou briques réfractaires utilisées dans des fours d'incinération ou des cuves d'électrolyse. Elle concerne plus particulièrement un procédé de fabrication simplifié de telles pièces ou briques.
Etat de la technique
La préparation de pièces de forme en carbure de silicium par chauffage sous vide à température modérée d'un mélange de silicium et/ou de silice et d'un composé carboné est décrite dans le brevet EP 0 313 480 (Pechiney). Une amélioration de ce procédé, ayant pour but d'en diminuer le coût, est donnée dans le brevet EP 0 543 752 (Pechiney) qui consiste à remplacer le chauffage sous vide par un chauffage sous balayage de gaz neutre (inerte ou azote).
Le document EP 0 356 800 (Shin-Etsu Chemical Co) décrit une composition de liant pour carbure de silicium, comprenant des poudres fines de carbure de silicium, de silicium et de carbone et des résines carbonées. Cette composition est comprimée entre deux pièces de SiC et l'ensemble est chauffé à 1500°C pour faire réagir les composants du liant et obtenir une interface solide entre les deux pièces. Le traitement thermique est effectué de préférence sous gaz inerte ou sous vide. Un exemple réalisé en chauffant les pièces sous air montre que la tenue mécanique de l'interface est moins bonne que lorsque le traitement est effectué sous argon. Problème posé
Pour former le β-SiC à une température de l'ordre de 1100 - 1500°C, les procédés selon l'état de la technique nécessitent un traitement thermique sous une atmosphère de gaz inerte, typiquement de l'azote ou de l'argon, ou sous vide, car la résistance chimique des pièces obtenues sous air n'est pas satisfaisante. Cela entraîne un surcoût d'investissement et d'exploitation, qui est lié à la gestion du vide ou des gaz inertes, à la consommation des gaz inertes et à la maintenance des pompes à vide. Il serait souhaitable de disposer d'un procédé permettant la fabrication de ces pièces sous air et à pression normale, sans pour autant sacrifier les performances fonctionnelles des pièces obtenues.
Description détaillée de l'invention
Le problème est résolu selon la présente invention en confinant les pièces intermédiaires à traiter dans un caisson, typiquement en matériau céramique, permettant de les isoler de l'atmosphère du four.
Le procédé selon l'invention comprend (a) la préparation d'un mélange dit « mélange précurseur » comprenant au moins un précurseur du β-SiC avec au moins une résine carbonée, de préférence thermodurcissable, (b) la mise en forme dudit mélange précurseur, notamment en granulés, plaques, tubes ou briques, pour former une pièce intermédiaire ; (c) la polymérisation de la résine ; (d) l'introduction desdites pièces intermédiaires dans un réceptacle ; (e) la fermeture dudit réceptacle par un moyen de fermeture laissant échapper une surpression de gaz ; (f) le traitement thermique desdites pièces intermédiaires à une température entre 1100 et 1500°C pour éliminer les constituants organiques de la résine et former du β-SiC dans la pièce finale.
On appelle ici « précurseur du β-SiC » un composé qui forme dans les conditions du traitement thermique (étape (e)) avec les constituants de la résine du β-SiC. Comme précurseur du β-SiC, on préfère le silicium, et plus particulièrement sous forme de poudre. Cette poudre de silicium peut être une poudre du commerce, de granulométrie et de pureté connues. Pour des raisons d'homogénéité, la granulométrie de la poudre de silicium est préférablement comprise entre 0,1 et 20 μm, de préférence entre 2 et 20 μm et plus spécialement entre 5 et 20 μm. Lesdits précurseurs peuvent aussi être utilisés sous forme de grains ou fibres.
On appelle ici « résiné carbonée » toute résine contenant des atomes de carbone. Il n'est ni nécessaire ni utile qu'elle contienne des atomes de silicium. Il est avantageux que le silicium soit apporté uniquement par le précurseur du β-SiC. La résine est avantageusement sélectionnée parmi les résines thermodurcissables contenant du carbone, et notamment parmi les résines phénoliques, acryliques, ou furfuryliques. Une résine de type phénolique est préférée. Dans le mélange précurseur, on ajuste les quantités respectives de résine et de précurseur du β-SiC de façon à transformer le précurseur du β-SiC quantitativement en β-SiC. A cette fin, on calcule la quantité de carbone contenue dans la résine. Une partie du carbone peut également être apportée par ajout direct d'une poudre de carbone dans le mélange de résine carbonée et du précurseur du β-SiC. Cette poudre de carbone peut être une poudre du commerce, par exemple du noir de carbone, de granulométrie et de pureté connues. Pour des raison d'homogénéité du mélange, une granulométrie inférieure à 50 μm est préférée. Le choix de la composition du mélange résulte d'un compromis entre la viscosité, le coût des matières premières et la porosité finale désirée. Pour assurer la transformation totale du précurseur du β-SiC en β-SiC et permettre ainsi l'obtention d'un matériau final exempt de Si non engagé dans la structure du SiC, un léger excès de carbone est préféré dans le mélange précurseur. Cet excès de carbone peut ensuite être brûlé sous air. Néanmoins, l'excès de carbone ne doit pas être trop élevé afin de ne pas générer une porosité trop importante à l'intérieur du matériau après combustion du carbone résiduel induisant ainsi une fragilisation dans la tenue mécanique de la pièce finale.
Le mélange précurseur peut être mis en forme par tout procédé connu tel que le moulage, Pextrusion, le laminage ou le pressage entre au moins deux surfaces, pour obtenir des formes tridimensionnelles telles que des granulés, tubes, briques, plaques, ou carreaux. La méthode choisie sera adaptée à la viscosité du mélange précurseur, elle- même fonction de la viscosité de la résine et de la composition du mélange précurseur. A titre d'exemple, il est possible d'obtenir par exemple des plaques d'une épaisseur de 1 mm et d'une longueur et largeur de un à plusieurs décimètres. On peut également fabriquer des briques d'une dimension de quelques centimètres à quelques décimètres ou plus. On peut également obtenir des pièces de formes plus complexes, notamment par moulage. Pour fabriquer des briques, on préfère le pressage.
Ledit mélange précurseur est ensuite chauffé sous air à une température comprise entre 100°C et 300°C, préférentiellement comprise entre 150°C et 300°C, plus préférentiellement comprise entre 150°C et 250 °C, et encore plus préférentiellement comprise entre 150°C et 210°C. La durée de ce traitement, au cours duquel s'effectuent la polymérisation de la résine et le durcissement de la pièce, est typiquement comprise entre 0,5 heures et 10 heures au palier de température, de préférence entre 1 h et 5 h, et encore plus préférentiellement entre 2 et 3 heures. Lors de cette étape, le matériau dégage des composés organiques volatiles qui créent une porosité résiduelle variable en fonction du taux de carbone présent dans la composition du mélange précurseur et des conditions appliquées lors de la polymérisation. Il peut être préférable de minimiser cette porosité, surtout pour la fabrication de plaques épaisses (épaisseur typiquement d'au moins 2 mm) et de briques. On obtient ainsi une pièce intermédiaire qui a une certaine tenue mécanique et qui peut de ce fait être manipulée aisément. Ladite pièce intermédiaire ainsi obtenue est introduite dans un réceptacle, comme il sera expliqué plus loin, et chauffé à une température comprise entre 1100°C et 1500°C pendant une durée allant de 1 à 10 heures, de préférence entre 1 et 5 heures et plus spécialement entre 1 et 3 heures. La plage optimale de température est de préférence située entre 1200°C et 1500°C, plus spécialement entre 1250°C et 1450°C. La plage la plus préférée se situe entre 1250 °C et 1400 °C. Le SiC formé à partir du carbone provenant de la résine et du précurseur du β-SiC est du β-SiC. Au cours de cette étape de carburation, la température des pièces s'élève progressivement et provoque la décomposition de la résine carbonée. Cette décomposition s'accompagne de la génération de composés organiques volatils qui chassent de manière efficace l'air initialement présent entre les pièces, et dans leur porosité éventuelle. Avec la plupart des résines, notamment les résines thermodurcissables, le dégagement gazeux qu'accompagne la décomposition de la résine carbonée est complet à environ 800°C. Les réactions de formation du carbure de silicium ne devenant effectives qu'à partir de 1100°C, celles-ci ont lieu essentiellement en absence d'oxygène moléculaire.
Ce mode de synthèse peut conduire dans les pièces finales à la présence d'un résidu carboné qui s'élimine aisément par chauffage à l'air libre à 700°C pendant 3 heures. L'étape essentielle de la présente invention est l'introduction des pièces intermédiaires dans un réceptacle, qui est ensuite fermé par un moyen de fermeture laissant échapper une surpression de gaz.
Le réceptacle est préférentiellement en matériau céramique inerte, par exemple en briques réfractaires. Dans une réalisation avantageuse de l'invention, on remplit ledit réceptacle de manière assez compacte, en minimisant le volume inoccupé. Si la charge est trop faible, on peut la compléter en remplissant le volume du réceptacle qui n'est pas occupé par lesdites pièces intermédiaires à traiter d'un solide inerte, de préférence facilement séparable et récupérable. Il peut s'agir par exemple de briques en β-SiC ou α-SiC, ou de grains d'α-SiC. Dans une réalisation préférée du procédé selon l'invention, le volume occupé par le gaz à l'intérieur du réceptacle n'est pas supérieur de plus de 50% au volume externe des pièces intermédiaires, de préférence pas plus de 20% et encore plus préférentiellement pas plus de 10%. On entend ici par « volume externe » le volume calculé à partir des dimensions externes des pièces intermédiaires à traiter, sans prendre en compte leur surface interne liée à la porosité. II est par ailleurs préférable que le dégagement gazeux généré par les pièces intermédiaires entre la température ambiante et 800°C soit au moins égal à deux fois le volume occupé par le gaz à l'intérieur de réceptacle, de préférence au moins cinq fois, et encore plus préférentiellement au moins dix fois. On entend ici par « volume occupé par le gaz à l'intérieur du réceptacle » la différence entre le volume interne du réceptacle et la somme du volume externe des pièces intermédiaires à traiter et du volume d'éventuels solides inertes ajoutés.
Le réceptacle doit ensuite être fermé par un moyen de fermeture approprié, par exemple par un couvercle ou bouchon en matériau céramique. La demanderesse a découvert qu'il est non seulement inutile que cette fermeture soit étanche, mais même gênant. En effet, il est nécessaire que le moyen de fermeture laisse d'échapper la surpression de gaz (oxyde de carbone, composés organiques volatils etc.) qui se forme lors de la cuisson. Dans la plupart des cas, et notamment lorsque les bords du réceptacle et du couvercle sont de forme assez plane et lisse, il est suffisant de simplement poser le couvercle de manière visuellement étanche sur l' ouverture du réceptacle. On peut aussi prévoir un moyen de fermeture étanche doté d'une valve. Ainsi, la surpression de gaz peut s'échapper, et en même temps, l'air ambiant n'accède pas de manière appréciable aux produits, ou en tout cas pas pendant la cuisson à haute température. Lors du refroidissement, la pression à l'intérieur du réceptacle baisse ; la demanderesse a trouvé qu'il n'est alors plus gênant que l'air puisse accéder aux produits, car la température sera suffisamment basse pour que l'air ambiant ne réagisse plus de manière appréciable avec les produits.
Il est envisageable d'introduire les pièces intermédiaires directement dans le four en prenant soin de remplir complètement l'espace du four, en ajoutant en cas de besoin des pièces inertes en quantité suffisante pour occuper le volume, et de fermer le four par un moyen de fermeture laissant échapper la surpression de gaz. Dans cette variante, c'est le four lui-même qui assure la fonction de réceptacle. Cependant, ce mode de réalisation a des inconvénients : le fait de remplir complètement le four est susceptible de gêner la circulation de l'air et de perturber de manière inacceptable l'équilibre thermique à l'intérieur du four. Par ailleurs, ce mode de réalisation est peu pratique dans le cas de fours ouverts, ou de fours de grande taille. L'utilisation d'un réceptacle confère au procédé à la fois une protection efficace contre l'air ambiant, et une grande simplicité et souplesse d'utilisation. Le procédé selon l'invention permet la fabrication de briques ou plaques réfractaires à base de β-SiC sans liant, avec une densité supérieure à 1,5 g/cm et d'une épaisseur d'au moins 1 mm, préférentiellement d'au moins 3 mm, et de façon encore plus préférée d'au moins 5 mm. La plus petite section desdites plaques est avantageusement d'au moins 15 mm , et préférentiellement d'au moins 50 mm , avec un rapport de longueur ou largeur sur épaisseur d'au moins 10 et préférentiellement d'au moins 15. Dans un autre mode de réalisation avantageux, on fabrique des briques. La plus petite dimension desdites briques est avantageusement d'au moins 10 mm, et de façon préférée d'au moins 50 mm ou même 100 mm. La plus petite section desdites briques est avantageusement d'au moins 20 cm2, préférentiellement d'au moins 75 cm2 et encore plus avantageusement d'au moins 150 cm2, avec un rapport de longueur ou largeur sur épaisseur d'au moins 3. Dans les deux cas, il convient de limiter l'excès de carbone et de polymériser lentement pour éviter la formation de grandes bulles susceptibles de fragiliser le matériau lors de sa carburation. La densité du matériau peut atteindre 2,8 g/cm3. Pour l'utilisation dans un four d' incinération ou dans une cuve d'électrolyse, on préfère une densité d'au moins 2,4 g/cm3. La densité la plus préférée pour cette utilisation est comprise entre 2,45 et 2,75 g/cm3. Dans un mode d'exécution particulier de la présente invention, on ajoute au mélange précurseur des inclusions dont au moins une partie est constituée de α-SiC. Dans ce cas, l'étape (a) indiquée ci-dessus est remplacée par l'étape (aa) :
(aa) la préparation d'un mélange précurseur comprenant des inclusions, dont au moins une partie est constituée de α-SiC, et un précurseur du β-SiC, qui peuvent se présenter sous forme de poudre, de grains, de fibres ou d'inclusions de taille diverses, avec une résine carbonée, de préférence thermodurcissable. Typiquement, on utilise comme inclusions du α-SiC de granulométrie variable allant de 0,01 à quelques millimètres. A titre d'exemple, une taille de grain comprise entre quelques dizaines de μm et 3 mm convient. Ce carbure de silicium peut consister en l'un des quelconques carbure de silicium connus à ce jour. Une partie du α-SiC peut être remplacée par de l'alumine, de la silice, du TiN, du Si3N4 ou d'autres solides inorganiques qui ne se décomposent pas et ne subliment pas aux température de synthèse du composite final. A titre d'exemple, la fraction pondérale desdites inclusions peut atteindre 80 et même 95% par rapport à la masse totale du mélange précurseur. Si les produits sont destinés à l'utilisation comme garnissage de cuves d'électrolyse de sels fondu (par exemple pour la production d'aluminium à partir d'un mélange fondu d'alumine et de cryolithe), on préfère qu'au moins 50 % en poids des inclusions, et préférentiellement au moins 70%, soient constitués de α-SiC. Il en est de même de produits destinés au garnissage de fours d'incinération. Le solide constituant les inclusions ne se limite pas à une forme macroscopique précise mais peut être utilisé sous différentes formes telles que poudre, grains, fibres. A titre d'exemple, pour améliorer les propriétés mécaniques du composite final, on préfère comme inclusions les fibres à base de α-SiC. Ces fibres peuvent avoir une longueur qui dépasse 100 μm.
Ces inclusions, dont au moins une partie doit être constituée de α-SiC, sont mélangées avec une résine carbonée, de préférence thermodurcissable, contenant une quantité donnée d'un précurseur du β-SiC, de préférence sous forme de poudre de granulométrie allant de 0,1 à plusieurs micromètres.
On obtient ainsi un matériau composite de type α-SiC / β-SiC, comprenant des particules de α-SiC dans une matrice de β-SiC, qui n'a pas besoin de contenir d'autres liants ou additifs.
Dans un autre mode d'exécution particulier de la présente invention, le traitement d'infiltration complémentaire peut être effectué selon la même procédure décrite : trempage dudit matériau dans un moule contenant la résine, polymérisation puis finalement, traitement de carburation. Ladite résine doit contenir une quantité suffisante du précurseur de β-SiC, par exemple sous forme de poudre de silicium. Ce traitement complémentaire permet d'améliorer la résistance mécanique et/ou de supprimer les problèmes inhérents à la présence d'une porosité non désirable, ce qui conduit à une meilleure résistance aux attaques de milieux corrosifs, notamment aux milieux fluorés, aux acides concentrés ou aux milieux alcalins.
Sans ajout d'inclusions, on obtient du β-SiC pur et poreux, qui peut être utilisé comme support de catalyseur ou comme catalyseur.
Dans une variante préférée du procédé selon la présente invention le carbone et le silicium sont intimement mélangés de la manière suivante: la poudre de silicium (taille de grains moyenne d'environ 10 μm), est mélangée à une résine phénolique qui, après polymérisation, fournit la source de carbone nécessaire à la réaction de formation du β- SiC. Les inclusions sont mélangées ensuite avec la résine puis le tout est coulé dans un moule ayant la forme du composite final désiré. Après polymérisation le solide formé est transféré dans un réceptacle placé dans un four permettant de réaliser la carburation finale de la matrice. Si le réceptacle n'est pas plein, on peut ajouter de la matière inerte, par exemple des briques réfractaires du même type déjà cuits. On ferme le réceptacle par un moyen de fermeture tel qu'un couvercle ou un bouchon en matériau céramique.
Durant la montée en température, la résine polymérisée se décompose en libérant des composés organiques volatils qui créent une surpression dans le réceptacle. Cette surpression doit pouvoir s'échapper, soit par une valve spécifique aménagée dans le réceptacle ou le couvercle, soit simplement parce que la liaison entre le réceptacle et le couvercle n'est pas étanche. Le fait que tous les constituants se trouvent intimement mélangés augmente d'une manière considérable le rendement final en SiC avec très peu de perte de silicium dans la phase gaz.
Le procédé selon la présente invention permet de réaliser des matériaux ou composites avec une matrice à base de β-SiC pouvant contenir à l'intérieur des inclusions à base de carbure de silicium ou autres matériaux résistants à des utilisations en milieux agressifs, fortement acides ou basiques, et sous des fortes contraintes de températures. Les avantages qui découlent de la présente invention sont nombreux par rapport aux procédés de l'art antérieur, et comprennent notamment les suivants : (i) Le matériau selon l'invention peut être fabriqué avec un coût de revient significativement plus bas par rapport aux procédés connus. Cela est dû à trois facteurs : Premièrement, au faible coûts et au nombre limité des matières premières (résine constituant la source de carbone, poudre de silicium). Deuxièmement, à une économie non négligeable en énergie car le procédé selon l'invention peut être réalisé à des températures relativement basses, i.e. < 1400°C, par rapport à celles utilisées dans l'art antérieur. Et surtout troisièmement, le procédé selon l'invention évite le surcoût d'investissement et d'exploitation lié à la gestion du vide ou des gaz inertes, à la consommation des gaz inertes et à la maintenance des pompes à vide. (ii) La mise en forme du mélange peut être effectuée de manière préférée avant la polymérisation par extrusion, par pressage ou par moulage. Elle est facile compte tenu de la nature du matériau de départ, à savoir une matrice visqueuse à base de résine et de poudre de silicium, pouvant contenir de la poudre de α-SiC dispersée. Ceci permet de préformer le matériau dans des formes relativement complexes qui ne sont pas toujours faciles à obtenir avec les procédés connus. Alternativement, on peut mettre en forme la pièce par usinage après polymérisation de la résine, de préférence avant le traitement thermique (étape (d)). (iii) La forte affinité chimique et physique entre les différents constituants du composite permet un meilleur mouillage des grains ou inclusions de α-SiC par la matrice à base de β-SiC. Cela est dû à leurs natures chimiques et physiques proches malgré leur différente structure cristallographique, i.e. α-SiC (hexagonal) et β-SiC (cubique). Ces similarités proviennent essentiellement de la spécificité de la liaison chimique Si-C qui régit la plupart des propriétés mécaniques et thermiques ainsi que la forte résistance aux agents corrosifs. Elles permettent également la réalisation de liaisons fortes entre les deux phases (matrice de β-SiC et inclusions) évitant les problèmes de rejet ou de décollement lors de l'utilisation sous contrainte. De plus, si des inclusions en α-SiC sont utilisées, celui-ci présente un coefficient de dilatation thermique très proche de celui de la matrice en β-SiC, permettant d'éviter la formation de contraintes résiduelles susceptibles d'apparaître au sein du composite lors du traitement thermique ou lors du refroidissement ; cela évite la formation de fissures qui pourraient être dommageables pour la pièce finie lors de son utilisation. (iv) Dû à l'absence de liants présentant une plus faible résistance auxdits milieux corrosifs, le matériau ou composite selon l'invention présente une résistance extrêmement élevée aux milieux corrosifs, notamment aux milieux fluorés, aux acides concentrés ou aux milieux alcalins. Les pièces fabriquées en ce nouveau matériau ou composite selon l'invention permettent donc une meilleure économie d'utilisation. Plus particulièrement, dans un milieu agressif donné, la durée de vie des pièces selon l'invention est plus importante que celle des pièces à base de SiC connues. Cela améliore aussi la sécurité d'emploi des pièces en SiC, notamment leur étanchéité, et ouvre d'autres applications impossibles à envisager avec les matériaux à base de SiC selon l'état de la technique dont les liants ne sont pas chimiquement inertes. (v) En faisant varier la nature chimique et physique des inclusions, le procédé selon la présente invention permet également de préparer d'autres types de composite ne contenant pas seulement que du carbure de silicium mais d'autres matériaux tels que l'alumine, la silice ou tous autres composés, pourvus qu'ils puissent être dispersés dans la résine et qu'ils ne soient pas altérés lors de la synthèse. L'ajout de ces inclusions autres que du α-SiC, dans une proportion variable, permet de modifier à volonté les propriétés mécaniques et thermiques du composite final, i.e. amélioration du transfert thermique, de la résistance à l'oxydation ou du colmatage de pores. (vi) En faisant varier la proportion des inclusions, et notamment le pourcentage massique de α-SiC, on peut faire varier la résistance thermique et mécanique du matériau, en fonction de l'application visée. Le procédé selon l'invention permet d'obtenir des produits ou pièces à base de β-SiC qui ont sensiblement les mêmes propriétés d'usage que ceux préparés sous vide ou sous gaz inerte. Cela est vrai en particulier pour la résistance aux milieux fluorés ou chlorés à température élevée, qui peut être décisive lorsque l'on utilise lesdits produits comme garnissage de cuves d'électrolyse pour la fabrication d'aluminium à partir d'un mélange fondu alumine - cryolithe, ou comme garnissage de fours d'incinération. En effet, ce matériau céramique a de très nombreuses applications. Il peut être utilisé, en particulier sous forme de plaques ou briques réfractaires, comme matériau de revêtement dans diverses applications relevant du génie thermique, du génie chimique et/ou du génie électrométallurgique devant répondre à fortes contraintes mécaniques et thermiques, et / ou en présence de liquides ou gaz corrosifs. Il peut être notamment utilisé dans des éléments constituants des échangeurs thermiques, des brûleurs, des fours, des réacteurs, ou des résistances de chauffage, notamment en milieu oxydant à moyenne ou haute température, ou dans les installations en contact avec des agents chimiques corrosifs. Le matériau selon l'invention peut être utilisé comme revêtement intérieur de fours, tels que des fours de fusion d'aluminium, et comme garnissage de cuves d'électrolyse en sel fondu, par exemple pour la production d'aluminium par électrolyse à partir d'un mélange d'alumine et de cryolithe.
Le procédé selon l'invention permet également la fabrication de pièces de forme complexe, notamment par moulage, et de tubes, notamment par extrusion, ainsi que de granulés.
Les exemples qui suivent illustrent différents modes d'exécution de l'invention et montrent ses avantages ; ils ne limitent pas la présente invention.
Exemples :
Exemple n° 1 :
On réalise une pâte homogène en mélangeant 49% de poudre fine de silicium métallique, 18% de noir de carbone et 33% de résine phénolique. Cette pâte est formée en granulés de 3mm de diamètre par extrusion, puis chauffée sous air 3h à 200°C afin de durcir la résine. On obtient alors des granulés précurseurs qui peuvent être transformés en SiC par chauffage en conditions adéquates.
Exemple n° 2 : 15 cm3 (16,3 g) d'extradés de précurseur préparés selon l'exemple n° 1 sont chargés dans une cartouche alumine de 23 cm3 . On y ajoute 16 g de poudre de α-SiC de granulométrie inférieure à 200 μm puis on soumet l'ensemble à des vibrations de manière à ce que la poudre vienne remplir l'espace laissé libre entre les extradés. La cartouche est ensuite obturée par un feutre céramique tassé sur une épaisseur de 1 cm. La cartouche est ensuite chauffée pendant 1 heure à 1400°C dans un four tabulaire au travers duquel on fait passer un flux continu d'argon. Après traitement, la cartouche est vidée et les extradés sont séparés de la poudre de α-SiC par tamisage. L'analyse par diffraction des rayons X montre que les granulés de précurseur ont été transformés en β- SiC.
Ces granulés de β-SiC sont plongés dans une solution de HF à 40%-vol. pendant 24 heures, puis sont rincés à l'eau et séchés. Le traitement des granulés à l'HF conduit à une perte de masse d'environ 6% sans aucune incidence sur la morphologie des grains.
Exemple n° 3 :
On reproduit l'essai de l'exemple n° 2 à l'exception du chauffage de la cartouche pendant 1 heure à 1400°C qui est réalisé dans un four contenant de l'air à la place de l'argon.
Après déchargement et tamisage des extradés, ceux-ci sont plongés dans la solution de HF à 40%-vol pendant 24 heures, puis rincés à l'eau et séchés. Le traitement des granulés à l'HF conduit à une perte de masse d'environ 5% sans aucune incidence sur la morphologie des grains.
Exemple comparatif n° 1 : 15 cm3 d'extradés de précurseur préparés selon l'exemple n° 1 sont placés dans un four puis traités pendant 1 heure à 1400°C à l'air libre. Après traitement dans le four, les granulés sont plongés dans la solution de HF à 40%-vol. pendant 24 heures. Ce traitement à l'HF conduit à une transformation drastique de la morphologie des granulés qui se sont dissout en quasi-totalité dans la solution de HF, un résidu solide non quantifïable étant observé sous forme de poudre au fond du bac de HF.
Exemple n° 4 : On prépare un liant par mélange de 55% de résine phénolique et de 45% de poudre fine de silicium métallique. Ce liant est ensuite utilisé en mélange avec des grains d'α-SiC en proportions respectives de 12% et 88%. Le mélange ainsi constitué est ensuite pressé pour former une brique que l'on durcie par chauffage pendant 3 heures à 150°C sous air. A ce stade, la brique est constituée de grains d'α-SiC emprisonnés dans une matrice de précurseur qui peut être transformée en β-SiC par chauffage en conditions adéquates. Exemple n° 5 :
Une brique préparée selon l'exemple n° 4 est traitée pendant 1 heure à 1360°C dans un four inerte par balayage continu d'argon. A la sortie du four, la brique présente une bonne tenue mécanique qui est conservée après un séjour de 24 heures dans un bain d'acide fluorhydrique à 40% volumique. La perte de masse lors de ce traitement à l'HF est inférieure à 1%. Outre l'α-SiC introduit au départ, l'analyse par diffraction X montre également la présence de β-SiC qui s'est formé à partir du liant et permet de maintenir la cohésion entre les grains de α-SiC.
Exemple n° 6
Une brique préparée selon l'exemple n° 4 est placée dans un caisson céramique recouvert d'un couvercle et ajusté à la taille de la pièce. L'ensemble est ensuite traité pendant 5 heures à 1380°C dans un four balayé par une atmosphère oxydante. A la sortie du four, la brique présente une bonne tenue mécanique qui est conservée après un séjour de 24 heures dans un bain d'acide fluorhydrique à 40% volumique. La perte de masse lors de ce traitement à l'HF est de l'ordre de 1,5%.
Exemple comparatif n° 2 : Une brique préparée selon l'exemple n° 4 est traitée directement 5h à 1380°C dans un four balayé par une atmosphère oxydante, sans confinement en caisson céramique. A la sortie du four, la brique présente une bonne tenue mécanique mais elle est complètement réduite en grains après un séjour de seulement 2 heures en bain d'acide fluorhydrique à 40% volumique. Contrairement aux exemples 5 et 6, la cohésion entre les grains de α-SiC n'est plus assurée après traitement en milieu HF du fait que le précurseur de β-SiC n'a pas pu être correctement transformé en liant β-SiC au cours de la cuisson à haute température.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un matériau composite à base de β-SiC comprenant (a) la préparation d'un mélange dit « mélange précurseur » comprenant au moins un précurseur du β-SiC avec au moins une résine carbonée, de préférence thermodurcissable, (b) la mise en forme dudit mélange précurseur, notamment en granulés, plaques, tubes ou briques, pour former une pièce intermédiaire ; (c) la polymérisation de la résine ; (d) l'introduction desdites pièces intermédiaires dans un réceptacle ; (e) la fermeture dudit réceptacle par un moyen de fermeture laissant échapper une surpression de gaz ; (f) le traitement thermique desdites pièces intermédiaires à une température entre 1100 et 1500°C pour éliminer les constituants organiques de la résine et former du β-SiC dans la pièce finale.
2. Procédé de fabrication selon la revendication 1, dans lequel l'étape (a) est remplacée par l'étape (aa) : (aa) la préparation d'un mélange dit « mélange précurseur » comprenant des inclusions, dont au moins une partie est constituée de α-SiC, au moins un précurseur du β-SiC et au moins une résine carbonée, de préférence thermodurcissable.
3. Procédé selon une des revendications 1 ou 2, dans lequel le traitement thermique (étape (f)) est effectué à une température comprise entre 1100°C et 1500°C, préférentiellement entre 1200 °C et 1500 °C, plus préférentiellement entre 1250°C et 1450°C, et de façon encore plus préférentiellement entre 1250°C et 1400°C.
. Procédé selon une quelconque des revendications 1 à 3, dans lequel le précurseur du β-SiC est du silicium, de préférence utilisé sous forme d'une poudre ayant un diamètre moyen compris entre 0,1 μm et 20 μm.
5. Procédé selon une quelconque des revendications 1 à 4, dans lequel la résine thermodurcissable est sélectionnée parmi les résines phénoliques, acryliques ou furfuryliques.
6. Procédé selon une quelconque des revendications 1 à 5, dans lequel la température de polymérisation de la résine (étape (c)) se situe entre 150 et 300°C, de préférence entre 150 et 250°C et plus préférentiellement entre 150 et 210°C.
7. Procédé selon une quelconque des revendications 1 à 6, caractérisé en ce que lesdits inclusions et / ou précurseurs se présentent sous forme de poudre, de grains ou fibres.
8. Procédé selon une quelconque des revendications 2 à 7, dans lequel la fraction pondérale desdites inclusions est comprise entre 80 et 95% par rapport à la masse totale du mélange précurseur.
9. Procédé selon une quelconque des revendications 2 à 8, caractérisé en ce qu'une partie desdites inclusions sont de l'alumine, de la silice, du TiN, du Si3N ou un mélange de ces composés.
10. Procédé selon la revendication 9, caractérisé en ce qu'au moins 50%, et préférentiellement au moins 70% en poids desdites inclusions sont de l'α-SiC.
11. Procédé selon une quelconque des revendications 1 à 10, caractérisé en ce que le volume du réceptacle qui n'est pas occupé par lesdites pièces intermédiaires est rempli d'un solide inerte, de préférence facilement séparable et récupérable, tel que des briques en β-SiC ou α-SiC, ou des grains d'α-SiC, de manière à ce que le volume occupé par le gaz à l'intérieur du réceptacle n'est pas supérieur de plus de 50% au volume externe des pièces intermédiaires.
12. Procédé selon la revendication 10 ou 11 , dans lequel le volume occupé par le gaz à l'intérieur du réceptacle n'est pas supérieur de plus de 20%, et de préférence pas supérieur de plus de 10%, au volume externe des pièces intermédiaires.
13. Procédé selon une quelconque des revendications 1 à 12, caractérisé en ce que le dégagement gazeux généré par les pièces à traiter entre la température ambiante et 800°C est au moins égal à deux fois le volume occupé par le gaz à l'intérieur de réceptacle, de préférence au moins cinq fois, et encore plus préférentiellement au moins dix fois.
14. Produit susceptible d'être obtenu par le procédé selon une quelconque des revendications 1 à 13.
15. Utilisation du produit issu du procédé de fabrication selon une quelconque des revendications 1 à 13 sous forme de plaques ou briques comme revêtement intérieur de cuve d'électrolyse en sel fondu ou comme revêtement intérieur d'un four d'incinération.
16. Utilisation selon la revendication 15 dans une cuve d'électrolyse pour la production d'aluminium à partir d'un mélange d'alumine et de cryolithe.
EP05770958A 2004-05-14 2005-05-10 Procede de fabrication de pieces de forme a base de beta-sic pour utilisation dans des milieux agressifs Withdrawn EP1751077A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0405284A FR2870233B1 (fr) 2004-05-14 2004-05-14 PROCEDE DE FABRICATION DE PIECES DE FORME A BASE DE BETA-SiC POUR UTILISATION DANS DES MILIEUX AGRESSIFS
PCT/FR2005/001163 WO2005121044A2 (fr) 2004-05-14 2005-05-10 PROCEDE DE FABRICATION DE PIECES DE FORME A BASE DE β-SIC POUR UTILISATION DANS DES MILIEUX AGRESSIFS

Publications (1)

Publication Number Publication Date
EP1751077A2 true EP1751077A2 (fr) 2007-02-14

Family

ID=34945902

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05770958A Withdrawn EP1751077A2 (fr) 2004-05-14 2005-05-10 Procede de fabrication de pieces de forme a base de beta-sic pour utilisation dans des milieux agressifs

Country Status (8)

Country Link
US (1) US20080095692A1 (fr)
EP (1) EP1751077A2 (fr)
CN (1) CN100579934C (fr)
AU (1) AU2005251983B2 (fr)
CA (1) CA2566869A1 (fr)
FR (1) FR2870233B1 (fr)
RU (1) RU2375331C2 (fr)
WO (1) WO2005121044A2 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001250832A1 (en) 2000-03-14 2001-09-24 James Hardie International Finance B.V. Fiber cement building materials with low density additives
KR20050058478A (ko) * 2002-08-23 2005-06-16 제임스 하디 인터내셔널 파이낸스 비.브이. 합성 미세 중공구
US7993570B2 (en) 2002-10-07 2011-08-09 James Hardie Technology Limited Durable medium-density fibre cement composite
US20090146108A1 (en) * 2003-08-25 2009-06-11 Amlan Datta Methods and Formulations for Producing Low Density Products
US20090156385A1 (en) * 2003-10-29 2009-06-18 Giang Biscan Manufacture and use of engineered carbide and nitride composites
CN1910326A (zh) 2004-01-12 2007-02-07 詹姆斯哈迪国际财金公司 具有可辐射固化组分的复合纤维水泥制品
US7998571B2 (en) * 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
CN101160266A (zh) 2005-02-24 2008-04-09 詹姆斯哈迪国际财金公司 耐碱性玻璃组合物
US8609244B2 (en) * 2005-12-08 2013-12-17 James Hardie Technology Limited Engineered low-density heterogeneous microparticles and methods and formulations for producing the microparticles
EP2010730A4 (fr) 2006-04-12 2013-07-17 Hardie James Technology Ltd Element de construction renforce a surface etanche
CN101580390B (zh) * 2008-05-15 2012-10-03 中国科学院金属研究所 一种碳化硅陶瓷管状制品的制备方法
WO2010101572A1 (fr) * 2009-03-05 2010-09-10 James Hardie Technology Limited Fabrication et utilisation de composites de carbure et de nitrure modifiés
CN102368397B (zh) * 2011-06-16 2013-01-16 哈尔滨工业大学 一种耐冰晶石腐蚀的绝缘材料及其制备方法和应用
RU2559965C1 (ru) * 2014-05-07 2015-08-20 Акционерное общество "Научно-исследовательский институт конструкционных материалов на основе графита "НИИграфит" Композиция тонкостенных трубчатых элементов и способ получения тонкостенных трубчатых элементов
CN111285385A (zh) * 2020-02-18 2020-06-16 大同碳谷科技孵化器有限公司 一种从煤矸石灰渣中提取三氧化二铝和二氧化硅的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4744922A (en) * 1986-07-10 1988-05-17 Advanced Refractory Technologies, Inc. Neutron-absorbing material and method of making same
DE68901429D1 (de) * 1988-08-15 1992-06-11 Shinetsu Chemical Co Verbindungsmittelzusammensetzungen fuer siliciumcarbidkeramiken.
FR2675713B1 (fr) * 1991-04-29 1993-07-02 Pechiney Electrometallurgie Systeme catalytique, notamment pour la postcombustion de gaz d'echappement et procede pour le fabriquer.
DE4413127C1 (de) * 1994-04-19 1995-10-05 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung poröser, durchströmbarer Formkörper aus Siliciumcarbid und Formkörper
DE4420294C2 (de) * 1994-06-10 1998-04-09 Didier Werke Ag Abfallverbrennungsofen
US5560809A (en) * 1995-05-26 1996-10-01 Saint-Gobain/Norton Industrial Ceramics Corporation Improved lining for aluminum production furnace
US6555031B2 (en) * 2000-06-19 2003-04-29 Corning Incorporated Process for producing silicon carbide bodies
FR2857009A1 (fr) * 2003-04-16 2005-01-07 Sicat Materiau ceramique a base de carbure de silicium pour utilisation dans des milieux agressifs
FR2857008B1 (fr) * 2003-04-16 2006-05-19 Sicat Materiau ceramique a base de carbure de silicium pour utilisation dans des milieux agressifs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005121044A2 *

Also Published As

Publication number Publication date
WO2005121044A8 (fr) 2006-12-28
FR2870233B1 (fr) 2006-12-01
AU2005251983A1 (en) 2005-12-22
AU2005251983B2 (en) 2010-04-08
RU2375331C2 (ru) 2009-12-10
CA2566869A1 (fr) 2005-12-22
US20080095692A1 (en) 2008-04-24
WO2005121044A2 (fr) 2005-12-22
CN100579934C (zh) 2010-01-13
CN1980871A (zh) 2007-06-13
WO2005121044A3 (fr) 2006-06-08
RU2006144450A (ru) 2008-06-20
FR2870233A1 (fr) 2005-11-18

Similar Documents

Publication Publication Date Title
EP1751077A2 (fr) Procede de fabrication de pieces de forme a base de beta-sic pour utilisation dans des milieux agressifs
EP0023869B1 (fr) Procédé de préparation de sialons
LU87550A1 (fr) Procede de formation d&#39;une masse refractaire sur une surface et melange de particules destine a ce procede
FR2657603A1 (fr) Procede d&#39;obtention de corps solides poreux a base de carbure refractaire a l&#39;aide de composes organiques et de metal ou metallouide.
FR2528823A1 (fr) Procede de fabrication d&#39;articles en carbone ou en graphite contenant du carbure de silicium lie par reaction
CH625195A5 (fr)
WO2006056698A2 (fr) Bloc refractaire fritte a base de carbure de silicium a liaison nitrure de silicium
JPH0774108B2 (ja) 炭素存在下での反応によって結合したケイ素粉末を主成分とするセラミック材料およびその製造方法
FR3074171A1 (fr) Materiau ceramique composite particulaire, piece le comprenant, et procede de preparation de cette piece.
FR2669920A1 (fr) Procede de fabrication de materiaux refractaires et leurs applications en fonderie d&#39;alliages corrosifs.
EP1888813B1 (fr) Procede de densification rapide d&#39;un substrat fibreux poreux par formation d&#39;un depot solide au sein de la porosite du substrat
EP0807093B1 (fr) Composition pour un revetement de produits carbones et ce revetement
WO1984002335A1 (fr) Produits refractaires constitues de grains lies par des residus carbones et du silicium metal en poudre, et procede de fabrication
EP1618079B1 (fr) L&#39;utilisation d&#39;un materiau ceramique a base de carbure de silicium dans les milieux agressifs
EP0577735B1 (fr) Melange de substances chimiques pour la formation d&#39;une composition refractaire, procede de preparation et procede d&#39;utilisation de cette composition
BE1006501A4 (fr) Procede pour la fabrication de briques siliceuses de masse volumique apparente elevee.
BE1017675A3 (fr) Melange sec pour le traitement de substrats refractaires et procede le mettant en oeuvre.
FR2857008A1 (fr) Materiau ceramique a base de carbure de silicium pour utilisation dans des milieux agressifs
EP2340408A1 (fr) Four de cuisson de blocs carbones
EP1756019B1 (fr) Composition de base pour la fabrication d&#34;objets refractaires faconnes a base de sic et procede de fabrication d&#39;objets moules correspondants
BE664911A (fr)
BE400083A (fr)
FR2569577A1 (fr) Bloc de catalyseur en grains, aux oxydes de fer, a activite renforcee, pour la synthese de l&#39;ammoniac, et procede de preparation dudit bloc de catalyseur
EP2440507A2 (fr) Produit réfractaire à matrice de siaion, d&#39;alumine et de silicium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061214

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101201