EP1747183B1 - Verfahren zur herstellung von alkoxylierungskatalysatoren und deren verwendung in alkoxylierungsverfahren - Google Patents

Verfahren zur herstellung von alkoxylierungskatalysatoren und deren verwendung in alkoxylierungsverfahren Download PDF

Info

Publication number
EP1747183B1
EP1747183B1 EP05740203.4A EP05740203A EP1747183B1 EP 1747183 B1 EP1747183 B1 EP 1747183B1 EP 05740203 A EP05740203 A EP 05740203A EP 1747183 B1 EP1747183 B1 EP 1747183B1
Authority
EP
European Patent Office
Prior art keywords
methyl
pentanol
butanol
acid
dimethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05740203.4A
Other languages
English (en)
French (fr)
Other versions
EP1747183A2 (de
EP1747183A4 (de
Inventor
Upali Peter Weerasooriya
Peter Paul Radford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harcros Chemicals Inc
Original Assignee
Harcros Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harcros Chemicals Inc filed Critical Harcros Chemicals Inc
Priority to PL05740203T priority Critical patent/PL1747183T3/pl
Publication of EP1747183A2 publication Critical patent/EP1747183A2/de
Publication of EP1747183A4 publication Critical patent/EP1747183A4/de
Application granted granted Critical
Publication of EP1747183B1 publication Critical patent/EP1747183B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/02Preparation of ethers from oxiranes
    • C07C41/03Preparation of ethers from oxiranes by reaction of oxirane rings with hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/48Ring-opening reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/23Calcium

Definitions

  • the present invention relates to the preparation of an alkoxylation catalyst and to a process of alkoxylation using the catalyst.
  • Alkylene oxide adducts of compounds containing "active" or “labile” hydrogens find utility in a variety of products such as, for example, surfactants, solvents, and chemical intermediates.
  • these alkylene oxide adducts are prepared by an alkoxylation reaction in which an alkylene oxide, such as ethylene oxide, is reacted under suitable conditions with an organic compound, such as an alcohol, having one or more active hydrogen atoms.
  • an alkylene oxide such as ethylene oxide
  • an organic compound such as an alcohol
  • ethylene oxide adducts of aliphatic alcohols or substituted phenols having from about 8 to 20 carbon atoms have found widespread utility as non-ionic detergent components or as intermediates for anionic detergent components of cleaning formulations for use in industrial and household applications.
  • KOH potassium hydroxide
  • NaOH sodium hydroxide
  • NaOMe sodium methylate
  • BREs broad range ethoxylates
  • the water of reaction Prior to ethoxylation, in the case of dry catalyst, the water of reaction is removed by applying heat and vacuum or nitrogen sparge. Likewise, in the case of an aqueous or methanolic catalyst, the water or methanol is removed to generate the active catalyst prior to the start of ethoxylation of the substrate. Failure to do so results in ethoxylated by-products arising from side reactions with KOH, water or methanol.
  • adduct number or ethoxymer distribution of a given product mixture it is desirable to tailor the adduct number or ethoxymer distribution of a given product mixture to its intended service.
  • an adduct with too few ethylene oxide molecules is not effective because of poor water solubility.
  • An adduct with too many ethylene oxide molecules is undesirable because surface tension reduction per unit mass decreases drastically with increasing hydrophilicity.
  • the prior art also contains catalysts to produce certain narrow range ethoxylates ("NRE").
  • NRE ethoxylates
  • the lower mole ethoxylates could serve as intermediates for anionic surfactants.
  • Several references disclose the use of calcium-based catalysts for carrying out such alkoxylation reactions. See U.S. Patent Nos.
  • the dispersing medium in these catalysts cannot be volatilized without losing a significant part of the substrate to be ethoxylated prior to ethoxylation. Consequently, the dispersing medium in the catalyst will end up being ethoxylated along with the substrate. This problem becomes even more pronounced in the case of producing higher mole ethoxylates where a higher level of the catalyst, relative to the substrate, is to be employed. This in turn will lead to correspondingly higher levels of by-products.
  • an alkoxylation process comprising:
  • a calcium-containing compound that is at least partially dispersible in a volatile organic dispersing medium is admixed together with a carboxylic acid.
  • the calcium/ carboxylic acid mole ratio ranges from about 15:1 to about 1:1.
  • an inorganic acid or anhydride may be introduced into the reaction mixture.
  • the inorganic acid is in an amount sufficient to neutralize at least 25% of the titratable alkalinity present in the mixture.
  • the calcium-containing compounds used in the present invention are ones that are at least partially dispersible or soluble in the volatile dispersing medium and are selected from the group consisting of calcium hydride, calcium acetate, calcium oxalate, calcium oxide, calcium hydroxide, calcium lactate, calcium alkoxide, and mixtures thereof. While compounds such as calcium hydride, calcium acetate, and calcium oxalate, may be used, it is preferred that the calcium-containing compound be calcium oxide, calcium hydroxide, or a mixture thereof.
  • the carboxylic acids useful in the present invention include any suitable compound having a -COOH moiety or precursors to -COOH moieties as in anhydrides.
  • the carboxylic acids include aliphatic or aromatic compounds having a mono-, di-, or poly--COOH moiety. While it is preferred that the carboxylic acids be saturated, they may optionally contain other functional groups such as hydroxyl groups that do not interfere with the reaction.
  • the carboxylic acids of the present invention are branched chain or linear monocarboxylic acids.
  • the carboxylic acids have between 4 to about 15 carbon atoms. Most preferred carboxylic acids are those that have good miscibility in organic solvents.
  • Non-limiting examples of such suitable acids include octanoic acid, 2-methyl hexanoic acid, heptanoic acid, 3-methyl octanoic acid, 4-ethyl nonanoic acid, and 2-ethyl hexanoic acid.
  • the inorganic acids and anhydrides that are useful in the process of the present invention include sulfuric acid, phosphoric acid, polyphosphoric acid, oleum, sulfur trioxide, and phosphorous pentoxide. Particularly preferred are the oxy acids such as sulfuric acid.
  • the volatile dispersing medium of the present invention "consists essentially of" media having a boiling point less than about 160 °C, even more preferably less than about 150 °C, still more preferably less than about 140 °C, and even more preferably less than about 120 °C.
  • the dispersing media preferably consists essentially of media having a boiling point between about 80 °C and about 160 °C, and even more preferably between about 80 °C and about 120 °C.
  • the phrase "consisting essentially of" with respect to the volatile dispersing media of the present invention means that other components may be added to the media without materially affecting the basic and novel characteristic of the invention.
  • the volatile dispersing medium of the present invention may contain minor components having higher boiling points (above 160 °C).
  • these minor components comprise less than 10% by weight, preferably less than 5% by weight, more preferably less than 1% by weight, and most preferably less than 0.1% by weight of the total weight of the dispersing medium.
  • the alkoxylated alcohol mixture used as the dispersing medium in Lin, U.S. Patent No. 5,627,121 is outside the scope of the present invention.
  • the dispersing medium of the present invention "consists of" media having a boiling point less than 160 °C, even more preferably less than about 150 °C, still more preferably less than about 140 °C, and even more preferably less than about 120 °C
  • the dispersing media preferably consists essentially of media having a boiling point between about 80 °C and about 160 °C, and even more preferably between about 80 °C and about 120 °C.
  • the phrase "consisting of” excludes any ingredient that does not have a boiling point as specified.
  • Suitable volatile dispersing media include alcohols, esters, ethers, ketones, aldehydes, and other aliphatic and aromatic hydrocarbons having a boiling point less than 160 °C, and mixtures thereof.
  • some preferred dispersing media include ethanol, 1-propanol, 2-propanol (isopropanol), 2-methyl-1-propanol (iso-butanol), 1-butanol, 2-butanol (sec-butanol), 1-pentanol, butyl acetate, and dimethoxy ethane.
  • the optimal dispersing media has a proper balance of hydrophilicity and is reasonably unencumbered sterically.
  • the preferred dispersing medium is preferably a lower straight chain or branched alcohol. Most preferably, the dispersing medium is butanol.
  • suitable alcohols include, but are not limited to, methanol (65 °C), ethanol (78 °C), 1-propanol (96 °C), 2-propanol (iso-propanol) (82.5 °C), 2-methyl-1-propanol (108 °C), 2-methyl-2-propanol (tert-butanol) (82.4 °C), 1-butanol (117 °C), 2,3-dimethyl-1-butanol (142 °C), 3,3-dimethyl-1-butanol (143 °C), 2-ethyl-1-butanol (146 °C), 2-methyl-1-butanol (129 °C), 3-methyl-1-butanol (131 °C), 2-butanol (sec-butanol) (99.5 °C), 2-methyl-2-butanol (102
  • the alcohols are primary or secondary alcohols and include those is selected from the group consisting of ethanol (78 °C), 1-propanol (96 °C), 2-propanol (82.5 °C), 2-methyl-1-propanol (108 °C), 1-butanol(117 °C), 2,3-dimethyl-1-butanol (142 °C), 3,3-dimethyl-1-butanol (143 °C), 2-ethyl-1-butanol (146 °C), 2-methyl-1-butanol (129 °C), 3-methyl-1-butanol (131 °C), 2-butanol (sec-butanol) (99.5 °C), 3,3-dimethyl-2-butanol (120 °C), 3-methyl-2-butanol (112 °C), 2-methyl-1-pentanol (148 °C), 3-methyl-1-pentanol (152 °C), 4-methyl-1-pentanol (152 °C),
  • Volatile esters such as methyl- and ethyl- esters of formic acid, acetic acid, propionic acid, butyric acid may also be useful as dispersing media.
  • Exemplary dispersing media involving formic acid derivatives include, but are not limited to, allyl formate (83.6 °C), butyl formate (106.8 °C), isobutyl formate (98.4 °C), sec-butyl formate (97 °C), ethyl formate (54.5 °C), hexyl formate (156 °C), methyl formate (31.5 °C), pentyl formate (132 °C), isopentyl formate (124 °C), propyl formate (81.3 °C), and isopropyl formate (68 °C).
  • Exemplary dispersing media involving acetic acid derivatives include, but are not limited to, allyl acetate (103 °C), butyl acetate (126 °C), iso-butyl acetate (117 °C), sec-butyl acetate (112 °C), tert-butyl acetate (97 °C), ethyl acetate (77 °C), methyl acetate (57 °C), tert-amyl acetate (124 °C), isopentyl acetate (142 °C), 2-methyl-3-pentyl acetate (148 °C), 3-methyl-3-pentyl acetate (148 °C), 4-methyl-2-pentyl acetate (147 °C), pentyl acetate (139 °C), 2-pentyl acetate (130 °C), 3-pentyl acetate (132 °C), propyl acetate (101 °C), isopropy
  • Exemplary dispersing media involving propionic acid derivatives include, but are not limited to, allyl propionate (124 °C), butyl propionate (145 °C), isobutyl propionate (136 °C), sec-butyl propionate (132 °C), ethyl propionate (99 °C), propyl propionate (122 °C), isopropyl propionate (109 °C), and methyl propionate (79.9 °C).
  • Exemplary dispersing media involving butyric acid derivatives include, but are not limited to, sec-butyl butyrate (151 °C), iso-butyl butyrate (157 °C), tert-butyl butryate (145 °C), ethylbutyrate (121 °C), ethyl-2-methyl butyrate (131 °C), isopropyl-3-methyl butyrate (142 °C), ethyl isovalerate (134 °C), methyl isovalerate (116 °C), propyl isovalerate (156 °C), propyl butyrate (143 °C), and iso-propyl butyrate (130 °C).
  • Exemplary ethers that can be used as dispersing media in accordance with the process for preparing an alkoxylation catalyst of the present invention include dimethyl ether (25 °C), diethyl ether (35 °C), dimethoxy ethane (ethylene glycol dimethyl ether) (85 °C), diethoxymethane (87 °C), and isopropyl ether (68 °C).
  • Exemplary ethers that can be used as dispersing media in accordance with the alkoxylation process of the present invention include, but are not limited to, dimethyl ether (25 °C), diethyl ether (35 °C), dimethoxy ethane (ethylene glycol dimethyl ether) (85 °C), diethoxymethane (87 °C), dibutylether (142 °C), and isopropyl ether (68 °C).
  • ketones and aldehydes useful as dispersing media in the present invention include, but are not limited to, acetaldehyde (21 °C), propionaldehyde (49 °C), butyraldehyde (75 °C), hexanal (131 °C), heptanal (153 °C), acetone (55 °C), butanone (80 °C), penantones (101-102 °C), hexanones (123-127 °C), and heptanones (145-150 °C).
  • the catalysts of the present invention may optionally be prepared using activators, which as those disclosed in Knopf et al., U.S. Patent Nos. 4,754,075 and 4,886,917 , as well as King, U.S. Patent Nos. 5,114,900 and 5,120,697 .
  • activators which as those disclosed in Knopf et al., U.S. Patent Nos. 4,754,075 and 4,886,917 , as well as King, U.S. Patent Nos. 5,114,900 and 5,120,697 .
  • aluminum alkoxide as disclosed in Leach et al. U.S. Patent No. 4,835,321 and Leach et al., U.S. Patent No. 4,775,653 may also be used to prepare the catalysts of the present invention.
  • water may be volatilized in the process.
  • the dispersing media, the calcium-containing compound, the carboxylic acid, and the neutralizing acid can be reacted or combined under conditions that prevent any loss of water that is either initially present or formed during the reaction, thus forming a highly active catalyst. It is postulated that by keeping the water in the system during the reaction to form the catalyst, there is enhanced solubilization of the active calcium catalyst species that leads to the production of a more active catalyst.
  • super-atmospheric pressure can be used to prevent loss of water.
  • the reaction is conducted at elevated temperatures under total reflux to prevent loss of water.
  • the catalyst prepared according to the process of the present invention can be used to alkoxylate compounds having active or labile hydrogen atoms, esters, and mixtures thereof.
  • the substrates or reactants of the present invention include alcohols, phenols, polyols, carboxylic acids, amides, amines, esters and glycerides.
  • the substrate and the dispersing media are the same.
  • the calcium catalyst can be prepared using butanol as the dispersing medium.
  • the dispersing media is not removed prior to the alkoxylation process, and the butanol itself serves as the reactant or substrate for ethoxylation.
  • the presence of the dispersing medium during the reaction results in unwanted by-products.
  • the substrate has a boiling point greater than that of the dispersing medium.
  • the boiling point of the substrate is about 20 °C or more higher than the boiling point of the dispersing medium.
  • Suitable active hydrogen-containing compound starting materials (reactants) that can be employed in the alkoxylation process of the present invention include any permissible substituted or unsubstituted active hydrogen-containing organic compound(s).
  • active hydrogen-containing compounds useful in this invention include, for example, substituted and unsubstituted alcohols, phenols, carboxylic acids, amines, and the like.
  • Preferred active hydrogen-containing compounds include alcohols and phenols, as, for example, substituted and unsubstituted alcohols (mono-, di-, and polyhydric alcohols), phenols, carboxylic acids (mono-, di-, and polyacids), and amines (primary and secondary).
  • Suitable active hydrogen-containing compounds include substituted and unsubstituted thiophenols, mercaptans, amides, and the like. Such organic compounds frequently contain 1 to about 50 carbons and can contain aliphatic and/or aromatic structures. Most often, the organic compounds are selected from the groups of mono-, di-, and trihydric alcohols having from 1 to about 30 carbon atoms.
  • Particularly preferred alcohols are primary and secondary monohydric alcohols which are straight or branched chain such as methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, isopropyl alcohol, sec-butanol, isobutanol, 2-pentanol, 3-pentanol, 2-ethylhexanol, isodecanol, and the like.
  • Particularly suitable alcohols are linear and branched primary alcohols (including mixtures) such as produced by the "OXO" reaction of C5 to C20 olefins.
  • the alcohols may also be cycloaliphatic such as cyclopentanol, cyclohexanol, cycloheptanol, cyclooctanol, as well as aromatic substituted aliphatic alcohols such as benzyl alcohol, phenylethyl alcohol, and phenylpropyl alcohol.
  • Other aliphatic structures include 2-butoxy ethanol and the like, as well as substituted acrylics.
  • Preferred phenols include alkylphenyls of up to 30 carbons such as p-methylphenol, p-ethylphenol, p-butylphenol, p-heptylphenol, p-octylphenol, p-nonylphenol, p-decylphenol, and p-dodecylphenol, as well as dialkylphenols, such as dinonylphenol and ditertbutylphenols.
  • the aromatic moiety may contain other substituents such as halogen atoms.
  • Preferred polyhydric alcohols having 2 or more hydroxyl groups, e.g. , about two to six hydroxyl groups and have 2 to 30 carbons, include glycols such as ethylene glycol, propylene glycol, butylene glycol, pentylene glycol, hexylene glycol, neopentylene glycol, decylene glycol, diethylene glycol, triethylene glycol and dipropylene glycol.
  • Other polyols include glycerin, 1,3-propanediol, pentaerythritol, galactitol, sorbitol, mannitol, erythritol, trimethylolethane and trimethylolpropane.
  • Preferred carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, etc.
  • Other suitable carboxylic acids include benzoic acid, phenylacetic acid, toluic acid, and phthalic acid.
  • Preferred monoalkyl amines, dialkyl amines, and polyamines include N,N-diethylamine, N-ethylamine, N-butylamine, N-octylamine, N-decylamine, N-dodecylamine, diethanolamine, hexamethylenediamine, ethylenediamine, diethylenetriamine, and triethylenetetraamine.
  • Especially preferred active hydrogen-containing compounds include any permissible active hydrogen-containing organic compound such as those embraced by the formula: R 1 (OH) x , wherein R 1 is the residue of an organic compound as defined above with respect to R and x is a value that satisfies the valencies of R, x preferably being a value of from about 1 to about 10, more preferably a value of from about 1 to about 4.
  • Esters that can be alkoxylated according to the process of the present invention include monoesters having the formula: R-CO-O-R; alkylene glycol diesters having the formula: R'-CO-O-(CH 2 ) n -O-CO-R"; and triesters having the formula: R'-CO-O-CH 2 -CH(OCOOR')-CH 2 -O-CO-R', wherein R' and R", which can be the same or different, are each organic radicals containing from about 6 to about 30 carbon atoms; i.e ., they can have generally the same connotation as given above for R, and n is from 2 to 12.
  • esters and alkoxylated derivatives thereof are also disclosed in Weerasooriya et al., U.S. Pat. No. 5,386,045 , and Leach et al., U.S. Patent No. 5,220,046 .
  • Suitable substrates for the alkylation process include organic carbonates, such as those disclosed by Weerasooriya et al., U.S. Patent No. 6,147,246 .
  • the alkylene oxides which provide the oxyalkylene units in the ethoxylated products include alkylene oxides such as ethylene oxide, propylene oxide, trimethylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, 1,2- and 2,3-pentylene oxide, cyclohexylene oxide, 1,2-hexylene oxide, 1,2-octylene oxide, and 1,2-decylene oxide; epoxidized fatty alcohols such as epoxidized soybean fatty alcohols and epoxidized linseed fatty alcohols; aromatic epoxides such as styrene oxide and 2-methylstyrene oxide; and hydroxy- and halogen-substituted alkylene oxides such as glycidol, epichlorhydrin and epibromhydrin.
  • alkylene oxides such as ethylene oxide, propylene oxide, trimethylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, 1,2- and 2,3-p
  • the preferred alkylene oxides are ethylene oxide and propylene oxide. It will be understood that mixtures of such alkylene oxides, for example, mixtures of ethylene oxide and propylene oxide can be employed.
  • the alkoxylated ester can contain an oxyalkylene chain which is heteric in nature (when a single alkylene oxide is used), block in nature (when two or more alkylene oxides are employed) or random in nature (when two or more alkylene oxides are employed).
  • the amount of alkylene oxide used will be such as to provide an alkylene oxide content of from about 5 to about 95 percent by weight of the alkoxylated compound, and more preferably between about 10 to about 70 percent. It will be appreciated that the amount of the alkylene oxide employed can be varied over wide limits to tailor the end products for desired purposes. For example, in certain applications it is more desirable that the average number of alkoxy groups per substrate molecule be a relatively low number, e.g. , from about 2 to about 4, whereas in other applications it is desirable that the number of alkoxy groups be greater, e.g. , from about 6 to about 30.
  • a substrate such as alcohol, ester, or the like is reacted with an alkylene oxide(s) in the presence of an alkoxylation catalyst prepared as per the process of the present invention.
  • an alkoxylation catalyst prepared as per the process of the present invention.
  • the amount of catalyst employed will be from about 0.1 to about 20% by weight and more preferably about 0.1 to about 5% by weight based upon the total reaction mixture.
  • the weight of the reaction mixture, including all alkylene oxide is 300 g, typically from about 0.3 g to about 15 g of the alkoxylation catalyst will be employed in the reaction.
  • the alkoxylation process of the present invention can be conducted over a wide range of temperatures and pressure conditions.
  • the reaction can be conducted at temperature above about 120 °C, preferably greater than about 150 °C, even more preferably greater than about 160 °C, and most preferably greater than about 170 °C.
  • the temperature is preferably no greater than about 190 °C to prevent self-polymorization where ethylene oxide is the alkoxylating agent.
  • the temperature ranges between about 120 °C and 175 °C, and preferably about 125 °C for propoxylation and 175 °C for ethoxylation.
  • Pressures can range from ambient to about 100 psi with pressures from about 10 to about 60 psi being preferred.
  • the alkoxylation reaction of the present invention can be conducted by charging a suitable reaction vessel with the reactant, e.g. , alcohol, ester, etc., in the desired amount.
  • the reactant is heated to the desired elevated temperature under nitrogen or some other suitable inert gas, following which the reactor is placed under vacuum and/or nitrogen sparge to remove water.
  • the alkoxylation catalyst produced as per the present invention is then injected into the reaction mixture and the purging temperature raised to the desired level under vacuum and/or nitrogen sparge to remove the volatiles.
  • a slight nitrogen pressure is introduced and the chosen alkylene oxide, e.g. , ethylene oxide, is introduced at the appropriate pressure.
  • the alkylene oxide reacts, additional amounts are added, the temperature being maintained substantially constant at the desired level throughout the reaction.
  • the catalytic alkoxylation reactions of this invention can be effected, for example, by conventional methods such as a batch processes.
  • the catalyst is kept suspended in the reactant by recirculating and/or stirring.
  • an alkoxylation catalyst in accordance with the present invention and having the composition set forth in Table 1 was prepared in a batch process.
  • a three-neck round bottom flask is equipped with a magnetic stir bar, a glass stopper, a Dean-Stark trap filled with n-butanol, a condenser topped with a calcium chloride drying tube, and is placed in an oil bath.
  • the n-butanol is charged to the flask and stirring is initiated.
  • the calcium hydroxide is slowly added, and allowed to stir for 15 minutes.
  • a carboxylic acid (such as 2-ethylhexanoic acid) is then added to the mixture via syringe.
  • the flask containing the mixture is then heated to above 120 °C at atmospheric pressure.
  • the stirring suspension is allowed to reflux for up to about 8 hours. Under these conditions, water and the dispersing medium will be removed during the process, but the dispersing medium is recycled into the reaction vessel.
  • the stir bar is removed, and an overhead stirrer is added.
  • the Dean-Stark trap, condenser, drying tube, oil bath, and stoppers are removed.
  • a source of nitrogen, thermometer, water bath, and pressure equalizing dropping funnel are added.
  • the pressure equalizing dropping funnel is charged with an inorganic acid (such as sulfuric acid), and the acid is added over the course of about 3 hours.
  • the internal temperature is maintained at or below about 25 °C by the use of a water bath and ice.
  • Table 1 Composition of Catalyst Formulation Component % by mass n-butanol 73.5 calcium hydroxide 15.2 2-ethylhexanoic acid 3.5 conc. sulfuric acid 7.8
  • the alkoxylation catalyst from Example 1 was used in this example to produce narrow range ethoxylates. More specifically, about 915 g of ALFOL® 1216CO alcohol (average molecular weight 196.2 g/mol) (Sasol North America, Inc.) was charged into a 2 gallon stainless steel autoclave equipped with an overhead stirrer, internal steam heating, water cooling, and thermocouple. The ALFOL® alcohol was first vacuum dried at about 200 °F (about 93 °C) for about ten minutes to remove residual moisture. Next, about 2.1 g of catalyst from Example 1 was added and vacuum (about 55 mm Hg) stripped at about 200 °F (about 93 °C) for about five minutes. In so doing, the volatile dispersing medium was removed from the catalyst.
  • ALFOL® 1216CO alcohol average molecular weight 196.2 g/mol
  • the ALFOL® alcohol was first vacuum dried at about 200 °F (about 93 °C) for about ten minutes to remove residual moisture.
  • the reactor was heated to about 282 °F (about 139 °C). A nitrogen blanket was introduced to maintain the proper nitrogen to ethylene oxide ratio. At an initial nitrogen pressure of about 10 psig, about 512.5 g of ethylene oxide (molecular weight 44.06 g/mol) was added at about 282 °F (about 139 °C) and the reaction exotherm was controlled via water cooling so that the temperature reached about 350 °F (about 177 °C). After the reaction, the product in the reactor was vacuum stripped at about 200 °F (about 93 °C) for about 15 minutes. The reaction yielded 1410 g of the 2.5 mole ethoxylate in 99% yield ("A1216CO-2.5EO NRE"). The product did not require neutralization with an inorganic acid as the color stability was good without neutralization.
  • 6.0, 9.5, and 30 mole ethoxylates of A1216CO were prepared.
  • 2.5, 6.0, 9.5, and 30 mole ethoxylates of isodecyl alcohol were prepared.
  • 2.5, 6.0, 9.5, and 30 mole ethoxylates of nonylphenol were prepared.
  • a 7.3 mole ethoxylate of methyl laurate was also prepared.
  • a prior art broad range catalyst was prepared as a comparative example.
  • a 25% solution of potassium hydroxide in methanol was prepared by dissolving granular KOH in methanol.
  • the product was neutralized with 0.8 g of acetic acid in order to maintain good color stability.
  • the amount of free alcohol in the ethoxylated product was measured using C13 NMR spectroscopy.
  • Table 2 Free Alcohol Comparison for A1216CO Ethoxylates (measured by C13 NMR) Alcohol Ethoxylate Mol % NRE Mol% BRE A1216CO-2.5EO 20.4 32.0 A1216CO-6.0EO 2.6 5.3 A1216CO-9.5EO ND 1.5 A1216CO-30EO ND ND
  • Table 3 Free Alcohol Comparison for Isodecyl Ethoxylates (measured by C13 NMR) Alcohol Ethoxylate Mol % NRE Mol% BRE Isodecyl-2.5EO 29.5 32.2 Isodecyl-6.0EO 11.4 22.1 Isodecyl-9.5EO 6.5 11.1 Isodecyl-30EO ND ND ND
  • the cloud point is the temperature at which a 1% non-ionic surfactant becomes insoluble in water as the sample is warmed. That is, cloud points are typically measured using 1% aqueous surfactant solutions. Cloud points range from 0 to 100 °C (32 to 212 °F), limited by the freezing and boiling points of water. Cloud points are characteristic of nonionic surfactants in that ethoxylates become less soluble in water at higher temperatures. In contrast, anionic surfactants (with negatively charged head groups) become more water-soluble as the temperature is raised. The cloud point therefore indicates the temperature at which the nonionic surfactant separates out of solution.
  • the resulting ethoxylates were all A1216CO-6.0EO (6 moles of ethoxylate from ALFOL® 1216CO alcohol or about 1232 g of ethylene oxide per 915 g of ALFOL® A1216CO alcohol).
  • the reactions were started around 280 °F by heating the reactor using steam.
  • the reaction temperature was allowed to rise to 345-350 °F using the exothermic reaction and maintained at that level using cooling water.
  • the average time required for the consumption of 200g of ethylene oxide was then measured at the elevated temperatures.
  • the “induction period” refers to the initial time period where about 2 psig pressure drop is observed after the first 100 g of ethylene oxide is added to the reactor before using the exothermic reaction to gradually raise the reaction temperature to about 345-350 °F where a faster reaction rate is observed.
  • the average results for the time consumed for the addition of more than 600g of ethylene oxide at 345-350 °F are shown as min/200g of ethylene oxide in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Claims (19)

  1. Ein Prozess für die Herstellung eines Alkoxylierungskatalysators, umfassend:
    Beimischen eines flüchtigen Dispersionsmittels, im Wesentlichen bestehend aus
    (i) Medien mit einem Siedepunkt unter 120 °C und im Wesentlichen bestehend aus einem oder mehreren verzweigtkettigen und geradkettigen Alkoholen, flüchtigen Estern, flüchtigen Ethern, ausgewählt aus der Gruppe, bestehend aus Dimethylether, Diethylether, Dimethoxyethan, Diethoxymethan und Isopropylether oder flüchtigen Aldehyden und Ketonen oder (ii) Medien mit einem Siedepunkt unter 160 °C und im Wesentlichen bestehend aus einem oder mehreren verzweigtkettigen oder geradkettigen Alkoholen, ausgewählt aus Methanol, Ethanol, 1-Propanol, 2-Propanol, 2-Methyl-1-Propanol, 2-Methyl-2-Propanol, 1-Butanol, 2,3-Dimethyl-1-Butanol, 3,3-Dimethyl-1-Butanol, 2-Ethyl-1-Butanol, 2-Methyl-1-Butanol, 3-Methyl-1-Butanol, 2-Butanol, 2-Methyl-2-Butanol, 2,3-Dimethyl-2-Butanol, 3,3-Dimethyl-2-Butanol, 3-Methyl-2-Butanol, 2-Methyl-1-Pentanol, 3-Methyl-1-Pentanol, 4-Methyl-1-Pentanol, 2-Pentanol, 2,4-Dimethyl-2-Pentanol, 2-Methyl-2-Pentanol, 3-Methyl-2-Pentanol, 4-Methyl-2-Pentanol, 3-Pentanol, 2,4,4-Trimethyl-2-Pentanol, 2,2-Dimethyl-3-Pentanol, 2,3-Dimethyl-3-Pentanol, 2,4-Dimethyl-3-Pentanol, 3-Ethyl-3-Pentanol, 3-Ethyl-2-methyl-3-Pentanol, 2-Methyl-3-Pentanol, 2,3,4-Trimethyl-3-Pentanol, 1-Pentanol, 1-Hexanol, 2-Hexanol, 2-Methyl-2-Hexanol, 5-Methyl-2-Hexanol, 3-Hexanol und 3-Methyl-3-Hexanol, sodass andere Komponenten, die im flüchtigen Dispersionsmittel vorhanden sind, einen Siedepunkt über 160 °C aufweisen und in einer Menge von weniger als 10 Gew.-% des Gesamtgewichts des Dispersionsmittels vorhanden sind;
    eine Calcium enthaltende Verbindung, ausgewählt aus der Gruppe, bestehend aus Calciumhydrid, Calciumacetat, Calciumoxalat, Calciumoxid, Calciumhydroxid, Calciumlactat, Calciumalkoxid und Gemischen derselben; und
    eine Carboxylsäure oder ein Anhydrid mit 4 bis 15 Kohlenstoffatomen, wobei das Molverhältnis von Calcium zu der Carboxylsäure oder dem Anhydrid zwischen 15:1 und 1:1 liegt,
    um eine Calcium enthaltende Zusammensetzung herzustellen, die das Dispersionsmittel umfasst.
  2. Ein Prozess nach Anspruch 1, der darüber hinaus den Schritt umfasst, eine anorganische Säure oder ein Anhydrid in einer Menge hinzuzufügen, die ausreicht, um mindestens 25 % der titrierbaren Alkalinität, die in dem Gemisch vorhanden ist, zu neutralisieren, um einen teilweise neutralisierten Calcium enthaltenden Katalysator herzustellen.
  3. Ein Prozess nach Anspruch 2, wobei die anorganische Säure oder das Anhydrid ausgewählt ist aus der Gruppe, bestehend aus Schwefelsäure, Phosphorsäure, Oleum, Schwefeltrioxid und Phosphorpentoxid oder Gemischen derselben.
  4. Ein Prozess nach Anspruch 3, der darüber hinaus den Schritt umfasst, das flüchtige Dispersionsmittel zu entfernen, um einen aktiven Katalysator in fester Form zu erzeugen.
  5. Ein Prozess nach Anspruch 2, der darüber hinaus den Schritt umfasst, der Calcium enthaltenden Zusammensetzung ein Aluminiumalkoxid hinzuzufügen.
  6. Ein Prozess nach Anspruch 2, der das Erhitzen dieser teilweise neutralisierten Zusammensetzung bei einer Temperatur von 25 °C bis 160 °C unter Rückflussbedingungen beinhaltet.
  7. Ein Prozess nach Anspruch 6, wobei das Erhitzen für einen Zeitraum von 1 bis 5 Stunden ausgeführt wird.
  8. Ein Prozess nach Anspruch 1, wobei dieses Dispersionsmittel im Wesentlichen besteht aus
    (i) Medien mit einem Siedepunkt unter 120 °C und im Wesentlichen bestehend aus einem oder mehreren verzweigtkettigen und geradkettigen Alkoholen, flüchtigen Estern, flüchtigen Ethern, ausgewählt aus der Gruppe, bestehend aus Dimethylether, Diethylether, Dimethoxyethan, Diethoxymethan und Isopropylether oder flüchtigen Aldehyden und Ketonen oder (ii) Medien mit einem Siedepunkt zwischen 80 °C und 140 °C und im Wesentlichen bestehend aus einem oder mehreren verzweigtkettigen oder geradkettigen Alkoholen, ausgewählt aus 1-Propanol, 2-Propanol, 2-Methyl-1-Propanol, 2-Methyl-2-Propanol, 1-Butanol, 2-Methyl-1-Butanol, 3-Methyl-1-Butanol, 2-Butanol, 2-Methyl-2-Butanol, 2,3-Dimethyl-2-Butanol, 3,3-Dimethyl-2-Butanol, 3-Methyl-2-Butanol, 2-Pentanol, 2,4-Dimethyl-2-Pentanol, 2-Methyl-2-Pentanol, 3-Methyl-2-Pentanol, 4-Methyl-2-Pentanol, 3-Pentanol, 2,2-Dimethyl-3-Pentanol, 2,3-Dimethyl-3-Pentanol, 2,4-Dimethyl-3-Pentanol, 2-Methyl-3-Pentanol, 1-Pentanol und 2-Hexanol, 3-Hexanol.
  9. Ein Prozess nach Anspruch 1, wobei das flüchtige Dispersionsmittel aus Folgendem besteht: (i) Medien mit einem Siedepunkt unter 120 °C und bestehend aus einem oder mehreren verzweigtkettigen und geradkettigen Alkoholen, flüchtigen Estern, flüchtigen Ethern, ausgewählt aus der Gruppe, bestehend aus Dimethylether, Diethylether, Dimethoxyethan, Diethoxymethan und Isopropylether oder flüchtigen Aldehyden und Ketonen oder (ii) Medien mit einem Siedepunkt unter 160 °C und bestehend aus einem oder mehreren verzweigtkettigen oder geradkettigen Alkoholen, ausgewählt aus Methanol, Ethanol, 1-Propanol, 2-Propanol, 2-Methyl-1-Propanol, 2-Methyl-2-Propanol, 1-Butanol, 2,3-Dimethyl-1-Butanol, 3,3-Dimethyl-1-Butanol, 2-Ethyl-1-Butanol, 2-Methyl-1-Butanol, 3-Methyl-1-Butanol, 2-Butanol, 2-Methyl-2-Butanol, 2,3-Dimethyl-2-Butanol, 3,3-Dimethyl-2-Butanol, 3-Methyl-2-Butanol, 2-Methyl-1-Pentanol, 3-Methyl-1-Pentanol, 4-Methyl-1-Pentanol, 2-Pentanol, 2,4-Dimethyl-2-Pentanol, 2-Methyl-2-Pentanol, 3-Methyl-1-Pentanol, 4-Methyl-2-Pentanol, 3-Pentanol, 2,4,4-Trimethyl-2-Pentanol, 2,2-Dimethyl-3-Pentanol, 2,3-Dimethyl-3-Pentanol, 2,4-Dimethyl-3-Pentanol, 3-Ethyl-3-Pentanol, 3-Ethyl-2-methyl-3-Pentanol, 2-Methyl-3-Pentanol, 2,3,4-Trimethyl-3-Pentanol, 1-Pentanol, 1-Hexanol, 2-Hexanol, 2-Methyl-2-Hexanol, 5-Methyl-2-Hexanol, 3-Hexanol und 3-Methyl-3-Hexanol.
  10. Ein Alkoxylierungsprozess, umfassend:
    a) Bilden eines Alkoxylierungskatalysators durch Beimischen
    eines flüchtigen Dispersionsmittels mit einem Siedepunkt unter 160 °C und im Wesentlichen bestehend aus einem oder mehreren verzweigtkettigen und geradkettigen Alkoholen, flüchtigen Ester, flüchtigen Ether, ausgewählt aus der Gruppe, bestehend aus Dimethylether, Diethylether, Dimethoxyethan, Diethoxymethan, Dibutylether und Isopropylether oder flüchtigen Aldehyden und Ketonen, sodass andere Komponenten, die in dem flüchtigen Dispersionsmittel vorhanden sind, einen Siedepunkt über 160 °C aufweisen und in einer Menge von unter 10 Gew.-% des Gesamtgewichts des Dispersionsmittels vorhanden sind; und
    eine Calcium enthaltende Verbindung, ausgewählt aus der Gruppe, bestehend aus Calciumhydrid, Calciumacetat, Calciumoxalat, Calciumoxid, Calciumhydroxid, Calciumlactat, Calciumalkoxid und Gemischen derselben, und
    eine Carboxylsäure oder ein Anhydrid mit 4 bis 15 Kohlenstoffatomen, wobei das Molverhältnis von Calcium zu der Carboxylsäure oder dem Anhydrid zwischen 15:1 und 1:1 liegt, um eine Calcium enthaltende Zusammensetzung mit titrierbarer Alkalinität zu erzeugen; und
    b) Hinzufügen einer anorganischen Säure oder eines Anhydrids in einer Menge, die ausreicht, um mindestens 25 % der titrierbaren Alkalinität, die in dem Gemisch vorhanden ist, zu neutralisieren, um einen teilweise neutralisierten Calcium enthaltenden Alkoxylierungskatalysator herzustellen;
    c) Hinzufügen des Alkoxylierungskatalysators zu einem Reaktionsmittel, ausgewählt aus der Gruppe, bestehend aus Alkoholen, Phenolen, Estern, Glyceriden, Carboxylsäuren, Amiden und Aminen und Gemischen derselben, wobei der Siedepunkt des Reaktionsmittels 20 °C, oder mehr, höher liegt als der Siedepunkt des Dispersionsmittels;
    d) Entfernen des flüchtigen Dispersionsmittels; und
    e) Reagieren des Reaktionsmittels und eines Alkylenoxids in Gegenwart des Alkoxylierungskatalysators unter Alkoxylierungsbedingungen, um ein alkoxyliertes Derivat des Reaktionsmittels herzustellen.
  11. Ein Prozess nach Anspruch 10, wobei die anorganische Säure oder das Anhydrid ausgewählt ist aus der Gruppe, bestehend aus Schwefelsäure, Phosphorsäure, Oleum, Schwefeltrioxid und Phosphorpentoxid oder Gemischen derselben.
  12. Ein Prozess nach Anspruch 1 oder 10, wobei die Carboxylsäure ausgewählt ist aus der Gruppe, bestehend aus Octansäure, 2-Methyl Hexansäure, Heptansäure, 3-Methyl-Octansäure, 4-Ethyl-Nonansäure, 2-Ethyl-Hexansäure oder Gemischen derselben.
  13. Ein Prozess nach Anspruch 1 oder 10, das Dispersionsmittel im Wesentlichen bestehend aus einem oder mehreren verzweigtkettigen oder geradkettigen Alkoholen, ausgewählt aus der Gruppe, bestehend aus Methanol, Ethanol, 1-Propanol, 2-Propanol, 2-Methyl-1-Propanol, 2-Methyl-2-Propanol, 1-Butanol, 2,3-Dimethyl-1-Butanol, 3,3-Dimethyl-1-Butanol, 2-Ethyl-1-Butanol, 2-Methyl-1-Butanol, 3-Methyl-1-Butanol, 2-Butanol, 2-Methyl-2-Butanol, 2,3-Dimethyl-2-Butanol, 3,3-Dimethyl-2-Butanol, 3-Methyl-2-Butanol, 2-Methyl-1-Pentanol, 3-Methyl-1-Pentanol, 4-Methyl-1-Pentanol, 2-Pentanol, 2,4-Dimethyl-2-Pentanol, 2-Methyl-2-Pentanol, 3-Methyl-2-Pentanol, 4-Methyl-2-Pentanol, 3-Pentanol, 2,4,4-Trimethyl-2-Pentanol, 2,2-Dimethyl-3-Pentanol, 2,3-Dimethyl-3-Pentanol, 2,4-Dimethyl-3-Pentanol, 3-Ethyl-3-Pentanol, 3-Ethyl-2-methyl-3-Pentanol, 2-Methyl-3-Pentanol, 2,3,4-Trimethyl-3-Pentanol, 1-Pentanol, 1-Hexanol, 2-Hexanol, 2-Methyl-2-Hexanol, 5-Methyl-2-Hexanol, 3-Hexanol und 3-Methyl-3-Hexanol.
  14. Ein Prozess nach Anspruch 1 oder 10, wobei das Dispersionsmittel im Wesentlichen aus einem oder mehreren flüchtigen Estern besteht, wobei dieser Ester ein Ester aus Ameisensäure, Essigsäure, Propionsäure oder Buttersäure ist; oder wobei dieser Ester ausgewählt ist aus der Gruppe, bestehend aus Allylformiat, Butylformiat, Isobutylformiat, sec-Butylformiat, Ethylformiat, Hexylformiat, Methylformiat, Pentylformiat, Isopentylformiat, Propylformiat und Isopropylformiat; oder wobei dieser Ester ausgewählt ist aus der Gruppe, bestehend aus Allylacetat, Butylacetat, Isobutylacetat, sec-Butylacetat, tert-Butylacetat, Ethylacetat, Methylacetat, tert-Amylacetat, Isopentylacetat, 2-Methyl-3-Pentylacetat, 3-Methyl-3-Pentylacetat, 4-Methyl-2-Pentylacetat, Pentylacetat, 2-Pentylacetat, 3-Pentylacetat, Propylacetat, Isopropylacetat und 1,2,2-Trimethylpropylacetat; oder wobei dieser Ester ausgewählt ist aus der Gruppe, bestehend aus Allylpropionat, Butylpropionat, Isobutylpropionat, sec-Butylpropionat, Ethylpropionat, Propylpropionat, Isopropylpropionat und Methylpropionat; oder wobei dieser Ester ausgewählt ist aus der Gruppe, bestehend aus sec-Butylbutyrat, Isobutylbutyrat, tert-Butylbutyrat, Ethylbutyrat, Ethyl-2-Methylbutyrat, Isopropyl-3-Methylbutyrat, Ethylisovalerat, Methylisovalerat, Propylisovalerat, Propylbutyrat und Isopropylbutyrat.
  15. Ein Prozess nach Anspruch 10, wobei dieses Dispersionsmittel im Wesentlichen aus einem oder mehreren flüchtigen Ethern besteht, ausgewählt aus der Gruppe, bestehend aus Dimethylether, Diethylether, Dimethoxyethan, Diethoxymethan, Dibutylether und Isopropylether.
  16. Ein Prozess nach Anspruch 1 oder 10, wobei dieses Dispersionsmittel im Wesentlichen aus einem oder mehreren flüchtigen Aldehyden und Ketonen besteht, ausgewählt aus der Gruppe, bestehend aus Acetaldehyd, Propionaldehyd, Butyraldehyd, Hexanal, Heptanal, Aceton, Butanon, Pentanonen, Hexanonen und Heptanonen.
  17. Ein Prozess nach Anspruch 10, wobei dieses Dispersionsmittel im Wesentlichen aus Medien besteht, die einen Siedepunkt unter 120 °C aufweisen, oder wobei dieses Dispersionsmittel im Wesentlichen aus Medien besteht, die einen Siedepunkt zwischen 80 °C und 140 °C aufweisen.
  18. Ein Prozess nach Anspruch 10, wobei diese Reaktion e) bei einer Temperatur über 160 °C abläuft.
  19. Ein Prozess nach Anspruch 10, wobei dieses Reaktionsmittel ausgewählt ist aus der Gruppe, bestehend aus Methanol, Ethanol, Propanol, Butanol, Pentanol, Hexanol, Heptanol, Octanol, Nonanol, Decanol, Undecanol, Dodecanol, Tridecanol, Tetradecanol, Pentadecanol, Hexadecanol, Heptadecanol; Octadecanol, Isopropylalkohol, sec-Butanol, Isobutanol, 2-Pentanol, 3-Pentanol, 2-Ethylhexanol, Isodecanol, Cyclopentanol, Cyclohexanol, Cycloheptanol, Cyclooctanol, Benzylalkohol, Phenylethylalkohol, Phenylpropylalkohol und 2-Butoxyethanol; oder wobei dieses Reaktionsmittel ausgewählt ist aus der Gruppe, bestehend aus p-Methylphenol, p- Ethylphenol, p-Butylphenol, p-Heptylphenol, p-Octylphenol, p-Nonylphenol, Dinonylphenol, p-Decylphenol und p-Dodecylphenol; oder wobei dieses Reaktionsmittel ausgewählt ist aus der Gruppe, bestehend aus Ethylenglycol, Propylenglycol, Butylenglycol, Pentylenglycol, Hexylenglycol, Neopentylenglycol, Decylenglycol, Diethylenglycol, Triethylenglycol und Dipropylenglycol; oder wobei dieses Reaktionsmittel ausgewählt ist aus der Gruppe, bestehend aus Glycerin, 1,3-Propanediol, Pentaerythritol, Galactitol, Sorbitol, Mannitol, Erythritol, Trimethylolethan und Trimethylolpropan; oder wobei dieses Reaktionsmittel ausgewählt ist aus der Gruppe, bestehend aus Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Valeriansäure, Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Ölsäure, Linolsäure, Benzoesäure, Phenylessigsäure, Toluylsäure und Phthalsäure; oder wobei dieses Reaktionsmittel ausgewählt ist aus der Gruppe, bestehend aus N,N-Diethylamin, N-Ethylamin, N-Butylamin, N-Octylamin, N-Decylamin, N-Dodecylamin, Diethanolamin, Hexamethylenediamin, Ethylenediamin, Diethylenetriamin und Triethylenetetraamin.
EP05740203.4A 2004-04-27 2005-04-27 Verfahren zur herstellung von alkoxylierungskatalysatoren und deren verwendung in alkoxylierungsverfahren Active EP1747183B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05740203T PL1747183T3 (pl) 2004-04-27 2005-04-27 Sposób wytwarzania katalizatorów alkoksylowania oraz ich zastosowanie w procesach alkoksylowania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/832,613 US7119236B2 (en) 2004-04-27 2004-04-27 Method of preparing alkoxylation catalysts and their use in alkoxylation processes
PCT/US2005/014562 WO2005104774A2 (en) 2004-04-27 2005-04-27 Method of preparing alkoxylation catalysts and their use in alkoxylation processes

Publications (3)

Publication Number Publication Date
EP1747183A2 EP1747183A2 (de) 2007-01-31
EP1747183A4 EP1747183A4 (de) 2008-08-27
EP1747183B1 true EP1747183B1 (de) 2018-06-06

Family

ID=35137406

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05740203.4A Active EP1747183B1 (de) 2004-04-27 2005-04-27 Verfahren zur herstellung von alkoxylierungskatalysatoren und deren verwendung in alkoxylierungsverfahren

Country Status (5)

Country Link
US (1) US7119236B2 (de)
EP (1) EP1747183B1 (de)
CN (1) CN1976887B (de)
PL (1) PL1747183T3 (de)
WO (1) WO2005104774A2 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005280592B2 (en) * 2004-08-26 2011-10-13 Indorama Ventures Oxides Llc Alkaline earth-based alkoxylation catalysts
US8034979B2 (en) 2004-09-23 2011-10-11 Monsanto Technology Llc Alkoxylated alkylamines/alkyl ether amines with peaked distribution
EP2003965A2 (de) * 2006-03-23 2008-12-24 Akzo Nobel N.V. Alkoxylierte alkylamine oder alkyletheramine mit gipfeliger verteilung
US20070282079A1 (en) * 2006-05-31 2007-12-06 Baker Hughes Incorporated Alkoxylations in ketone solvents
US20100121111A1 (en) 2006-05-31 2010-05-13 Baker Hughes Incorporated Alkoxylations of High Melting Point Substrates in Ketone Solvents
WO2008006058A2 (en) * 2006-07-06 2008-01-10 Stepan Company Alkyl lactyllactate solvent compositions
AU2009309690B2 (en) * 2008-10-29 2011-10-06 Shell Internationale Research Maatschappij B.V. Process for the preparation of acylated secondary alcohol alkoxylates and secondary alcohol alkoxylates
PL2181763T3 (pl) * 2008-10-29 2012-11-30 Shell Int Research Katalizator i sposób alkoksylowania
US9266821B2 (en) * 2009-10-16 2016-02-23 Harcros Chemicals Inc. Process for making fatty amides
CN104387247A (zh) * 2014-11-19 2015-03-04 浙江绿科安化学有限公司 一种双羟乙基双酚a醚的制备方法
US10836910B2 (en) 2015-04-01 2020-11-17 Swimc Llc Pigment dispersion
EP4015497A1 (de) * 2020-12-18 2022-06-22 Clariant International Ltd Durch einen kalziumkatalysator hergestellte alkoxylate
WO2022129374A1 (en) * 2020-12-18 2022-06-23 Unilever Ip Holdings B.V. Detergent composition
WO2023067075A1 (en) 2021-10-21 2023-04-27 Unilever Ip Holdings B.V. Detergent compositions
EP4349944A1 (de) 2022-10-05 2024-04-10 Unilever IP Holdings B.V. Flüssigwaschmittelzusammensetzung
EP4349945A1 (de) 2022-10-05 2024-04-10 Unilever IP Holdings B.V. Flüssigwaschmittelzusammensetzung
EP4349948A1 (de) 2022-10-05 2024-04-10 Unilever IP Holdings B.V. Flüssigwaschmittelzusammensetzung
EP4349947A1 (de) 2022-10-05 2024-04-10 Unilever IP Holdings B.V. Flüssigwaschmittelzusammensetzung
EP4349946A1 (de) 2022-10-05 2024-04-10 Unilever IP Holdings B.V. Einheitsdosisprodukt zur behandlung von textilien
EP4349943A1 (de) 2022-10-05 2024-04-10 Unilever IP Holdings B.V. Flüssigwaschmittelzusammensetzung
EP4349942A1 (de) 2022-10-05 2024-04-10 Unilever IP Holdings B.V. Flüssigwaschmittelzusammensetzung
WO2024088706A1 (en) 2022-10-25 2024-05-02 Unilever Ip Holdings B.V. Composition
EP4361239A1 (de) 2022-10-25 2024-05-01 Unilever IP Holdings B.V. Flüssigwaschmittelzusammensetzung
WO2024088716A1 (en) 2022-10-25 2024-05-02 Unilever Ip Holdings B.V. Composition
WO2024115106A1 (en) 2022-11-29 2024-06-06 Unilever Ip Holdings B.V. Composition
CN116212962A (zh) * 2023-02-24 2023-06-06 润和科华催化剂(上海)有限公司 一种油溶性异辛酸钼催化剂及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239917A (en) * 1979-07-02 1980-12-16 Conoco, Inc. Barium oxide catalyzed ethoxylation
WO1985000365A1 (en) * 1983-07-05 1985-01-31 Union Carbide Corporation Alkoxylation using calcium catalysts and products therefrom
US4835321A (en) * 1987-04-28 1989-05-30 Vista Chemical Company Alkoxylaton process using calcium based catalysts
US4775653A (en) * 1987-04-28 1988-10-04 Vista Chemical Company Alkoxylation process using calcium based catalysts
US5120697A (en) * 1988-09-30 1992-06-09 Union Carbide Chemicals & Plastics Technology Corporation Alkoxylation using modified calcium-containing catalysts
US5114900A (en) * 1988-09-30 1992-05-19 Union Carbide Chemicals & Plastics Technology Corporation Alkoxylation using modified calcium-containing bimetallic or polymetallic catalysts
US5220046A (en) * 1991-08-22 1993-06-15 Vista Chemical Company Process for alkoxylation of esters and products produced therefrom
US5386045A (en) * 1991-08-22 1995-01-31 Vista Chemical Company Process for alkoxylation of esters and products produced therefrom
US5627121A (en) * 1995-06-15 1997-05-06 Condea Vista Company Process for preparing alkoxylation catalysts and alkoxylation process
US6147246A (en) * 1999-12-23 2000-11-14 Condea Vista Company Process for preparing alkoxylated dialkyl carbonate compounds

Also Published As

Publication number Publication date
WO2005104774A3 (en) 2006-02-16
CN1976887A (zh) 2007-06-06
EP1747183A2 (de) 2007-01-31
US7119236B2 (en) 2006-10-10
PL1747183T3 (pl) 2018-11-30
US20050240064A1 (en) 2005-10-27
CN1976887B (zh) 2011-09-07
EP1747183A4 (de) 2008-08-27
WO2005104774A2 (en) 2005-11-10

Similar Documents

Publication Publication Date Title
EP1747183B1 (de) Verfahren zur herstellung von alkoxylierungskatalysatoren und deren verwendung in alkoxylierungsverfahren
EP0026546B1 (de) Reaktionsverfahren von Epoxyden mit organischen aktiven Wasserstoff enthaltenden Verbindungen
EP0026547B1 (de) Verfahren zur Herstellung basischer Erdalkalimetallsalze
CA1247650A (en) Process for preparing nonionic surfactants- oxyalkylation with promoted barium catalysts
WO2005104774B1 (en) Method of preparing alkoxylation catalysts and their use in alkoxylation processes
EP0026544B1 (de) Verfahren zur Herstellung basischer Barium-Salze
JP2572523B2 (ja) アルコキシル化触媒の製造方法
CA1338192C (en) Alkoxylation using modified calcium-containing bimetallic or poly-metallic catalysts
EP0777527B1 (de) Verfahren zur herstellung von alkoxylierungskatalysatoren und alkoxylierungsverfahren
EP1358142B1 (de) Verfahren zur alkoxylierung mit einem bor-enthaltenden katalysator
JPH0234930B2 (de)
CA1337942C (en) Alkoxylation using modified group iiib metal-containing bimetallic or polymetallic catalysts
JP4780835B2 (ja) アルコキシル化非イオン界面活性剤の製造方法
EP1351910B1 (de) Verfahren zur alkoxylierung in gegenwart von seltenerdtriflimiden
JPH02134336A (ja) 硫酸カルシウム触媒を使用するアルコキシル化
EP2181763B1 (de) Katalysator und Verfahren zur Alkoxylierung
JP3028432B2 (ja) 燐酸ナトリウム−もしくはカリウムバリウムにより触媒されるアルコキシル化法
JPH08504416A (ja) 貯蔵可能な薄色ノニオン性界面活性剤の製法
CA1337940C (en) Alkoxylation using modified group iia metal-containing bimetallic or polymetallic catalysts
EP0665206B1 (de) Alkoxylierungsverfahren
JP2005536348A (ja) 炭酸塩からの希土類リン酸塩触媒の調製およびアルコキシ化反応におけるその使用
JPS6256891B2 (de)
CA1339376C (en) Alkoxyaltion catalysis
JPH01199928A (ja) ランタン系列の触媒を用いるアルコキシル化方法
CN115734978A (zh) 改进的烷氧基化工艺

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061123

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20080730

17Q First examination report despatched

Effective date: 20100128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602005054093

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C07C0041030000

Ipc: B01J0031040000

RIC1 Information provided on ipc code assigned before grant

Ipc: B01J 31/04 20060101AFI20171107BHEP

Ipc: B01J 37/04 20060101ALI20171107BHEP

Ipc: B01J 23/02 20060101ALI20171107BHEP

Ipc: C07C 41/03 20060101ALI20171107BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1005438

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005054093

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180906

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180907

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1005438

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181006

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005054093

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190427

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230425

Year of fee payment: 19

Ref country code: DE

Payment date: 20230427

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230417

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230427

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240426

Year of fee payment: 20