EP1740680A2 - Utilisation de polyalkyl(meth)acrylates dans des compositions d'huiles lubrifiantes - Google Patents

Utilisation de polyalkyl(meth)acrylates dans des compositions d'huiles lubrifiantes

Info

Publication number
EP1740680A2
EP1740680A2 EP05707597A EP05707597A EP1740680A2 EP 1740680 A2 EP1740680 A2 EP 1740680A2 EP 05707597 A EP05707597 A EP 05707597A EP 05707597 A EP05707597 A EP 05707597A EP 1740680 A2 EP1740680 A2 EP 1740680A2
Authority
EP
European Patent Office
Prior art keywords
lubricating oil
oil composition
polyalkyl
meth
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05707597A
Other languages
German (de)
English (en)
Other versions
EP1740680B1 (fr
Inventor
Markus Scherer
Klaus Hedrich
Michael Alibert
Michael Müller
Roland Schweder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Oil Additives GmbH
Original Assignee
RohMax Additives GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RohMax Additives GmbH filed Critical RohMax Additives GmbH
Publication of EP1740680A2 publication Critical patent/EP1740680A2/fr
Application granted granted Critical
Publication of EP1740680B1 publication Critical patent/EP1740680B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/22Polyesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/22Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/28Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids

Definitions

  • the present invention relates to the use of polyalkyl (meth) acrylates in lubricating oil compositions.
  • Air - oil heat exchangers, convection and heat radiation of the system components counteract a temperature increase at the same time.
  • the structural design of individual system components, ambient conditions, operating mode and duration affect the resulting operating temperature of the hydraulic fluid used.
  • the structural design is based on the type of device intermittent operation with appropriate downtime and the resulting liquid cooling. Similarly, assumptions must be made when estimating the ambient temperature.
  • the use of the invention allows high performance of the hydraulic systems without the temperature rising to a critical range.
  • the present use contributes to an increase in performance of these systems and a reduction in the temperature of the hydraulic fluid.
  • the use of the present invention can be carried out particularly easily and simply.
  • the present inventive use shows a high environmental compatibility.
  • polyalkyl esters are used in a lubricating oil composition.
  • Polyalkyl esters in the context of the present invention are polymers derived from olefinic esters. These polymers are known in the art and are commercially available. Particularly preferred polymers of this class can be obtained by polymerization of monomer compositions, which may in particular comprise (meth) acrylates, maleates and / or fumarates which may have different alcohol radicals.
  • (meth) acrylates include methacrylates and acrylates as well as mixtures of both. These monomers are well known.
  • the alkyl radical may be linear, cyclic or branched.
  • Preferred mixtures from which preferred polyalkyl esters are obtainable may be 0 to 50% by weight, in particular 2 to 40% by weight and more preferably 10 to 30% by weight, based on the weight of the monomer compositions for the preparation of the polyalkyl esters or more ethylenically unsaturated ester compounds of the formula (I)
  • R is hydrogen or methyl
  • R 1 is a linear or branched alkyl radical having 1 to 5 carbon atoms
  • R 2 and R 3 are independently hydrogen or a group of the formula -COOR ', wherein R' is hydrogen or an alkyl group having 1 to 5 carbon atoms means.
  • component a) examples include
  • (Meth) acrylates, fumarates and maleates derived from saturated alcohols such as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, n-butyl (meth ) acrylate, tert-butyl (meth) acrylate and
  • Cycloalkyl (meth) acrylates such as cyclopentyl (meth) acrylate
  • compositions to be polymerized for preparing preferred polyalkyl esters may contain from 50 to 100% by weight, in particular from 60 to 98% by weight and particularly preferably from 70 to 90% by weight, based on the weight of the monomer compositions for preparing the polyalkyl esters, one or more ethylenically unsaturated ester compounds of the formula (II)
  • R is hydrogen or methyl
  • R 4 is a linear or branched alkyl radical having 6 to 30 carbon atoms
  • R 5 and R 6 are independently hydrogen or a group of the formula -COOR ", where R" Is hydrogen or an alkyl group having 6 to 30 carbon atoms.
  • Cycloalkyl (meth) acrylates such as 2,4,5-tri-t-butyl-3-vinylcyclohexyl (meth) acrylate,
  • Cycloalkyl (meth) acrylates such as 3-vinylcyclohexyl (meth) acrylate,
  • the ester compounds with a long-chain alcohol radical in particular the compounds according to component (b), can be obtained, for example, by reacting (meth) acrylates, fumarates, maleates and / or the corresponding acids with long-chain fatty alcohols, generally a mixture of esters, such as (Meth) acrylates with different long-chain Aikohoiresten arises.
  • These fatty alcohols include Oxo Alcohol® 7911 and Oxo Alcohol® 7900, Oxo Alcohol® 1100 from Monsanto; Alphanoi® 79 from ICI; Nafol® 1620, Alibi® 610 and Alfol® 810 from Sasol; Epal® 610 and Epal® 810 from Ethyl Corporation; Linevol® 79, Linevol® 911 and Dobanol® 25L from Shell AG; Lial 125 from Sasol; Dehydad® and Lorol® grades from Cognis.
  • the mixture for the production of preferred polyalkyl esters at least 60 wt .-%, preferably at least 70 wt .-%, based on the weight of the monomer compositions for the preparation of the polyalkyl esters, monomers according to formula (II).
  • the (meth) acrylates are particularly preferred over the maleates and fumarates, ie R 2 , R 3 , R 5 and R 6 of the formulas (I) and (II) represent hydrogen in particularly preferred embodiments.
  • R 2 , R 3 , R 5 and R 6 of the formulas (I) and (II) represent hydrogen in particularly preferred embodiments.
  • the methacrylates are preferred to the acrylates.
  • At least 50 wt .-%, particularly preferably at least 70 wt .-% of the radicals R 4 according to formula (II) are linear.
  • the ratio of branched to linear side chains of the radicals R 4 according to formula (II) is preferably in the range from 0.0001 to 0.3, particularly preferably in the range from 0.001 to 0.1.
  • a polyalkyl (meth) acrylate may be used wherein at least 60% by weight of the ethylenically unsaturated ester compounds of formula (II) are alkyl (meth) acrylates based on the total weight of the ethylenically unsaturated Ester compounds of the formula (II).
  • the proportion of (meth) acrylates having 6 to 15 carbon atoms in the alcohol moiety is in the range of 20 to 95 wt .-%, based on the weight of the monomer composition for the preparation of the polyalkyl esters.
  • the proportion of (meth) acrylates having 16 to 30 carbon atoms in the alcohol residue is preferably in the range of 0.5 to 60 wt .-%, based on the weight of the monomer composition for the preparation of the polyalkyl esters.
  • the proportion of olefinically unsaturated esters having 8 to 14 carbon atoms is preferably greater than or equal to the proportion of olefinically unsaturated esters having 16 to 18 carbon atoms.
  • Preferred mixtures for preparing preferred polyalkyl esters may further include, in particular, ethylenically unsaturated monomers which can be copolymerized with the ethylenically unsaturated ester compounds of formulas (I) and / or (II).
  • the proportion of comonomers is preferably in the range from 0 to 50 wt .-%, in particular 2 to 40 wt .-% and particularly preferably 5 to 30 wt .-%, based on the weight of the monomer compositions for the preparation of the polyalkyl esters.
  • comonomers for the polymerization according to the present invention are particularly suitable, which correspond to the formula:
  • R and R 2 * are independently selected from the group consisting of hydrogen, halogens, CN, linear or branched alkyl groups having 1 to 20, preferably 1 to 6 and particularly preferably 1 to 4 carbon atoms, which have 1 to (2n + 1)
  • R 9 * is hydrogen, an alkali metal or an alkyl group of 1 to 40 Carbon atoms
  • R 3 * and R 4 * may together form a group of the formula
  • Vinyl esters such as vinyl acetate
  • Styrene substituted styrenes having an alkyl substituent in the side chain, such as.
  • alkyl substituent in the side chain such as.
  • ⁇ -methylstyrene and ⁇ -ethylstyrene substituted styrenes with a
  • Alkyl substituents on the ring such as vinyltoluene and p-methylstyrene, halogenated
  • Styrenes such as monochlorostyrenes, dichlorostyrenes, tribromostyrenes and
  • Heterocyclic vinyl compounds such as 2-vinylpyridine, 3-vinylpyridine, 2-methyl
  • N-vinylpyrrolidine 3-vinylpyrrolidine, N-vinylcaprolactam, N-vinylbutyrolactam,
  • Maleic acid and maleic acid derivatives such as maleic anhydride, Methylmaleic anhydride, maleimide, methylmaleimide; Fumaric acid and fumaric acid derivatives; Acrylic acid and (meth) acrylic acid; Dienes such as divinylbenzene.
  • compositions for preparing preferred polyalkyl esters comprise monomers which can be represented by the formula (III)
  • R is independently hydrogen or methyl
  • R 7 is independently a 2 to 1000 carbon group. with at least one heteroatom
  • X independently a sulfur or oxygen atom or a group of the formula NR 11 , wherein R 11 is independently hydrogen or a group having 1 to 20 carbon atoms and n is an integer greater than or equal to 3.
  • the radical R 7 represents a group comprising 2 to 1000, in particular 2 to 100, preferably 2 to 20 carbon atoms.
  • the term "2 to 1000 carbon group” denotes radicals of organic compounds having 2 to 1000 carbon atoms. It includes aromatic and heteroaromatic groups as well as alkyl, cycloalkyl, alkoxy, cycloalkoxy, alkenyl, alkanoyl, alkoxycarbonyl and heteroaliphatic groups.
  • the groups mentioned can be branched or unbranched. Furthermore, these groups may have conventional substituents.
  • Substituents are, for example, linear and branched alkyl groups having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, butyl, pentyl, 2-methylbutyl or hexyl; Cycloalkyl groups such as cyclopentyl and Cyciohexyl; aromatic groups, such as phenyl or naphthyl; Amino groups, ether groups, ester groups and halides.
  • aromatic groups are radicals of mononuclear or polynuclear aromatic compounds having preferably 6 to 20, in particular 6 to 12, carbon atoms.
  • Heteroaromatic groups denote aryl radicals in which at least one CH group has been replaced by N and / or at least two adjacent CH groups have been replaced by S, NH or O, heteroaromatic groups having from 3 to 19 carbon atoms.
  • Preferred aromatic or heteroaromatic groups according to the invention are derived from benzene, naphthalene, biphenyl, diphenyl ether, diphenylmethane, diphenyldimethylmethane, bisphenone, diphenylsulfone, thiophene, furan, pyrrole, thiazole, oxazole, imidazole, isothiazole, isoxazole, pyrazole, 1,3,4-oxadiazole , 2,5-diphenyl-1, 3,4-oxadiazole, 1, 3,4-thiadiazole, 1, 3,4-triazole, 2,5-diphenyl-1,3,4-triazole, 1, 2.5 -Triphenyl-1, 3,4-triazole, 1, 2,4-oxadiazole, 1, 2,4-thiadiazole, 1, 2,4-triazole, 1, 2,3-triazole, 1, 2,3,4 Tetrazole, benzofbjthiophene, be
  • the preferred alkyl groups include the methyl, ethyl, propyl, isopropyl, 1-butyl, 2-butyl, 2-methylpropyl, tert-butyl, pentyl, 2-methylbutyl, 1, 1 Dimethylpropyl, hexyl, heptyl, octyl, 1, 1,3,3-tetramethylbutyl, nonyl, 1-decyl, 2-decyl, undecyl, dodecyl, pentadecyl and the eicosyl group.
  • Preferred cycloalkyl groups include the cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl groups, optionally substituted with branched or unbranched alkyl groups.
  • Preferred alkenyl groups include the vinyl, allyl, 2-methyl-2-propylene, 2-butenyl, 2-pentenyl, 2-decenyl and 2-eicosenyl groups.
  • the preferred alkynyl groups include the ethynyl, propargyl, 2-methyl-2-propyne, 2-butynyl, 2-pentynyl and 2-decynyl groups.
  • Preferred alkanoyl groups include the formyl, acetyl, propionyl, 2-methylpropionyl, butyryl, valeroyl, pivaloyl, hexanoyl, decanoyl and dodecanoyl groups.
  • the preferred alkoxycarbonyl groups include the methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, tert-butoxycarbonyl, hexyloxycarbonyl, 2-methylhexyloxycarbonyl, decyloxycarbonyl or dodecyloxycarbonyl group.
  • the preferred alkoxy groups include alkoxy groups whose hydrocarbon radical is one of the aforementioned preferred alkyl groups.
  • Preferred cycloalkoxy groups include cycloalkoxy groups whose hydrocarbon radical is one of the aforementioned preferred cycloalkyl groups.
  • the preferred heteroatoms contained in R 10 include, among others, oxygen, nitrogen, sulfur, boron, silicon and phosphorus.
  • the radical R 7 in formula (III) has at least one group of the formula -OH or -NR 8 R 8 , in which R 8 independently comprises hydrogen or a group having 1 to 20 carbon atoms.
  • the group X in formula (III) can be represented by the formula NH.
  • the number ratio of heteroatoms to carbon atoms in the radical R 7 of the formula (III) can be within wide limits. This ratio is preferably in the range from 1: 1 to 1:10, in particular from 1: 1 to 1: 5 and particularly preferably from 1: 2 to 1: 4.
  • the radical R 7 of the formula (III) comprises 2 to 1000 carbon atoms. In a particular aspect, R 7 has at most 10 carbon atoms.
  • the most preferred comonomers include, among others
  • Aryl (meth) acrylates such as benzyl methacrylate or
  • Phenyl methacrylate wherein the aryl radicals may each be unsubstituted or substituted up to four times;
  • Methacrylates of halogenated alcohols such as
  • Hydroxyalkyl (meth) acrylates such as
  • Glycol dimethacrylates such as 1,4-butanediol methacrylate, 2-butoxyethyl methacrylate,
  • Methacrylates of ether alcohols such as
  • Ethoxymethyl methacrylate and ethoxylated (meth) acrylates preferably 1 to
  • Aminoalkyl (meth) acrylates and aminoalkyl (meth) acrylatamides such as
  • Nitriles of (meth) acrylic acid and other nitrogen-containing methacrylates such as
  • heterocyclic (meth) acrylates such as 2- (1-imidazolyl) ethyl (meth) acrylate,
  • Phosphorus, boron and / or silicon-containing methacrylates such as
  • the ethoxylated (meth) acrylates can be obtained, for example, by transesterification of alkyl (meth) acrylates with ethoxylated alcohols, which more preferably have from 1 to 20, in particular from 2 to 8, ethoxy groups.
  • the hydrophobic radical of the ethoxylated alcohols may preferably comprise 1 to 40, in particular 4 to 22, carbon atoms, it being possible to use both linear and branched alcohol radicals.
  • the ethoxylated (meth) acrylates have an OH end group.
  • Lutensol ® A- brands especially Lutensol ® A 3 N, Lutensol ® A 4 N, N Lutensol ® A 7 and A 8 Lutensol ® N
  • ethers of the Lutensol ® TO brands especially Lutensol ® TO 2, Lutensol ® TO 3, Lutensol ® TO 5, Lutensol ® TO 6, Lutensol ® TO 65, Lutensol ® TO 69, Lutensol ® TO 7, Lutensol ® TO 79 , Lutensol ® 8 and Lutensol ® 89
  • ethers of the Lutensol ® AO brands especially Lutensol ® AO 3, Lutensol ® AO 4, Lutensol ® AO 5, Lutensol ® AO 6, Lutensol ® AO 7, Lutensol ® AO 79, Lutensol ® AO 8 and Lutensol ® ®
  • aminoalkyl (meth) acrylates and aminoalkyl (meth) acrylamides for example, N- (3-dimethylaminopropyl) methacrylamide (DMAPMAM), and hydroxyalkyl (meth) acrylates, for example, 2-hydroxyethyl methacrylate (HEMA) are particularly preferred.
  • Very particularly preferred mixtures for the preparation of the polyalkyl esters include methyl methacrylate, butyl methacrylate, lauryl methacrylate, stearyl methacrylate and / or styrene.
  • the polyalkyl ester has a specific viscosity ⁇ sp / c measured in chloroform at 25 ° C. in the range from 5 to 30 ml / g, preferably in the range from 10 to 25 ml / g, measured according to ISO 1628-6.
  • the preferred polyalkyl esters which can be obtained by polymerization of unsaturated ester compounds preferably have a polydispersity M w / M n in the range of 1.2 to 4.0. This size can be determined by gel permeation chromatography (GPC).
  • polyalkyl esters from the above-described compositions.
  • ATRP atom transfer radical polymerization
  • RAFT reversible addition fragmentation chain transfer
  • Useful initiators include the azo initiators well known in the art, such as AIBN and 1, 1-azobiscyclohexanecarbonitrile, and peroxy compounds such as methyl ethyl ketone peroxide, acetylacetone peroxide, dilauryl peroxide, tert-butyl per-2-ethylhexanoate, ketone peroxide, tert-butyl peroctoate, methyl isobutyl ketone peroxide , Cyclohexanone peroxide, dibenzoyl peroxide, tert-butyl peroxybenzoate, part.- Butyiperoxyisopropyl carbonate, 2,5-bis (2-ethylhexanoylperoxy) -2,5-dimethyihexane, tert-butylperoxy-2-ethylhexanoate, tert-butylperoxy-3,5,5-trimethylhexanoate, di
  • chain transfer agents are oil-soluble mercaptans such as, for example, tert-dodecylmercaptan or 2-mercaptoethanol or else chain transfer agents from the class of terpenes, for example terpinolene.
  • the ATRP method is known per se. It is believed that this is a "living" radical polymerization without any limitation to the description of the mechanism.
  • a transition metal compound is reacted with a compound having a transferable atomic group.
  • the transferable atomic group is transferred to the transition metal compound, whereby the metal is oxidized.
  • This reaction forms a radical that adds to ethylenic groups.
  • the transfer of the atomic group to the transition metal compound is reversible so that the atomic group is re-transferred to the growing polymer chain, forming a controlled polymerization system. Accordingly, the structure of the polymer, the molecular weight and the molecular weight distribution can be controlled.
  • polymers according to the invention can also be obtained, for example, by RAFT methods. This process is described in detail, for example, in WO 98/01478, which is expressly referred to for purposes of the disclosure.
  • the polymerization can be carried out at atmospheric pressure, lower or higher pressure.
  • the polymerization temperature is not critical. In general, however, it is in the range of -20 ° - 200 ° C, preferably 0 ° - 130 ° C and particularly preferably 60 ° - 120 ° C.
  • the polymerization can be carried out with or without solvent.
  • the term of the solvent is to be understood here broadly.
  • the polymerization is carried out in a nonpolar solvent.
  • nonpolar solvent include hydrocarbon solvents such as aromatic solvents such as toluene, benzene and xylene, saturated hydrocarbons such as cyclohexane, heptane, octane, nonane, decane, dodecane, which may also be branched.
  • hydrocarbon solvents such as aromatic solvents such as toluene, benzene and xylene, saturated hydrocarbons such as cyclohexane, heptane, octane, nonane, decane, dodecane, which may also be branched.
  • solvents can be used individually or as a mixture.
  • Particularly preferred solvents are mineral oils, natural oils and synthetic oils and mixtures thereof. Of these, mineral oils are most preferred.
  • a lubricating oil composition comprises at least one lubricating oil.
  • the lubricating oils include, in particular, mineral oils, synthetic oils and natural oils.
  • Mineral oils are known per se and commercially available. They are generally obtained from petroleum or crude oil by distillation and / or refining and, if appropriate, further purification and refining processes, the term "mineral oil” in particular falling to the relatively high-boiling fractions of crude oil or crude oil.
  • the boiling point of mineral oil is higher than 200 ° C, preferably higher than 300 ° C, at 5000 Pa.
  • the production by smoldering of shale oil, coking of hard coal, distillation under exclusion of lignite and hydration of coal or lignite is also possible.
  • mineral oils are also produced from raw materials of plant origin (eg from jojoba, rapeseed) or animal (eg claw oil) of origin. Accordingly, mineral oils, depending on the origin of different proportions of aromatic, cyclic, branched and linear hydrocarbons.
  • paraffin-based, naphthenic and aromatic fractions in crude oils or mineral oils, the terms paraffin-based fraction being longer-chain or highly branched isoalkanes and naphthenic fraction being cycloalkanes.
  • mineral oils depending on their origin and refinement, have different proportions of n-alkanes, isoalkanes with a low degree of branching, so-called monomethyl-branched paraffins, and compounds with heteroatoms, in particular O, N and / or S, which are attributed to polar properties .
  • the assignment is difficult, however, since individual alkane molecules can have both long-chain branched groups and cycloalkane radicals and aromatic moieties.
  • the assignment can be made, for example, according to DIN 51 378.
  • Polar proportions may also be determined according to ASTM D 2007.
  • the proportion of n-alkanes in preferred mineral oils is less than 3 wt .-%, the proportion of O, N and / or S-containing compounds less than 6 Wt .-%.
  • the proportion of aromatics and monomethyl branched paraffins is generally in the range of 0 to 40 wt .-%.
  • mineral oil mainly comprises naphthenic and paraffinic alkanes, which generally have more than 13, preferably more than 18 and most preferably more than 20 carbon atoms.
  • the proportion of these compounds is generally> 60 wt .-%, preferably> 80 wt .-%, without this being a restriction.
  • a preferred mineral oil contains from 0.5 to 30% by weight of aromatic fractions, from 15 to 40% by weight of naphthenic fractions, from 35 to 80% by weight of paraffinic fractions, up to 3% by weight of n-alkanes and 0.05% to 5 wt .-% polar compounds, each based on the total weight of the mineral oil.
  • Liquid chromatography on silica gel shows the following constituents, wherein the percentages relate to the total weight of the mineral oil used in each case: n-alkanes having about 18 to 31 carbon atoms:
  • Aromatics with 14 to 32 C atoms :
  • Synthetic oils include, but are not limited to, organic esters such as diesters and polyesters, polyalkylene glycols, polyethers, synthetic hydrocarbons, especially polyolefins, of which polyalphaolefins (PAO) are preferred, silicone oils and perfluoroalkyl ethers. They are usually slightly more expensive than the mineral oils, but have advantages in terms of their performance.
  • Natural oils are animal or vegetable oils, such as claw oils or jojoba oils.
  • lubricating oils can also be used as mixtures and are often commercially available.
  • the concentration of the polyalkyl ester in the lubricating oil composition is preferably in the range of 2 to 40% by weight, more preferably in the range of 4 to 20% by weight, based on the total weight of the composition.
  • a lubricating oil composition may contain other additives and additives.
  • the lubricating oil composition comprising at least one polyalkyl ester is preferably used as the hydraulic fluid.
  • the lubricating oil composition can be used in a vane pump, a gear pump, a radial piston pump or an axial piston pump.
  • the lubricating oil composition can preferably be used at a pressure of 50 to 450 bar, in particular in a pressure range of 100 to 350 bar and very particularly preferably in a pressure range of 120 to 200 bar.
  • Lubricating oil compositions comprising at least one polyalkyl ester which can be obtained by polymerization of monomer compositions consisting of
  • R is hydrogen or methyl
  • R 1 is hydrogen, a linear or branched alkyl radical having 1 to 5 carbon atoms
  • R 2 and R 3 are independently hydrogen or a group of the formula -COOR ', wherein R' is hydrogen or an alkyl group having 1 to 5 carbon atoms means
  • R is hydrogen or methyl
  • R 4 is a linear or branched alkyl radical having 6 to 30 carbon atoms
  • R 5 and R ⁇ are independently hydrogen or a group of the formula -COOR ", where R" is hydrogen or an alkyl group having 6 to 30 carbon atoms means
  • polyalkyl ester has a specific viscosity ⁇ sp / c of between 5 and 30 ml / g, but in particular 10 - 25 ml / g, measured in chloroform at 25 ° C.,
  • the lubricating oil composition by the addition of polyalkylester a hydraulic power P a at a temperature T-i + x, wherein Ti is greater than or equal to 20 ° C, wherein Ti is preferably in the range of 50 to 120 ° C and x is greater than or equal to 5 ° C is, wherein x is preferably in the range of 10 to 90 ° C, which is at least as large as the hydraulic line Pb of the hydraulic fluid without addition of polyalkyl esters at the temperature Ti,
  • thermo-induced degradation d (P a ) / dT of the polyalkylester lubricating oil composition is less than the temperature-induced degradation d (P b ) / dT of the lubricating oil composition without polyalkyl ester.
  • polyalkyl esters in particular of the new compounds leads to an improvement in hydraulic performance at elevated temperature, which is at least 60, preferably at least 80 ° C and most preferably at least 90 ° C.
  • the polyalkyl ester retards undesirable overheating of the lubricating oil composition at high hydraulic power.
  • the high hydraulic power is preferably at least 60%, in particular at least 70% and particularly preferably at least 80%, based on the short-term maximum power.
  • Preferred lubricating oil compositions have a viscosity measured in accordance with ASTM D 445 at 40 ° C in the range of 10 to 120 mm 2 / s, more preferably in the range of 22 to 100 mm 2 / s.
  • preferred lubricating oil compositions have a viscosity index determined in accordance with ASTM D 2270 in the range from 120 to 350, in particular from 140 to 200.
  • Rinse up Fill the storage container with 55 kg test liquid. Subsequent operation at: pump speed 750 rpm, pressure 50 bar, liquid intake temperature 80 ° C, 2 hours.
  • Heating test pump speed 1500 rpm, pressure 150 bar, cooling and heating switched off, ambient temperature 20 ° C, liquid intake temperature beginning approx. 40 ° C, end approx. 90 ° C.
  • Efficiency test pump speed 1500 1 / min, pressure beginning 50 bar, end 250 bar, in 50 bar stages, liquid intake temperature constant 80 ° C.
  • Cooling cycle pump speed 750 rpm, pressure 0 bar, liquid intake temperature start approx. 90 ° C, end approx. 40 ° C.
  • Heating test pump speed 1500 rpm, pressure 250 bar, cooling and heating switched off, ambient temperature 20 ° C, liquid intake temperature beginning approx. 40 ° C, end approx. 90 ° C.
  • Efficiency test pump speed of 1500 1 / min, pressure start 50 bar, end 250 bar, in 50 bar stages, liquid intake temperature constant 80 ° C.
  • step 6 and 9 of the test program described above were in step 6 and 9 of the test program described above. These are in each case test phases, which took place with shutdown of the cooling. Thus, the temperature increase in the pump could be determined. A lower temperature increase, which has a hydraulic fluid with an additive, is therefore a reduction in temperature compared to a hydraulic fluid without additive equate.
  • Step 6 was carried out at a pressure of 150 bar, step 9 at a pressure of 250 bar.
  • the hydraulic power can be derived directly from the current flow rate of a hydraulic pump.
  • the current flow rate could be read directly in the hydraulic circuit described above with the mentioned flow meter.
  • the hydraulic performance could be determined directly by the relationship described in the literature (see, for example, F.W. Höfer et al., Memento de Technologie Automobile, 1 Edition, p. 650, Robert Bosch GmbH, 1988):
  • the synthesis of the polymer solutions AD was carried out in each case in a mineral oil by means of conventional free-radical polymerization, as set forth, inter alia, in Ullmanns Encyclopedia of Industrial Chemistry, Sixth Edition.
  • the polymerization initiator used was tert-butyl peroctoate and the chain transfer agent dodecylmercaptan.
  • the mineral oil used as solvent was a 100 solvent neutral oil from Kuwait Petroleum. It was polymerized at a temperature of 100 ° C, nach hypottert with tert-butyl peroctoate and thereafter polymerized until the residual monomer content of the polymer solutions prepared were less than 2 wt .-%. This was usually the case after a total process time of 6h.
  • the polymers AD contained between 11 and 27 wt .-% methyl methacrylate and between 63 and 89 wt .-% of a mixture of long-chain alkyl-substituted C 12 - 1 8 methacrylates, each based on the total weight of the monomers used.
  • the specific viscosity ⁇ sp / c measured in chloroform at 25 ° C. was 17 ml / g for polymer A, 21 ml / g for polymer B, 25 ml / g for polymer C and 40 ml for polymer D /G.
  • Composition Monomer mixture 54.375 kg C12-18-alkyl methacrylate mixture 18.125 kg methyl methacrylate
  • Post-feeder step 0.126 kg of tert-butyl-per-2-ethyl-hexanoate
  • a 150 l polymerization reactor equipped with reflux condenser and stirrer is charged at room temperature with the components listed above (original). Subsequently, the template is degassed with 0.62 kg of dry ice and heated to a temperature of 100 ° C. After 5 minutes, the amount of initiator calculated for the template is added and the feed started at the same time. The entire amount of feed is metered into the reactor in 3.5 hours. Thereafter, stirring is continued for 2 hours at 100.degree. Subsequently, the product is re-fed with initiator and stirred for a further 2 hours at 100 ° C.
  • Composition Monomer mixture 62.35 kg C12-18-alkyl methacrylate mixture 10.15 kg methyl methacrylate
  • Post-feeder step 0.126 kg of tert-butyl-per-2-ethyl-hexanoate
  • the preparation is carried out as described for polymer A).
  • Composition Monomer mixture 60.9 kg C12-18-alkyl methacrylate mixture 9.1 kg methyl methacrylate
  • Post-feeder step 0.126 kg of tert-butyl-per-2-ethyl-hexanoate
  • the preparation is carried out as described for polymer A).
  • Composition Monomer mixture 54.8 kg C12-18-alkyl methacrylate mixture 8.2 kg methyl methacrylate
  • Feed 58.9 kg of monomer mixture 0.15 kg of tert-butyl-per-2-ethyl-hexanoate 0.12 kg of dodecylmercaptan
  • Post-feeder step 0.126 kg of tert-butyl-per-2-ethyl-hexanoate
  • the preparation is carried out as described for polymer A).
  • polymer solutions in Tab. 1 precursors dissolved in mineral oil (referred to as polymer solutions in Tab. 1) were used.
  • the polymer concentrations of the polymer solutions used were 72.5% by weight in the case of polymers A and B, 70% by weight in the case of polymer C and 63% by weight in the case of polymer D.
  • the commercially available product Oloa 4992 from Oronite was used as the D1 package for all formulations shown in Table 1.
  • the concentration of Oloa 4992 was kept constant at 0.6% by weight for all the formulations investigated.
  • the oils used were all mineral oils whose viscosity index is within a narrow range of about 100 (+/- 5).
  • the mineral oils used can be obtained commercially.
  • Esso 80 is a SN 80 oil from ExxonMobil
  • KPE100 is a SN 100 oil from Kuwait Petroleum
  • Esso 600 is an SN 600 oil from ExxonMobil.
  • the Nexbase 3020 is a hydro- treated oil from Fortum.
  • the choice of the oil or oil mixtures in the preparation of the formulations plays no role in this context, as long as oils in a tightly staked Vl- Range are used and all formulations are set to identical kinematic viscosities.
  • the choice of different oil compositions as shown in Table 1 was merely based on the kinematic viscosities measured at 40 ° C at constant values of 46 mm2 / s (+/- 10%) for ISO 46 fluids and 68 mm2 / s (+ / - 10%) for ISO 68 fluids. This was necessary because formulations with different polymer concentrations and polymers of different molecular weights were used.
  • Table 2 Hydraulic performance of different hydraulic fluids measured at different temperatures at a pressure of 150 bar
  • Examples 7 and 8 show, in comparison with Comparative Example 4, that an unexpected increase in performance can also be achieved with ISO 68 fluids (see Comparative Example 4 and Examples 7 and 8 in Table 3). This could be shown both at 150 bar and at 250 bar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

La présente invention concerne l'utilisation d'un ester de polyalkyle pour réduire la température dans une composition d'huile lubrifiante. L'ester de polyale a une viscosité spécifique risp/c comprise entre 5 et 30 ml/g mesurée à 25 °C dans un chloroforme.
EP05707597.0A 2004-04-30 2005-02-24 Utilisation de polyalkyl(meth)acrylates dans des compositions d'huiles lubrifiantes Not-in-force EP1740680B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004021778A DE102004021778A1 (de) 2004-04-30 2004-04-30 Verwendung von Polyalkyl(meth)acrylaten in Schmierölzusammensetzungen
PCT/EP2005/001907 WO2005108531A2 (fr) 2004-04-30 2005-02-24 Utilisation de polyalkyl(meth)acrylates dans des compositions d'huiles lubrifiantes

Publications (2)

Publication Number Publication Date
EP1740680A2 true EP1740680A2 (fr) 2007-01-10
EP1740680B1 EP1740680B1 (fr) 2018-06-06

Family

ID=34960531

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05707597.0A Not-in-force EP1740680B1 (fr) 2004-04-30 2005-02-24 Utilisation de polyalkyl(meth)acrylates dans des compositions d'huiles lubrifiantes

Country Status (10)

Country Link
US (1) US8754018B2 (fr)
EP (1) EP1740680B1 (fr)
JP (1) JP5452863B2 (fr)
KR (1) KR101129881B1 (fr)
CN (1) CN101142303B (fr)
BR (1) BRPI0510456A (fr)
CA (1) CA2560125C (fr)
DE (1) DE102004021778A1 (fr)
MX (1) MXPA06011984A (fr)
WO (1) WO2005108531A2 (fr)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004006612A1 (de) * 2004-02-10 2005-08-25 Degussa Ag Keramischer Wandverkleidungsverbund
US9096041B2 (en) 2004-02-10 2015-08-04 Evonik Degussa Gmbh Method for coating substrates and carrier substrates
DE102004018930A1 (de) * 2004-04-20 2005-11-17 Degussa Ag Verwendung eines keramischen Separators in Lithium-Ionenbatterien, die einen Elektrolyten aufweisen, der ionische Flüssigkeiten enthält
DE102004036073A1 (de) * 2004-07-24 2006-02-16 Degussa Ag Verfahren zur Versiegelung von Natursteinen
US7829242B2 (en) * 2004-10-21 2010-11-09 Evonik Degussa Gmbh Inorganic separator-electrode-unit for lithium-ion batteries, method for the production thereof and use thereof in lithium batteries
JP2006124586A (ja) * 2004-10-29 2006-05-18 Sanyo Chem Ind Ltd 粘度指数向上剤組成物および潤滑油組成物
DE102005015931A1 (de) 2005-04-06 2006-10-12 Rohmax Additives Gmbh Polyalkyl(meth) acrylat-Copolymere mit hervorragenden Eigenschaften
US7648950B2 (en) * 2005-04-22 2010-01-19 Rohmax Additives Gmbh Use of a polyalkylmethacrylate polymer
DE102005031244A1 (de) * 2005-07-01 2007-02-15 Rohmax Additives Gmbh Öllösliche Kammpolymere
DE102005041528A1 (de) * 2005-08-31 2007-03-01 Rohmax Additives Gmbh Öllösliche Polymere
DE102006001639A1 (de) * 2006-01-11 2007-07-12 Degussa Gmbh Keramische Wandverkleidungsverbände mit elektromagnetisch abschirmenden Eigenschaften
DE102006001640A1 (de) * 2006-01-11 2007-07-12 Degussa Gmbh Keramische Wandverkleidungsverbände mit IR-Strahlung reflektierenden Eigenschaften
DE102006001641A1 (de) * 2006-01-11 2007-07-12 Degussa Gmbh Substrate mit bioziden und/oder antimikrobiellen Eigenschaften
US20070197410A1 (en) * 2006-02-21 2007-08-23 Rohmax Additives Gmbh Energy efficiency in hydraulic systems
DE102006016588A1 (de) * 2006-04-06 2007-10-18 Rohmax Additives Gmbh Kraftstoffzusammensetzungen umfassend nachwachsende Rohstoffe
DE102006039420A1 (de) * 2006-08-23 2008-02-28 Evonik Rohmax Additves Gmbh Verfahren zur Herstellung von Methacrylatestern
US20080302422A1 (en) * 2007-06-07 2008-12-11 Rohmax Additives Gmbh Power output in hydraulic systems
KR101492289B1 (ko) 2007-07-09 2015-02-12 에보니크 오일 아디티페스 게엠베하 연료 소비를 감소시키기 위한 콤 중합체의 용도
DE102007036856A1 (de) * 2007-08-06 2009-02-26 Evonik Rohmax Additives Gmbh Verwendung von Estergruppen-umfassenden Polymeren als Antifatigue-Additive
WO2009024610A1 (fr) * 2007-08-23 2009-02-26 Shell Internationale Research Maatschappij B.V. Utilisation d'une composition d'huile lubrifiante
DE102007045146A1 (de) * 2007-09-20 2009-05-28 Evonik Degussa Gmbh Einachsfahrzeug mit einer Plattform und/oder einem Sitz für einen Fahrer
DE102007059805A1 (de) 2007-12-11 2009-06-25 Evonik Degussa Gmbh Batteriepack
US20100162693A1 (en) 2008-12-31 2010-07-01 Michael Paul W Method of reducing torque ripple in hydraulic motors
DE102009001447A1 (de) 2009-03-10 2010-09-16 Evonik Rohmax Additives Gmbh Verwendung von Kammpolymeren zur Verbesserung des Lasttragevermögens
CA2765300A1 (fr) 2009-06-12 2010-12-16 Evonik Rohmax Additives Gmbh Fluide ayant un indice de viscosite ameliore
DE102010028195A1 (de) * 2010-04-26 2011-10-27 Evonik Rohmax Additives Gmbh Schmiermittel für Getriebe
CN102295972B (zh) * 2010-06-24 2013-06-05 中国石油化工股份有限公司 聚甲基丙烯酸酯型粘度指数改进剂及制备方法
JP5584049B2 (ja) * 2010-08-17 2014-09-03 株式会社Adeka 潤滑油用極圧剤及びそれを含有する潤滑油組成物
CA2827548A1 (fr) 2011-03-25 2012-10-04 Basf Se Composition lubrifiante a viscosite non newtonienne amelioree
CN105294431B (zh) * 2015-09-14 2017-08-11 宁波蓝润能源科技股份有限公司 一种合成酯类稠化剂、及利用其半合成齿轮油的制备方法
JP7050754B6 (ja) * 2016-08-15 2023-12-20 エボニック オペレーションズ ゲーエムベーハー 高められた抗乳化性能を有する官能性ポリアルキル(メタ)アクリレート
CN109642180B (zh) 2016-08-31 2021-11-30 赢创运营有限公司 用于改进发动机油配制剂的Noack蒸发损失的梳形聚合物
DE102021000567A1 (de) 2021-02-04 2022-08-04 Mercedes-Benz Group AG Schmierölzusammensetzung für ein Fahrzeuggetriebe

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3304260A (en) 1960-12-30 1967-02-14 Monsanto Co Compositions of improved viscosity index containing alkyl polymethacrylate of high relative syndiotacticity
IT1181905B (it) * 1984-06-15 1987-09-30 Anic Spa Additivo multifunzionale per oli lubrificanti e procedimento per la sua preparazione
FR2642435B1 (fr) * 1989-01-27 1994-02-11 Organo Synthese Ste Fse Additif de viscosite pour huiles lubrifiantes, son procede de preparation et compositions lubrifiantes a base dudit additif
FR2701036B1 (fr) * 1993-02-04 1995-04-21 Great Lakes Chemical France Additif de viscosité stable au cisaillement pour huiles lubrifiantes.
HUT69323A (en) 1993-07-23 1995-09-28 Rohm & Haas Copolymer useful as viskosity index improving additive for hydraulic fluid
HUT69298A (en) * 1993-07-23 1995-09-28 Rohm & Haas Method of making a copolymer useful as viscosity index improving additive for hydraulic fluids
JPH0948988A (ja) * 1995-08-02 1997-02-18 Sanyo Chem Ind Ltd 粘度指数向上剤
US5817606A (en) 1996-08-08 1998-10-06 Rohm And Haas Company Viscosity index improving additives for phosphate ester-containing hydraulic fluids
US5939365A (en) * 1996-12-20 1999-08-17 Exxon Chemical Patents Inc. Lubricant with a higher molecular weight copolymer lube oil flow improver
FR2762005B1 (fr) * 1997-04-11 2000-03-31 Chevron Res & Tech Utilisation de surfactants de bas poids moleculaires comme agents ameliorant la filtrabilite dans des lubrifiants hydrauliques
DE19754982A1 (de) 1997-12-11 1999-06-17 Degussa Verfahren zur Herstellung von Blausäure
JP4338807B2 (ja) * 1998-02-18 2009-10-07 ザ ルブリゾル コーポレイション 潤滑油組成物用の粘度改良剤
US6124249A (en) 1998-12-22 2000-09-26 The Lubrizol Corporation Viscosity improvers for lubricating oil compositions
US5955405A (en) * 1998-08-10 1999-09-21 Ethyl Corporation (Meth) acrylate copolymers having excellent low temperature properties
US6458750B1 (en) 1999-03-04 2002-10-01 Rohmax Additives Gmbh Engine oil composition with reduced deposit-formation tendency
US6458789B1 (en) * 1999-09-29 2002-10-01 Lion Bioscience Ag 2-aminopyridine derivatives and combinatorial libraries thereof
US6391996B1 (en) 1999-11-30 2002-05-21 Rohmax Additives Gmbh Copolymers obtainable by the ATRP method and a method for their preparation and their use
US6403745B1 (en) * 1999-11-30 2002-06-11 Rohmax Additives Gmbh Gradient copolymers, as well as a method for their preparation and their use
CA2340836A1 (fr) 2000-03-18 2001-09-18 Degussa Ag Produit granulaire
US20010036437A1 (en) 2000-04-03 2001-11-01 Andreas Gutsch Nanoscale pyrogenic oxides
DE10120484A1 (de) 2001-04-25 2002-10-31 Degussa Verfahren und Vorrichtung zur thermischen Behandlung von pulverförmigen Stoffen
HUE030226T2 (en) 2002-03-01 2017-04-28 Evonik Oil Additives Gmbh Copolymers as dewaxing additives
DE10235758A1 (de) 2002-08-05 2004-02-26 Degussa Ag Dotiertes Zinkoxidpulver, Verfahren zu seiner Herstellung und Verwendung
DE10238943B4 (de) 2002-08-24 2013-01-03 Evonik Degussa Gmbh Separator-Elektroden-Einheit für Lithium-Ionen-Batterien, Verfahren zu deren Herstellung und Verwendung in Lithium-Batterien sowie eine Batterie, aufweisend die Separator-Elektroden-Einheit
DE10249295A1 (de) 2002-10-22 2004-05-13 Rohmax Additives Gmbh Polymerdispersionen mit hoher Stabilität und Verfahren zur Herstellung
DE10249294A1 (de) 2002-10-22 2004-05-13 Rohmax Additives Gmbh Stabile Polymerdispersionen und Verfahren zur Herstellung
DE10249292A1 (de) 2002-10-22 2004-05-13 Rohmax Additives Gmbh Polymerdispersionen mit geringer Viskosität und Verfahren zur Herstellung
US20040092409A1 (en) 2002-11-11 2004-05-13 Liesen Gregory Peter Alkyl (meth) acrylate copolymers
DE10311645A1 (de) 2003-03-14 2004-09-23 Degussa Ag Nanoskaliges Indium-Zinn-Mischoxidpulver
DE10314776A1 (de) 2003-03-31 2004-10-14 Rohmax Additives Gmbh Schmierölzusammensetzung mit guten Reibeigenschaften
DE10347568A1 (de) 2003-10-14 2005-05-12 Degussa Kondensator mit keramischer Separationsschicht
DE102004006612A1 (de) 2004-02-10 2005-08-25 Degussa Ag Keramischer Wandverkleidungsverbund
DE102004018930A1 (de) 2004-04-20 2005-11-17 Degussa Ag Verwendung eines keramischen Separators in Lithium-Ionenbatterien, die einen Elektrolyten aufweisen, der ionische Flüssigkeiten enthält
US7429555B2 (en) 2004-04-30 2008-09-30 Rohmax Additives Gmbh Lubricating grease with high water resistance
DE102004036073A1 (de) 2004-07-24 2006-02-16 Degussa Ag Verfahren zur Versiegelung von Natursteinen
US7829242B2 (en) 2004-10-21 2010-11-09 Evonik Degussa Gmbh Inorganic separator-electrode-unit for lithium-ion batteries, method for the production thereof and use thereof in lithium batteries
US7648950B2 (en) 2005-04-22 2010-01-19 Rohmax Additives Gmbh Use of a polyalkylmethacrylate polymer
DE102006001640A1 (de) 2006-01-11 2007-07-12 Degussa Gmbh Keramische Wandverkleidungsverbände mit IR-Strahlung reflektierenden Eigenschaften
DE102006001639A1 (de) 2006-01-11 2007-07-12 Degussa Gmbh Keramische Wandverkleidungsverbände mit elektromagnetisch abschirmenden Eigenschaften
DE102006001641A1 (de) 2006-01-11 2007-07-12 Degussa Gmbh Substrate mit bioziden und/oder antimikrobiellen Eigenschaften
US20070197410A1 (en) 2006-02-21 2007-08-23 Rohmax Additives Gmbh Energy efficiency in hydraulic systems
DE102006039420A1 (de) 2006-08-23 2008-02-28 Evonik Rohmax Additves Gmbh Verfahren zur Herstellung von Methacrylatestern
DE202006015495U1 (de) 2006-10-09 2007-02-01 Degussa Ag Elektrolumineszent ausgestattete Artikel
US20080302422A1 (en) 2007-06-07 2008-12-11 Rohmax Additives Gmbh Power output in hydraulic systems
DE102007045146A1 (de) 2007-09-20 2009-05-28 Evonik Degussa Gmbh Einachsfahrzeug mit einer Plattform und/oder einem Sitz für einen Fahrer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005108531A2 *

Also Published As

Publication number Publication date
KR101129881B1 (ko) 2012-03-28
KR20070015557A (ko) 2007-02-05
BRPI0510456A (pt) 2007-11-06
EP1740680B1 (fr) 2018-06-06
JP5452863B2 (ja) 2014-03-26
CA2560125C (fr) 2014-04-29
WO2005108531A3 (fr) 2007-05-10
CN101142303B (zh) 2011-08-17
US20070219101A1 (en) 2007-09-20
CN101142303A (zh) 2008-03-12
WO2005108531A2 (fr) 2005-11-17
US8754018B2 (en) 2014-06-17
CA2560125A1 (fr) 2005-11-17
MXPA06011984A (es) 2007-04-16
JP2007535596A (ja) 2007-12-06
DE102004021778A1 (de) 2005-12-08

Similar Documents

Publication Publication Date Title
EP1740680A2 (fr) Utilisation de polyalkyl(meth)acrylates dans des compositions d'huiles lubrifiantes
EP1753847B1 (fr) Graisse de lubrification ayant une grande resistance a l'eau
WO2004087850A1 (fr) Composition d'huile lubrifiante presentant de bonnes proprietes de frottement
EP1240218B1 (fr) Copolymeres a gradient d'indice et procede permettant de les preparation et leur utilisation
DE102005015931A1 (de) Polyalkyl(meth) acrylat-Copolymere mit hervorragenden Eigenschaften
WO2005097855A1 (fr) Polymeres a fonctionnalites formant des ponts h
WO2006094520A1 (fr) Procede de fabrication d'une graisse lubrifiante
WO2005097956A1 (fr) Polymeres a fonctionnalites formant des ponts h, utilises pour ameliorer la protection contre l'usure
WO2006007934A1 (fr) Utilisation de polymeres greffes
DE10015541A1 (de) Mittels ATRP-Verfahren erhältliche Copolymere sowie Verfahren zur Herstellung und Verwendung
DE102005041528A1 (de) Öllösliche Polymere
DE102007036856A1 (de) Verwendung von Estergruppen-umfassenden Polymeren als Antifatigue-Additive
EP2686352B1 (fr) Copolymères comprenant des groupes esters et utilisation desdits copolymères dans des lubrifiants
WO2001040339A1 (fr) Copolymeres en bloc, procede de fabrication et utilisation
EP1334133B1 (fr) Procede de production continue de compositions polymeres et utilisation associee
DE102009002730A1 (de) Verfahren zur Herstellung von polymeren (VI)-Verbesserern mit polaren Gruppen sowie deren Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060612

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK ROHMAX ADDITIVES GMBH

17Q First examination report despatched

Effective date: 20120123

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK OIL ADDITIVES GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502005015843

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C10M0145000000

Ipc: C10M0145140000

RIC1 Information provided on ipc code assigned before grant

Ipc: C10M 145/14 20060101AFI20171121BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015843

Country of ref document: DE

Owner name: EVONIK OPERATIONS GMBH, DE

Free format text: FORMER OWNER: ROHMAX ADDITIVES GMBH, 64293 DARMSTADT, DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1006082

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015843

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180906

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181006

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015843

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190224

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1006082

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015843

Country of ref document: DE

Owner name: EVONIK OPERATIONS GMBH, DE

Free format text: FORMER OWNER: EVONIK OIL ADDITIVES GMBH, 64293 DARMSTADT, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: EVONIK OPERATIONS GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: EVONIK DEGUSSA GMBH

Effective date: 20210209

Ref country code: NL

Ref legal event code: PD

Owner name: EVONIK DEGUSSA GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), MERGE; FORMER OWNER NAME: EVONIK OIL ADDITIVES GMBH

Effective date: 20210209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: EVONIK OPERATIONS GMBH, DE

Free format text: FORMER OWNER: EVONIK OIL ADDITIVES GMBH, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20210325 AND 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210217

Year of fee payment: 17

Ref country code: FR

Payment date: 20210224

Year of fee payment: 17

Ref country code: NL

Payment date: 20210217

Year of fee payment: 17

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: EVONIK OPERATIONS GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: EVONIK DEGUSSA GMBH

Effective date: 20210223

Ref country code: BE

Ref legal event code: PD

Owner name: EVONIK DEGUSSA GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), MERGE; FORMER OWNER NAME: EVONIK OIL ADDITIVES GMBH

Effective date: 20210223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210217

Year of fee payment: 17

Ref country code: BE

Payment date: 20210217

Year of fee payment: 17

Ref country code: GB

Payment date: 20210219

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005015843

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220224

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220901

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228