EP1738406A1 - Procede de fabrication de couches minces semi-conductrices photosensibilisees - Google Patents

Procede de fabrication de couches minces semi-conductrices photosensibilisees

Info

Publication number
EP1738406A1
EP1738406A1 EP05747082A EP05747082A EP1738406A1 EP 1738406 A1 EP1738406 A1 EP 1738406A1 EP 05747082 A EP05747082 A EP 05747082A EP 05747082 A EP05747082 A EP 05747082A EP 1738406 A1 EP1738406 A1 EP 1738406A1
Authority
EP
European Patent Office
Prior art keywords
acid
layer
solution
oxides
basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05747082A
Other languages
German (de)
English (en)
Inventor
Philippe Prene
Philippe Belleville
Pélagie DECLERCK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1738406A1 publication Critical patent/EP1738406A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a method for manufacturing thin photosensitized semiconductor layers. Such thin layers find their application as electrodes of photovoltaic cells or in light-emitting diodes.
  • thin semiconductor layers such as those made of titanium dioxide
  • thin semiconductor layers are obtained by depositing, on a support, a layer comprising a colloidal solution of metal oxide or oxide precursors followed by a step of densification of the layer at high temperature, namely at a temperature greater than or equal to 400 ° C.
  • a densification step at high temperature it proves difficult to photosensitize with chromophoric substances the thin layers obtained due to a surface state obtained after densification which is not very conducive to the adsorption or chemisorption of such substances.
  • the object of the present invention is precisely to propose a process for manufacturing thin semiconductor layers, which makes it possible to obtain thin layers suitable for photosensitization by chromophoric substances and which exhibit satisfactory adhesion to a support. .
  • the subject of the invention is a process for manufacturing thin semiconductive layers photosensitized by one or more chromophoric substances, which comprises at least one cycle successively comprising the following steps: a) a step of depositing on a support d '' at least one layer of a solution obtained by sol-gel polymerization of one or more oxide precursors (s) semiconductor (s), said oxide (s) semiconductor (s) being chosen (s) ) among metal oxides, metalloid oxides and mixtures thereof; b) a step of drying the layer obtained in a); c) a step of acidic, basic or neutral treatment in a liquid or gaseous medium of the layer obtained in b); d) a photosensitization step of the layer obtained in c) with one or more chromophoric substances by bringing this layer into contact with a solution comprising the chromophore substance (s).
  • thin layer is meant within the meaning of the invention, a layer having a thickness less than 1 mm.
  • a layer is obtained having a surface state favorable to photosensitization by chromophoric substances.
  • the surface condition is such that it makes it possible to increase the quantity of chromophoric substances deposited on the surface of the layer and therefore, the solar absorption efficiency of such layers when used as electrodes in photovoltaic devices.
  • this method is a simple method of implementation and low cost.
  • the method of the invention comprises a first step consisting in covering a surface of a support with at least one layer of a solution obtained by polymerization by the sol-gel route of one or more oxide precursors ( s) semiconductor (s), said one or more oxide (s) ⁇ semi conductors being chosen from metal oxides, metalloid oxides and mixtures thereof.
  • the support is a translucent support, especially when the thin layers are intended to be used in photovoltaic devices.
  • translucent support is meant, within the meaning of the invention, an organic or inorganic support allowing light to pass through but through which can clearly distinguish objects.
  • organic support is meant according to the invention a plastic support, for example, in a polymer chosen from polyacrylates, polycarbonates, polyallylcarbonates, polymethylmethacrylates and polyamides.
  • inorganic support is meant according to the invention a glassy support, that is to say a support made of an amorphous or crystalline material, such as silica, borosilicate glass, soda-lime glass.
  • metal oxide is meant, according to the invention, an oxide comprising in its crystal lattice one or more metallic elements. These metallic elements can be transition metals or lanthanide metals, such as those defined below.
  • the metallic transition element can be chosen from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt.
  • the lanthanide element can be chosen from La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er and Yb.
  • the metallic elements can also be so-called post-transitional metals, such as those belonging to column IIIA (Al, Ga, In, Tl) and column IVA (Ge, Sn, Pb) of the periodic table.
  • metalloid oxide is meant, within the meaning of the invention, an oxide comprising in its crystal lattice one or more metalloid elements, said metalloid elements being chosen from Si, Se, Te.
  • oxide precursors is meant according to the invention alkoxide compounds of formula M (OR) n with M representing a metallic element or an element metalloid as defined above, R representing an alkyl group comprising from 1 to 6 carbon atoms, n representing the valence of the metallic element or of the metalloid element, the alkoxide being able to be replaced by a mineral precursor (salt metallic) or any other molecular precursor of metal or metalloid element which can hydrolyze.
  • the solution deposited on the support is obtained according to the “sol-gel” polymerization technique which translates the term “solution-gelatin”.
  • sol-gel technique the above-mentioned solution is synthesized, generally by mixing one or more precursors as defined above in a medium comprising at least one organic or aqueous solvent followed by total or partial hydrolysis of said precursors and of condensation said precursors thus hydrolyzed.
  • the organic solvents in which are mixed the precursors of oxides ⁇ semi conductors are usually alcoholic solvents, especially aliphatic alcohols such as ethanol or isopropanol.
  • the hydrolysis of the precursors is generally obtained by adding to the mixture of an aqueous solution (acid, basic or neutral).
  • the precursors have reactive groups, such as -OH, capable of condensing during a condensation step at the end of which the solution includes chemical species in the form of oligomers, polymers or colloids.
  • reactive groups such as -OH
  • the hydrolysis conditions pH, amount of water added, etc.
  • the solution to be deposited on the support is a colloidal oxide solution
  • the solution to be deposited is prepared according to the following steps: - a step of mixing in a solvent, preferably an organic solvent (for example an alcohol , such as isopropanol), an oxide precursor (such as an alkoxide or a salt); a step of adding, with stirring, the resulting mixture to an acidic, basic or neutral aqueous solution, at the end of which a colloidal solution of semiconductor oxide is obtained, after an adequate stirring time, the addition step being able to be reversed (namely adding the aqueous solution to the mixture resulting from the first step).
  • the colloidal solution comprises colloids of oxides dispersed in the liquid medium (organic solvent + aqueous solution), having a diameter of approximately 1 to 100 nm in diameter
  • a suitable precursor can be a titanium alkoxide such as titanium tetraisopropoxide or a titanium salt such as titanium tetrachloride.
  • the solution to be deposited on the support is generally prepared by bringing the titanium precursor into contact with an alcoholic medium (such as isopropanol) followed by hydrolysis of said precursor by adding an acidic aqueous solution. (such as an aqueous solution of hydrochloric acid) or basic (such as a solution of tetraethylammonium hydroxide).
  • an alcoholic medium such as isopropanol
  • an acidic aqueous solution such as an aqueous solution of hydrochloric acid
  • basic such as a solution of tetraethylammonium hydroxide
  • the deposition can be done according to one of the following techniques: - soaking-shrinking (known under the English terminology “dip-coating”); - centrifugal coating (known under the English terminology “spin-coating”); - laminar coating (known under the English terminology “laminar-flow-coating or meniscus coating”); - spraying (known under the English terminology “spray-coating”); - spreading (known under the English terminology “soak coating”); - roller coating (known by the terminology “roll to roll process”); - brush coating (known by the English terminology “paint coating”); - screen printing (known under the English terminology “screen printing”).
  • Such a deposition step is represented in FIGS. 1 and 2.
  • a layer 3 of a solution as defined above is deposited on a translucent support 1.
  • the translucent support can comprise, on one of its faces, a transparent conductive layer, for example an oxide-based layer of tin doped with fluorine or based on indium oxide doped with tin and a dense semiconductor layer, for example made of titanium dioxide.
  • the solution layer is deposited on the previously mentioned layers.
  • the transparent conductive layer within the framework of a photovoltaic cell, will constitute a working electrode.
  • the dense titanium dioxide layer will constitute a screen layer between the transparent conductive layer and the thin layer acting as a porous counter-electrode, resulting from the process of the invention.
  • the support before the deposition step, can be cleaned for example using dilute hydrofluoric acid and / or a detergent solution.
  • the method of the invention comprises a drying step, so that the solvent or solvents used in step a) evaporate.
  • the process of the invention can comprise a chemical washing step intended to remove the organic residues resulting from the solution deposited during the first stage of the process, such as the residues resulting from hydrolysis of the aforementioned precursors.
  • the method of the invention can also comprise, before the treatment step c), a step of heat treatment of the layer, this step of heat treatment advantageously consisting of a heating the layer at a temperature ranging from 30 to 450 ° C. This heat treatment step is intended in particular to densify the deposited layer.
  • the process comprises, as mentioned above, either directly after the drying step or, if necessary, after the washing step and / or the heat treatment step, an acid, basic or neutral treatment step in the medium.
  • liquid or gaseous of the deposited layer In other words, this step consists in bringing the deposited layer into contact with: - an acidic, basic or neutral solution, when the treatment takes place in a liquid medium; - acidic, basic or neutral vapors, when the treatment takes place in a gaseous medium.
  • Figures 3 and 4 show two embodiments of the treatment in a gaseous medium.
  • the support 1 covered with a layer 3 is placed in a closed enclosure 5 inside of which acid, basic or neutral vapors 9 are made to penetrate through an orifice 9.
  • the support 1 covered with a layer 3 is placed on a substrate 11 inside a closed enclosure 5, while an acidic, basic or neutral solution 13 is placed in the bottom of the enclosure so as to produce vapors acidic, basic or neutral 15.
  • FIG. 5 represents an embodiment of the treatment in an aqueous medium.
  • the support 1 covered with the layer 3 is immersed in an acidic, basic or neutral solution 17.
  • the acid vapors to which the deposited layer is subjected can be vapors of mineral acid chosen from hydrochloric acid (HC1), hydrofluoric acid (HF) , nitric acid (HN0 3 ), orthoboric acid (H 3 B0 3 ), orthophosphoric acid (H 3 P0 4 ), perchloric acid (HC10 4 ), sulfuric acid (H 2 S0 4 ).
  • the acid vapors are hydrochloric acid vapors.
  • the acid solutions to which the deposited layer is subjected can be solutions of mineral acids, such as solutions of hydrochloric acid (HC1), hydrofluoric acid. (HF), nitric acid (HN0 3 ), orthoboric acid (H 3 B0 3 ), orthophosphoric acid (H 3 P0 4 ), perchloric acid (HC10 4 ), sulfuric acid (H 2 S0 4 ) or mixtures thereof.
  • These solutions are generally aqueous solutions but can be organic solutions obtained by mixing in an organic solvent an aqueous solution of mineral acid.
  • the organic solvent can be an aliphatic alcoholic solvent.
  • the acid solutions can also be solutions of organic acids, such as carboxylic acids of formula RCOOH, in which R represents an alkyl group containing from 1 to 30 carbon atoms or a phenyl group, such as oxalic acid C 2 H 2 0 4 .
  • the solutions of organic acids preferably comprise non-dissociating solvents, that is to say having a constant weak dielectric.
  • solvents can for example be aliphatic alcohols, such as ethanol.
  • the basic vapors to which the deposited layer is subjected can advantageously be ammonia vapors.
  • the basic solutions can be mineral base solutions, such as sodium hydroxide (NaOH), potassium hydroxide (KOH), tetraethylammonium hydroxide (N (CH 3 ) 4 OH), ammonia (NH 4 OH), organic base solutions such as
  • the solutions of mineral bases are aqueous solutions
  • the solutions of organic bases are organic solutions preferably comprising non-dissociating solvents as defined above.
  • the acid or base concentration is between 1 and 50% by mass of the total mass of the treatment solution.
  • the neutral solutions may be solutions of aliphatic alcohol, such as ethanol, or mixtures of water and aliphatic alcohol, while, in in the case of a neutral treatment taking place in the gas phase, the neutral vapors are vapors of aliphatic alcohol or of mixtures of water or aliphatic alcohols.
  • the duration of this treatment is advantageously between 1 and 24 hours at a temperature which can range from room temperature to a temperature of the order of 100 ° C.
  • a thin layer of semiconductor oxide is obtained. It has been found that after the acidic, basic or neutral treatment, that the layer withstood physical contact, that is to say could be handled with gloves and could also withstand several wiping with optical paper soaked in alcohol (known as the English test term "drag-wipe") without degradation of the layer.
  • This thin layer can be a mesoporous layer, possibly mesostructured. It is specified that by mesoporous layer is meant a layer characterized by a high porosity, with pore sizes ranging from 2 to 80 nm and walls a few nanometers thick. The pores are generally distributed randomly with a very wide distribution of the pore size, in the range mentioned above.
  • mesostructured layer is meant a mesoporous layer in the form of organized porous networks which have an ordered spatial arrangement of mesopores.
  • This spatial periodicity of the pores is characterized by the appearance of at least one low angle peak in an X-ray scattering diagram; this peak is associated with a repetition distance which is generally between 2 and 50 nm.
  • the metal oxide is titanium dioxide
  • the titanium dioxide can be in the form of nanocrystalline titanium dioxide (anatase, rutile or brookite), mesoporous possibly mesostructured.
  • nanocrystalline titanium dioxide is meant titanium dioxide having crystallites of the order of a few nanometers, for example from 2 to 200 nm.
  • the method of the invention comprises, after the acid treatment step, basic or neutral, a sensitization step of the oxide layer semi ⁇ conductor obtained after the treatment with chromophores.
  • chromophore substance is understood to mean a substance capable of absorbing light in the IR, UV and visible range and of liberating in return for this absorption of electrons.
  • this sensitization step is carried out by immersion of the support covered with the thin layer of semiconductor oxide in a solution comprising the chromophoric substance or substances, the chromophoric substance or substances comprising one or more groups capable of being fixed on the layer oxide.
  • Such groups can be carboxylate groups, acetylacetonate groups, cyano groups, phosphate groups, chelating groups having a ⁇ conduction character chosen from oximes, dioximes, hydroxyquinolines, salicylates, ⁇ -keto-enolates .
  • chromophoric substances can be substances chosen from ruthenium complexes such as cis-bis (isothiocyanato) bis (2, 2 '- bipyridyl-4, 4 '-dicarboxylato) -ruthenium (II) (marketed by Solaronix under the reference Ruthenium 535-bis TBA). It is possible to carry out a single cycle comprising the deposition of the layer, the drying, the treatment and the sensitization but it is also possible to carry out several successive cycles.
  • FIG. 6 is a graph illustrating the absortion (symbolized Abs) in arbitrary units as a function of the wavelength ( ⁇ in nm) of a layer having undergone a heat treatment in accordance with the prior art (dotted curve) à and a layer having undergone an acid treatment in accordance with the invention (curve in solid line).
  • the transparent support is a borosilicate glass support (type BK-7 manufactured by the Schott Company) rectangular (1x5 cm) with a thickness of 2 mm.
  • the refractive index is 1.52 to 600 nm wavelength.
  • He is not covered with a transparent conductive layer, or with any dense semi-conductive layer in order to eliminate the optical disturbances induced by their presence on the surface of the support.
  • the transparent support is first cleaned according to the following procedure. The cleaning of the surface intended to be covered is carried out with the hydrofluoric acid solution diluted to 1% by volume. Then, this surface is rinsed with pure deionized water and cleaned with a detergent solution of vegetable soap
  • the support coated with the layer of dried titanium oxide is placed face upwards on a substrate in a closed enclosure with a volume of 10 dm 3 , containing about 500 cm 3 of fuming hydrochloric acid at 37% by mass. , in its background.
  • the 37% by weight fuming hydrochloric acid solution corresponds to a common commercial solution.
  • the support and the titanium oxide layer are kept in confinement for a minimum of 12 hours.
  • the support coated with the titanium oxide layer is then taken out of the enclosure and immersed in a solution containing a chromophoric substance based on ruthenium (Ruthenium 535-bis TBA manufactured by the company Solaronix) dispersed in an ethanolic medium (0.025% in mass) .
  • the support and the titanium oxide layer are kept in contact with the chromophore substance for a minimum of 4 hours.
  • the properties provided by this treatment are as follows: - a spectral absorption induced by the chromophore substance based on Ruthenium (as represented in FIG. 6) present on the surface of the layer of titanium dioxide treated with acid vapors for 12 hours is maintained at that of the same layer having undergone sintering by heat treatment at 400 ° C for 10 minutes. At the wavelength corresponding to the maximum absorption of the chromophore substance (525 nm), the treatment with acid vapors even leads to an increase in the absorption of the photosensitized titanium dioxide layer; - mechanical resistance to abrasion and improved adhesion properties of the layer to the support allowing physical contact with the treated surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Photovoltaic Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

L'invention a trait à un procédé de fabrication de couches minces semi-conductrices photosensibilisées par une ou plusieurs substances chromophores, qui comprend au moins un cycle comprenant successivement les étapes suivantes : a) une étape de dépôt sur un support d'au moins une couche d'une solution obtenue par polymérisation par voie sol-gel d'un ou plusieurs précurseurs d'oxyde(s) semi-conducteur(s), ledit ou lesdits oxyde(s) semi-conducteurs étant choisi(s) parmi les oxydes de métaux, les oxydes de métalloïde et les mélanges de ceux-ci ; b) une étape de séchage de la couche obtenue en a) ; c) une étape de traitement acide, basique ou neutre en milieu liquide ou gazeux de la couche obtenue en b) ; d) une étape de photosensibilisation de la couche obtenue en c) par une ou plusieurs substances chromophores par mise en contact de cette couche avec une solution comprenant la ou les substance(s) chromophore(s). Application à la fabrication d'électrodes de cellules photovoltaïques et aux diodes électroluminescentes.

Description

PROCEDE DE FABRICATION DE COUCHES MINCES SEMI- CONDUCTRICES PHOTOSENSIBILISEES
DESCRIPTION
DOMAINE TECHNIQUE La présente invention a trait à un procédé de fabrication de couches minces semi-conductrices photosensibilisées . De telles couches minces trouvent leur application en tant qu'électrodes de cellules photovoltaïques ou encore dans des diodes électroluminescentes.
ETAT DE LA TECHNIQUE ANTERIEURE Actuellement, les couches minces semi- conductrices, telles que celles en dioxyde de titane sont obtenues par dépôt, sur un support, d'une couche comprenant une solution colloïdale d' oxyde métallique ou de précurseurs d'oxyde suivi d'une étape de densification de la couche à haute température, à savoir à une température supérieure ou égale à 400 °C. Après une étape de densification à haute température, il s'avère difficile de photosensibiliser par des substances chromophores les couches minces obtenues du fait d'un état de surface obtenu après densification peu propice à l'adsorption ou la chimisorption de telles substances. EXPOSE DE 1/ INVENTION La présente invention a précisément pour but de proposer un procédé de fabrication de couches minces semi-conductrices, qui permet d'obtenir des couches minces propices à une photosensibilisation par des substances chromophores et qui présentent une adhésion satisfaisante à un support. A cet effet, l'invention a pour objet un procédé de fabrication de couches minces semi- conductrices photosensibilisées par une ou plusieurs substances chromophores, qui comprend au moins un cycle comprenant successivement les étapes suivantes : a) une étape de dépôt sur un support d'au moins une couche d'une solution obtenue par polymérisation par voie sol-gel d'un ou plusieurs précurseurs d' oxyde (s) semi-conducteur (s) , ledit ou lesdits oxyde (s) semi-conducteurs étant choisi (s) parmi les oxydes de métaux, les oxydes de métalloïde et les mélanges de ceux-ci ; b) une étape de séchage de la couche obtenue en a) ; c) une étape de traitement acide, basique ou neutre en milieu liquide ou gazeux de la couche obtenue en b) ; d) une étape de photosensibilisation de la couche obtenue en c) par une ou plusieurs substances chromophores par mise en contact de cette couche avec une solution comprenant la ou les substance (s) chromophore (s) . On précise que par couche mince, on entend au sens de l'invention, une couche présentant une épaisseur inférieure à 1 mm. Grâce à ce procédé présentant l'étape c) , l'on obtient une couche présentant un état de surface favorable à une photosensibilisation par des substances chromophores. En effet, grâce à cette étape de traitement, l'état de surface est tel qu'il permet d' augmenter la quantité de substances chromophores déposées à la surface de la couche et de ce fait, l'efficacité d'absorption solaire de telles couches lorsqu'elles sont utilisées en tant qu'électrodes dans des dispositifs photovoltaïques . De plus, ce procédé est un procédé simple de mise en œuvre et de faible coût.
Comme mentionné précédemment, le procédé de l'invention comprend une première étape consistant à recouvrir une surface d'un support par au moins une couche d'une solution obtenue par polymérisation par voie sol-gel d'un ou plusieurs précurseurs d' oxyde (s) semi-conducteur (s) , le ou lesdits oxyde (s) semi¬ conducteurs étant choisis parmi les oxydes de métaux, les oxydes de métalloïdes et les mélanges de ceux-ci. De préférence, le support est un support translucide, notamment lorsque les couches minces sont destinées à être utilisées dans des dispositifs photovoltaïques . Par support translucide, on entend, au sens de l'invention, un support organique ou inorganique laissant passer la lumière mais à travers lequel on ne peut distinguer nettement les objets. Par support organique, on entend selon l'invention un support plastique, par exemple, en un polymère choisi parmi les polyacrylates, les polycarbonates, les polyallylcarbonates, les polymethylmethacrylates et les polyamides. Par support inorganique, on entend selon l'invention un support vitreux, c'est-à-dire un support en un matériau amorphe ou cristallin, tel que la silice, le verre borosilicaté, le verre sodocalcique . Par oxyde de métaux, on entend, selon l'invention, un oxyde comprenant dans son réseau cristallin un ou plusieurs éléments métalliques. Ces éléments métalliques peuvent êtres des métaux de transition ou des métaux lanthanides, tel que ceux définis ci-après. L'élément métallique de transition peut être choisi parmi Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt . L'élément lanthanide peut être choisi parmi La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er et Yb . Les éléments métalliques peuvent être également des métaux dits post-transitionnels, tels que ceux appartenant à la colonne IIIA (Al, Ga, In, Tl) et la colonne IVA (Ge, Sn, Pb) de la classification périodique des éléments. Par oxyde de métalloïdes, on entend, au sens de l'invention, un oxyde comprenant dans son réseau cristallin un ou plusieurs éléments métalloïdes, lesdits éléments métalloïdes étant choisis parmi Si, Se, Te. Par précurseurs d'oxyde, on entend selon l'invention des composés alcoxydes de formule M(OR)n avec M représentant un élément métallique ou un élément métalloïde tel que défini ci-dessus, R représentant un groupe alkyle comprenant de 1 à 6 atomes de carbone, n représentant la valence de l'élément métallique ou de l'élément métalloïde, l'alcoxyde pouvant être remplacé par un précurseur minéral (sel métallique) ou tout autre précurseur moléculaire de métal ou d'élément métalloïde pouvant s' hydrolyser .
Selon l'invention, la solution déposée sur le support est obtenue selon la technique de polymérisation par voie « sol-gel » qui traduit le terme « solution-gélatine ». Selon cette technique sol-gel, la solution susmentionnée est synthétisée, généralement en mélangeant un ou plusieurs précurseurs tels que définis précédemment dans un milieu comprenant au moins un solvant organique ou aqueux suivi d'une hydrolyse totale ou partielle desdits précurseurs et d'une condensation desdits précurseurs ainsi hydrolyses. Le ou les solvants organiques dans lesquels sont mélangés les précurseurs d' oxydes semi¬ conducteurs, sont généralement des solvants alcooliques, en particulier des alcools aliphatiques, tels que l'éthanol ou l' isopropanol . L'hydrolyse des précurseurs est obtenue généralement par ajout au mélange d'une solution aqueuse (acide, basique ou neutre) . Une fois hydrolyses, les précurseurs présentent des groupes réactifs, tels que -OH, aptes à se condenser au cours d'une étape de condensation à l'issue de laquelle la solution comprend des espèces chimiques sous forme d' oligomères, de polymères ou de colloïdes. L'homme du métier choisira, selon la nature des précurseurs, les conditions d'hydrolyse (pH, quantité d'eau additionnée..) de ces précurseurs pour obtenir dans la solution des espèces chimiques sous forme d' oligomères, de polymères et/ou de colloïdes. En particulier, lorsque que la solution à déposer sur le support est une solution colloïdale d'oxyde, la solution à déposer est préparée selon les étapes suivantes : - une étape de mélange dans un solvant, de préférence, organique, (par exemple un alcool, tel que 1' isopropanol) , d'un précurseur d'oxyde (tel qu'un alcoxyde ou un sel) ; - une étape d'ajout sous agitation du mélange résultant à une solution aqueuse acide, basique ou neutre, à l'issue de laquelle l'on obtient, après un temps d'agitation adéquat, une solution colloïdale d'oxyde semi-conducteur, l'étape d'ajout pouvant être inversée (à savoir ajout de la solution aqueuse au mélange résultant de la première étape) . Généralement, la solution colloïdale comprend des colloïdes d' oxydes dispersés dans le milieu liquide (solvant organique + solution aqueuse) , présentant un diamètre d'environ 1 à 100 nm de diamètre
Lorsque la couche mince est en dioxyde de titane, un précurseur adéquat peut être un alcoxyde de titane tel que le tetraisopropoxide de titane ou un sel de titane tel que le tétrachlorure de titane. Dans ce cas de figure, la solution à déposer sur le support est préparée généralement en mettant en contact le précurseur de titane avec un milieu alcoolique (tel que l' isopropanol) suivie d'une hydrolyse dudit précurseur par ajout d'une solution aqueuse acide (telle qu'une solution aqueuse d'acide chlorhydrique) ou basique (telle qu'une solution d'hydroxyde de tétraéthylammonium) . Une fois préparée, la solution, dont la préparation est explicitée ci-dessus, est déposée sur un support, éventuellement translucide. Le dépôt peut se faire selon l'une des techniques suivantes : - le trempage-retrait (connu sous la terminologie anglaise « dip-coating ») ; - l'enduction centrifuge (connue sous la terminologie anglaise « spin-coating ») ; - l'enduction laminaire (connue sous la terminologie anglaise « laminar-flow-coating ou meniscus coating ») ; - la pulvérisation (connue sous la terminologie anglaise « spray-coating ») ; - l'épandage (connu sous la terminologie anglaise « soak coating ») ; - l'enduction au rouleau (connue sous la terminologie « roll to roll process ») ; - l'enduction au pinceau (connue sous la terminologie anglaise « paint coating ») ; - la sérigraphie (connue sous la terminologie anglaise « screen printing ») . Une telle étape de dépôt est représentée sur les figures 1 et 2. Comme illustré sur ces figures, une couche 3 d'une solution telle que définie ci-dessus est déposée sur un support translucide 1. On précise que le support translucide peut comprendre, sur une de ses faces, une couche conductrice transparente, par exemple une couche à base d'oxyde d'étain dopé au fluor ou à base d'oxyde d' indium dopé à l'étain et une couche dense semi- conductrice par exemple en dioxyde de titane. Le dépôt de couche de solution se fait dans ce cas de figure sur les couches précédemment citées. La couche conductrice transparente, dans le cadre d'une cellule photovoltaïque, constituera une électrode de travail. La couche dense en dioxyde de titane constituera une couche écran entre la couche conductrice transparente et la couche mince faisant office de contre-électrode poreuse, issue du procédé de l'invention. Il est à noter que le support, avant l'étape de dépôt, peut être nettoyé par exemple à l'aide d'acide fluorhydrique dilué et/ou d'une solution détergente.
A l'issue de l'étape de dépôt, le procédé de l'invention comprend une étape de séchage, de manière à ce que le ou les solvants mis en œuvre dans l'étape a) s'évaporent. Avant le traitement acide, basique ou neutre, le procédé de l'invention peut comprendre une étape de lavage chimique destinée à éliminer les résidus organiques issus de la solution déposée lors de la première étape du procédé, tels que les résidus issus de l'hydrolyse des précurseurs susmentionnés. Le procédé de l'invention peut comprendre, également, avant l'étape de traitement c) , une étape de traitement thermique de la couche, cette étape de traitement thermique consistant avantageusement en un chauffage de la couche à une température allant de 30 à 450 °C. Cette étape de traitement thermique est destinée notamment à densifier la couche déposée. Le procédé comprend comme mentionné ci- dessus, soit directement après l'étape de séchage soit, le cas échéant, après l'étape de lavage et/ou l'étape de traitement thermique, une étape de traitement acide, basique ou neutre en milieu liquide ou gazeux de la couche déposée. En d'autres termes, cette étape consiste à mettre en contact la couche déposée avec : - une solution acide, basique ou neutre, lorsque le traitement se déroule en milieu liquide ; - des vapeurs acides, basiques ou neutres, lorsque le traitement se déroule en milieu gazeux.
Les figures 3 et 4 représentent deux modes de réalisation du traitement en milieu gazeux. Sur la figure 3, le support 1 recouvert d'une couche 3 est placé dans une enceinte close 5 à l'intérieur de laquelle on fait pénétrer par un orifice 7 des vapeurs acides, basiques ou neutres 9. Sur la figure 4, le support 1 recouvert d'une couche 3 est placé sur un substrat 11 à l'intérieur d'une enceinte close 5, tandis qu'une solution acide, basique ou neutre 13 est placée dans le fond de l'enceinte de manière à produire des vapeurs acides, basiques ou neutres 15.
La figure 5 représente un mode de réalisation du traitement en milieu aqueux. Sur cette figure, le support 1 recouvert de la couche 3 est immergé dans une solution acide, basique ou neutre 17. Dans le cas d'un traitement acide se déroulant en phase gazeuse, les vapeurs acides auxquelles l'on soumet la couche déposée peuvent être des vapeurs d'acide minéraux choisis parmi l'acide chlorhydrique (HC1) , l'acide fluorhydrique (HF) , l'acide nitrique (HN03) , l'acide orthoborique (H3B03) , l'acide orthophosphorique (H3P04) , l'acide perchlorique (HC104) , l'acide sulfurique (H2S04) . De préférence, les vapeurs acides sont des vapeurs d'acide chlorhydrique.
Dans le cas d'un traitement acide se déroulant en phase liquide, les solutions acides auxquelles l'on soumet la couche déposée peuvent être des solutions d'acides minéraux, telles que des solutions d'acide chlorhydrique (HC1) , d'acide fluorhydrique (HF) , d'acide nitrique (HN03) , d'acide orthoborique (H3B03) , d'acide orthophosphorique (H3P04) , d'acide perchlorique (HC104) , d'acide sulfurique (H2S04) ou des mélanges de celles-ci. Ces solutions sont généralement des solutions aqueuses mais peuvent des solutions organiques obtenues par mélange dans un solvant organique d'une solution aqueuse d'acide minéral. Le solvant organique peut être un solvant alcoolique aliphatique . Les solutions acides peuvent être également des solutions d'acides organiques, telles que des acides carboxyliques de formule RCOOH, dans laquelle R représente un groupe alkyle comportant de 1 à 30 atomes de carbone ou un groupe phényle, telle que l'acide oxalique C2H204. On précise que les solutions d' acides organiques comprennent de préférence des solvants non dissociants, c'est-à-dire présentant une constante diélectrique faible. De tels solvants peuvent être par exemple des alcools aliphatiques, tel que l'éthanol. Dans le cas d'un traitement basique se déroulant en milieu gazeux, les vapeurs basiques auxquelles on soumet la couche déposée peuvent être, avantageusement, des vapeurs ammoniaquées . Dans le cas d'un traitement basique se déroulant en milieu liquide, les solutions basiques peuvent être des solutions de base minérale, telle que de soude (NaOH) , de potasse (KOH) , d'hydroxyde de tétraéthylammonium (N(CH3)4OH), d'ammoniaque (NH4OH) , des solutions de base organique telle que
1' hydroxylamine (NH2OH) , la diéthanolamine
(NH(CH2OHCH2)2) . Généralement, les solutions de bases minérales sont des solutions aqueuses, tandis que les solutions de bases organiques sont des solutions organiques comprenant de préférence des solvants non dissociants tels que définis ci-dessus.
Généralement, que ce soit pour un traitement acide ou un traitement basique, la concentration en acide ou en base est comprise entre 1 et 50% en masse de la masse totale de la solution de traitement.
Enfin, dans le cas d'un traitement neutre se déroulant en phase liquide, les solutions neutres peuvent être des solutions d'alcool aliphatiques, tels que l'éthanol, ou des mélanges d'eau et d'alcool aliphatique, tandis que, dans le cas d'un traitement neutre se déroulant en phase gazeuse, les vapeurs neutres sont des vapeurs d' alcool aliphatique ou de mélanges d'eau ou d'alcools aliphatiques. Quel que soit le traitement envisagé
(acide, basique ou neutre) , la durée de ce traitement est avantageusement comprise entre 1 et 24 heures à une température pouvant aller de la température ambiante jusqu'à une température de l'ordre de 100 °C.
A l'issue de l'étape de traitement acide, basique ou neutre, l'on obtient une couche mince d'oxyde semi-conducteur. On a pu constater qu'après le traitement acide, basique ou neutre, que la couche supportait un contact physique, c'est-à-dire pouvait être manipulée avec des gants et pouvait également supporter plusieurs essuyages au papier optique imbibé d'alcool (connu sous le terme anglais de test « drag-wipe ») sans dégradation de la couche. Cette couche mince peut être une couche mésoporeuse, éventuellement mésostructurée . On précise que par couche mésoporeuse on entend une couche se caractérisant par une importante porosité, avec des tailles de pores allant de 2 à 80 nm et des parois de quelques nanomètres d'épaisseur. Les pores sont généralement répartis de manière aléatoire avec une distribution très large de la taille des pores, dans la gamme mentionnée ci-dessus. On précise que par couche mésostructurée, on entend une couche mésoporeuse se présentant sous forme de réseaux poreux organisés qui présentent un agencement spatial ordonné de mésopores. Cette périodicité spatiale des pores est caractérisée par l'apparition d'au moins un pic à bas angle dans un diagramme de diffusion des rayons X ; ce pic est associé à une distance de répétition qui est généralement comprise entre 2 et 50 nm. Lorsque l'oxyde métallique est le dioxyde de titane, le dioxyde de titane peut se présenter sous forme de dioxyde de titane nano-cristallin (anatase, rutile ou brookite) , mésoporeux éventuellement mésostructuré . Par dioxyde de titane nano-cristallin, on entend du dioxyde de titane présentant des cristallites de l'ordre de quelques nanomètres, par exemple de 2 à 200 nm.
Enfin, le procédé de l'invention, comprend, après l'étape de traitement acide, basique ou neutre, une étape de sensibilisation de la couche d' oxyde semi¬ conducteur obtenue à l'issue du traitement par des substances chromophores. On précise que, selon l'invention, on entend par substance chromophore un substance apte à absorber une lumière dans le domaine IR, UV et visible et à libérer en contrepartie de cette absorption des électrons. Généralement, cette étape de sensibilisation est réalisée par immersion du support recouvert de la couche mince d' oxyde semi-conducteur dans une solution comprenant la ou les substances chromophores, la ou lesdites substances chromophores comprenant un ou plusieurs groupes aptes à se fixer sur la couche d'oxyde. De tels groupes peuvent être des groupes carboxylates, des groupes acétylacétonates, des groupes cyano, des groupes phosphates, des groupes chélatants ayant un caractère de conduction π choisi parmi les oximes, les dioximes, les hydroxyquinoléines, les salicylates, les α-céto-énolates . De telles substances chromophores peuvent être des substances choisies parmi les complexes de ruthénium tels que le cis-bis (isothiocyanato) bis (2, 2' - bipyridyl-4, 4' -dicarboxylato) -ruthénium (II) (commercialisé par Solaronix sous la référence Ruthénium 535-bis TBA) . II est possible d'effectuer un seul cycle comprenant le dépôt de la couche, le séchage, le traitement et la sensibilisation mais il est également possible d'effectuer plusieurs cycles successifs.
BRÈVE DESCRIPTION DES DESSINS Les figures 1 à 5 illustrent différentes étapes du procédé de fabrication selon l'invention. La figure 6 est un graphique illustrant 1' absortion (symbolisé Abs) en unités arbitraires en fonction de la longueur d'onde (λ en nm) d'une couche ayant subi un traitement thermique conformément à l'art antérieur (courbe en pointillés) à et d'une couche ayant subi un traitement acide conformément à l'invention (courbe en trait plein) .
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
L'invention va maintenant être décrite au regard de l'exemple de réalisation suivant.
a) Préparation du support.
Dans le cadre de cet exemple, le support transparent est un support en verre borosilicate (type BK-7 fabriqué par la Société Schott) rectangulaire (1x5 cm) d'épaisseur 2 mm. L'indice de réfraction est de 1,52 à 600 nm de longueur d'onde. Il n'est pas recouvert d'une couche conductrice transparente, ni d'une éventuelle couche dense semi-conductrice afin d'éliminer les perturbations optiques induites par leur présence à la surface du support. Le support transparent est tout d' abord nettoyé selon la procédure suivante. Le nettoyage de la surface est destinée à être recouverte est effectué avec la solution d' acide fluorhydrique diluée à 1% en volume. Ensuite, cette surface est rincée à l'eau pure désionisée et nettoyée à l'aide d'une solution détergente de savon végétal
(dénommé « Green Soap », Eli Lilly. Co) . Enfin, cette surface est rincée à l'eau pure désionisée puis séchée à l'alcool éthylique) .
b) Préparation et dépôt de la couche de solution.
La solution colloïdale d' oxyde de titane Ti02 est préparée en additionnant goutte à goutte une solution de tétra-isopropoxide de titane (0,5 g) dissous dans 7,85 g d' isopropanol à 100 mL d'une solution d'acide chlorhydrique diluée (pH= 1,5) sous forte agitation. Le mélange est maintenu sous agitation magnétique pendant 12 heures. Les observations de microscopie électronique en transmission révèlent un diamètre moyen des colloïdes de 10 nm environ. Le diagramme des rayons X est caractéristique de celui de l'oxyde de titane sous forme anatase. Le pH de ce sol est d'environ 2 et la concentration massique en Ti02 est amenée à 10% par distillation (100°C, 105Pa) . Avant d'être utilisé, la solution colloïdale d'oxyde de titane est filtrée à 0,45 μm. Sur le support nettoyé comme décrit précédemment, la couche de solution colloïdale d'oxyde de titane est déposée par enduction centrifuge sur une face à 500 tours. miA1. Le film est séché durant 5 minutes en rotation.
c) Traitement du support.
Le support revêtu de la couche d' oxyde de titane séchée est placé face recouverte vers le haut sur un substrat dans une enceinte close d'un volume de 10 dm3, contenant environ 500 cm3 d'acide chlorhydrique fumant à 37% en masse, dans son fond. La solution d'acide chlorhydrique fumant à 37% en masse correspond à une solution commerciale courante. Le support et la couche d' oxyde de titane sont maintenus en confinement pendant un minimum de 12 heures. Le support revêtu de la couche d' oxyde de titane est ensuite sorti de l'enceinte et plongé dans une solution contenant une substance chromophore à base de ruthénium (Ruthénium 535-bis TBA fabriqué la société Solaronix) dispersée en milieu éthanolique (0,025 % en masse) . Le support et le couche d'oxyde de titane sont maintenus en contact avec la substance chromophore pendant un minimum de 4 heures.
d) résultats
Les propriétés apportées par ce traitement sont les suivantes : - une absorption spectrale induite par la substance chromophore à base de Ruthénium (tel que représenté sur la figure 6) présente à la surface de la couche de dioxyde de titane traitée aux vapeurs acides durant 12 heures est maintenue au niveau de celle d'une même couche ayant subi un frittage par traitement thermique à 400 °C pendant 10 minutes. A la longueur d' onde correspondante au maximum d' absorption de la substance chromophore (525 nm) , le traitement aux vapeurs acides entraîne même une augmentation de l'absorption de la couche de dioxyde de titane photosensibilisée ; - la résistance mécanique à l'abrasion et les propriétés améliorées d' adhésion de la couche au support permettant le contact physique de la surface traitée .

Claims

REVENDICATIONS
1. Procédé de fabrication de couches minces semi-conductrices photosensibilisées par une ou plusieurs substances chromophores, qui comprend au moins un cycle comprenant successivement les étapes suivantes : a) une étape de dépôt sur un support d'au moins une couche d'une solution obtenue par polymérisation par voie sol-gel d'un ou plusieurs précurseurs d' oxyde (s) semi-conducteur (s) , ledit ou lesdits oxyde (s) semi-conducteurs étant choisi (s) parmi les oxydes de métaux, les oxydes de métalloïde et les mélanges de ceux-ci ; b) une étape de séchage de la couche obtenue en a) ; c) une étape de traitement acide, basique ou neutre en milieu liquide ou gazeux de la couche obtenue en b) ; d) une étape de photosensibilisation de la couche obtenue en c) par une ou plusieurs substances chromophores par mise en contact de cette couche avec une solution comprenant la ou les substance (s) chromophore (s) .
2. Procédé selon la revendication 1, dans lequel le support est un support translucide.
3. Procédé selon la revendication 1 ou 2, dans lequel le ou les oxydes de métaux sont choisis parmi les oxydes de métaux de transition, les oxydes de métaux lanthanides, les oxydes de métaux post- transitionnels .
4. Procédé selon la revendication 3, dans lequel l'oxyde ou les oxydes de métaux de transition sont choisis parmi les oxydes de Ti, V, Cr, Mn, Fe, Co,
Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta,
W, Re, Os, Ir et Pt .
5. Procédé selon la revendication 3, dans lequel le ou les oxydes de métaux lanthanides sont choisis parmi les oxydes de La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er et Yb .
6. Procédé selon la revendication 3, dans lequel le ou les oxydes de métalloïde sont choisis parmi les oxydes de Si, Se et Te.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel le ou les précurseurs d' oxyde semi-conducteur sont choisis parmi les alcoxydes de formule M(OR)n avec M représentant un métal ou un métalloïde, R représentant un groupe alkyle comprenant de 1 à 6 atomes de carbone, n représentant la valence du métal ou du métalloïde.
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel l'oxyde semi¬ conducteur est du dioxyde de titane.
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel le traitement en milieu gazeux est effectué par mise en contact de la couche obtenue en b) avec des vapeurs acides, basiques ou neutres.
10. Procédé selon la revendication 9, dans lequel les vapeurs acides sont des vapeurs d' acide chlorhydrique .
11. Procédé selon la revendication 9, dans lequel les vapeurs basiques sont des vapeurs ammoniaquées .
12. Procédé selon la revendication 9, dans lequel les vapeurs neutres sont des vapeurs d' alcool aliphatique .
13. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel le traitement en milieu liquide est effectué par mise en contact de la couche obtenue en b) avec une solution acide, basique ou neutre.
14. Procédé selon la revendication 13, dans lequel la solution acide est une solution d' acide minéral choisi parmi les solutions d' acide chlorhydrique (HC1) , d'acide fluorhydrique (HF) , d'acide nitrique (HN03) , d'acide orthoborique (H3B03) , d'acide orthophosphorique (H3P04) , d'acide perchlorique (HC104) , d'acide sulfurique (H2S04) et les mélanges de celles-ci .
15. Procédé selon la revendication 13, dans lequel la solution acide est une solution d'acide organique de formule RCOOH, dans laquelle R représente un groupe alkyle comportant de 1 à 30 atomes de carbone ou un groupe phényle .
16. Procédé selon la revendication 13, dans lequel la solution basique est une solution de base minérale choisie parmi les solutions de soude (NaOH) , de potasse (KOH) , d'ammoniaque.
17. Procédé selon la revendication 13, dans lequel la solution basique est une solution de base organique choisie parmi l' hydroxylamine (NH2OH) , la diéthanolamine (NH (CH2OHCH2) 2) .
18. Procédé selon l'une quelconque des revendications 1 à 17, dans lequel la durée de l'étape de traitement c) est comprise entre 1 et 24 heures.
19. Procédé selon l'une quelconque des revendications 1 à 18, dans lequel la ou les substances chromophores sont des complexes de ruthénium.
20. Procédé selon l'une quelconque des revendications 1 à 19, comprenant en outre, avant l'étape de traitement acide, basique ou neutre, un étape de traitement thermique.
21. Procédé selon l'une quelconque des revendications 1 à 20, dans lequel la couche mince est une couche mésoporeuse, éventuellement mésostructurée.
EP05747082A 2004-04-22 2005-04-21 Procede de fabrication de couches minces semi-conductrices photosensibilisees Withdrawn EP1738406A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0450762A FR2869454B1 (fr) 2004-04-22 2004-04-22 Procede de fabrication de couches minces semi-conductrices photosensibilisees.
PCT/FR2005/050268 WO2005106941A1 (fr) 2004-04-22 2005-04-21 Procede de fabrication de couches minces semi-conductrices photosensibilisees

Publications (1)

Publication Number Publication Date
EP1738406A1 true EP1738406A1 (fr) 2007-01-03

Family

ID=34945171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05747082A Withdrawn EP1738406A1 (fr) 2004-04-22 2005-04-21 Procede de fabrication de couches minces semi-conductrices photosensibilisees

Country Status (7)

Country Link
US (1) US20070166872A1 (fr)
EP (1) EP1738406A1 (fr)
JP (1) JP2007534169A (fr)
AU (1) AU2005239091A1 (fr)
CA (1) CA2563781A1 (fr)
FR (1) FR2869454B1 (fr)
WO (1) WO2005106941A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1667246A1 (fr) * 2004-12-03 2006-06-07 ETeCH AG Dispositif sensible à plusieurs couleurs pour capter des images en couleur
DE102008051656A1 (de) 2008-10-08 2010-04-15 Technische Universität Ilmenau Verfahren zum Aufbringen einer metallischen Elektrode auf eine Polymerschicht
RU2527092C2 (ru) 2010-04-02 2014-08-27 Адвенира Энтерпрайзис, Инк. Устройство для нанесения покрытия валиком
JP5552547B2 (ja) * 2010-09-13 2014-07-16 パナソニック株式会社 金属酸化物半導体の製造方法
RU2604631C1 (ru) 2011-05-26 2016-12-10 Адвенира Энтерпрайзис, Инк. Способ нанесения покрытия на объект

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4948393A (en) * 1992-08-17 1994-03-15 Sandoz Ltd. Use of optical brighteners and phthalocyanines as photosensitizers
EP0692800A3 (fr) * 1994-07-15 1996-11-06 Ishihara Sangyo Kaisha Film d'oxyde de titane à surface modifiée, procédé de fabrication et dispositif de conversion photoélectrique utilisant celui-ci
JP2824749B2 (ja) * 1994-07-15 1998-11-18 石原産業株式会社 表面改質された酸化チタン膜およびその製造方法ならびにそれを用いた光電変換素子
US6444189B1 (en) * 1998-05-18 2002-09-03 E. I. Du Pont De Nemours And Company Process for making and using titanium oxide particles
JP5081345B2 (ja) * 2000-06-13 2012-11-28 富士フイルム株式会社 光電変換素子の製造方法
DE60123714T2 (de) * 2000-08-15 2007-10-04 FUJI PHOTO FILM CO., LTD., Minamiashigara Photoelektrische Zelle und Herstellungsmethode
US6677516B2 (en) * 2001-01-29 2004-01-13 Sharp Kabushiki Kaisha Photovoltaic cell and process for producing the same
JP4280020B2 (ja) * 2002-03-29 2009-06-17 Tdk株式会社 光電変換用酸化物半導体電極および色素増感型太陽電池
JP4563697B2 (ja) * 2003-04-04 2010-10-13 シャープ株式会社 色素増感太陽電池およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005106941A1 *

Also Published As

Publication number Publication date
AU2005239091A1 (en) 2005-11-10
WO2005106941A1 (fr) 2005-11-10
FR2869454B1 (fr) 2006-11-03
JP2007534169A (ja) 2007-11-22
CA2563781A1 (fr) 2005-11-10
US20070166872A1 (en) 2007-07-19
FR2869454A1 (fr) 2005-10-28

Similar Documents

Publication Publication Date Title
EP2611749B1 (fr) Substrat verrier revêtu d'une couche anti-réfléchissante
EP0970025B1 (fr) Procede de preparation d'un materiau optique multicouches avec reticulation-densification par insolation aux rayons ultraviolets et materiau optique ainsi prepare
CA2279828C (fr) Materiau polymerique inorganique a base d'oxyde de tantale, notamment a indice de refraction eleve, mecaniquement resistant a l'abrasion, son procede de fabrication, et materiau optique comprenant ce materiau
FR2826128A1 (fr) Procede de fabrication d'un element de polarisation, et element de polarisation
EP1853749B1 (fr) Procede de preparation d'une solution sol-gel et utilisation de cette solution pour constituer un revetement pour proteger un substrat a surface metallique
EP0648284A1 (fr) Procede de fabrication de couches minces presentant des proprietes optiques.
EP2755919B1 (fr) Formulation de solutions colloïdales à base d'oxyde de titane pour procédés d'enduction et d'impression : amélioration du rendement et de la durée de vie des cellules photovoltaïques organiques pin-nip
JPH03188938A (ja) 無機ポリマ薄膜の形成方法
EP1427678A1 (fr) Substrat revetu d'un film composite, procede de fabrication et applications
FR2891269A1 (fr) Substrat transparent muni d'une electrode
EP1738406A1 (fr) Procede de fabrication de couches minces semi-conductrices photosensibilisees
EP1994205A1 (fr) Tôle en acier inoxydable revêtue par un revêtement auto-nettoyant.
EP2938582B1 (fr) Substrat transparent, notamment substrat verrier, revêtu par au moins une couche poreuse au moins bifonctionnelle, procédé de fabrication et applications
Keshavarzi et al. Improving efficiency and stability of carbon‐based perovskite solar cells by a multifunctional triple‐layer system: antireflective, uv‐protective, superhydrophobic, and self‐cleaning
EP2580373B1 (fr) Procédé de préparation à basse température de revêtements mésostructurés électroconducteurs
EP1074526A2 (fr) Méthode de production d'une couche antiréfléchissante et nivellante sur des substrats verre/OCT
FR2871942A1 (fr) Procede de preparation de materiaux piezoelectriques
Floch et al. Porous silica sol-gel coatings for Nd: glass high-power pulsed laser uses
EP2643270B1 (fr) Preparation de sols d'oxydes metalliques stables, utiles notamment pour la fabrication de films minces a proprietes optiques et resistants a l'abrasion
BE1024950B1 (fr) Substrat verrier revêtu d'une couche anti-réfléchissante
EP1281672A1 (fr) Elaboration par voie chimique d'une solution pour depots a effets photo-catalytiques
FR2949456A1 (fr) Particules de vanadate de bismuth et leur procede d'obtention
Ahmad Nanostructured titanium dioxide thin film for dye-sensitized Solar cell applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061002

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090923

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100407