EP1737801A2 - Substrat photocatalytique actif sous lumiere visible - Google Patents

Substrat photocatalytique actif sous lumiere visible

Info

Publication number
EP1737801A2
EP1737801A2 EP05746932A EP05746932A EP1737801A2 EP 1737801 A2 EP1737801 A2 EP 1737801A2 EP 05746932 A EP05746932 A EP 05746932A EP 05746932 A EP05746932 A EP 05746932A EP 1737801 A2 EP1737801 A2 EP 1737801A2
Authority
EP
European Patent Office
Prior art keywords
coating
substrate according
compound
type
glazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05746932A
Other languages
German (de)
English (en)
Inventor
Andriy Kharchenko
Laurent Labrousse
Laeticia Gueneau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP1737801A2 publication Critical patent/EP1737801A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/10Frit compositions, i.e. in a powdered or comminuted form containing lead
    • C03C8/12Frit compositions, i.e. in a powdered or comminuted form containing lead containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/425Coatings comprising at least one inhomogeneous layer consisting of a porous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/479Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to self-cleaning substrates, by the photocatalytic activity of suitable agents constituting them.
  • a coating comprising titanium dioxide crystallized in anatase and / or rutile form which, in sufficient concentrations or thicknesses, has the particularity of forming free radicals under ultraviolet irradiation, and consequently d '' initiate the radical oxidation of any oily or fatty deposit of hydrocarbons.
  • This coating is also hydrophilic under ultraviolet. Oily dirt is therefore degraded into shorter molecules under the action of the sun, then the rain is distributed in a uniform film guaranteeing the best possible homogenization of the degradation products as well as any mineral dust.
  • TiO 2 crystallized anatase also has a weak photocatalytic activity in the most energetic part of the visible spectrum, so we are looking for an increase in this activity and a shift towards longer wavelengths, for use in (almost) absence of ultraviolet, in particular inside buildings, cockpits or cabins of transport vehicles ... Indeed, glazing in particular lets pass the visible part of the solar radiation, not ultraviolet.
  • the photocatalytic activity under visible illumination is also of great interest outdoors, the energy of the solar spectrum being greater in the visible than in the ultraviolet.
  • US 2003/144140 describes for this purpose the control of the recombination of electron-hole pairs at the junction of a photocatalytic compound under ultraviolet such as TiO 2 and a mixed oxide such as Ce 2 Zr 2 Oa, photocatalytic under visible light .
  • a photocatalytic compound under ultraviolet such as TiO 2
  • a mixed oxide such as Ce 2 Zr 2 Oa
  • US 2003/232186 also describes the powder mixture of a photocatalytic compound active under ultraviolet and a photocatalytic compound active in the visible. The latter consists of rutile TiO 2 and / or anatase, certain atoms of which are substituted by nitrogen atoms. Obtaining film coatings according to this principle is not described.
  • WO 02/92879 describes a thin layer coating on a substrate, in particular glass, and consisting of TiO 2 anatase particles whose photocatalytic activity under ultraviolet light is increased by the fact that these particles are in a binder comprising a semi-metallic metal oxide conductor such as SnO 2 : F.
  • SnO 2 : F a semi-metallic metal oxide conductor
  • the aim of the present invention is therefore to provide a material with anti-fouling and / or hydrophilic activity which can be used when it receives exclusively visible light, moreover capable of constituting a coating of high mechanical resistance on various substrates, substantially flat, fibrous ...
  • the invention relates to a substrate coated with a film of mechanical strength and durability allowing handling by a user, characterized in that the film comprises in intimate association a first compound photocatalytic and a second compound exhibiting an energy jump between the upper level of its valence band and the lower level of its conduction band corresponding to a wavelength in the visible range.
  • the substrate of the invention is a glass, a ceramic, a ceramic glass, a metal (steel, stainless steel), a building material (interior wall possibly coated / painted ...), a mineral material, wood, a plastic material.
  • said first photocatalytic compound generally has a minimum activation energy in a more energetic field than visible light; this is the case with ZrO. KtaO 3 , Nb 2 O 5 , SnO 2 . Although this minimum energy, for TiO 2 , is located in the most energetic part of the visible spectrum, it must be specified that the photocatalytic activity of TiO 2 under exclusively visible light is very low, and much more important and usable for a anti-fouling functionality, under ultra-violet.
  • titanium dioxide crystallized in particular at least in part in anatase form, known for constituting durable and abrasion resistant coatings on transparent substrates for which high optical quality is required, is of course at the heart of the 'invention. Indeed, by the association of said second well-chosen compound, the photocatalytic activity of TiO 2 in the visible is increased and becomes usable. On the other hand, in the context of the invention, the cases where said first photocatalytic compound would have a minimum activation energy in a less energetic field than visible light, such as for example Si, are not excluded.
  • the inherent ability of the photocatalytic compound to initiate radical oxidations results in particular from its characteristics of lifetime of electron-hole pairs, quantity of these pairs generated, diffusion of these; on the contrary, the insufficiency in some of these characteristics results in weaker to almost zero anti-fouling and / or hydrophilic functionality, which may justify excluding the compound from certain applications requiring a high photocatalytic activity.
  • said second compound taken in isolation although generator of electron-hole pairs under visible light, will not necessarily, in general, have a durability, quantity or diffusion of these pairs making it possible to qualify it as a photocatalytic compound.
  • the inventors have established that it can make it photocatalytically active - or at least increase its photocatalytic activity - under visible light by displacement of the electrons, respectively holes generated in said second compound on the strip. conduction, respectively valence of the first photocatalytic compound. Even if, in a first case, the energy jump between the upper level of the valence band and the lower level of the conduction band of the second compound is less than the excitation energy of the first photocatalytic compound required to to obtain the maximum activity, the first photocatalytic compound acquires an activity which it had little or no visible light.
  • the energy jump between the upper level of the valence band and the lower level of the conduction band of the second compound is on the contrary greater than or equal to the excitation energy of the first photocatalytic compound required for obtain the maximum activity, and this exhibits a still increased photocatalytic activity under visible light.
  • the above values correspond to the extreme wavelengths of the visible spectrum, that is to say 800 and 380 nm.
  • the second compound can thus be chosen from GaP, CdS, KTao.77Nbo.23O3, CdSe, SrTiO 3 , TiO 2 , ZnO, Fe 2 O 3 . WO 3l Nb 2 O 5 . V 2 O 5 , Eu 2 O 3 .
  • the substrate is transparent, and its anti-fouling / hydrophilic functionality is such as to maintain its initial transparency and high optical quality under exclusively visible light.
  • Organic pollution is then degraded into smaller, less adherent and less fatty molecules, which are more easily eliminated, in particular by water in the form of a film having regard to the hydrophilic property of the coating. It can be envisaged to combine a more or less regular spraying means. In the absence of water, organic degradation products can be removed with a cloth as easily as mineral dust; a chemically active agent such as a detergent is superfluous.
  • transparent substrate in particular a plastic material such as polycarbonate, polymethyl methacrylate, polypropylene, polyurethane, polyvinyl butyral, poly (ethylene terephthalate), poly (butylene tetphthalate), ionomer resin such as ethylene / acid copolymer (neth) acrylic neutralized by a polyamine, cycloolefinic copolymer such as ethylene / norbornene or ethylene / cyclopentadiene, polycarbonate / polyester copolymer, ethylene / vinyl acetate copolymer and the like, alone or in mixtures.
  • the transparent substrate is made of glass of which at least a surface part oriented towards said coating is dealkalized.
  • the alkalis contained in the glass migrate to the surface under the effect of heating in particular, and affect the photocatalytic activity of the coating.
  • a dealkalization consists in that at least in a zone of its surface oriented towards said coating, the substrate does not contain alkaline and alkaline-earth oxides in total proportion exceeding 15% by weight, nor sodium oxide in proportion exceeding 10% by weight.
  • Silosodocalcium glass thus dealkalized is obtained by treatments using various techniques, in particular electrical such as corona discharge, as described in documents WO 94/07806-A1 and WO 94/07807-A1.
  • said coating has a (meso) porous structure, in accordance with the teaching of WO 03/087002-A1 in particular.
  • Such a structure is distinguished by a large contact surface and a network of pores communicating with each other, and finally by a particularly strong photocatalytic activity.
  • a porosity of 70 to 90% defined by the percentage of the theoretical density of TiO 2 which is approximately 3.8, is favorable.
  • This doping can also be done by surface doping only of titanium oxide or of the entire coating, surface doping carried out by covering at least part of the coating with a layer of oxides or metal salts, the metal being chosen from iron, copper, ruthenium, cerium, molybdenum, vanadium and bismuth.
  • the photocatalytic phenomenon can be amplified by increasing the yield and / or the kinetics of the photocatalytic reactions, by covering the titanium oxide, or at least part of the coating which incorporates it, with a noble metal in the form of a thin layer.
  • a noble metal in the form of a thin layer.
  • platinum, rhodium, silver, palladium type platinum, rhodium, silver, palladium type.
  • Such a catalyst for example deposited by a vacuum technique, makes it possible in fact to increase the number and / or the lifetime of the radical entities created by titanium oxide, and thus to favor the chain reactions leading to the degradation of organic products.
  • the thickness of the coating according to the invention is variable, it is preferably between 2 nm and 1 ⁇ m, in particular between 5 and 100 nm, preferably not exceeding 80 nm.
  • This thickness is adapted according to the envisaged application, because the photocatalytic activity increases at constant thickness.
  • an increased thickness can be chosen to limit possible alkalis of an underlying glass in the depth of the coating, and to prevent them from reaching the most superficial active part.
  • the coating can be chosen to have a more or less smooth surface.
  • a certain roughness can indeed be advantageous: - it makes it possible to develop a larger active photocatalytic surface and therefore it induces a greater photocatalytic activity, - it has a direct influence on wetting. The roughness indeed enhances the wetting properties.
  • a smooth hydrophilic surface will be even more hydrophilic when roughened.
  • the substrate and the coating according to the invention it is possible to have one or more other layers with an antistatic, thermal, optical function, or promoting the crystal growth of TiO 2 in anatase or rutile form, in addition layers according to the invention forming a barrier to the migration of certain elements originating from the substrate, in particular forming a barrier to alkalis and very particularly to sodium ions when the substrate is made of glass. It is also possible to envisage a stack of “anti-reflection” layers alternating thin layers with high and low indices, the coating according to the invention constituting the last layer of the stack. In this case, it is preferable that the coating has a relatively low refractive index, which is the case when it consists of a mixed oxide of titanium and silicon.
  • the layer with an antistatic and / or thermal function can in particular be chosen based on a conductive material of the metal type, such as silver, or of the metal oxide type doped such as indium oxide doped with tin ITO, tin oxide doped with a halogen of the fluorine type SnO 2 : F, or with antimony SnO 2 : Sb , or zinc oxide doped with indium ZnO: ln, fluorine ZnO.F, aluminum ZnO: AI or tin ZnO.Sn. It can also be metal oxides substoichiometric in oxygen, such as SnO 2 .
  • the antistatic function layer preferably has a square resistance value of 20 to 1000 ohms / square. Provision may be made for supplying current in order to polarize it (supply voltages for example between 5 and 100 V). This controlled polarization makes it possible in particular to combat the deposit of dust of size on the order of a millimeter capable of being deposited on the coating, in particular dry adherent dust only by electrostatic effect: by abruptly reversing the polarization of the layer, we "eject" This dust.
  • the thin layer with an optical function can be chosen in order to reduce the light reflection and / or make the color in reflection of the substrate more neutral.
  • this thin layer has an index of refraction close to the square root of the product of -, squares of the indices of refraction of the two materials which surround it, that is ie the substrate and the coating according to the invention.
  • the thin layer with an optical function is advantageously absorbent in the yellow.
  • the thin layer with an alkali barrier function can be chosen in particular based on silicon oxide, nitride, oxynitride or oxycarbide, in aluminum oxide containing fluorine AI 2 O: F, or also in nitride. aluminum.
  • the substrate is made of glass, because the migration of sodium ions into the coating according to the invention can, under certain conditions, alter its photocatalytic properties.
  • the nature of the substrate or of the sub-layer also has an additional advantage: it can promote the crystallization of the photocatalytic layer which is deposited, in particular in the case of CVD deposition.
  • a crystallized SnO 2 : F sublayer promotes the growth of Ti0 2 in predominantly rutile form, in particular for deposition temperatures of the order of 400 ° to 500 ° C.
  • the surface of a soda-lime glass or a silicon oxycarbide sublayer rather induces anatase growth, in particular for deposition temperatures of the order of 400 ° to 600 ° C.
  • All of these optional thin layers can, in known manner, be deposited by vacuum techniques of the sputtering type, in particular assisted by magnetic field (magnetron) or by other techniques of the thermal decomposition type such as pyrolysis in solid, liquid or gas phase. .
  • each of the pre-mentioned layers can combine several functions, but they can also be superimposed.
  • the sublayer barrier to the migration of alkalis is directly in contact with the glass, and itself directly covered with the thin layer with an optical function, which in turn is connected to the coating of the invention via of the layer with antistatic and / or thermal function.
  • the subject of the invention is also: - anti-fouling and / or hydrophilic (anti-fog) glazing, monolithic, multiple of the double-glazing or laminated type incorporating the substrate described above; the application of this substrate to the manufacture of self-cleaning, hydrophilic and / or anti-fouling glazing, of the organic and / or mineral fouling type, in particular glazing for the building of the double glazing type, glazing for vehicles of the barrier type -brise, rear or side glasses of automobile, train, plane, water transport vehicle, or utility glazing such as aquarium glasses, display cases, greenhouse, verandas, interior furnishings such as table, tablet, step stair, walls of all positions, possibly with surface irregularities, in particular printed matter, textures, satin, sanded, or even lacquered, varnish, ophthalmic glass, glazing of street furniture, mirrors, television, telephone or similar screens, glazing with controlled absorption electronically, lamp covers of the flat lamp type, tunnel lamp, or any architectural material of the facade, cladding, roofing material such as tiles,
  • a sputtering assisted by magnetic field is implemented with the following characteristics: - Pressure 2 ⁇ bar - Gas 15 sccm Ar, 12 sccm O 2 - Power 2 kW - Target Si: Al (8% by weight) 50 cm x 15 cm
  • On cut samples of 30 cm x 30 cm of glass + 150nm Si0 2 into smaller ones of 10 cm x 15 cm which are coated with a layer of TiO 2 of 100 nm by sputtering assisted by magnetic field with the following characteristics: - Pressure 24 ⁇ bar - Gas 47 sccm Ar, 5 sccm O 2 - Power 1 kW - Metal target: Ti at 99.96% 20 cm x 9 cm
  • a layer of TiO 2 is formed containing various proportions of Nb 2 Os by gluing one or more Nb
  • the photocatalytic activity of the different samples is evaluated under low residual UV.
  • the samples are cut into 2.5 cm x 2.5 cm.
  • a solution of 0.1 g of stearic acid in 10 ml of ethanol is prepared, and the mixture is stirred for 40 minutes.
  • the sample is cleaned with UV - ozone for 40 minutes.
  • 60 ⁇ l of stearic acid solution are deposited by spin coating on each sample.
  • the amount of stearic acid is evaluated by FTIR analysis initially, then after two hours of illumination by a fluorescent lamp essentially delivering visible light (low residual UVA of 1.4 W / m 2 ). The proportion of stearic acid degraded by the layer is thus deduced therefrom.
  • a proportion of degraded stearic acid of 15% is measured for a layer of pure TiO 2 , and this proportion reaches a maximum of 18% for a proportion of atom of Nb divided by the sum of atoms of Nb and Ti, in%, of 2.6 atomic%.
  • This result shows the increase in photocatalytic activity under visible light of TiO2 by the intimate association of Nb 2 O 5 .

Abstract

L’invention concerne un substrat à revêtement de résistance mécanique et durabilité en permettant la manipulation par un utilisateur, caractérisé en ce que le revêtement comprend en association intime un premier composé photocatalytique et un second composé présentant un saut d'énergie entre le niveau supérieur de sa bande de valence et le niveau inférieur de sa bande de conduction correspondant à une longueur d'onde dans le domaine du visible ; un vitrage comprenant ce substrat ; les applications du substrat ; ses procédés d'obtention.

Description

SUBSTRAT PHOTOCATALYTIQUE ACTIF SOUS LUMIERE VISIBLE La présente invention est relative aux substrats auto-nettoyants, par l'activité photocatalytique d'agents appropriés les constituant. Ainsi est-il connu de EP 850204, un revêtement comprenant du dioxyde de titane cristallisé sous forme anatase et/ou rutile qui, en concentrations ou épaisseurs suffisantes, présente la particularité de former des radicaux libres sous irradiation ultra-violette, et par conséquent d'initier l'oxydation radicalaire de tout dépôt huileux, gras, d'hydrocarbures. Ce revêtement est également hydrophile sous ultra-violets. Les salissures grasses sont donc dégradées en molécules plus courtes sous l'action du soleil, puis la pluie se répartit en un film uniforme garant de la meilleure homogénéisation possible des produits de la dégradation ainsi que des poussières minérales éventuelles. Les traces subsistant après l'élimination de ce film sont ainsi considérablement réduites, voire supprimées. De tels substrats en position verticale ou inclinée peuvent être qualifiés d'autonettoyants. TiO2 cristallisé anatase a également une activité photocatalytique faible dans la partie la plus énergétique du spectre visible, aussi recherche -t-on l'augmentation de cette activité et un déplacement vers les longueurs d'ondes plus grandes, en vue d'une utilisation en (quasi-) absence d'ultra-violets, notamment en intérieur de bâtiments, habitacles ou cabines de véhicules de transport ... En effet, les vitrages notamment laissent passer la partie visible du rayonnement solaire, non les ultra-violets. D'autre part, l'activité photocatalytique sous illumination visible est aussi d'un grand intérêt en extérieur, l'énergie du spectre solaire étant plus importante dans le visible que dans l'ultraviolet. US 2003/144140 décrit à cet effet le contrôle de la recombinaison des paires électron-trous à la jonction d'un composé photocatalytique sous ultraviolets tel que TiO2 et d'un oxyde mixte tel que Ce2Zr2Oa, photocatalytique sous lumière visible. Cependant il s'agit exclusivement de techniques de préparation de poudres, sans indication d'une possibilité d'extrapolation à un revêtement en film. US 2003/232186 décrit également le mélange en poudre d'un composé photocatalytique actif sous ultra-violet et d'un composé photocatalytique actif dans le visible. Ce dernier consiste en TiO2 rutile et/ou anatase dont certains atomes sont substitués par des atomes d'azote. L'obtention de revêtements en films selon ce principe n'est pas décrite. WO 02/92879 décrit un revêtement en couche mince sur substrat notamment verrier, et constitué de particules de TiO2 anatase dont l'activité photocatalytique sous ultra-violets est augmentée par le fait que ces particules sont dans un liant comprenant un oxyde métallique semi-conducteur tel que SnO2 : F. Il n'est pas question d'activité photocatalytique sous excitation par lumière visible. La présente invention a donc pour but la mise à disposition d'un matériau à activité anti-salissure et/ou hydrophile exploitable lorsqu'il reçoit une lumière visible exclusivement, apte qui plus est à constituer un revêtement de résistance mécanique élevée sur divers substrats, sensiblement plans, fibreux ... A cet effet, l'invention a pour objet un substrat revêtu d'un film de résistance mécanique et durabilité en permettant la manipulation par un utilisateur, caractérisé en ce que le film comprend en association intime un premier composé photocatalytique et un second composé présentant un saut d'énergie entre le niveau supérieur de sa bande de valence et le niveau inférieur de sa bande de conduction correspondant à une longueur d'onde dans le domaine visible. Le substrat de l'invention est un verre, une céramique, vitrocéramique, un métal (acier, inox), un matériau de construction (paroi intérieure éventuellement enduite/peinte ...), une matière minérale, du bois, une matière plastique. Il peut consister en une surface plane ou courbée, en fibres associées de toutes manières connues (tissu ...), telles que fibres de verre pour l'isolation thermique et acoustique dans un liant, ou pour le renforcement, fibres naturelles et synthétiques. Au sens de l'invention, ledit premier composé photocatalytique a généralement une énergie minimale d'activation dans un domaine plus énergétique que la lumière visible ; c'est le cas de ZrO . KtaO3, Nb2O5 , SnO2. Bien que cette énergie minimale, pour TiO2, soit située dans la partie la plus énergétique du spectre visible, il doit être précisé que l'activité photocatalytique de TiO2 sous lumière visible exclusivement est très faible, et beaucoup plus importante et utilisable pour une fonctionnalité anti -salissure, sous ultra-violets. Néanmoins, le dioxyde de titane, cristallisé notamment au moins en partie sous forme anatase, connu pour la constitution de revêtements durables et résistants à l'abrasion sur des substrats transparents pour lesquels une haute qualité optique est requise, est bien entendu au cœur de l'invention. En effet, par l'association dudit second composé bien choisi, l'activité photocatalytique de TiO2 dans le visible est accrue et devient utilisable. D'autre part, dans le cadre de l'invention, ne sont pas exclus les cas où ledit premier composé photocatalytique aurait une énergie minimale d'activation dans un domaine moins énergétique que la lumière visible, comme par exemple Si. De manière connue, l'aptitude inhérente au composé photocatalytique à initier des oxydations radicalaires résulte notamment de ses caractéristiques de durée de vie des paires électrons-trous, de quantité de ces paires générées, de diffusion de celles-ci ; au contraire, l'insuffisance dans certaines de ces caractéristiques se traduit par une fonctionnalité anti-salissure et/ou hydrophile plus faible à quasi-nulle, pouvant justifier d'exclure le composé de certaines applications requérant une activité photocatalytique élevée. Pour sa part, ledit second composé pris isolément, bien que générateur de paires électrons-trous sous lumière visible, ne présentera pas nécessairement, en général, une durabilité, quantité ou diffusion de ces paires permettant de le qualifier de composé photocatalytique. Cependant, associé audit premier composé photocatalytique, les inventeurs ont établi qu'il pouvait le rendre photocatalytiquement actif - ou tout au moins en accroître l'activité photocatalytique - sous lumière visible par déplacement des électrons, respectivement trous générés dans ledit second composé sur la bande de conduction, respectivement de valence du premier composé photocatalytique. Même si, dans un premier cas, le saut d'énergie entre le niveau supérieur de la bande de valence et le niveau inférieur de la bande de conduction du second composé est inférieur à l'énergie d'excitation du premier composé photocatalytique requise pour en obtenir l'activité maximale, le premier composé photocatalytique acquiert une activité qu'il n'avait pas ou peu sous lumière visible. Dans le second cas, le saut d'énergie entre le niveau supérieur de la bande de valence et le niveau inférieur de la bande de conduction du second composé est au contraire supérieur ou égal à l'énergie d'excitation du premier composé photocatalytique requise pour en obtenir l'activité maximale, et celui-ci présente une activité photocatalytique encore accrue sous lumière visible. De préférence, ledit saut d'énergie du second composé est compris entre 1 ,55 eV et 3,26 eV. En effet, l'énergie étant reliée de manière connue à la longueur d'ondes par l'équation 1240 E. _ = •
les valeurs précitées correspondent aux longueurs d'ondes extrêmes du spectre visible, c'est-à-dire 800 et 380 nm. Le second composé peut ainsi être choisi parmi GaP, CdS, KTao.77Nbo.23O3, CdSe, SrTiO3, TiO2, ZnO, Fe2O3. WO3l Nb2O5. V2O5, Eu2O3. Dans une réalisation préférée, le substrat est transparent, et sa fonctionnalité anti-salissure/hydrophile est de nature à en maintenir une transparence et qualité optique initiales élevées sous lumière visible exclusivement. Les pollutions organiques sont alors dégradées en plus petites molécules moins adhérentes et moins grasses, plus aisément eliminables, notamment par de l'eau sous forme d'un film eu égard à la propriété hydrophile du revêtement. Il peut être envisagé d'associer un moyen d'aspersion plus au moins régulière. En l'absence d'eau, les produits de dégradation des salissures organiques peuvent être enlevés avec un chiffon, aussi facilement que des poussières minérales ; un agent chimiquement actif tel que détergent est superflu. Par substrat transparent, on entend notamment une matière plastique telle que polycarbonate, polyméthacrylate de méthyle, polypropylène, polyuréthane, polyvinylbutyral, poly(téréphtalate d'éthylène), poly(tétéphtalate de butylène), résine ionomère telle que copolymère éthylène/acide (néth)acrylique neutralisé par une polyamine, copolymère cyclooléfinique tel qu'éthylène/norbornène ou éthylène/cyclopentadiène, copolymère polycarbonate/polyester, copolymère éthylène/acétate de vinyle et similaires, seuls ou en mélanges. Selon une variante avantageuse, le substrat transparent est en verre dont au moins une partie superficielle orientée vers ledit revêtement est désalcalinisée. En effet les alcalins contenus dans le verre migrent en surface sous l'effet d'un échauffement notamment, et affectent l'activité photocatalytique du revêtement. Une désalcalinisation consiste en ce qu'au moins dans une zone de sa surface orientée vers ledit revêtement, le substrat ne comporte pas d'oxydes alcalins et alcalino-terreux en proportion totale excédant 15 % en poids, ni d'oxyde de sodium en proportion excédant 10 % en poids. Du verre silicosodocalcique ainsi désalcalinisé est obtenu par des, traitements mettant en œuvre des techniques variées, notamment électriques telles que décharge couronne, comme décrit dans les documents WO 94/07806-A1 et WO 94/07807-A1. Selon une autre variante avantageuse, ledit revêtement a une structure (méso)poreuse, conformément à l'enseignement de WO 03/087002-A1 en particulier. Une telle structure se distingue par une surface de contact importante et un réseau de pores communiquant les uns avec les autres, et finalement par une activité photocatalytique particulièrement forte. Ainsi pour un revêtement qui ne serait constitué que de TiO2, une porosité de 70 à 90 % définie par le pourcentage de la densité théorique du TiO2, qui est d'environ 3,8, est favorable. Pour amplifier l'effet photocatalytique de l'oxyde de titane du revêtement selon l'invention, on peut tout d'abord augmenter la bande d'absorption du revêtement, en incorporant au revêtement d'autres particules notamment métalliques et à base de cadmium, d'étain, du tungstène, de zinc, de cérium, ou de zirconium. On peut aussi augmenter le nombre de porteurs de charge par dopage du réseau cristallin de l'oxyde de titane, en y insérant au moins un des éléments métalliques suivants : niobium, tantale, fer, bismuth, cobalt, nickel, cuivre, ruthénium, cérium, molybdène. Ce dopage peut aussi se faire par un dopage de surface seulement de l'oxyde de titane ou de l'ensemble du revêtement, dopage de surface réalisé en recouvrant au moins une partie du revêtement d'une couche d'oxydes ou de sels métalliques, le métal étant choisi parmi le fer, le cuivre, le ruthénium, le cérium, le molybdène, le vanadium et le bismuth. Enfin, on peut amplifier le phénomène photocatalytique en augmentant le rendement et/ou la cinétique des réactions photocatalytiques, en recouvrant l'oxyde de titane, ou au moins une partie du revêtement qui l'incorpore, par un métal noble sous forme de couche mince du type platine, rhodium, argent, palladium. Un tel catalyseur, par exemple déposé par une technique sous vide, permet en fait d'augmenter le nombre et/ou la durée de vie des entités radicalaires créées par l'oxyde de titane, et ainsi de favoriser les réactions en chaîne conduisant à la dégradation de produits organiques. L'épaisseur du revêtement selon l'invention est variable, elle est de préférence comprise entre 2 nm et 1 μm, notamment entre 5 et 100 nm, n'excédant pas de préférence 80 nm. Cette épaisseur est adaptée en fonction de l'application envisagée, car l'activité photocatalytique croît à épaisseur constante. De plus, une épaisseur accrue peut être choisie pour limiter d'éventuels alcalins d'un verre sous-jacent dans la profondeur du revêtement, et éviter qu'ils n'en atteignent la partie la plus superficielle active. Le revêtement peut être choisi de surface plus ou moins lisse. Une certaine rugosité peut en effet être avantageuse : - elle permet de développer une surface photocatalytique active plus grande et donc elle induit une plus grande activité photocatalytique, - elle a une influence directe sur le mouillage. La rugosité exalte en effet les propriétés de mouillage. Une surface lisse hydrophile sera encore plus hydrophile une fois rendue rugueuse. On comprend par « rugosité », ici, aussi bien la rugosité de surface, que la rugosité induite par une porosité de la couche dans au moins une partie de son épaisseur. Les effets précédents seront d'autant plus marqués que le revêtement est poreux et rugueux, d'où un effet superhydrophile des surfaces photoréactives rugueuses. Cependant, trop prononcée, la rugosité peut être pénalisante en favorisant l'incrustation, l'accumulation des salissures et/ou en faisant apparaître un niveau de flou inacceptable optiquement. Il s'est ainsi avéré intéressant d'adapter le mode de dépôt des revêtements à base de TiO2 ou autres de manière à ce qu'ils présentent une rugosité d'environ 0,2 à 20 nm, cette rugosité étant évaluée par microscope à force atomique, par mesure de la valeur de l'écart quadratique moyen (dit « Root Mean Square » ou RMS en anglais) sur une surface de 1 micromètre carré. Avec de telles rugosités, les revêtements présentent un caractère hydrophile se traduisant par un angle de contact à l'eau pouvant être inférieur à 1°. Entre le substrat et le revêtement selon l'invention, on peut disposer une ou plusieurs autres couches à fonction antistatique, thermique, optique, ou favorisant la croissance cristalline de TiO2 sous forme anatase ou rutile en outre des couches selon l'invention faisant barrière à la migration de certains éléments provenant du substrat, notamment faisant barrière aux alcalins et tout particulièrement aux ions sodium quand le substrat est en verre. On peut aussi envisager un empilement de couches « anti-reflets » alternant des couches minces à haut et bas indices, le revêtement selon l'invention constituant la dernière couche de l'empilement. Dans ce cas, il est préférable que le revêtement soit d'indice de réfraction relativement peu élevé, ce qui est le cas quand il est constitué d'un oxyde mixte de titane et de silicium. La couche à fonction antistatique et/ou thermique (chauffante en la munissant d'amenées de courant, bas-émissive, anti-solaire, ...) peut notamment être choisie à base d'un matériau conducteur du type métal, comme l'argent, ou du type oxyde métallique dopé comme l'oxyde d'indium dopé à l'étain ITO, l'oxyde d'étain dopé avec un halogène du type fluor SnO2:F, ou avec de l'antimoine SnO2:Sb, ou de l'oxyde de zinc dopé à l'indium ZnO:ln, au fluor ZnO.F, à l'aluminium ZnO:AI ou à l'étain ZnO.Sn. Il peut aussi s'agir d'oxydes métalliques sous-stoechiométriques en oxygène, comme SnO2. ou Zn02. avec x < 2. La couche à fonction antistatique a de préférence une valeur de résistance carrée de 20 à 1000 ohms/carré. On peut prévoir de la munir d'amenées de courant afin de la polariser (tensions d'alimentation par exemple comprises entre 5 et 100 V). Cette polarisation contrôlée permet notamment de lutter contre le dépôt de poussières de taille de l'ordre du millimètre susceptibles de se déposer sur le revêtement, notamment des poussières sèches adhérentes que par effet électrostatique : en inversant brutalement la polarisation de la couche, on « éjecte » ces poussières. La couche mince à fonction optique peut être choisie afin de diminuer la réflexion lumineuse et/ou rendre plus neutre la couleur en réflexion du substrat. Elle présente dans ce cas, de préférence, un indice de réfraction intermédiaire entre celui du revêtement et celui du substrat et une épaisseur optique appropriée, et peut être constituée d'un oxyde ou d'un mélange d'oxydes du type oxyde d'aluminium AI2O3, oxyde d'étain SnO2, oxyde d'indium ln2O3, oxycarbure ou oxynitrure de silicium. Pour obtenir une atténuation maximale de la couleur en réflexion, il est préférable que cette couche mince présente un indice de réfraction proche de la racine carrée du produit des -, carrés des indices de réfraction des deux matériaux qui l'encadrent, c'est-à-dire le substrat et le revêtement selon l'invention. Parallèlement, il est avantageux de choisir son épaisseur optique (c'est-à-dire le produit de son épaisseur géométrique et de son indice de réfraction) voisine de lambda/4, lambda étant approximativement la longueur d'onde moyenne dans le visible, notamment d'environ 500 à 500 nm. L'association dudit second composé présentant un saut d'énergie correspondant à une longueur d'onde dans le visible peut induire une certaine coloration du revêtement, par exemple jaune. Dans ce cas la couche mince à fonction optique est avantageusement absorbante dans le jaune. La couche mince à fonction de barrière aux alcalins peut être notamment choisie à base d'oxyde, de nitrure, d'oxynitrure ou d'oxycarbure de silicium, en oxyde d'aluminium contenant du fluor AI2O :F, ou encore en nitrure d'aluminium. En effet, elle s'est avérée utile quand le substrat est en verre, car la migration d'ions sodium dans le revêtement selon l'invention peut, dans certaines conditions, en altérer les propriétés photocatalytiques. La nature du substrat ou de la sous-couche a en outre un intérêt supplémentaire : elle peut favoriser la cristallisation de la couche photocatalytique que l'on dépose, notamment dans le cas du dépôt CVD. Ainsi, lors de dépôt par CVD de TiO2, une sous-couche de SnO2:F cristallisée favorise la croissance de Ti02 sous forme majoritairement rutile, notamment pour des températures de dépôt de l'ordre de 400° à 500°C, alors que la surface d'un verre sodo-calcique ou d'une sous-couche d'oxycarbure de silicium induit plutôt une croissance anatase, notamment pour des températures de dépôt de l'ordre de 400° à 600°C. Toutes ces couches minces optionnelles peuvent de manière connue, être déposées par des techniques sous vide du type pulvérisation cathodique notamment assistée par champ magnétique (magnétron) ou par d'autres techniques du type décomposition thermique telles que les pyrolyses en phase solide, liquide ou gazeuse. Chacune des couches pré-mentionnées peut cumuler plusieurs fonctions, mais on peut aussi les superposer. Avantageusement, la sous-couche barrière à la migration des alcalins est directement en contact avec le verre, et elle-même directement recouverte de la couche mince à fonction optique, qui est à son tour reliée au revêtement de l'invention par l'intermédiaire de la couche à fonction antistatique et/ou thermique. L'invention a également pour objets : - un vitrage anti-salissures et/ou hydrophile (anti-buée), monolithique, multiple du type double-vitrage ou feuilleté incorporant le substrat décrit précédemment ; - l'application de ce substrat à la fabrication de vitrages autonettoyants, hydrophiles et/ou anti-salissures, du type salissures organiques et/ou minérales, notamment des vitrages pour le bâtiment du type double-vitrage, des vitrages pour véhicules du type pare-brise, lunettes arrière ou latéraux d'automobile, train, avion, véhicule de transport aquatique, ou vitrages utilitaires comme des verres d'aquarium, de vitrines, de serre, de vérandas, d'ameublement intérieur tels que table, tablette, marche d'escalier, parois de toutes positions, éventuellement à irrégularités de surface, notamment imprimés, textures, satinés, sablés, ou encore laqués, vernis, verre ophtalmique, vitrages de mobilier urbain, miroirs, écrans de télévision, de téléphone ou similaire, vitrages à absorption variable commandée électroniquement, couvercles de lampes du type lampe plane, lampe de tunnel, ou tout matériau d'architecture du type matériau de façade, de bardage, de toiture tels que tuiles, enduit. D'autres objets de l'invention sont constitués par des procédés d'obtention du substrat décrit ci-dessus, dans lesquels on dépose ledit revêtement soit par pyrolyse en phase liquide, notamment à partir d'une solution comprenant au moins un précurseur dudit premier composé photocatalytique, notamment un précurseur organo- métallique de titane du type chélate de titane et/ou alcoolate de titane, et un précurseur dudit second composé ; soit par une technique de sol-gel, avec un mode de dépôt du type trempé ou dip-coating, cell-coating, spray-coati ng, ou enduction laminaire, à partir d'une solution comprenant au moins ledit premier ,, composé photocatalytique et ledit second composé et/ou un précurseur dudit premier composé photocatalytique, notamment un précurseur organo-métallique de titane du type alcoolate de titane, et un précurseur dudit second composé ; soit par pyrolyse en phase vapeur, CVD, à partir d'au moins un précurseur dudit premier composé photocatalytique, notamment un précurseur de titane du type halogène ou organo-métallique, et un précurseur dudit second composé ; soit par une technique sous pression réduite telle qu'une pulvérisation cathodique réactive ou non, notamment assistée par champ magnétique (magnétron).
Exemple : On revêt des plaques de verre flotté sodocalcique de 30 cm x 30 cm x 2,2 mm d'ne couche de SiO2 de 150 nm d'épaisseur. On met en œuvre une pulvérisation cathodique assistée par champ magnétique de caractéristiques suivantes : - Pression 2 μbar - Gaz 15 sccm Ar, 12 sccm O2 - Puissance 2 kW - Cible Si : Al (8% en poids) 50 cm x 15 cm On découpe les échantillons de 30 cm x 30 cm de verre + 150nm Si02 en plus petits de 10 cm x 15 cm que l'on revêt d'une couche de TiO2 de 100 nm par pulvérisation cathodique assistée par champ magnétique de caractéristiques suivantes : - Pression 24 μbar - Gaz 47 sccm Ar, 5 sccm O2 - Puissance 1 kW - Cible métallique : Ti à 99,96% 20 cm x 9 cm Au lieu d'une couche de TiO2, on forme une couche de TiO2 contenant diverses proportions de Nb2Os en collant une ou plusieurs plaques de Nb de 2 cm x 1 cm x 1 mm sur la cible métallique Ti, toutes les conditions de réalisation du procédé magnétron étant égales par ailleurs. On évalue l'activité photocatalytique des différents échantillons sous faible UV résiduel. Les échantillons sont découpés en 2,5 cm x 2,5 cm. On prépare une solution de 0,1 g d'acide stéarique dans 10 ml d'éthanol, on agite 40 minutes. On nettoie l'échantillon à l'UV - ozone pendant 40 minutes. On dépose par spin coating 60 μl de solution d'acide stéarique sur chaque échantillon. On évalue la quantité d'acide stéarique par analyse FTIR initialement, puis après deux heures d'illumination par une lampe fluorescente délivrant essentiellement une lumière visible (faible UVA résiduel de 1 ,4 W/m2). On en déduit ainsi la proportion d'acide stéarique dégradé par la couche. On mesure une proportion d'acide stéarique dégradé de 15% pour une couche de TiO2 pur, et cette proportion atteint un maximum à 18% pour une proportion d'atome de Nb divisé par la somme des atomes de Nb et de Ti, en %, de 2,6% atomique. Ce résultat montre l'accroissement de l'activité photocatalytique sous lumière visible du TiO2 par l'association intime de Nb2O5.

Claims

REVENDICATIONS
1. Substrat à revêtement de résistance mécanique et durabilité en permettant la manipulation par un utilisateur, caractérisé en ce que le revêtement comprend en association intime un premier composé photocatalytique et un second composé présentant un saut d'énergie entre le niveau supérieur de sa bande de valence et le niveau inférieur de sa bande de conduction correspondant à une longueur d'onde dans le domaine du visible.
2. Substrat selon la revendication 1, caractérisé en ce que ledit saut d'énergie du second composé est compris entre 1 ,55 eV et 3,26 eV.
3. Substrat selon la revendication 2, caractérisé en ce que ledit second composé est choisi parmi GaP, CdS, KTao,77Nbo,23θ3, CdSe, SrTiθ3, TiO2l ZnO, Fe2O3, WO3l Nb2O5, V2O5, Eu2O3.
4. Substrat selon l'une des revendications 1 à 3, caractérisé en ce qu'il est transparent, et que sa fonctionnalité anti-salissure/hydrophile est de nature à en maintenir une transparence et qualité optique initiales élevées sous lumière visible exclusivement.
5. Substrat selon la revendication 4, caractérisé en ce qu'il est en verre dont au moins une partie superficielle orientée vers ledit revêtement est désalcalanisée.
6. Substrat selon l'une des revendications précédentes, caractérisé en ce que ledit revêtement a une structure mésoporeuse.
7. Substrat selon l'une des revendications précédentes, caractérisé en ce qu'audit revêtement sont incorporées des particules notamment métalliques et à base de cadmium, étain, tungstène, zinc, cérium ou de zirconium.
8. Substrat selon l'une des revendications 1 à 6, caractérisé en ce qu'est inséré dans le réseau cristallin dudit premier composé photocatalytique au moins un des éléments métalliques choisis parmi niobium, tantale, fer, bismuth, cobalt, nickel, cuivre, ruthénium, cérium, molybdène.
9. Substrat selon l'une des revendications 1 à 6, caractérisé en ce qu'une partie au moins dudit revêtement est recouverte d'une couche d'oxydes ou de sels métalliques, le métal étant choisi parmi le fer, le cuivre, le ruthénium, le cérium, le molybdène, le vanadium et le bismuth.
10. Substrat selon l'une des revendications 1 à 6, caractérisé en ce que ledit premier composé photocatalytique, ou au moins une partie dudit revêtement, est recouvert par un métal noble sous forme de couche mince du type platine, rhodium, argent, palladium.
11. Substrat selon l'une des revendications précédentes, caractérisé en ce que l'épaisseur dudit revêtement est comprise entre 2 nm et 1μm, notamment entre 5 nm et 100 nm, n'excédant pas de préférence 80 nm.
12. Substrat selon l'une des revendications précédentes, caractérisé en ce que la rugosité RMS du revêtement (3) est comprise entre 0,2 et 20 nm.
13. Substrat selon l'une des revendications précédentes, caractérisé en ce qu'est disposée sous ledit revêtement au moins une couche mince à fonction antistatique, thermique, optique, ou faisant barrière à la migration des alcalins provenant du substrat.
14. Substrat selon la revendication 13, caractérisé en ce que ladite couche mince à fonction antistatique, éventuellement à polarisation contrôlée, et/ou thermique et/ou optique est à base de matériau conducteur du type métal ou du type oxyde métallique dopé tel que ITO, SnO2:F, ZnO.ln, ZnO.F, ZnO:AI, ZnO:Sn ou oxyde métallique sous-stoechiométrique en oxygène comme Snθ2-x ou Znθ2-χ, avec x < 2.
15. Substrat selon la revendication 13, caractérisé en ce que ladite couche mince à fonction optique est à base d'un oxyde ou d'un mélange d'oxydes dont l'indice de réfraction est intermédiaire entre celui du revêtement et celui du substrat, notamment choisi(s) parmi les oxydes suivants : AI2O3, SnO2, ln2O3l oxycarbure ou oxynitrure de silicium.
16. Substrat selon la revendication 13, caractérisé en ce que ladite couche mince à fonction de barrière aux alcalins est à base d'oxyde, de nitrure, d'oxynitrure ou d'oxycarbure de silicium, d'AI2O3:F ou de nitrure d'aluminium.
17. Substrat selon la revendication 13, caractérisé en ce que ledit revêtement constitue la dernière couche d'un empilement de couches anti- reflets.
18. Vitrage anti-salissures et/ou hydrophile, monolithique, multiple du type double-vitrage ou feuilleté incorporant le substrat selon l'une des revendications précédentes.
19. Application du substrat selon l'une des revendications 1 à 17 à la fabrication de vitrages auto-nettoyants, hydrophiles et/ou anti-salissures, du type salissures organiques et/ou minérales, notamment des vitrages pour le bâtiment du type double-vitrage, des vitrages pour véhicules du type pare-brise, lunettes arrière ou latéraux d'automobile, train, avion, véhicule de transport aquatique, ou vitrages utilitaires comme des verres d'aquarium, de vitrines, de serre, de vérandas, d'ameublement intérieur tels que table, tablette, marche d'escalier, parois de toutes positions, éventuellement à irrégularités de surface, notamment imprimés, textures, satinés, sablés, ou encore laqués, vernis, verre ophtalmique, vitrages de mobilier urbain, miroirs, écrans de télévision, de téléphone ou similaire, vitrages à absorption variable commandée électroniquement, couvercles de lampes du type lampe plane, lampe de tunnel, ou tout matériau d'architecture du type matériau de façade, de bardage, de toiture tels que tuiles, enduit.
20. Procédé d'obtention du substrat selon l'une des revendications 1 à 17, caractérisé en ce qu'on dépose ledit revêtement par pyrolyse liquide, notamment à partir d'une solution comprenant au moins un précurseur dudit premier composé photocatalytique, notamment un précurseur organo- métallique de titane du type chélate de titane et/ou alcoolate de titane, et un précurseur dudit second composé.
21. Procédé d'obtention du substrat selon l'une des revendications 1 à 17, caractérisé en ce qu'on dépose ledit revêtement par une technique de sol-gel, avec un mode de dépôt du type trempé ou dip-coating, cell-coating, spray-coating, ou enduction laminaire, à partir d'une solution comprenant au moins ledit premier composé photocatalytique et ledit second composé et/ou un précurseur dudit premier composé photocatalytique, notamment un précurseur organo-métallique de titane du type alcoolate de titane, et un précurseur dudit second composé.
22. Procédé d'obtention du substrat selon l'une des revendications 1 à 17, caractérisé en ce qu'on dépose ledit revêtement par pyrolyse en phase vapeur, CVD, à partir d'au moins un précurseur dudit premier composé photocatalytique, notamment un précurseur de titane du type halogène ou organo-métallique, et un précurseur dudit second composé.
23. Procédé d'obtention du substrat selon l'une des revendications 1 à 17, caractérisé en ce qu'on dépose ledit revêtement par une technique sous pression réduite telle qu'une pulvérisation cathodique réactive ou non, notamment assistée par champ magnétron.
EP05746932A 2004-04-13 2005-04-12 Substrat photocatalytique actif sous lumiere visible Withdrawn EP1737801A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0403824A FR2868792B1 (fr) 2004-04-13 2004-04-13 Substrat photocatalytique actif sous lumiere visible
PCT/FR2005/050229 WO2005102952A2 (fr) 2004-04-13 2005-04-12 Substrat photocatalytique actif sous lumiere visible

Publications (1)

Publication Number Publication Date
EP1737801A2 true EP1737801A2 (fr) 2007-01-03

Family

ID=34948417

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05746932A Withdrawn EP1737801A2 (fr) 2004-04-13 2005-04-12 Substrat photocatalytique actif sous lumiere visible

Country Status (6)

Country Link
US (1) US20080261056A1 (fr)
EP (1) EP1737801A2 (fr)
JP (1) JP2007532462A (fr)
CN (1) CN1968905A (fr)
FR (1) FR2868792B1 (fr)
WO (1) WO2005102952A2 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005003228T2 (de) 2004-07-12 2008-08-28 Cardinal Cg Co., Eden Prairie Wartungsarme beschichtungen
CA2648686C (fr) * 2006-04-11 2016-08-09 Cardinal Cg Company Revetements photocatalytiques dotes de proprietes ameliorees permettant un entretien minime
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
US7820309B2 (en) * 2007-09-14 2010-10-26 Cardinal Cg Company Low-maintenance coatings, and methods for producing low-maintenance coatings
CN101595072B (zh) * 2007-09-14 2013-05-08 卡迪奈尔镀膜玻璃公司 低维护涂布技术
FR2932796B1 (fr) * 2008-06-19 2011-01-21 Saint Gobain Verre ancien autonettoyant
FR2947816B1 (fr) * 2009-07-09 2011-07-22 Saint Gobain Procede de depot par pulverisation cathodique, produit obtenu et cible de pulverisation
FR2950878B1 (fr) 2009-10-01 2011-10-21 Saint Gobain Procede de depot de couche mince
JP5512223B2 (ja) * 2009-10-19 2014-06-04 住友化学株式会社 貴金属担持光触媒体粒子分散液、および光触媒体機能製品
US10537870B2 (en) * 2012-02-01 2020-01-21 Torrey Hills Technologies, Llc Methane conversion device
EP2898951A4 (fr) * 2012-09-21 2016-05-25 Toto Ltd Photocatalyseur composite et matière de photocatalyseur
CN103055904B (zh) * 2013-01-21 2014-10-01 武汉理工大学 高效稳定Fe(III)/AgBr复合可见光光催化剂的制备方法
KR101519563B1 (ko) * 2013-11-27 2015-05-13 한국과학기술연구원 가시광 감응성 바나디아-티타니아 광촉매의 제조방법
WO2017158238A1 (fr) * 2016-03-16 2017-09-21 Id Creations Oy Revêtement pour une adhésion améliorée aux tissus
EP3541762B1 (fr) 2016-11-17 2022-03-02 Cardinal CG Company Technologie de revêtement à dissipation statique
CN106630670B (zh) * 2017-02-07 2022-09-09 肇庆学院 一种有序双层膜微球壳结构玻璃及其制造方法
CN108190996B (zh) * 2018-01-03 2020-11-17 京东方科技集团股份有限公司 一种降解模组及清洗设备
CN109126789B (zh) * 2018-09-28 2021-01-08 辽宁大学 一种光催化制氢z型光催化剂及其制备方法和应用
CN111849219A (zh) * 2019-09-23 2020-10-30 法国圣戈班玻璃公司 一种涂料分散液,其制备方法、由其获得的产品
CN113402300B (zh) * 2021-07-16 2022-12-27 重庆大学 一种具有高灭菌活性的Ag/BiVO4光催化瓷砖及其制备方法
CN113429222B (zh) * 2021-07-16 2023-02-21 重庆大学 一种Ag/TiO2光催化瓷砖及其制备方法
JP2023102990A (ja) * 2022-01-13 2023-07-26 日本板硝子株式会社 イージークリーンコーティング付きガラス物品
CN117210155A (zh) * 2023-09-15 2023-12-12 精一门(常州)光学薄膜有限公司 一种建筑自清洁抗污节能膜及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595813A (en) * 1992-09-22 1997-01-21 Takenaka Corporation Architectural material using metal oxide exhibiting photocatalytic activity
AU718733B2 (en) * 1995-03-20 2000-04-20 Toto Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof
FR2738836B1 (fr) * 1995-09-15 1998-07-17 Rhone Poulenc Chimie Substrat a proprietes photocatalytiques a base de dioxyde de titane et dispersions organiques a base de dioxyde de titane
US6037289A (en) * 1995-09-15 2000-03-14 Rhodia Chimie Titanium dioxide-based photocatalytic coating substrate, and titanium dioxide-based organic dispersions
FR2738813B1 (fr) * 1995-09-15 1997-10-17 Saint Gobain Vitrage Substrat a revetement photo-catalytique
WO1997023572A1 (fr) * 1995-12-22 1997-07-03 Toto Ltd. Procede photocatalytique pour rendre une surface hydrophile et materiau composite ayant une surface rendue hydrophile par un processus photocatalytique
JP3266535B2 (ja) * 1997-02-13 2002-03-18 東陶機器株式会社 光触媒性親水性部材及びその製造方法、並びに光触媒性親水性コ−ティング組成物
KR20010031599A (ko) * 1998-09-30 2001-04-16 마쯔무라 미노루 광촉매 물품과 방담방오 물품 및 방담방오 물품의 제조방법
JP2001025666A (ja) * 1999-07-14 2001-01-30 Nippon Sheet Glass Co Ltd 積層体およびその製造方法
JP3622585B2 (ja) * 1999-08-05 2005-02-23 日本板硝子株式会社 光触媒活性を有する物品
JP2001240960A (ja) * 1999-12-21 2001-09-04 Nippon Sheet Glass Co Ltd 光触媒膜が被覆された物品、その物品の製造方法及びその膜を被覆するために用いるスパッタリングターゲット
WO2001068786A1 (fr) * 2000-03-13 2001-09-20 Toto Ltd. Element hydrophile et son procede de fabrication
JP2004500240A (ja) * 2000-03-22 2004-01-08 日本板硝子株式会社 光触媒膜付き基体およびその製造方法
FR2824846B1 (fr) * 2001-05-16 2004-04-02 Saint Gobain Substrat a revetement photocatalytique
CN1401085A (zh) * 2001-06-11 2003-03-05 株式会社村上开明堂 防雾元件及其形成方法
JP2004066218A (ja) * 2002-06-12 2004-03-04 Toshiba Lighting & Technology Corp 光触媒体
EP1713736B1 (fr) * 2003-12-22 2016-04-27 Cardinal CG Company Revetements photocatalytiques ayant un gradient et methodes d'obtention

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005102952A3 *

Also Published As

Publication number Publication date
JP2007532462A (ja) 2007-11-15
FR2868792B1 (fr) 2006-05-26
WO2005102952A2 (fr) 2005-11-03
US20080261056A1 (en) 2008-10-23
FR2868792A1 (fr) 2005-10-14
CN1968905A (zh) 2007-05-23
WO2005102952A3 (fr) 2006-08-24

Similar Documents

Publication Publication Date Title
EP1737801A2 (fr) Substrat photocatalytique actif sous lumiere visible
EP0850204B1 (fr) Substrat a revetement photocatalytique
EP1751072B1 (fr) Substrat a revetement photocatalytique
CA2806026C (fr) Vitrage multicouche
EP0648196B1 (fr) Vitrage muni d&#39;une couche fonctionnelle conductrice et/ou basse emissive
EP0544577B1 (fr) Produit à substrat en verre muni d&#39;une couche à basse émissivité
FR2857030A1 (fr) Procede de depot d&#39;oxyde de titane par source plasma
WO2007045805A2 (fr) Materiau anti-salissures et son procede d&#39;obtention
FR2891269A1 (fr) Substrat transparent muni d&#39;une electrode
WO2011006905A1 (fr) Materiau photocatalytique
WO2013038104A1 (fr) Materiau photocatalytique et vitrage ou cellule photovoltaique comprenant ce materiau
FR2738812A1 (fr) Substrat a revetement photocatalytique
LU88767A1 (fr) Vitrage de protection solaire et procédé de fabrication d&#39;un tel vitrage
FR2897746A1 (fr) Dispositif elelctroluminescent et utilisation d&#39;une couche electroconductrice transparente dans un dispositif electroluminescent
EP2675938A1 (fr) Procede d&#39;obtention d&#39;un materiau photocatalytique
KR20070018053A (ko) 가시광선 하에서 활성인 광촉매 기판
LU88606A1 (fr) Vitrage et procédé de fabrication d&#39;un tel vitrage
FR2897745A1 (fr) Dispositif electroluminescent et utilisation d&#39;une couche electroconductrice transparente dans un dispostif electroluminescent
FR2892408A1 (fr) Utilisation d&#39;un substrat anti-salissures
FR2766817A1 (fr) Substrat transparent muni d&#39;au moins une couche reflechissante et son procede d&#39;obtention

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20070226

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071128

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131101