WO2007045805A2 - Materiau anti-salissures et son procede d'obtention - Google Patents

Materiau anti-salissures et son procede d'obtention Download PDF

Info

Publication number
WO2007045805A2
WO2007045805A2 PCT/FR2006/051074 FR2006051074W WO2007045805A2 WO 2007045805 A2 WO2007045805 A2 WO 2007045805A2 FR 2006051074 W FR2006051074 W FR 2006051074W WO 2007045805 A2 WO2007045805 A2 WO 2007045805A2
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
layer
silicon oxide
substrate
hydrophilic
Prior art date
Application number
PCT/FR2006/051074
Other languages
English (en)
Other versions
WO2007045805A8 (fr
WO2007045805A3 (fr
Inventor
Bernard Nghiem
Georges Zagdoun
Elin Sondergard
Ronan Garrec
Eddy Royer
Andriy Kharchenko
Anne Lelarge
Etienne Barthel
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0553203A external-priority patent/FR2892408B1/fr
Priority claimed from FR0652877A external-priority patent/FR2903399B1/fr
Priority to US12/090,367 priority Critical patent/US7955687B2/en
Priority to UAA200807036A priority patent/UA96581C2/uk
Priority to BRPI0617646-1A priority patent/BRPI0617646A2/pt
Priority to AU2006303170A priority patent/AU2006303170B2/en
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to CA2626843A priority patent/CA2626843C/fr
Priority to JP2008536104A priority patent/JP5199102B2/ja
Priority to KR1020087007473A priority patent/KR101402175B1/ko
Priority to CN2006800387751A priority patent/CN101291887B/zh
Priority to EP06820330A priority patent/EP1940750A2/fr
Publication of WO2007045805A2 publication Critical patent/WO2007045805A2/fr
Publication of WO2007045805A3 publication Critical patent/WO2007045805A3/fr
Publication of WO2007045805A8 publication Critical patent/WO2007045805A8/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/477Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/75Hydrophilic and oleophilic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/91Coatings containing at least one layer having a composition gradient through its thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24562Interlaminar spaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/24992Density or compression of components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block

Definitions

  • the present invention relates to the field of materials, particularly glazing, antifouling or self-cleaning.
  • Titanium oxide is known to exhibit photocatalytic properties. In the presence of light, and in particular ultraviolet radiation of the UV-A type (whose wavelength is between 320 and 400 nm), titanium oxide has the particularity of catalyzing the radical degradation reactions of organic compounds. It is known from EP-A-850 204 and EP-A-816466 that titanium oxide also has extremely pronounced hydrophilic properties induced by the same type of radiation. This hydrophilicity, sometimes referred to as "super-hydrophilic" is characterized by a very low angle of contact with water, less than 5 °, or even 1 °. These two properties, photocatalysis on the one hand and super-hydrophilicity on the other hand, give materials containing titanium oxide properties of particular interest.
  • Materials, in particular of the ceramic, glass or glass-ceramic type, coated with a thin layer of titanium oxide have in fact antifouling or self-cleaning properties or even ease of cleaning.
  • a glazing covered with a layer of photocatalytic titanium oxide degrades under the action of sunlight organic soils that settle there. Mineral soils are partly prevented from being deposited and partly eliminated by the photo-induced super-hydrophilicity of titanium oxide. Mineral fouling, for some of them, is indeed caused to be deposited on the glazing in dissolved form in the raindrops, and precipitate during the evaporation of said drops.
  • the water laps and leaches the glazing instead of being deposited in the form of drops, which thus avoids the deposit of mineral soiling by this mechanism of deposition / evaporation of drops of water.
  • mineral soiling such as dust that settles without the aid of rain, for example under the action of the wind, they are simply eliminated by the runoff of rainwater.
  • the materials obtained thus allow the elimination of organic and mineral soils under the combined effect of solar radiation and water runoff, especially rain.
  • the invention therefore aims to overcome these disadvantages by providing a material preventing the deposit of mineral soils on its surface, so having a low dust, including in the absence of water runoff.
  • the invention also aims to provide a material capable of not getting dirty after several months of exposure in places protected from rain or geographical areas experiencing very rare precipitation.
  • substrates coated with a layer of titanium oxide, itself surmounted by a thin layer of another hydrophilic material, in particular of the type comprising silicon and oxygen presented totally unexpected the technical effect of preventing the deposit of mineral soils (so dust) on its surface in the absence of water runoff.
  • mineral soils sino dust
  • Some of these materials are known and described in several documents.
  • the application WO 2005/040056 describes for example a glazing unit covered with a layer of titanium oxide surmounted by a thin layer of aluminum doped silica with a covering power and 2 nm thick. The two layers are deposited by a sputtering process and then annealed together to impart significant photocatalytic activity to the titanium oxide.
  • the upper silica layer has the effect of improving the mechanical strength, in particular the abrasion, of the stack.
  • US Pat. No. 6,379,776 also describes a stack of layers on glass comprising in particular a layer of photocatalytic titanium oxide on which is disposed a monolayer of SiO x , x being 1 or 2. This latter layer is described as having the effect of avoiding the deposition of organic soils on the surface of the stack, but a possible effect on the deposition of mineral soils in the absence of water runoff is not disclosed.
  • This patent also discloses tests carried out outdoors and demonstrating a lack of soil deposition after 6 months of exposure, it being specified that the surface of the samples was subjected to rainwater runoff.
  • the subject of the invention is therefore the use of a material consisting of a substrate provided with a coating based on titanium oxide surmounted by a thin hydrophilic layer forming at least a part of the outer surface of said material and not being made of titanium oxide, as a material preventing the deposition of mineral soils on said outer surface in the absence of water runoff.
  • exital surface is understood in the sense of the present invention a surface in contact with the ambient air, the only surface likely to be soiled.
  • the materials used according to the invention thanks to their structural characteristics, do not become dusty (or little) thanks to a mechanism for reducing the coefficient of friction between the surface of the material and mineral soils, leading to an easier evacuation of these soils, or even true anti-adhesive properties.
  • This property of low dust is in any case totally independent of the known properties of photocatalysis and photo-induced hydrophilicity, as the following description will demonstrate.
  • Hydrophilic thin layer The hydrophilic thin layer acts in synergy with titanium oxide, since none of these layers alone produce the technical effect discovered.
  • the hydrophilic thin film should preferably have small thicknesses, thicknesses of less than 10 nm, or even 5 nm and in particular 1 to 2 nm being preferred.
  • the hydrophilic thin layer should not be made of titanium oxide. It may contain, advantageously in a content of less than 20%, or even 10% molar percentages. According to a preferred embodiment and to obtain a very low dust, it is however devoid or almost free of titanium oxide.
  • hydrophilic thin films used according to the invention lies in the high density of hydroxyl groups (OH) on their surface. It seems that the higher this density, the more pronounced is the technical effect discovered in the context of the present invention.
  • preferred hydrophilic thin layers are based on silicon and oxygen and include in particular silica (SiO 2), in particular doped with atoms such as aluminum (Al) or zirconium (Zr), the latter increasing the density of hydroxyl groups of surface. Doping levels ranging from 3 to 15 atomic% and preferably from 5 to 10% are particularly advantageous.
  • hydrophilic thin layers based on silicon and oxygen such as SiOC, SiON or SiO x , with x ⁇ 2 can also be used according to the invention but are not preferred because the number of hydroxyl groups generated on the surface is lower than in the case of silica
  • the hydrophilic thin films are preferably not annealed, that is to say they are not subjected to a heat treatment in excess of 500 0 C, or 200 0 C, the effect of the heat treatment being precisely to reduce the density of hydroxyl groups on the surface of the layer.
  • the hydrophilic thin films are preferably obtained by a method chosen from cathodic sputtering, the sol-gel process and the plasma-enhanced chemical vapor deposition method.
  • the annealed hydrophilic thin films also have a low dust, which however seems to be stronger than in the case of non-annealed layers. This is the case, for example, with layers obtained by chemical vapor deposition (CVD), this process generally being carried out on a hot substrate, between 500 and 700 ° C.
  • CVD chemical vapor deposition
  • the hydrophilic thin layers can be covering (continuous) and in this case form the entire external surface of the material. They may alternatively not be completely covering, a discontinuous layer, for example in the form of islands isolated or interconnected, to obtain a particularly high photocatalytic activity.
  • the outer surface of the material comprises the underlying titanium oxide in the portions not covered by the hydrophilic layer.
  • the hydrophilic thin layer can be an integral part of the titanium oxide coating and constitute the extreme surface, as explained in the following text.
  • the titanium oxide coating may consist exclusively of titanium oxide (with the exception of unavoidable impurities).
  • the titanium oxide may be amorphous or have an at least partially crystalline structure, especially in anatase or rutile form.
  • the technical effect discovered seems a priori not to have any link with the photocatalytic activity since coatings of amorphous titanium oxide, whose photocatalytic activity is extremely low or even zero, also prevent the deposit and the adhesion of the mineral soils in the absence of runoff of water.
  • Other poorly active coatings may therefore also be employed, such as very thin titanium oxide coatings, for example 1 to 5 nm thick.
  • a crystallized titanium oxide layer in anatase form in particular with a thickness greater than 5 nm, is however preferred in order to give the material a photocatalytic activity sufficient to effectively degrade organic soils. Preferred thicknesses are then from 5 to 20 nm, the thicker layers being able to generate an undesirable coloring and inducing longer deposition times.
  • Examples of titanium oxide coatings particularly advantageous in the context of the present invention are for example described in the patent application EP-A-850 204 incorporated by reference to the present application.
  • Titanium oxide-based coatings can be formed by various deposition methods, for example by the chemical vapor deposition process (CVD, as described in the aforementioned EP 850 204), by the sputtering method. (Application FR 2,814,094, incorporated by reference in this text, presents a particular method), or by "sol-gel" type processes.
  • the titanium oxide of the titanium oxide-based coating is predominantly even entirely amorphous. In this case the material consisting of a substrate thus coated is new and constitutes an object of the present invention.
  • the invention may be in particular a substrate coated with a titanium oxide layer and then with a silica layer, the two layers being obtained successively by the sputtering method (in particular assisted by field magnetic - magnetron process) and not subjected to annealing after deposition, that is to say no heat treatment at more than 500 0 C, in particular 200 0 C.
  • the invention therefore also relates to a method of obtaining such a material, comprising successive steps of sputter deposition of a coating based on titanium oxide and a thin layer based on silicon and oxygen, but not including a step of annealing after the deposit.
  • the titanium oxide coating may also comprise titanium oxide mixed with another compound, including another oxide.
  • Mixed oxides of titanium and one or more oxides selected from oxides of silicon, aluminum, magnesium or tin are possible embodiments of the invention.
  • the titanium oxide may in particular be present in the form of discernible and at least partially crystallized particles dispersed in a binder, preferably mineral or inorganic.
  • This binder is advantageously based on silica, for example in the form of alkali silicate or silica obtained by the sol-gel process.
  • the titanium oxide coatings described in WO 97/10185 or WO 99/44954 are coatings of this type applicable to the present invention. Coatings based on titanium oxide particles of nanometric size dispersed in a binder of the mesoporous type as described in the application WO 03/87002 are particularly advantageous when a very high photocatalytic activity is sought, in particular for applications in the field. interior of buildings.
  • the hydrophilic thin film can be an integral part of the coating based on titanium oxide. titanium oxide and constitute the extreme surface. A single deposition step is then sufficient to deposit the titanium oxide coating and the hydrophilic thin layer that overcomes it. It may be an example of a coating comprising particles of titanium oxide dispersed in a siliceous binder, the extreme surface (that is to say a few nanometers) being mainly made of silica, or even consisting only of silica and therefore devoid of titanium oxide.
  • a new material that can be used according to the invention is a material consisting of a substrate provided with at least one layer whose surface forms at least a portion of the external surface of said material, said layer comprising titanium and silicon oxide. This material is characterized in that the content of titanium oxide at said outer surface is non-zero and in that the silicon oxide content is higher at said outer surface than at the center of the layer.
  • the titanium oxide-based coating and the hydrophilic thin film form a single mixed layer (comprising oxides of titanium and silicon), enriched in surface silicon oxide.
  • the hydrophilic thin layer thus forms an integral part of the titanium oxide coating and constitutes its extreme surface.
  • the silicon oxide content at the outer surface of the layer is greater than the silicon oxide content in the center of the layer, and even advantageously greater than the silicon oxide content in the part of the layer closest to of the substrate.
  • the content of titanium oxide at the outer surface is in turn preferably lower than the titanium oxide content in the center of the layer, or even lower than the titanium oxide content in the part of the outermost layer. close to the substrate.
  • the content of silicon oxide increases continuously in the thickness of the layer from the center of the layer, in particular from the portion closest to the substrate, to the outer surface.
  • the content of SiO 2 is a continuous function of the distance to the substrate.
  • the TiO 2 content decreases correspondingly in the thickness of the layer, from the center of the layer to the outer surface, and preferably from the portion closest to the substrate to the outer surface, of continuous way.
  • the content of silicon oxide at the outer surface is advantageously greater than or equal to 5% by weight, even 10% or 15%, and even 20 or 25% and / or less than or equal to 50%, or even 40%, or even 35% or 30%.
  • the silicon oxide content in the center of the layer is preferably less than or equal to 15% by weight, or even 10% and even 5%.
  • the layer according to the invention is preferably composed exclusively of titanium oxide and silicon oxide, with the exception of unavoidable impurities (for example elements originating from the substrate).
  • the thickness of the layer is preferably between 3 and 200 nm, or even between 3 and 100 nm. Thicknesses between 3 and 30 nm, especially between 5 and 20 nm and even between 5 and 15 nm are preferred. For values of thickness too low, the desired effect of low dust is indeed only slightly obtained. Too great thicknesses do not make it possible to improve this effect and generate a higher cost, a longer deposition time and an optical appearance of the layer that is too visible, in particular undesirable yellow tints.
  • the high thicknesses, especially greater than or equal to 30 nm or even 50 nm can be appreciated if a high activity photocatalytic is required, for example for applications as interior glazing, receiving little ultraviolet radiation.
  • the layer comprising titanium oxide and silicon oxide is advantageously the only layer conferring photocatalytic or self-cleaning properties on the material.
  • the layer according to the invention is preferably not deposited itself on a layer based on photocatalytic titanium oxide, because such a stack does not improve the properties of the material.
  • Ti ⁇ 2 / SiO2 are used as intermediate layers in stacks of layers to improve their optical appearance. They are surmounted by at least one electroconductive or low-emissive layer and therefore do not form the outer part of the material.
  • composition gradient composite layers according to the invention can be obtained by the method described in application WO 97/03029.
  • This chemical vapor deposition (CVD) method uses a nozzle extending transversely to the axis of travel of the substrate (in particular glass in the form of a ribbon obtained by floating) and having two slots of injection of precursor gases of distinct compositions and dimensioned such that partial and progressive mixing between the two gaseous streams is caused in the deposition zone.
  • the inventors have, however, developed a chemical vapor deposition process more clever because it implements a conventional nozzle, having only one gas injection slot and allows to obtain all types of mixed layers with a composition gradient, including the TiO 2 / SiO 2 layers described above.
  • This method of chemical vapor deposition on a substrate moving along an axis, and implementing a nozzle extending transversely to the axis of travel of said substrate and having a single slot is characterized in that at least two precursors gaseous non-reacting gases are injected simultaneously via said single slot, said precursors having decomposition temperatures intrinsically or extrinsically sufficiently different to form a layer in which the oxide content of which the precursor has the temperature of The lowest decomposition decreases continuously in the thickness of the layer.
  • the subject of the invention is therefore also a process for obtaining a material consisting of a substrate provided with at least one layer comprising titanium oxide and silicon oxide, according to which said layer is deposited.
  • CVD chemical vapor deposition
  • said deposition being carried out using a nozzle extending transversely to the axis of travel of said substrate and having a single slot, gaseous precursors of non-interacting titanium oxide and silicon oxide being injected simultaneously via said single slit, and such that at least one titanium oxide precursor has a decomposition temperature intrinsically or extrinsically sufficiently lower than the decomposition temperature of at least one silicon oxide precursor to form a layer in which the silicon oxide content continuously increases in thickness of the layer.
  • the inventors have indeed found that by a suitable choice of precursors, and more specifically by a suitable choice of their respective decomposition temperatures, it was possible to obtain a layer with a composition gradient using a nozzle. classical chemical vapor deposition.
  • decomposition temperatures are not not sufficiently different from each other, a mixed layer is formed which has a substantially homogeneous composition throughout the thickness of the layer.
  • a too small difference between the decomposition temperatures of the various precursors does not cause the surface enrichment of the desired silica and at the origin of the good dusting properties. .
  • the necessary difference between the precursor decomposition temperatures obviously depends on a large number of parameters such as the chemical nature of the layers to be formed or the temperature of the substrate during the deposition. It is to be adapted case by case by the person skilled in the art.
  • the decomposition temperatures of the precursors may be intrinsic to the precursor chosen, or may be modified selectively by adding an inhibiting compound or, on the contrary, accelerating the deposition of the precursor. It is for example possible to add precursors of ethylene (C 2 H 4 ) in order to retard the deposition of SiO 2 , in particular when the precursor of SiO 2 is tetraethoxysilane (TEOS), which makes it possible to have a stronger composition gradient.
  • precursors of ethylene (C 2 H 4 ) in order to retard the deposition of SiO 2 , in particular when the precursor of SiO 2 is tetraethoxysilane (TEOS), which makes it possible to have a stronger composition gradient.
  • a single precursor of titanium oxide and a single precursor of silicon oxide are preferably injected.
  • the difference between the respective decomposition temperatures of the precursors of titanium oxide and of silicon oxide is preferably at least 50 ° C. or even 75 ° C. , and even 100 ° C. or 150 ° C.
  • the precursors of TiO 2 and SiO 2 may be respectively tetraisopropyltitanate (TiPT) and tetraethoxysilane (TEOS), which have the advantages of being inexpensive and non-toxic.
  • TiPT has a decomposition temperature of approximately 300 ° C., ie of the order of 100 to 150 ° C. less than TEOS.
  • the respective amounts of introduced TiO 2 and SiO 2 precursors can be defined by the Ti / (Ti + Si) molar ratio calculated from the molar quantities of Ti and Si atoms introduced (present in the gas phase). This molar ratio is not found as such in the layer given the differences in yield between the precursors.
  • This ratio is preferably between 0.85 and 0.96, especially between 0.90 and 0.93. It has indeed appeared that in this range of ratios, the product obtained made it possible to combine low dusting properties with photo-induced photocatalytic activity and super-hydrophilicity close to those of a product comprising a single oxide layer. Crystallized titanium in the anatase form. When the ratio Ti / (Ti + Si) is higher, close to 1, the properties obtained are similar to those of a substrate coated with a single layer of titanium oxide. The resulting material therefore has a strong dust, and therefore overlaps with mineral soils in the absence of water runoff.
  • the ratio Ti / (Si + Ti) is lower, in particular of the order of 0.7 or 0.8, or even less, the surface of the layer is very strongly enriched in silicon and the layers obtained have a substantially reduced photocatalytic activity, or even zero, and even lose the photo-induced super-hydrophilicity character.
  • This phenomenon could be due to the fact that the presence of too much silica in the mixed layer disrupts the crystallization properties of the titanium oxide, giving rise to amorphous or in any case weakly crystallized layers.
  • Such layers can nevertheless be used within the meaning of the present invention, because the dust (mineral soiling) is deposited and adhere only slightly to their surface.
  • These layers whose surface is extremely enriched in silica but still has a high content of titanium oxide are therefore all also useful because of their ability not to be covered by mineral soils.
  • the layers for which the molar ratio Ti / (Si + Ti) is optimized allow on the contrary to cumulate all the advantages: low dust (of the same level as for lower molar ratios), strong photocatalytic activity and photo-induced super-hydrophilicity .
  • the chemical deposition process is preferably carried out continuously, at the exit of the float bath, on a substrate whose temperature is usually between 58O 0 C and 63O 0 C.
  • the invention also relates to a material that can be obtained by the method according to the invention described above.
  • the antifouling properties obtained when the surface of the layer comprising silicon oxide and titanium oxide form at least a portion of the outer surface of the material are indeed particularly attractive. Given the difficulty of precisely studying the microstructure of the layers obtained by this method, it is however not possible to define these preferred materials structurally.
  • the various preferred characteristics of the material described above also apply to this material.
  • the layers of the materials according to the invention can also be obtained by other deposition methods, for example a magnetic field assisted sputtering method (magnetron process) in which the substrate is successively exposed to bombardment from TiO 2 targets. more and more enriched with SiO 2 .
  • a magnetic field assisted sputtering method magnetictron process
  • the substrate is successively exposed to bombardment from TiO 2 targets. more and more enriched with SiO 2 .
  • the substrates employed in the context of the present invention may be of a mineral nature, in particular based on glass, ceramic or glass-ceramic, or else of organic nature.
  • various rigid or flexible plastics may be employed such as polymethyl methacrylate (PMMA), polycarbonate (PC), polypropylene, polyurethane, polyvinylbutyral, polyethylene glycol terephthalate, polybutylene glycol terephthalate, ionomer resin such as ethylene copolymer polyamine-neutralized (meth) acrylic acid, cycloolefinic copolymer such as ethylene / norbornene or ethylene / cyclopentadiene, polycarbonate / polyester copolymer, ethylene / vinyl acetate copolymer and the like, alone or in mixtures.
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • PC polypropylene
  • polyurethane polyvinylbutyral
  • polyethylene glycol terephthalate polybutylene
  • substrates obtained by polymerization of diethylene glycol bis (allyl carbonate) (marketed under the trademark CR39® by the company PPG Industries Inc.), or substrates based on (meth) allyl or (meth) acrylic polymer ( more particularly those obtained from monomers or prepolymers derived from bisphenol-A, used alone or in admixture with other copolymerizable monomers), based on poly (thio) urethane, or based on polystyrene or diallyl phthalate resin.
  • At least one underlayer is preferably interposed between the substrate and the titanium oxide coating. This underlayer is even advantageously in contact with the substrate and / or the titanium oxide-based coating.
  • the substrate contains elements capable of migrating inside the titanium oxide-based layer and disturbing its properties, it is in fact preferable to interpose between said substrate and said titanium oxide-based layer. a barrier layer to the migration of these elements.
  • the substrate for example in the case of a soda-lime-silica glass sheet or a glaze-coated ceramic, contains alkaline ions such as lithium, potassium or sodium.
  • An alkali barrier sub-layer is therefore preferably disposed directly under the titanium oxide coating, which is intended to prevent the migration of alkali ions possibly contained in the substrate within the layer comprising the titanium oxide.
  • a diaper barrier such as for example a layer comprising SiO 2 , SiOC, Al 2 O 3 or SnO 2 is particularly suitable for preserving the photocatalytic activity of titanium oxide.
  • the alkali barrier sublayer is preferably a SiOC (silicon oxycarbide) layer, preferably deposited by CVD (Chemical Vapor Deposition) directly onto the substrate.
  • the SiOC underlayer then advantageously has on its surface regularly spaced bumps, preferably having a base width of about 60 to 120 nm and a height of about 20 to 50 nm. It has indeed been observed that the technical effect which consists in preventing the deposition of mineral soiling on its surface is amplified when the deposition of the titanium oxide-based coating (especially when it is a mixed TiO 2 / SiO 2 concentration gradient) was performed on such a textured surface. The reason is for the moment completely unexplained.
  • At least one sub-layer between the substrate and the titanium oxide-based coating may also be desirable to have at least one sub-layer between the substrate and the titanium oxide-based coating, for example to attenuate a reflection factor or reflection coloration considered to be too high. It may be for example a layer or a stack of layers whose thicknesses and refractive indices are such that the assembly formed by these sub-layers and the titanium oxide-based coating forms a antireflection stack, in the sense that the reflection factor obtained is lower than that of the substrate.
  • the material according to the invention has the advantage of preventing the deposit of mineral soils (dust) and therefore not to get dirty in the absence of water runoff, especially in external exposure but under rain shelter, therefore when subjected to a cycle characterized by the alternation of solar illumination during the day and absence of illumination during the night. It is during a cycle of several alternations, especially after several months of exposure (2 or even 4 months or more), that the advantage over a substrate provided with an uncoated photocatalytic coating or with Only TiO 2 base is revealed. Such situations are frequent, especially in the case of buildings with cornices, overhangs or sunshades in front of or above the glass walls, the latter therefore not undergoing rainwater runoff. Using the material in outdoor areas protected from rain or in areas with very little rainfall is therefore particularly beneficial.
  • the invention therefore also relates to the use of a material according to the invention as a material having the property of not getting dirty when placed in outdoor exposure in rain protected areas or in geographical areas knowing very rare precipitation.
  • the newly discovered technical effect also allows a use of the material inside a building, for example in the form of interior glazing or viewing screen such as a screen of the "LCD" type (Liquid Crystal Display), plasma or cathode ray tube, to avoid dusting the screen. It is also possible to use the material according to the invention inside a transport vehicle (automobile, train, airplane, etc.), for example as a windshield or an automobile side window. It should also be noted that the properties of the material according to the invention are not affected by quenching or bending. The invention will be better understood with the aid of the following exemplary embodiments, which illustrate the invention without however limiting it.
  • a glazing sold by Saint-Gobain Glass under the name of "SGG Bioclean ®", and consists of a substrate of silica-soda lime glass provided on one of its surfaces with a thin layer of SiOC office making The alkali migration barrier coated with a 15 nm thick titanium oxide coating, crystallized in anatase form and obtained by the CVD chemical vapor deposition process, serves as a comparative example C1.
  • This glazing is of the self-cleaning type in the presence of Solar radiation and rainwater runoff thanks to the photocatalytic and super-hydrophilic properties of titanium oxide, which allow it to degrade organic soils and eliminate mineral soils under runoff of water, including rain.
  • a second comparative example (C2) consists of an uncoated silico-soda-lime glass pane.
  • Example 1 the glazing of comparative example C1 is in turn coated with a very thin layer of silica doped with 8 atomic% of aluminum, deposited by the assisted cathode sputtering process. by magnetic field, sometimes called “magnetron" process.
  • the thickness of this non-annealed hydrophilic thin layer is about 2 nm.
  • the two comparative samples C1 and C2 both have on the exposed surface a very large amount of extremely adherent mineral dust.
  • the glazing according to the invention does not present any significant dust.
  • EXAMPLE 2 A 50 nm thick SiOC alkaline barrier sub-layer is deposited on a soda-lime-glass substrate by a chemical vapor phase deposition process using SiH 4 , ethylene and, optionally, an oxidizing compound, according to the process described in application EP 0 518 755.
  • This sub-layer is naturally textured, and has on its surface bumps whose width at the base is of the order of 100 nm and the height of the order of 30 nm.
  • TiO 2 and SiO 2 are deposited mixed layers of TiO 2 and SiO 2 by a chemical vapor deposition (CVD) method using a standard spray nozzle (provided with a single slot).
  • CVD chemical vapor deposition
  • a standard spray nozzle provided with a single slot.
  • TiPT tetraisopropyltitanate
  • SiO 2 tetraethoxysilane
  • the value of 1 corresponds to the comparative test in which the TEOS is not injected.
  • the layers obtained have a thickness of the order of 9 to 12 nm according to the tests.
  • the Si / Ti molar ratio at the surface of the layer was measured by the method called ESCA (Electron Spectroscopy for Chemical Analysis) also called XPS (X-ray Photoelectron Spectroscopy).
  • ESCA Electrode Spectroscopy for Chemical Analysis
  • XPS X-ray Photoelectron Spectroscopy
  • the local composition of the layers as a function of the thickness was studied by SIMS (Secondary Ion Mass Spectroscopy).
  • the layer for which the ratio Ti / (Ti + Si) is 0.92, thus slightly enriched in silicon, has a very low content of silicon oxide (at most some percent by weight ) in the center of the layer, this content increasing strongly and continuously when approaching the outer surface of the material, to reach about 25 to 30% by weight.
  • the layer for which the ratio Ti / (Ti + Si) is 0.67 has a silicon oxide content of about 5 to 10% by weight in the center of the layer, this content increasing strongly and so continuous when approaching the outer surface of the material, to reach about 70 to 75% by mass.
  • the extreme surface of the layer therefore contains mainly silica.
  • the weight content of titanium oxide therefore decreases continuous in the thickness of the layer from the center (90-95%) to the surface (25-30%).
  • the photocatalytic, photoinduced hydrophilic and dusting properties were measured as described below.
  • the photocatalytic activity is determined by measuring the hue variation after exposure to ultraviolet radiation of an ink layer deposited on the outer surface of the material.
  • This ink described in application EP 1 601 462, is composed of a colored indicator such as methylene blue, a sacrificial organic molecule donor electron and a neutral polymer matrix, and has the particularity of detecting oxidation-reduction reactions on the surface of titanium oxide and change color depending on the intensity of these reactions.
  • the irradiation of the titanium oxide indeed generates an electron-hole pair, the electron reacting the color indicator with a reduction reaction and the hole recombining with an electron from the electron donor molecule.
  • the samples are irradiated for 10 hours by ultraviolet radiation (UVA type, power 30W / m 2 ) to activate their surface (make it hydrophilic).
  • UVA type power 30W / m 2
  • the surface of the samples is then covered by particles of calcium carbonate of less than 50 micrometers in diameter, simulating the dust.
  • the material is placed in a vertical position to remove excess dust and the surface is then cleaned with a jet of compressed air, so that only adhering dust remains on the surface of the material. This procedure is repeated cumulatively six times at one test per hour and then the percentage of the area still occupied by the dust is measured by image analysis techniques.
  • the comparative sample (corresponding to a ratio Ti / (Ti + Si) of 1) being taken as reference (base 100), the results are expressed as percentage of surface still occupied by the adherent dust relative to this reference.
  • the photoinduced hydrophilic properties are determined by water contact angle measurements. Two types of measurements are made: measurements made after illumination with ultraviolet radiation and storage for 1 to 7 days in the dark, and measurements made after a UV exposure time ranging from 15 minutes to 26 hours. Table 1 below collates the results of photocatalytic activity and dusting of the various examples. Tables 2 and 3 show the hydrophilic results.
  • Table 2 shows that the sample for which the Ti / (Ti + Si) ratio is 0.92 exhibits a photo-induced hydrophilic character which diminishes when the material is subjected to a long period of time. darkness, to a degree comparable to the performance of the comparative sample free of silicon.
  • the hydrophilicity can then again be rapidly obtained by subjecting the sample to ultraviolet radiation (Table 3).
  • the addition of higher levels of silicon in the layer degrades the photoinduced hydrophilic properties very clearly, since the samples for which the Ti / (Ti + Si) ratio is 0.85 or less are hydrophobic. and remain so even after a new illumination under ultraviolet radiation (see Table 3).
  • the materials according to the invention therefore have the property of preventing or at least of curbing the deposit of mineral soils on their surface.
  • this property is further coupled with the known properties of titanium oxide as photocatalysis and photoinduced hydrophilicity.
  • Such materials are therefore particularly desirable for their property of not getting dirty when placed in outdoor exposure in areas protected from rain or in geographical areas experiencing very rare precipitation.
  • Example 2 All the windows of Example 2 were exposed for 4 months under external conditions similar to those described for Example 1.
  • the glazings according to the invention After exposure, the glazings according to the invention have no significant dust.
  • the comparative glazing corresponding to the ratio Ti / (Ti + Si) of 1 is dirty and has on its surface a large number of extremely adherent mineral dust.

Abstract

L'invention a pour objet l'utilisation d'un matériau constitué soit d'un substrat muni d'un revêtement a base d'oxyde de titane surmonté d'une couche mince hydrophile formant au moins une partie de la surface externe dudit matériau et n'étant pas constituée d'oxyde de titane soit d'un substrat muni d'un revêtement à base d'oxyde de titane et d'oxyde de silicium, la teneur en oxyde de titane étant non-nulle à la surface externe dudit matériau et la teneur en oxyde de silicium étant supérieure en surface qu'a l'intérieur de la couche, comme matériau empêchant le dépôt de salissures minérales sur ladite surface externe en l'absence de ruissellement d'eau.

Description

MATERIAU ANTI-SALISSURES ET SON PROCEDE D'OBTENTION
La présente invention se rapporte au domaine des matériaux, en particulier vitrages, anti-salissures ou autonettoyants.
L'oxyde de titane est connu pour présenter des propriétés photocatalytiques. En présence de lumière, et notamment de rayonnement ultraviolet de type UV-A (dont la longueur d'ondes est comprise entre 320 et 400 nm), l'oxyde de titane présente la particularité de catalyser les réactions de dégradation radicalaire de composés organiques. Il est connu des documents EP-A-850 204 et EP-A-816466 que l'oxyde de titane présente également des propriétés d'hydrophilie extrêmement prononcées induites par le même type de rayonnement. Cette hydrophilie, parfois qualifiée de « super-hydrophilie » se caractérise par un très faible angle de contact à l'eau, inférieur à 5°, voire à 1 °. Ces deux propriétés, la photocatalyse d'une part et la super-hydrophilie d'autre part, confèrent aux matériaux contenant de l'oxyde de titane des propriétés particulièrement intéressantes. Des matériaux, en particulier du type céramique, verre ou vitrocéramique, revêtus d'une couche mince d'oxyde de titane présentent en effet des propriétés anti-salissures ou auto-nettoyantes ou encore de facilité de nettoyage. Un vitrage recouvert d'une couche d'oxyde de titane photocatalytique dégrade sous l'action de la lumière du soleil les salissures organiques qui s'y déposent. Les salissures minérales sont quant à elles en partie empêchées de se déposer et en partie éliminées grâce à la super-hydrophilie photo-induite de l'oxyde de titane. Les salissures minérales, pour certaines d'entre elles, sont en effet amenées à se déposer sur les vitrages sous forme dissoute dans les gouttes de pluie, et précipitent lors de l'évaporation desdites gouttes. Grâce aux propriétés de super-hydrophilie, l'eau nappe et lessive le vitrage au lieu de s'y déposer sous forme de gouttes, ce qui évite donc le dépôt des salissures minérales par ce mécanisme de dépôt/évaporation de gouttes d'eau. Pour ce qui est des salissures minérales telles que des poussières qui se déposent sans l'aide de la pluie, par exemple sous l'action du vent, elles sont tout simplement éliminées par le ruissellement d'eau de pluie. Les matériaux obtenus permettent donc l'élimination des salissures organiques et minérales sous l'effet conjoint du rayonnement solaire et du ruissellement d'eau, en particulier de pluie.
Les matériaux précédemment décrits présentent toutefois un inconvénient lorsqu'il sont placés dans un endroit protégé de la pluie ou dans une zone géographique connaissant de très rares précipitations. Il a en effet été observé que, placés dans une atmosphère riche en salissures minérales et à l'abri de la pluie, des vitrages recouverts d'oxyde de titane photocatalytique et super-hydrophiles se recouvrent progressivement de salissures minérales, en particulier sous forme de poussières très adhérentes. Après exposition de longue durée, notamment de plus de 2 mois, voire 4 mois, de tels vitrages présentent une surface aussi sale que celle d'un vitrage dépourvu de couche d'oxyde de titane. En l'absence de ruissellement d'eau, la surface superhydrophile d'oxyde de titane n'empêche donc pas le dépôt et l'adhésion de salissures minérales.
L'invention a donc pour but de pallier ces inconvénients en proposant un matériau empêchant le dépôt des salissures minérales sur sa surface, donc présentant un faible empoussièrement, y compris en l'absence de ruissellement d'eau. L'invention a également pour but de proposer un matériau capable de ne pas se salir après plusieurs mois d'exposition dans des endroits protégés de la pluie ou des zones géographiques connaissant de très rares précipitations.
Les inventeurs ont découvert que des substrats recouverts d'une couche d'oxyde de titane, elle-même surmontée d'une couche mince d'un autre matériau hydrophile, en particulier du type comprenant du silicium et de l'oxygène, présentaient de manière totalement inattendue l'effet technique consistant à empêcher le dépôt de salissures minérales (donc l'empoussièrement) sur sa surface en l'absence de ruissellement d'eau. Certains de ces matériaux sont connus et décrits dans plusieurs documents. La demande WO 2005/040056 décrit par exemple un vitrage recouvert d'une couche d'oxyde de titane surmontée d'une fine couche de silice dopée aluminium à pouvoir couvrant et de 2 nm d'épaisseur. Les deux couches sont déposées par un procédé de pulvérisation cathodique puis recuites ensemble afin de conférer une activité photocatalytique importante à l'oxyde de titane. La couche de silice supérieure a pour effet d'améliorer la résistance mécanique, en particulier à l'abrasion, de l'empilement. Le brevet US 6 379 776 décrit également un empilement de couches sur verre comprenant en particulier une couche d'oxyde de titane photocatalytique sur laquelle est disposée une monocouche de SiOx, x valant 1 ou 2. Cette dernière couche est décrite comme ayant l'effet d'éviter le dépôt de salissures organiques sur la surface de l'empilement, mais un effet possible sur le dépôt de salissures minérales en l'absence de ruissellement d'eau n'est pas divulgué. Ce brevet décrit en outre des tests réalisés en extérieur et démontrant une absence de dépôt de salissures après 6 mois d'exposition, étant précisé que la surface des échantillons était soumise au ruissellement de l'eau de pluie. La demande EP- A-1 074 525 décrit quant à elle une structure du même type, présentant sur sa surface externe une couche mince de Siθ2 de 10nm ou moins, permettant d'améliorer l'hydrophilie du matériau sans dégrader trop nettement les performances en terme de photocatalyse. Aucun effet de cette surcouche relativement au dépôt de salissures minérales en l'absence de ruissellement d'eau n'est décrit.
L'effet technique présenté par ce type de matériau et nouvellement découvert, qui consiste à empêcher le dépôt de salissures minérales sur sa surface en l'absence de ruissellement d'eau n'avait donc jamais été entrevu. Il est également surprenant car il ne peut en rien être relié aux propriétés déjà décrites dans l'art antérieur. La faible adhésion des salissures organiques est en effet une propriété de faible affinité chimique avec les composés organiques, liée au caractère hydrophile de la couche et décorrélée de l'adhésion des salissures minérales. Or le seul caractère hydrophile d'une surface n'empêche pas l'adhésion des salissures minérales en l'absence de ruissellement d'eau, comme le cas de l'oxyde de titane le démontre. L'invention a donc pour objet l'utilisation d'un matériau constitué d'un substrat muni d'un revêtement à base d'oxyde de titane surmonté d'une couche mince hydrophile formant au moins une partie de la surface externe dudit matériau et n'étant pas constituée d'oxyde de titane, comme matériau empêchant le dépôt de salissures minérales sur ladite surface externe en l'absence de ruissellement d'eau.
Par surface « externe » il faut comprendre au sens de la présente invention une surface en contact avec l'air ambiant, seule surface susceptible d'être salie. Sans vouloir être lié par une quelconque théorie scientifique, il semble que les matériaux utilisés selon l'invention, grâce à leurs caractéristiques structurelles, ne s'empoussièrent pas (ou peu) grâce à un mécanisme de diminution du coefficient de friction entre la surface du matériau et les salissures minérales, conduisant à une évacuation plus aisée de ces salissures, voire à de véritables propriétés anti-adhésives. Cette propriété de faible empoussièrement est en tout état de cause totalement indépendante des propriétés connues de photocatalyse et d'hydrophilie photo-induite, comme la suite de la description va le démontrer.
Couche mince hydrophile La couche mince hydrophile agit en synergie avec l'oxyde de titane, puisque aucune de ces couches seules ne produit l'effet technique découvert.
Afin que cet effet de synergie se manifeste efficacement à la surface du matériau, la couche mince hydrophile doit de préférence présenter de faibles épaisseurs, des épaisseurs de moins de 10 nm, voire 5 nm et en particulier de 1 à 2 nm étant préférées.
Cet effet synergétique est maximisé et les meilleures performances sont obtenues lorsque les couches minces hydrophiles sont susceptibles de créer, en présence d'humidité ambiante et grâce à la présence sous-jacente de l'oxyde de titane, une couche d'hydratation peu dense, en particulier moins dense que l'eau liquide, cette couche d'hydratation étant en outre particulièrement durable, même en l'absence d'illumination. Cette couche d'hydratation particulière aurait alors pour effet de diminuer considérablement le coefficient de friction entre la surface de la couche mince hydrophile et les salissures minérales. Ces dernières glisseraient ainsi beaucoup plus aisément sur la surface externe du matériau au lieu de s'y déposer et d'y adhérer. Cette caractéristique préférée ne se retrouvant pas dans les matériaux préalablement décrits, les matériaux possédant cette caractéristique sont également un objet de la présente invention.
La couche mince hydrophile ne doit pas être constituée d'oxyde de titane. Elle peut en contenir, avantageusement en une teneur inférieure à 20%, voire 10% en pourcentages molaires. Selon un mode de réalisation préféré et afin d'obtenir un très faible empoussièrement, elle est toutefois dépourvue ou quasiment dépourvue d'oxyde de titane.
Une autre caractéristique des couches minces hydrophiles utilisées selon l'invention réside dans la densité élevée de groupements hydroxyles (OH) à leur surface. Il semble que plus cette densité est élevée, plus prononcé est l'effet technique découvert dans le cadre de la présente invention.
Ainsi, des couches minces hydrophiles préférées sont à base de silicium et d'oxygène et comprennent notamment la silice (Siθ2), en particulier dopée par des atomes tels que l'aluminium (Al) ou le zirconium (Zr), ces derniers augmentant la densité de groupements hydroxyles de surface. Des taux de dopage allant de 3 à 15% atomiques et préférentiellement de 5 à 10% sont particulièrement avantageux.
D'autres couches minces hydrophiles à base de silicium et d'oxygène, telles que SiOC, SiON ou SiOx, avec x < 2 peuvent également être utilisées selon l'invention mais ne sont pas préférées car le nombre de groupements hydroxyles généré en surface est moins élevé que dans le cas de la silice
(SiO2). Il en est de même pour des couches comprenant du silicium et de l'oxygène telles que des silicates d'ions alcalins ou alcalino-terreux. Des couches minces hydrophiles à base d'alumine (AI2O3) sont également possibles. Afin d'obtenir l'empoussièrement le plus faible possible, les couches minces hydrophiles, notamment à base de silice éventuellement dopée, ne sont de préférence pas recuites, c'est-à-dire ne sont pas soumises à un traitement thermique à plus de 5000C, voire 2000C, l'effet du traitement thermique étant justement de diminuer la densité de groupements hydroxyles en surface de la couche. Dans ce cadre, les couches minces hydrophiles sont de préférence obtenues par un procédé choisi parmi la pulvérisation cathodique, le procédé sol-gel et le procédé de dépôt chimique en phase vapeur assisté par plasma
(PECVD, ou APPECVD lorsqu'il est mis en œuvre à pression atmosphérique), ces procédés étant conduits à basse température.
Les couches minces hydrophiles recuites présentent également un faible empoussièrement, qui semble toutefois être plus fort que dans le cas des couches non recuites. C'est le cas par exemple des couches obtenues par dépôt chimique en phase vapeur (CVD), ce procédé étant en général réalisé sur un substrat chaud, entre 500 et 7000C.
Les couches minces hydrophiles peuvent être couvrantes (continues) et forment dans ce cas la totalité de la surface externe du matériau. Elles peuvent alternativement ne pas être totalement couvrantes, une couche discontinue, par exemple sous forme d'îlots isolés ou reliés entre eux, permettant d'obtenir une activité photocatalytique particulièrement élevée. Dans ce cas, la surface externe du matériau comprend l'oxyde de titane sous-jacent dans les parties non recouvertes par la couche hydrophile.
Selon certains modes de réalisation, la couche mince hydrophile peut faire partie intégrante du revêtement à base d'oxyde de titane et en constituer l'extrême surface, comme explicité dans la suite du texte.
Revêtement à base d'oxyde de titane
Le revêtement à base d'oxyde de titane peut être constitué exclusivement d'oxyde de titane (à l'exception d'impuretés inévitables). L'oxyde de titane peut être amorphe ou présenter une structure au moins partiellement cristalline, notamment sous forme anatase ou rutile. L'effet technique découvert ne semble a priori pas avoir de lien avec l'activité photocatalytique puisque des revêtements d'oxyde de titane amorphe, dont l'activité photocatalytique est extrêmement faible voire nulle, empêchent également le dépôt et l'adhésion des salissures minérales en l'absence de ruissellement d'eau. D'autres revêtements peu actifs peuvent donc également être employés, tels que des revêtements d'oxyde de titane très minces, par exemple de 1 à 5 nm d'épaisseur. Une couche d'oxyde de titane cristallisé sous forme anatase, en particulier d'épaisseur supérieure à 5 nm est toutefois préférée afin de conférer au matériau une activité photocatalytique suffisante pour dégrader efficacement les salissures organiques. Des épaisseurs préférées sont alors de 5 à 20 nm, les épaisseurs plus fortes pouvant générer une coloration indésirable et induisant des temps de dépôt plus longs. La présence de la couche mince hydrophile, dans la mesure où son épaisseur n'est pas supérieure à quelques nanomètres, en particulier 5 nm et notamment 2 nm, ne diminue pas l'activité photocatalytique du matériau, et semble même parfois l'augmenter. Des exemples de revêtements d'oxyde de titane particulièrement avantageux dans le cadre de la présente invention sont par exemple décrits dans la demande de brevet EP-A-850 204 incorporée par référence à la présente demande.
Les revêtements à base d'oxyde de titane peuvent être formés par différents procédés de dépôt, par exemple par le procédé de dépôt chimique en phase vapeur (CVD, tel que décrit dans la demande EP 850 204 susmentionnée), par le procédé de pulvérisation cathodique (la demande FR 2 814 094, incorporée par référence au présent texte, en présente une méthode particulière), ou par des procédés de type « sol-gel ». Selon un mode de réalisation de l'invention, l'oxyde de titane du revêtement à base d'oxyde de titane est majoritairement voire entièrement amorphe. Dans ce cas le matériau constitué d'un substrat ainsi revêtu est nouveau et constitue un objet de la présente invention. Il peut s'agir en particulier d'un substrat revêtu par une couche d'oxyde de titane puis par une couche de silice, les deux couches étant obtenues successivement par le procédé de pulvérisation cathodique (notamment assisté par champ magnétique - procédé magnétron) et ne subissant pas de recuit postérieur au dépôt, c'est-à-dire pas de traitement thermique à plus de 5000C, notamment 2000C. L'invention a donc également pour objet un procédé d'obtention d'un tel matériau, comprenant des étapes successives de dépôt par pulvérisation cathodique d'un revêtement à base d'oxyde de titane et d'une couche mince à base de silicium et d'oxygène, mais ne comprenant pas d'étape de recuit postérieure au dépôt.
Couches mixtes
Le revêtement à base d'oxyde de titane peut également comprendre de l'oxyde de titane mélangé à un autre composé, notamment un autre oxyde. Des oxydes mixtes de titane et d'un ou plusieurs oxydes choisis parmi les oxydes de silicium, d'aluminium, de magnésium ou d'étain constituent des modes de réalisation possibles de l'invention.
L'oxyde de titane peut en particulier être présent sous forme de particules discernables et au moins partiellement cristallisées dispersées dans un liant de préférence minéral ou inorganique. Ce liant est avantageusement à base de silice, par exemple sous forme de silicate alcalin ou de silice obtenue par le procédé sol-gel. Les revêtements à base d'oxyde de titane décrits dans les demandes WO 97/10185 ou WO 99/44954 constituent des revêtements de ce type applicables à la présente invention. Des revêtements à base de particules d'oxyde de titane de taille nanométrique dispersées dans un liant du type mésoporeux tels que décrits dans la demande WO 03/87002 sont particulièrement avantageux lorsqu'une très forte activité photocatalytique est recherchée, notamment pour des applications à l'intérieur des bâtiments. Dans ce dernier cas, où le revêtement à base d'oxyde de titane comprend de l'oxyde de titane mélangé à un autre composé, la couche mince hydrophile, éventuellement dépourvue d'oxyde de titane, peut faire partie intégrante du revêtement à base d'oxyde de titane et en constituer l'extrême surface. Une seule étape de dépôt est alors suffisante pour déposer le revêtement à base d'oxyde de titane et la couche mince hydrophile qui le surmonte. Il peut s'agir à titre d'exemple d'un revêtement comprenant des particules d'oxydes de titane dispersées dans un liant siliceux, l'extrême surface (c'est-à-dire quelques nanomètres) étant principalement constituée de silice, voire n'étant constituée que de silice et donc dépourvue d'oxyde de titane.
Couche mixte TiQp/SiO? à gradient de concentration Un nouveau matériau utilisable selon l'invention est un matériau constitué d'un substrat muni d'au moins une couche dont la surface forme au moins une partie de la surface externe dudit matériau, ladite couche comprenant de l'oxyde de titane et de l'oxyde de silicium. Ce matériau est caractérisé en ce que la teneur en oxyde de titane au niveau de ladite surface externe est non-nulle et en ce que la teneur en oxyde de silicium est plus élevée au niveau de ladite surface externe qu'au centre de la couche.
Dans ce mode de réalisation de l'invention, le revêtement à base d'oxyde de titane et la couche mince hydrophile forment une seule couche mixte (comprenant des oxydes de titane et de silicium), enrichie en surface en oxyde de silicium. La couche mince hydrophile fait ainsi partie intégrante du revêtement à base d'oxyde de titane et en constitue l'extrême surface.
La teneur en oxyde de silicium au niveau de la surface externe de la couche est supérieure à la teneur en oxyde de silicium au centre de la couche, et même avantageusement supérieure à la teneur en oxyde de silicium dans la partie de la couche la plus proche du substrat. La teneur en oxyde de titane au niveau de la surface externe est quant à elle de préférence inférieure à la teneur en oxyde de titane au centre de la couche, voire même inférieure à la teneur en oxyde de titane dans la partie de la couche la plus proche du substrat. Avantageusement, la teneur en oxyde de silicium croît de manière continue dans l'épaisseur de la couche depuis le centre de la couche, notamment depuis la partie la plus proche du substrat, jusqu'à la surface externe. On peut alors parler de couches présentant un gradient de teneur en SiO2 croissant dans l'épaisseur de la couche, ou encore de couches mixtes à gradient de composition. Par «de manière continue », il faut comprendre qu'au sens mathématique du terme la teneur en SiO2 est une fonction continue de la distance au substrat. La teneur en TiO2 décroît quant à elle corrélativement dans l'épaisseur de la couche, depuis le centre de la couche jusqu'à la surface externe, et de préférence depuis la partie la plus proche du substrat jusqu'à la surface externe, de manière continue.
La teneur en oxyde de silicium au niveau de la surface externe est avantageusement supérieure ou égale à 5% en poids, voire 10% ou 15%, et même 20 ou 25% et/ou inférieure ou égale à 50%, voire 40%, ou même 35% ou 30%. La teneur en oxyde de silicium au centre de la couche est quant à elle de préférence inférieure ou égale à 15% en poids, voire 10% et même 5%. Ces couches présentant un enrichissement en oxyde de silicium très marqué en surface, pour des teneurs ne dépassant pas toutefois 50% en poids sont préférées car elles permettent de cumuler un faible empoussièrement avec une activité photocatalytique et une super-hydrophilie élevées, comme expliqué dans la suite du texte. Des teneurs en oxyde de silicium au niveau de la surface externe encore plus élevées (plus de 50%, voire plus de 70% et même plus de 90%) permettent d'obtenir un niveau d'empoussièrement encore plus faible, qui s'accompagne toutefois d'une dégradation de l'activité photocatalytique.
La couche selon l'invention est de préférence constituée exclusivement d'oxyde de titane et d'oxyde de silicium, à l'exception d'impuretés inévitables (par exemple des éléments provenant du substrat).
L'épaisseur de la couche est de préférence comprise entre 3 et 200 nm, voire entre 3 et 100 nm. Des épaisseurs comprises entre 3 et 30 nm, notamment entre 5 et 20 nm et même entre 5 et 15 nm sont préférées. Pour des valeurs d'épaisseur trop faibles, l'effet désiré de faible empoussièrement n'est en effet que faiblement obtenu. De trop fortes épaisseurs ne permettent pas d'améliorer cet effet et génèrent un coût plus élevé, un temps de dépôt plus long et un aspect optique de la couche trop visible, en particulier des teintes jaunes indésirables. Les fortes épaisseurs, notamment supérieures ou égales à 30 nm, voire 50 nm peuvent être appréciées si une forte activité photocatalytique est requise, par exemple pour des applications en tant que vitrages d'intérieur, recevant peu de rayonnement ultraviolet.
La couche comprenant de l'oxyde de titane et de l'oxyde de silicium est avantageusement la seule couche conférant des propriétés photocatalytiques ou autonettoyantes au matériau. En particulier, la couche selon l'invention n'est de préférence pas déposée elle-même sur une couche à base d'oxyde de titane photocatalytique, car un tel empilement n'améliore aucunement les propriétés du matériau.
Des couches mixtes TiO2/SiO2 ont été décrites dans l'art antérieur, en particulier dans la demande WO 97/03029. Cette demande décrit en effet des couches présentant un gradient d'indice de réfraction variant dans l'épaisseur de la couche et décroissant depuis la zone la plus proche du substrat jusqu'à la zone la plus proche de la surface. Ces couches, dont des couches mixtes
Tiθ2/Siθ2, sont utilisées comme couches intermédiaires dans des empilements de couches pour améliorer leur aspect optique. Elles sont surmontées par au moins une couche électroconductrice ou bas-émissive et ne forment donc pas la partie externe du matériau.
Procédé d'obtention de couches mixtes TiO?/SiO? à gradient de composition Les couches mixtes à gradient de composition selon l'invention peuvent être obtenues par le procédé décrit dans la demande WO 97/03029. Ce procédé de dépôt chimique en phase vapeur (CVD) met en oeuvre une buse s'étendant transversalement à l'axe de défilement du substrat (en particulier du verre se présentant sous forme d'un ruban obtenu par flottage) et présentant deux fentes d'injection de gaz précurseurs de compositions distinctes et dimensionnées de telle sorte qu'un mélange partiel et progressif entre les deux veines gazeuses est provoqué dans la zone de dépôt.
Les inventeurs ont toutefois développé un procédé de dépôt chimique en phase vapeur plus astucieux car il met en œuvre une buse classique, ne présentant qu'une seule fente d'injection de gaz et permet d'obtenir toutes sortes de couches mixtes à gradient de composition, dont les couches TiO2/SiO2 décrites supra.
Ce procédé de dépôt chimique en phase vapeur sur un substrat défilant selon un axe, et mettant en œuvre une buse s'étendant transversalement à l'axe de défilement dudit substrat et possédant une seule fente, est caractérisé en ce qu'au moins deux précurseurs gazeux ne réagissant pas entre eux sont injectés simultanément par l'intermédiaire de ladite une seule fente, lesdits précurseurs présentant des température de décomposition intrinsèquement ou extrinsèquement suffisamment différentes pour former une couche dans laquelle la teneur en l'oxyde dont le précurseur présente la température de décomposition la plus faible décroît de manière continue dans l'épaisseur de la couche.
L'invention a donc également pour objet un procédé d'obtention d'un matériau constitué d'un substrat muni d'au moins une couche comprenant de l'oxyde de titane et de l'oxyde de silicium, selon lequel ladite couche est déposée par dépôt chimique en phase vapeur (CVD) sur ledit substrat défilant selon un axe, ledit dépôt étant réalisé à l'aide d'une buse s'étendant transversalement à l'axe de défilement dudit substrat et possédant une seule fente, des précurseurs gazeux d'oxyde de titane et d'oxyde de silicium ne réagissant pas entre eux étant injectés simultanément par l'intermédiaire de ladite une seule fente, et tel qu'au moins un précurseur d'oxyde de titane présente une température de décomposition intrinsèquement ou extrinsèquement suffisamment plus faible que la température de décomposition d'au moins un précurseur d'oxyde de silicium pour former une couche dans laquelle la teneur en oxyde de silicium croît de manière continue dans l'épaisseur de la couche.
Les inventeurs se sont en effet aperçus que par un choix convenable des précurseurs, et plus précisément par un choix convenable de leurs températures de décomposition respectives, il était possible d'obtenir une couche à gradient de composition à l'aide d'une buse de dépôt chimique en phase vapeur classique. Lorsque les températures de décomposition ne sont pas suffisamment différentes les unes des autres, une couche mixte est formée, qui présente une composition sensiblement homogène dans toute l'épaisseur de la couche. Dans le cas particulier des couches TiO2/SiO2 selon l'invention, une trop faible différence entre les températures de décomposition des différents précurseurs n'entraîne pas l'enrichissement superficiel en silice désiré et à l'origine des bonnes propriétés d'empoussièrement. La différence nécessaire entre les températures de décomposition des précurseurs dépend bien évidemment d'un grand nombre de paramètres tels que la nature chimique des couches à former ou la température du substrat lors du dépôt. Elle est à adapter au cas par cas par l'homme du métier.
Les températures de décomposition des précurseurs peuvent être intrinsèques au précurseur choisi, ou être modifiées sélectivement par ajout d'un composé inhibant ou au contraire accélérant le dépôt du précurseur. Il est par exemple possible d'ajouter aux précurseurs de l'éthylène (C2H4) afin de retarder le dépôt de SiO2, en particulier lorsque le précurseur de SiO2 est le tétraéthoxysilane (TEOS), ce qui permet d'avoir un gradient de composition plus fort.
Ce procédé particulier dans lequel les précurseurs sont injectés ensemble est également préféré car les couches qu'il permet d'obtenir sont plus efficaces en terme de propriétés anti-poussières que les couches obtenues par le procédé décrit dans la demande WO 97/03029, probablement du fait d'une microstructure différente.
Pour des raisons de simplicité de mise en œuvre à l'échelle industrielle, on injecte de préférence un seul précurseur d'oxyde de titane et un seul précurseur d'oxyde de silicium. Afin d'obtenir une couche présentant un gradient de composition bien marqué, la différence entre les températures de décomposition respectives des précurseurs d'oxyde de titane et d'oxyde de silicium est de préférence d'au moins 5O0C, voire 750C, et même 1000C ou 15O0C. A titre d'exemple, les précurseurs de TiO2 et SiO2 peuvent être respectivement le tétraisopropyltitanate (TiPT) et le tétraéthoxysilane (TEOS), qui présentent les avantages d'être peu coûteux et non toxiques. Le TiPT présente une température de décomposition d'environ 3000C, soit de l'ordre de 100 à 15O0C de moins que le TEOS.
Les quantités respectives de précurseurs de TiO2 et SiO2 introduits peuvent être définies par le rapport molaire Ti/(Ti+Si) calculé à partir des quantités molaires d'atomes de Ti et de Si introduits (présents dans la phase gazeuse). Ce rapport molaire ne se retrouve pas tel quel dans la couche compte tenu des différences de rendement entre les précurseurs.
Ce rapport est de préférence compris entre 0,85 et 0,96, notamment entre 0,90 et 0,93. Il est en effet apparu que dans cette gamme de rapport, le produit obtenu permettait de cumuler des propriétés de faible empoussièrement avec une activité photocatalytique et une super-hydrophilie photo-induite proches de celles d'un produit comprenant une simple couche d'oxyde de titane cristallisé sous la forme anatase. Lorsque le rapport Ti/(Ti+Si) est plus élevé, proche de 1 , les propriétés obtenues se rapprochent de celles d'un substrat revêtu par une simple couche d'oxyde de titane. Le matériau obtenu présente donc un fort empoussièrement, et se recouvre par conséquent de salissures minérales en l'absence de ruissellement d'eau. Lorsqu'en revanche le rapport Ti/(Si+Ti) est plus faible, en particulier de l'ordre de 0,7 ou 0,8, voire moins, la surface de la couche est très fortement enrichie en silicium et les couches obtenues présentent une activité photocatalytique nettement réduite, voire nulle, et perdent même le caractère de super-hydrophilie photo-induite. Ce phénomène pourrait être dû au fait que la présence de silice en trop forte quantité au sein de la couche mixte perturbe les propriétés de cristallisation de l'oxyde de titane, donnant naissance à des couches amorphes ou en tout cas faiblement cristallisées. De telles couches peuvent néanmoins être utilisées au sens de la présente invention, car les poussières (salissures minérales) ne se déposent et n'adhèrent que faiblement sur leur surface. Ces couches dont la surface est extrêmement enrichie en silice mais possède encore une teneur élevée en oxyde de titane sont donc tout de même utiles de par leur aptitude à ne pas être recouverte par les salissures minérales.
Les couches pour lesquelles le rapport molaire Ti/(Si+Ti) est optimisé permettent au contraire de cumuler tous les avantages : faible empoussièrement (du même niveau que pour des rapports molaires plus faibles), forte activité photocatalytique et super-hydrophilie photo-induite.
Lorsque le substrat en est en verre, et en particulier quand il s'agit d'une feuille de verre formée par déversement de verre fondu sur un bain d'étain en fusion (procédé dit « float »), le procédé de dépôt chimique en phase vapeur est de préférence réalisé en continu, à la sortie du bain float, sur un substrat dont la température est habituellement comprise entre 58O0C et 63O0C.
L'invention a également pour objet un matériau susceptible d'être obtenu par le procédé selon l'invention précédemment décrit. Les propriétés anti-salissures obtenues lorsque la surface de la couche comprenant de l'oxyde de silicium et de l'oxyde de titane forme au moins une partie de la surface externe du matériau sont en effet particulièrement attractives. Compte tenu de la difficulté à étudier précisément la microstructure des couches obtenues selon ce procédé, il n'est toutefois pas possible de définir de manière structurelle ces matériaux préférés. Les différentes caractéristiques préférées du matériau décrit précédemment (présence de sous-couche, épaisseurs...) s'appliquent également à ce matériau.
Les couches des matériaux selon l'invention peuvent également être obtenues par d'autres procédés de dépôt, par exemple un procédé de pulvérisation cathodique assistée par champ magnétique (procédé magnétron) dans lequel le substrat est successivement exposé au bombardement provenant de cibles de TiO2 de plus en plus enrichies en SiO2.
Types de substrats
Les substrats employés dans le cadre de la présente invention peuvent être de nature minérale, notamment à base de verre, de céramique ou de vitrocéramique, ou encore de nature organique. Dans ce dernier cas, différentes matières plastiques rigides ou souples peuvent être employées telles que polyméthacrylate de méthyle (PMMA), polycarbonate (PC), polypropylène, polyuréthane, polyvinylbutyral, poly(téréphtalate d'éthylèneglycol), poly(téréphtalate de butylèneglycol), résine ionomère telle que copolymère éthylène/acide (méth)acrylique neutralisé par une polyamine, copolymère cyclooléfinique tel qu'éthylène/norbomène ou éthylène/cyclopentadiène, copolymère polycarbonate/polyester, copolymère éthylène/acétate de vinyle et similaires, seuls ou en mélanges. Peuvent être également employés des substrats obtenus par polymérisation du bis(allylcarbonate) de diéthylèneglycol (commercialisé sous la marque CR39® par la société PPG Industries Inc.), ou des substrats à base de polymère (méth)allylique ou (méth)acrylique, (plus particulièrement ceux obtenus à partir de monomères ou prépolymères dérivés du bisphénol-A, utilisés seuls ou en mélange avec d'autres monomères copolymérisables), à base de poly(thio)uréthane, ou encore à base de résine polystyrène ou diallylphtalate.
Sous-couches
Au moins une sous-couche est de préférence interposée entre le substrat et le revêtement à base d'oxyde de titane. Cette sous-couche est même avantageusement au contact du substrat et/ou du revêtement à base d'oxyde de titane.
Lorsque le substrat contient des éléments susceptibles de migrer à l'intérieur de la couche à base d'oxyde de titane et de perturber ses propriétés, il est en effet préférable d'interposer entre ledit substrat et ladite couche à base d'oxyde de titane une couche faisant barrière à la migration de ces éléments. C'est le cas en particulier lorsque le substrat, par exemple lorsqu'il s'agit d'une feuille de verre silico-sodo-calcique ou d'une céramique revêtue par une glaçure, contient des ions alcalins tels que le lithium, le potassium ou le sodium.
Une sous-couche barrière aux alcalins est donc de préférence disposée directement sous le revêtement à base d'oxyde de titane, qui a pour but d'empêcher la migration des ions alcalins éventuellement contenus dans le substrat au sein de la couche comprenant de l'oxyde de titane. Une couche barrière telle que par exemple une couche comprenant SiO2, SiOC, AI2O3 ou SnO2 est particulièrement adaptée pour préserver l'activité photocatalytique de l'oxyde de titane.
La sous-couche barrière aux alcalins est avantageusement une couche de SiOC (oxycarbure de silicium), de préférence déposée par CVD (dépôt chimique en phase vapeur) directement sur le substrat. La sous-couche de SiOC présente alors avantageusement à sa surface des bosses régulièrement espacées, ayant de préférence une largeur à la base d'environ 60 à 120 nm et une hauteur d'environ 20 à 50 nm. Il a en effet été observé que l'effet technique qui consiste à empêcher le dépôt de salissures minérales à sa surface était amplifié lorsque le dépôt du revêtement à base d'oxyde de titane (notamment quand il s'agit d'une mixte TiO2/SiO2 à gradient de concentration) était réalisé sur une telle surface texturée. La raison en est pour l'instant totalement inexpliquée. II peut également être souhaitable de disposer au moins une sous- couche entre le substrat et le revêtement à base d'oxyde de titane, par exemple pour atténuer un facteur de réflexion ou une coloration en réflexion jugés trop élevés. Il peut s'agir par exemple d'une couche ou d'un empilement de couches dont les épaisseurs et les indices de réfraction sont tels que l'ensemble formé par ces sous-couches et le revêtement à base d'oxyde de titane forme un empilement anti-reflet, au sens où le facteur de réflexion obtenu est inférieur à celui du substrat.
Applications
Le matériau selon l'invention présente l'avantage d'empêcher le dépôt de salissures minérales (empoussièrement) et donc de ne pas se salir en l'absence de ruissellement d'eau, en particulier en exposition extérieure mais sous abri de la pluie, donc lorsqu'il est soumis à un cycle caractérisé par l'alternance d'illumination solaire pendant le jour et d'absence d'illumination pendant la nuit. C'est au cours d'un cycle de plusieurs alternances, notamment après plusieurs mois d'exposition (2, voire 4 mois ou plus), que l'avantage par rapport à un substrat muni d'un revêtement photocatalytique non revêtu ou à base de TiO2 seul se révèle. De telles situations sont fréquentes, en particulier dans le cas de bâtiments présentant des corniches, surplombs ou pare-soleil devant ou au-dessus des parois vitrées, ces dernières ne subissant donc pas de ruissellement d'eau de pluie. Une utilisation du matériau dans des zones extérieures protégées de la pluie ou dans des zones géographiques connaissant de très rares précipitations est donc particulièrement avantageuse.
L'invention a donc également pour objet l'utilisation d'un matériau selon l'invention comme matériau ayant la propriété de ne pas se salir lorsqu'il est placé en exposition extérieure dans des zones protégées de la pluie ou dans des zones géographiques connaissant de très rares précipitations.
L'effet technique nouvellement découvert permet également une utilisation du matériau à l'intérieur d'un bâtiment, par exemple sous forme de vitrage intérieur ou d'écran de visualisation tel qu'un écran du type « LCD » (Liquid Crystal Display), plasma ou à tube cathodique, pour éviter l'empoussièrement de l'écran. Il est également possible d'utiliser le matériau selon l'invention à l'intérieur d'un véhicule de transport (automobile, train, avion...) par exemple comme pare-brise ou vitre latérale d'automobile. Il est d'ailleurs à noter que les propriétés du matériau selon l'invention ne sont pas affectées par la trempe ou le bombage. L'invention sera mieux comprise à l'aide des exemples de réalisation suivants, qui illustrent l'invention sans toutefois la limiter.
Exemple 1
Un vitrage, commercialisé par la société Saint-Gobain Glass sous le nom de « SGG Bioclean® », et constitué d'un substrat de verre silico-sodo- calcique muni sur une des ses surfaces d'une couche mince de SiOC faisant office de barrière à la migration des alcalins recouverte par un revêtement d'oxyde de titane d'épaisseur 15nm, cristallisé sous forme anatase et obtenu par le procédé de dépôt chimique en phase vapeur CVD, fait office d'exemple comparatif C1. Ce vitrage est du type auto-nettoyant en présence de rayonnement solaire et de ruissellement d'eau de pluie grâce aux propriétés photocatalytiques et super-hydrophiles de l'oxyde de titane, qui lui permettent de dégrader les salissures organiques et d'éliminer les salissures minérales sous ruissellement d'eau, notamment de pluie. Un deuxième exemple comparatif (C2) est constitué par un vitrage en verre silico-sodo-calcique non-revêtu.
Pour réaliser l'exemple 1 selon l'invention, le vitrage de l'exemple comparatif C1 est à son tour revêtu d'une très fine couche de silice dopée à raison de 8% atomiques en aluminium, déposée par le procédé de pulvérisation cathodique assisté par champ magnétique, parfois appelé procédé « magnétron ». L'épaisseur de cette couche mince hydrophile non-recuite est d'environ 2 nm.
Ces trois vitrages ont été exposés pendant 4 mois en conditions extérieures sous un auvent transparent, par conséquent à l'abri de la pluie, mais pas du rayonnement solaire. Ils ont subi un cycle caractérisé par l'alternance d'illumination solaire pendant le jour et d'absence d'illumination pendant la nuit.
Après exposition, les trois vitrages ont été observés. Les deux échantillons comparatifs C1 et C2 présentent tous deux sur la surface exposée une très grande quantité de poussières minérales extrêmement adhérentes. Le vitrage selon l'invention ne présente quant à lui aucun empoussièrement notable.
Exemple 2 On dépose sur un substrat de verre silico-sodo-calcique une sous- couche barrière aux alcalins en SiOC de 50 nm d'épaisseur par un procédé de dépôt chimique en phase vapeur à partir de SiH4, d'éthylène et éventuellement d'un composé oxydant, selon le procédé décrit dans la demande EP 0 518 755. Cette sous-couche est naturellement texturée, et présente à sa surface des bosses dont la largeur à la base est de l'ordre de 100 nm et la hauteur de l'ordre de 30 nm.
Sur cette sous-couche sont déposées des couches mixtes de TiO2 et de SiO2 par un procédé de dépôt chimique en phase vapeur (CVD) utilisant une buse de pulvérisation standard (munie d'une seule fente). Par cette unique fente sont injectés les précurseurs de TiO2 (du tétraisopropyltitanate, TiPT) et de SiO2 (du tétraéthoxysilane, TEOS), le rapport molaire Ti/(Ti+Si) dans la phase gazeuse variant en fonction des essais entre 0,67 et 1. La valeur de 1 correspond à l'essai comparatif dans lequel le TEOS n'est pas injecté. Les couches obtenues ont une épaisseur de l'ordre de 9 à 12 nm selon les essais.
Compte tenu de leur faible épaisseur et de leur texturation particulière (due à la présence de la sous-couche de SiOC), il est difficile d'élucider avec précision la structure de ces couches. Le rapport molaire Si/Ti en surface de la couche (les premiers nanomètres) a été mesuré par la méthode dénommée ESCA (Electron Spectroscopy for Chemical Analysis) aussi appelée XPS (X-ray Photoelectron Spectroscopy). La composition locale des couches en fonction de l'épaisseur a été étudiée par SIMS (Secondary Ion Mass Spectroscopy).
Il ressort de cette dernière étude les éléments suivants : la couche pour laquelle le rapport Ti/(Ti+Si) vaut 0,92, donc faiblement enrichie en silicium, possède une teneur très faible en oxyde de silicium (au plus quelque pourcents en poids) au centre de la couche, cette teneur s'accroissant fortement et de manière continue lorsque l'on se rapproche de la surface externe du matériau, pour atteindre environ 25 à 30% en masse. la couche pour laquelle le rapport Ti/(Ti+Si) vaut 0,67 possède une teneur en oxyde de silicium de l'ordre de 5 à 10% en poids au centre de la couche, cette teneur s'accroissant fortement et de manière continue lorsque l'on se rapproche de la surface externe du matériau, pour atteindre environ 70 à 75% en masse. L'extrême surface de la couche contient donc majoritairement de la silice. La teneur pondérale en oxyde de titane diminue donc de manière continue dans l'épaisseur de la couche depuis le centre (90-95%) jusqu'à la surface (25-30%).
Les propriétés photocatalytiques, d'hydrophilie photo-induite et d'empoussièrement ont été mesurées tel que décrit ci-après. L'activité photocatalytique est déterminée en mesurant la variation de teinte après exposition à un rayonnement ultraviolet d'une couche d'encre déposée sur la surface externe du matériau. Cette encre, décrite dans la demande EP 1 601 462, est composée d'un indicateur coloré tel que le bleu de méthylène, d'une molécule organique sacrificielle donneuse d'électrons et d'une matrice polymère neutre, et présente la particularité de détecter des réactions d'oxydo-réduction à la surface de l'oxyde de titane et de changer de teinte en fonction de l'intensité de ces réactions. L'irradiation de l'oxyde de titane génère en effet une paire électron-trou, l'électron faisant réagir l'indicateur coloré par une réaction de réduction et le trou se recombinant avec un électron provenant de la molécule organique donneuse d'électron. Quelques gouttes d'encre sont déposées sur la surface du matériau puis une feuille de verre transparent au rayonnement ultraviolet est scellée sur ladite surface de manière à ce que l'encre recouvre toute la surface de manière homogène. Au cours de l'irradiation de la surface par un rayonnement ultraviolet, la variation de teinte de l'encre est quantifiée par spectrophotométrie en terme de variation de la composante a* dans le système colorimétrique (La*b*). Les résultats sont ramenés en unité arbitraire en prenant comme base l'exemple comparatif dans lequel le précurseur de silice n'est pas injecté (valeur fixée arbitrairement à 100). L'empoussièrement, ou la capacité du matériau à se recouvrir de salissures minérales adhérant à sa surface est mesurée comme suit. Les échantillons sont irradiés pendant 10 heures par un rayonnement ultraviolet (type UVA, puissance 30W/m2) pour activer leur surface (la rendre hydrophile). Dans une chambre climatique en l'absence d'illumination UV, la surface des échantillons est ensuite recouverte par des particules de carbonate de calcium de moins de 50 micromètres de diamètre simulant la poussière. Après 15 minutes, le matériau est placé en position verticale pour éliminer l'excès de poussière et la surface est ensuite nettoyée à l'aide d'un jet d'air comprimé, de telle manière que seules les poussières adhérentes restent à la surface du matériau. Cette procédure est répétée cumulativement à six reprises à raison d'un essai par heure puis le pourcentage de la surface encore occupée par les poussières est mesuré par des techniques d'analyse d'image. L'échantillon comparatif (correspondant à un rapport Ti/(Ti+Si) de 1 ) étant pris comme référence (base 100), les résultats sont exprimés en pourcentage de surface encore occupée par la poussière adhérente relativement à cette référence. Les propriétés d'hydrophilie photo-induite sont déterminées par des mesures d'angle de contact à l'eau. Deux types de mesures sont effectuées : des mesures réalisées après illumination par un rayonnement ultraviolet puis stockage pendant 1 à 7 jours dans l'obscurité, et des mesures réalisées après un temps d'exposition aux ultraviolets allant de 15 minutes à 26 heures. Le tableau 1 ci-après rassemble les résultats d'activité photocatalytique et d'empoussièrement des différents exemples. Les tableaux 2 et 3 rassemblent quant à eux les résultats d'hydrophilie.
Tableau 1
Figure imgf000024_0001
Tableau 2
Figure imgf000024_0002
Tableau 3
Figure imgf000024_0003
Ces résultats montrent qu'un enrichissement de la couche en silice améliore considérablement les propriétés d'empoussièrement, au sens où deux à trois fois moins de poussières adhèrent à la surface du matériau par rapport au cas où la couche ne comprend que de l'oxyde de titane. Cet effet est déjà obtenu pour de faibles quantités de précurseurs de silicium introduits (rapport Ti/(Ti+Si) de 0,92, soit seulement 8% en moles de silicium), donc pour de faibles teneurs en silicium dans la couche mixte ; l'augmentation ultérieure de la teneur en silicium n'a que peu d'effet sur cette propriété. En revanche, la présence de silicium dans la couche dégrade rapidement son activité photocatalytique, jusqu'à pratiquement l'annuler. Les effets de faible empoussièrement et d'activité photocatalytique sont donc parfaitement décorrélés. On peut également noter que l'ajout d'un précurseur de silicium augmente de manière très significative le rapport Si/Ti en surface du matériau, ce rapport valant environ 2 lorsque le précurseur de silicium n'est ajouté qu'à une teneur de moitié égale à la teneur du précurseur de titane.
En terme d'hydrophilie, le tableau 2 montre que l'échantillon pour lequel le rapport Ti/(Ti+Si) est de 0,92 présente un caractère hydrophile photo-induit s'amoindrissant lorsque le matériau est soumis à une longue période d'obscurité, dans une mesure comparable aux performances de l'échantillon comparatif exempt de silicium. L'hydrophilie peut ensuite être à nouveau rapidement obtenue en soumettant l'échantillon à un rayonnement ultraviolet (tableau 3). En revanche, l'ajout de plus fortes teneurs en silicium dans la couche dégrade très nettement les propriétés d'hydrophilie photo-induite, puisque les échantillons pour lesquels le rapport Ti/(Ti+Si) est de 0,85 ou moins sont hydrophobes et le restent même après une nouvelle illumination sous rayonnement ultraviolet (voir tableau 3). Ces résultats démontrent donc encore une fois que le faible empoussièrement des matériaux selon l'invention est totalement indépendant des propriétés d'hydrophilie photo-induite.
Les matériaux selon l'invention présentent donc la propriété d'empêcher ou tout du moins de freiner le dépôt de salissures minérales sur leur surface. Lorsque de faibles teneurs en silicium sont employées, cette propriété est en outre couplée avec les propriétés connues de l'oxyde de titane que sont la photocatalyse et l'hydrophilie photo-induite. De tels matériaux sont donc particulièrement désirables de par leur propriété de ne pas se salir lorsqu'ils sont placés en exposition extérieure dans des zones protégées de la pluie ou dans des zones géographiques connaissant de très rares précipitations.
Tous les vitrages de l'exemple 2 ont été exposés pendant 4 mois en conditions extérieures similaires à celles décrites pour l'exemple 1.
Après exposition, les vitrages selon l'invention ne présentent aucun empoussièrement notable. En revanche, le vitrage comparatif (correspondant au rapport Ti/(Ti+Si) de 1 est sale et présente sur sa surface un grand nombre de poussières minérales extrêmement adhérentes.
La description qui précède permet d'illustrer quelques modes possibles de réalisation de l'invention. Il est bien entendu que cette description n'est cependant pas limitative et que l'homme du métier est à même de réaliser d'autres variantes de l'invention sans pour autant sortir de son cadre.

Claims

REVENDICATIONS
1. Utilisation d'un matériau constitué d'un substrat muni d'un revêtement à base d'oxyde de titane surmonté d'une couche mince hydrophile formant au moins une partie de la surface externe dudit matériau et n'étant pas constituée d'oxyde de titane, comme matériau empêchant le dépôt de salissures minérales sur ladite surface externe en l'absence de ruissellement d'eau.
2. Utilisation selon la revendication 1 , telle que la couche mince hydrophile présente une épaisseur de moins de 10 nm, de préférence comprise entre 1 et 2 nm.
3. Utilisation selon la revendication 1 ou 2, telle que la couche mince hydrophile est susceptible de créer, en présence d'humidité ambiante et grâce à la présence sous-jacente de l'oxyde de titane, une couche d'hydratation moins dense que l'eau liquide.
4. Utilisation selon l'une des revendications précédentes, telle que la couche mince hydrophile est à base de silicium et d'oxygène.
5. Utilisation selon la revendication précédente, telle que la couche mince hydrophile est en silice (Siθ2), éventuellement dopée par des atomes tels que l'aluminium (Al) ou le zirconium (Zr).
6. Utilisation selon l'une des revendications précédentes, telle que le revêtement à base d'oxyde de titane est constitué exclusivement d'oxyde de titane amorphe ou présentant une structure au moins partiellement cristalline, notamment sous forme anatase ou rutile.
7. Utilisation selon l'une des revendications 1 à 5, telle que le revêtement à base d'oxyde de titane comprend des particules discernables d'oxyde de titane au moins partiellement cristallisées et dispersées dans un liant.
8. Utilisation selon la revendication précédente, telle que la couche mince hydrophile fait partie intégrante du revêtement à base d'oxyde de titane et en constitue l'extrême surface.
9. Utilisation selon l'une des revendications 1 à 4, telle que le revêtement à base d'oxyde de titane et la couche mince hydrophile forment une couche comprenant de l'oxyde de titane et de l'oxyde de silicium, la teneur en oxyde de titane au niveau de ladite surface externe étant non-nulle et la teneur en oxyde de silicium étant plus élevée au niveau de la surface externe qu'au centre de la couche.
10. Utilisation selon l'une des revendications précédentes, telle qu'une sous-couche barrière aux alcalins est disposée directement sous le revêtement à base d'oxyde de titane.
11. Utilisation d'un matériau constitué d'un substrat muni d'un revêtement à base d'oxyde de titane surmonté d'une couche mince hydrophile formant au moins une partie de la surface externe dudit matériau et n'étant pas constituée d'oxyde de titane, comme matériau ayant la propriété de ne pas se salir lorsqu'il est placé en exposition extérieure dans des zones protégées de la pluie ou dans des zones géographiques connaissant de très rares précipitations.
12. Matériau constitué d'un substrat muni d'un revêtement à base d'oxyde de titane surmonté d'une couche mince hydrophile formant au moins une partie de la surface externe dudit matériau et n'étant pas constituée d'oxyde de titane, caractérisé en ce que ladite couche mince hydrophile est susceptible de créer, en présence d'humidité ambiante et grâce à la présence sous-jacente de l'oxyde de titane, une couche d'hydratation moins dense que l'eau liquide.
13. Matériau constitué d'un substrat muni d'un revêtement à base d'oxyde de titane surmonté d'une couche mince hydrophile formant au moins une partie de la surface externe dudit matériau et n'étant pas constituée d'oxyde de titane caractérisé en ce que l'oxyde de titane est majoritairement amorphe.
14. Matériau constitué d'un substrat muni d'au moins une couche dont la surface forme au moins une partie de la surface externe dudit matériau, ladite couche comprenant de l'oxyde de titane et de l'oxyde de silicium, caractérisé en ce que la teneur en oxyde de titane au niveau de ladite surface externe est non-nulle et en ce que la teneur en oxyde de silicium est plus élevée au niveau de ladite surface externe qu'au centre de la couche.
15. Matériau selon la revendication précédente, tel que la teneur en oxyde de silicium croît de manière continue dans l'épaisseur de la couche depuis le centre de la couche, notamment depuis la partie la plus proche du substrat, jusqu'à la surface externe.
16. Matériau selon la revendication 14 ou 15, tel que l'épaisseur de la couche est comprise entre 3 et 30 nm, de préférence entre 5 et 20 nm.
17. Matériau selon l'une des revendications 14 à 16, tel que la teneur en oxyde de silicium dans la partie de la couche la plus proche du substrat est non-nulle.
18. Matériau selon l'une des revendications 14 à 17, tel qu'une sous- couche barrière aux alcalins est disposée directement sous la couche comprenant de l'oxyde de titane et de l'oxyde de silicium.
19. Matériau selon la revendication précédente, tel que la sous-couche barrière aux alcalins est une couche de SiOC, de préférence déposée par CVD directement sur le substrat.
20. Matériau selon la revendication précédente, tel que la sous-couche de SiOC présente à sa surface des bosses régulièrement espacées, ayant de préférence une largeur à la base d'environ 60 à 120 nm et une hauteur d'environ 20 à 50 nm.
21. Procédé d'obtention d'un matériau constitué d'un substrat muni d'au moins une couche comprenant de l'oxyde de titane et de l'oxyde de silicium, selon lequel ladite couche est déposée par dépôt chimique en phase vapeur
(CVD) sur ledit substrat défilant selon un axe, ledit dépôt étant réalisé à l'aide d'une buse s'étendant transversalement à l'axe de défilement dudit substrat et possédant une seule fente, des précurseurs gazeux d'oxyde de titane et d'oxyde de silicium ne réagissant pas entre eux étant injectés simultanément par l'intermédiaire de ladite une seule fente, et tel qu'au moins un précurseur d'oxyde de titane présente une température de décomposition intrinsèquement ou extrinsèquement suffisamment plus faible que la température de décomposition d'au moins un précurseur d'oxyde de silicium pour former une couche dans laquelle la teneur en oxyde de silicium croît de manière continue dans l'épaisseur de la couche.
22. Procédé selon la revendication précédente, tel que l'on injecte un seul précurseur d'oxyde de titane et un seul précurseur d'oxyde de silicium.
23. Procédé selon la revendication précédente, tel que la différence entre les températures de décomposition respectives des précurseurs d'oxyde de titane et d'oxyde de silicium est d'au moins 5O0C.
24. Procédé selon la revendication précédente, tel que les précurseurs d'oxyde de silicium et d'oxyde de titane sont respectivement le tétraéthoxysilane (TEOS) et le tétraisopropyltitanate (TiPT).
25. Procédé selon l'une des revendications de procédé précédentes, tel que le rapport molaire Ti/(Ti +Si) calculé à partir des quantités molaires d'atomes de Ti et de Si introduits (présents dans la phase gazeuse) est compris entre 0,85 et 0,96, de préférence entre 0,90 et 0,93.
26. Matériau susceptible d'être obtenu selon le procédé de l'une des revendications de procédé précédentes.
27. Matériau selon l'une des revendications de matériau précédentes, tel que le substrat est en en verre.
28. Vitrage ou écran de visualisation incorporant au moins un matériau selon la revendication précédente.
PCT/FR2006/051074 2005-10-21 2006-10-20 Materiau anti-salissures et son procede d'obtention WO2007045805A2 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP06820330A EP1940750A2 (fr) 2005-10-21 2006-10-20 Materiau anti-salissures et son procede d'obtention
CN2006800387751A CN101291887B (zh) 2005-10-21 2006-10-20 防污材料及其制备方法
UAA200807036A UA96581C2 (uk) 2005-10-21 2006-10-20 Матеріал, що не забруднюється (варіанти), його застосування, спосіб його одержання та скло, що містить такий матеріал
BRPI0617646-1A BRPI0617646A2 (pt) 2005-10-21 2006-10-20 utilização de um material constituìdo de um substrato munido de um revestimento à base de óxido de titánio encimado por uma camada fina hidrófila, material, seu processo de obtenção e vidraça ou tela de visualização
AU2006303170A AU2006303170B2 (en) 2005-10-21 2006-10-20 Antifouling material and production method thereof
US12/090,367 US7955687B2 (en) 2005-10-21 2006-10-20 Antifouling material and production method thereof
CA2626843A CA2626843C (fr) 2005-10-21 2006-10-20 Materiau anti-salissures et son procede d'obtention
JP2008536104A JP5199102B2 (ja) 2005-10-21 2006-10-20 防汚性材料及びその製造方法
KR1020087007473A KR101402175B1 (ko) 2005-10-21 2006-10-20 오염방지 재제 및 이들의 생산 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0553203 2005-10-21
FR0553203A FR2892408B1 (fr) 2005-10-21 2005-10-21 Utilisation d'un substrat anti-salissures
FR0652877 2006-07-07
FR0652877A FR2903399B1 (fr) 2006-07-07 2006-07-07 Materiau anti-salissures et son procede d'obtention

Publications (3)

Publication Number Publication Date
WO2007045805A2 true WO2007045805A2 (fr) 2007-04-26
WO2007045805A3 WO2007045805A3 (fr) 2007-06-14
WO2007045805A8 WO2007045805A8 (fr) 2007-07-26

Family

ID=37888021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/051074 WO2007045805A2 (fr) 2005-10-21 2006-10-20 Materiau anti-salissures et son procede d'obtention

Country Status (10)

Country Link
US (1) US7955687B2 (fr)
EP (1) EP1940750A2 (fr)
JP (1) JP5199102B2 (fr)
KR (1) KR101402175B1 (fr)
AU (1) AU2006303170B2 (fr)
BR (1) BRPI0617646A2 (fr)
CA (1) CA2626843C (fr)
RU (1) RU2430897C2 (fr)
UA (1) UA96581C2 (fr)
WO (1) WO2007045805A2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011006905A1 (fr) 2009-07-17 2011-01-20 Saint-Gobain Glass France Materiau photocatalytique
WO2011030049A2 (fr) 2009-09-08 2011-03-17 Saint-Gobain Glass France Materiau et vitrage comprenant ce materiau
WO2011039488A1 (fr) 2009-10-01 2011-04-07 Saint-Gobain Glass France Procede de depot de couche mince
JP2012514572A (ja) * 2009-01-09 2012-06-28 サン−ゴバン グラス フランス プラズマ活性化シリコンオキシカーバイドタイプのプライマー層を含む疎水性基材
WO2012110746A1 (fr) 2011-02-16 2012-08-23 Saint-Gobain Glass France Procede d'obtention d'un materiau photocatalytique
US9738967B2 (en) 2006-07-12 2017-08-22 Cardinal Cg Company Sputtering apparatus including target mounting and control
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology
WO2021123618A1 (fr) 2019-12-18 2021-06-24 Saint-Gobain Glass France Vitrage photocatalytique comprenant une couche a base de nitrure de titane

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005003228T2 (de) 2004-07-12 2008-08-28 Cardinal Cg Co., Eden Prairie Wartungsarme beschichtungen
US7910822B1 (en) 2005-10-17 2011-03-22 Solaria Corporation Fabrication process for photovoltaic cell
US8227688B1 (en) 2005-10-17 2012-07-24 Solaria Corporation Method and resulting structure for assembling photovoltaic regions onto lead frame members for integration on concentrating elements for solar cells
CA2648686C (fr) 2006-04-11 2016-08-09 Cardinal Cg Company Revetements photocatalytiques dotes de proprietes ameliorees permettant un entretien minime
DE102006038593A1 (de) * 2006-08-17 2008-02-21 Siemens Ag Selbstreinigende Oberflächenbeschichtung (Photokatalyse)
US7910392B2 (en) 2007-04-02 2011-03-22 Solaria Corporation Method and system for assembling a solar cell package
US20090056806A1 (en) * 2007-09-05 2009-03-05 Solaria Corporation Solar cell structure including a plurality of concentrator elements with a notch design and predetermined radii and method
US8119902B2 (en) 2007-05-21 2012-02-21 Solaria Corporation Concentrating module and method of manufacture for photovoltaic strips
US7820309B2 (en) 2007-09-14 2010-10-26 Cardinal Cg Company Low-maintenance coatings, and methods for producing low-maintenance coatings
US7910035B2 (en) 2007-12-12 2011-03-22 Solaria Corporation Method and system for manufacturing integrated molded concentrator photovoltaic device
US20100294338A1 (en) * 2009-02-20 2010-11-25 Solaria Corporation Large Area Concentrator Lens Structure and Method
DE102009014600C5 (de) * 2009-03-24 2015-04-02 Dyckerhoff Gmbh Photokatalytisch aktivierte Bauteile aus einer mit einem mineralischen Bindemittel gebundenen Matrix sowie Verfahren zur Herstellung der Bauteile
JP5586300B2 (ja) * 2010-03-31 2014-09-10 デクセリアルズ株式会社 機能性積層体及び機能性構造体
US20110242658A1 (en) * 2010-04-05 2011-10-06 Honeywell International Inc. Film structure having inorganic surface structures and related fabrication methods
USD699176S1 (en) 2011-06-02 2014-02-11 Solaria Corporation Fastener for solar modules
US20140090974A1 (en) * 2011-06-30 2014-04-03 Agc Glass Europe Temperable and non-temperable transparent nanocomposite layers
FR2993200B1 (fr) * 2012-07-13 2014-07-18 Saint Gobain Element transparent a reflexion diffuse comprenant une couche sol-gel
KR20160007649A (ko) 2013-05-17 2016-01-20 쓰리엠 이노베이티브 프로퍼티즈 컴파니 세정 용이성 표면 및 그의 제조 방법
US10317578B2 (en) 2014-07-01 2019-06-11 Honeywell International Inc. Self-cleaning smudge-resistant structure and related fabrication methods
RU2661531C1 (ru) * 2017-07-27 2018-07-17 Акционерное общество "Научно-производственный комплекс "Дедал" Мобильный быстроустанавливаемый автономный пост технического наблюдения для контроля обстановки на охраняемой территории
DE112021004623T5 (de) * 2020-09-04 2023-06-15 AGC Inc. Glasgegenstand

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0965571A1 (fr) * 1998-06-19 1999-12-22 Saint-Gobain Vitrage Procédé de dépÔt d'une couche à base d'oxyde métallique sur un substrat verrier, substrat verrier ainsi revétu
EP1066878A1 (fr) * 1998-09-30 2001-01-10 Nippon Sheet Glass Co., Ltd. Article photocatalyseur, article protege contre l'encrassement et le voilement, et procede de production d'un article protege contre l'encrassement et le voilement
WO2002018287A1 (fr) * 2000-09-01 2002-03-07 Pilkington Plc Procede de revetement de verre
WO2004086473A1 (fr) * 2003-03-19 2004-10-07 Amberwave Systems Corporation Procede de production de couches de silicium-germanium relaxees de haute qualite
FR2861386A1 (fr) * 2003-10-23 2005-04-29 Saint Gobain Substrat, notamment substrat verrier, portant une couche a propriete photocatalytique revetue d'une couche mince protectrice.

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2901550B2 (ja) 1996-07-26 1999-06-07 株式会社村上開明堂 防曇素子
US6124026A (en) * 1997-07-07 2000-09-26 Libbey-Owens-Ford Co. Anti-reflective, reduced visible light transmitting coated glass article
JP3904355B2 (ja) * 1998-12-03 2007-04-11 日本板硝子株式会社 親水性光触媒部材
JP2001025666A (ja) * 1999-07-14 2001-01-30 Nippon Sheet Glass Co Ltd 積層体およびその製造方法
JP3622585B2 (ja) 1999-08-05 2005-02-23 日本板硝子株式会社 光触媒活性を有する物品
JP3701826B2 (ja) 1999-11-12 2005-10-05 株式会社村上開明堂 有色防曇鏡
JP2001264509A (ja) * 2000-03-21 2001-09-26 Nippon Sheet Glass Co Ltd 反射防止膜が被覆された物品およびその製造方法
JP2002047032A (ja) * 2000-08-01 2002-02-12 Nippon Sheet Glass Co Ltd 光触媒膜付き基板及びその製造方法
CN1401085A (zh) 2001-06-11 2003-03-05 株式会社村上开明堂 防雾元件及其形成方法
CN100462223C (zh) * 2001-09-28 2009-02-18 松下电工株式会社 覆有防污薄膜的制品
JP2004124180A (ja) * 2002-10-03 2004-04-22 Hidetoshi Saito 針状金属酸化物構造体の製造方法及び製造装置
JP4877941B2 (ja) * 2005-09-30 2012-02-15 エスケー化研株式会社 塗膜積層体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0965571A1 (fr) * 1998-06-19 1999-12-22 Saint-Gobain Vitrage Procédé de dépÔt d'une couche à base d'oxyde métallique sur un substrat verrier, substrat verrier ainsi revétu
EP1066878A1 (fr) * 1998-09-30 2001-01-10 Nippon Sheet Glass Co., Ltd. Article photocatalyseur, article protege contre l'encrassement et le voilement, et procede de production d'un article protege contre l'encrassement et le voilement
WO2002018287A1 (fr) * 2000-09-01 2002-03-07 Pilkington Plc Procede de revetement de verre
WO2004086473A1 (fr) * 2003-03-19 2004-10-07 Amberwave Systems Corporation Procede de production de couches de silicium-germanium relaxees de haute qualite
FR2861386A1 (fr) * 2003-10-23 2005-04-29 Saint Gobain Substrat, notamment substrat verrier, portant une couche a propriete photocatalytique revetue d'une couche mince protectrice.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9738967B2 (en) 2006-07-12 2017-08-22 Cardinal Cg Company Sputtering apparatus including target mounting and control
JP2012514572A (ja) * 2009-01-09 2012-06-28 サン−ゴバン グラス フランス プラズマ活性化シリコンオキシカーバイドタイプのプライマー層を含む疎水性基材
WO2011006905A1 (fr) 2009-07-17 2011-01-20 Saint-Gobain Glass France Materiau photocatalytique
WO2011030049A2 (fr) 2009-09-08 2011-03-17 Saint-Gobain Glass France Materiau et vitrage comprenant ce materiau
WO2011039488A1 (fr) 2009-10-01 2011-04-07 Saint-Gobain Glass France Procede de depot de couche mince
DE202010018173U1 (de) 2009-10-01 2014-10-16 Saint-Gobain Glass France Material
WO2012110746A1 (fr) 2011-02-16 2012-08-23 Saint-Gobain Glass France Procede d'obtention d'un materiau photocatalytique
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology
US11325859B2 (en) 2016-11-17 2022-05-10 Cardinal Cg Company Static-dissipative coating technology
WO2021123618A1 (fr) 2019-12-18 2021-06-24 Saint-Gobain Glass France Vitrage photocatalytique comprenant une couche a base de nitrure de titane
FR3105211A1 (fr) 2019-12-18 2021-06-25 Saint-Gobain Glass France Vitrage photocatalytique comprenant une couche à base de nitrure de titane

Also Published As

Publication number Publication date
KR101402175B1 (ko) 2014-06-19
US7955687B2 (en) 2011-06-07
AU2006303170A1 (en) 2007-04-26
BRPI0617646A2 (pt) 2011-08-02
JP5199102B2 (ja) 2013-05-15
WO2007045805A8 (fr) 2007-07-26
JP2009512573A (ja) 2009-03-26
WO2007045805A3 (fr) 2007-06-14
CA2626843A1 (fr) 2007-04-26
RU2430897C2 (ru) 2011-10-10
US20080241479A1 (en) 2008-10-02
KR20080055865A (ko) 2008-06-19
RU2008120015A (ru) 2009-11-27
EP1940750A2 (fr) 2008-07-09
UA96581C2 (uk) 2011-11-25
AU2006303170B2 (en) 2012-10-11
CA2626843C (fr) 2015-03-17

Similar Documents

Publication Publication Date Title
EP1940750A2 (fr) Materiau anti-salissures et son procede d&#39;obtention
EP1751072B1 (fr) Substrat a revetement photocatalytique
EP0850204B1 (fr) Substrat a revetement photocatalytique
EP0712815B1 (fr) Vitrage muni d&#39;au moins une couche mince et son procédé d&#39;obtention
CA2482630C (fr) Substrat a revetement auto-nettoyant
WO2005102952A2 (fr) Substrat photocatalytique actif sous lumiere visible
FR2857030A1 (fr) Procede de depot d&#39;oxyde de titane par source plasma
EP1497236A1 (fr) Substrat a revetement auto-nettoyant
WO2012022876A2 (fr) Vitrage
FR2908406A1 (fr) Couche poreuse, son procede de fabrication et ses applications.
CA2810173A1 (fr) Substrat verrier revetu d&#39;une couche anti-reflechissante
EP2454212A1 (fr) Materiau photocatalytique
EP2523919A1 (fr) Materiau photocatalytique et vitrage ou cellule photovoltaique comprenant ce materiau
FR2903399A1 (fr) Materiau anti-salissures et son procede d&#39;obtention
FR2892408A1 (fr) Utilisation d&#39;un substrat anti-salissures
FR2971519A1 (fr) Procede d’obtention d’un materiau photocatalytique
WO2021123618A1 (fr) Vitrage photocatalytique comprenant une couche a base de nitrure de titane

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680038775.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006820330

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006303170

Country of ref document: AU

Ref document number: 1020087007473

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2008536104

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12090367

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2006303170

Country of ref document: AU

Date of ref document: 20061020

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006303170

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/005160

Country of ref document: MX

Ref document number: 2626843

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1872/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008120015

Country of ref document: RU

Ref document number: a200807036

Country of ref document: UA

WWP Wipo information: published in national office

Ref document number: 2006820330

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0617646

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080418