EP1730461A2 - Fin for heat exchanger and heat exchanger equipped with such fins - Google Patents

Fin for heat exchanger and heat exchanger equipped with such fins

Info

Publication number
EP1730461A2
EP1730461A2 EP04816575A EP04816575A EP1730461A2 EP 1730461 A2 EP1730461 A2 EP 1730461A2 EP 04816575 A EP04816575 A EP 04816575A EP 04816575 A EP04816575 A EP 04816575A EP 1730461 A2 EP1730461 A2 EP 1730461A2
Authority
EP
European Patent Office
Prior art keywords
vaporizer
zone
condenser
fin
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04816575A
Other languages
German (de)
French (fr)
Inventor
Frédéric Crayssac
Claire Turgis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1730461A2 publication Critical patent/EP1730461A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/44Particular materials used, e.g. copper, steel or alloys thereof or surface treatments used, e.g. enhanced surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles

Definitions

  • the present invention relates to a corrugated fin for plate and fin heat exchanger and to a vaporizer-condenser comprising fins.
  • plate and fin heat exchangers there are different types of plate and fin heat exchangers, each adapted to a field of use.
  • the invention advantageously applies to a vaporizer-condenser of an air separation unit or of mixtures containing mainly hydrogen and carbon monoxide by cryogenic distillation.
  • the invention applies in particular to the main evaporator-condensers of air distillation apparatus. These vaporizers-condensers vaporize the liquid oxygen under low pressure (typically slightly higher than atmospheric pressure) collected at the bottom of a column, by condensation of medium pressure nitrogen (typically from 5 to 6 bars absolute) circulating in neighboring passages.
  • low pressure typically slightly higher than atmospheric pressure
  • medium pressure nitrogen typically from 5 to 6 bars absolute
  • Double column type cryogenic air separation systems include an air compressor whose energy consumption is conditioned in particular by the temperature difference between the oxygen vaporized in the low pressure column and the nitrogen present in condensed form in the medium pressure column. This temperature difference is itself linked to the pressure difference between the two columns. A reduction in this temperature difference makes it possible to considerably improve the energy consumption of the air compressor, the latter then having to supply air under a lower pressure than in the case where the temperature difference is higher.
  • phase change exchangers consist of plates between which waves or fins are inserted, thus forming a stack of vaporization "passages” and condensation "passages".
  • waves such as straight waves (Figure 1), herringbone (“herringbo ⁇ e”, Figure 2) perforated or partially offset ( Figure 3).
  • the vaporization side of a bath “vaporizer-condenser” has two distinct exchange zones: o A convective exchange zone in the lower part of the vaporizer. The waves are in contact with a liquid phase and heat it up to its saturation temperature.
  • the waves are in contact with a two-phase mixture (Liquid / gas).
  • the vapor bubbles appear on the wall as soon as the local overheating reaches a certain value called ⁇ T " 0 nset boiung" (the local overheating being the temperature difference ⁇ T sat between the wall temperature T p and the saturation temperature of the fluid T sat ). This value varies depending on the fluid as well as the structure and nature of the material used.
  • EP-A-0 303 493 projection of a mixture of metal and plastic particles on a conductive surface. After vaporization at 500/600 ° C of the plastic particles, the surface has a porous layer.
  • - US-A- 4 371 034 configuration of plate vaporizer and using porous surfaces on the vaporization side. The porous layer is formed by high speed bombardment of molten particles on the flat surface or by bonding of particles on the wall.
  • - FR-A-2 443 515 manufacture of a porous copper surface. The method consists in coating a tube or a plate with a crosslinked organic foam and depositing inside this foam, an electrolytic coating of copper. The foam is then pyrolyzed.
  • - US-A-4,064,914 manufacture of a porous copper or steel layer on a copper or copper alloy base.
  • This porous layer consists of metallic powder assembled by bonding and then brazed.
  • - US-A-3 384 154 use of a porous layer for boiling a liquid.
  • This porous layer must be bonded to a conductive metal wall and made up of conductive particles linked together and forming interconnected cavities. The manufacturing procedures are preferably sintering, welding, brazing and other processes.
  • the thickness of the porous layer must be greater than the diameter of the particles and preferably less than three times the diameter of the particles.
  • the problem is to obtain an exchange surface which responds to both: o the fact of having an overall geometry of wave or fin type which can be brazed in an exchanger, in particular a vaporizer-condenser, o the having a structure intensifying the boiling and whose characteristics are a high density of cavities, a size and a shape of cavities adapted to the fluid and cavities connected together.
  • Manufacturing methods by mechanical treatment require a certain thickness of the conductive surface. These mechanical treatments are difficult to apply to the waves used in a vaporizer-condenser since the sheet thicknesses vary from 0.2 to 0.5 mm.
  • the methods of chemical or laser attacks generate a limited surface state since these present cavities at only one level of the surface and not interconnected.
  • Sintered materials in wave form which make it possible to obtain a wave or fin type exchange surface and which has a porous layer formed by a plurality of diameters of interconnected cavities:
  • Sintered materials (“sintered porous structure”) are commonly used in industry for the filtration of gases and liquids. Standard products are in stainless steel and bronze. However, manufacturing from highly conductive materials (such as copper or aluminum) is technically possible. These porous materials can be made from metal particles or metallic fibers or even metallic fabrics.
  • these porous structures made of highly conductive materials are used for a heat transfer application and more precisely for nucleated boiling of a liquid.
  • One of the parameters which varies the porosity of a frit is the size of the metal particles used. Indeed, the diameters of the cavities created after sintering is directly related to the size of the metal particles used. It is possible to select a size of metal particles to be used in order to obtain cavities of desired average diameter. These are (mostly) aluminum particles with sizes between 45 and 200 ⁇ m (3%> 200 ⁇ m and 15% ⁇ 45 ⁇ m).
  • the porosity (after sintering) is 20%. It is also possible to use several sizes of metal particles in order to obtain a range of cavity diameters. Because the plurality of cavity diameters promotes boiling. The distribution of cavity diameters (particle size) is heterogeneous (random) if the metal particles are mixed together beforehand. Waveforming can be done either directly during sintering using waveform molds, or by machining (EDM) grooves after sintering a thick porous plate.
  • EDM machining
  • a typical heat exchanger consists of a stack of all identical rectangular rectangular plates, which define between them a plurality of passages for fluids to be brought into indirect heat exchange relationship. These passages are successively and cyclically passages for a first fluid, for a second fluid and for a third fluid.
  • Each passage is bordered by closing bars which delimit it, leaving free entry / exit windows for the corresponding fluid.
  • wave-spacers or corrugated fins serving both as thermal fins, as spacers between the plates, especially during brazing and to avoid any deformation of the plates when using fluids under pressure, and for guiding the flow of fluids.
  • the stack of plates, closing bars and spacer waves is generally made of aluminum or aluminum alloy and is assembled in a single operation by brazing in the oven.
  • Fluid inlet / outlet boxes generally semi-cylindrical in shape, are then welded to the exchanger body thus produced so as to cover the rows of corresponding inlet / outlet windows, and they are connected to pipes. supply and evacuation of fluids.
  • the object of the invention is therefore to propose a fin which overcomes the disadvantages of the prior art, and which can be used in industrial exchangers, in particular plate and fin heat exchangers of a separation unit of air or H 2 / CO mixtures by cryogenic distillation, and in particular in a vaporizer / condenser.
  • the subject of the invention is a corrugated fin for a plate and fin heat exchanger, of the type having a main general direction of undulation, and comprising a set of wave legs connected alternately by a wave vertex. and by a wave base, characterized in that the wave legs, the vertices and the wave bases are formed from a strip of sintered metal particles.
  • the wave legs, the vertices and the wave bases form, in cross section relative to the main direction of undulation, rectilinear segments, the vertices and the bases being parallel to each other; -
  • the particles are made of aluminum, an aluminum alloy containing at least 90% mol.
  • a vaporizer-condenser of the type comprising a stack of parallel plates, closing bars and possibly spacer waves, which define a first series of passages for a fluid to be vaporized supplied at source, and a second series of passages contiguous to the first for at least one fluid for heating said fluid to be vaporized, said passages of the first series are divided into three successive zones, from the bottom to the top of the vaporizer-condenser: - a first zone configured to favor heat exchange by convection; - a second zone configured so as to favor the nucleated boiling phenomenon; - a third zone configured so as to favor the phenomenon of convective boiling; characterized in that at least the second zone and possibly the third zone contains fins according to any
  • this vaporizer is of the bath vaporizer type.
  • a vaporizer-condenser of the film vaporizer type containing fins according to any one of claims 1 to 5.
  • an apparatus for separating air by cryogenic distillation comprising at least one vaporizer-condenser according to one of claims 6 to 8.
  • the apparatus may comprise at least two columns thermally connected together by means of a vaporizer according to one of claims 6 to 8.
  • These fins can be of the partial offset type, straight or perforated straight.
  • the invention further relates to a heat exchanger equipped with at least one fin as described above.
  • a fin according to the invention has wave vertices 121, defined by the vertices of the slots, flat and horizontal. It has wave bases 122, defined by the bases of the slots, also flat and horizontal. The vertices and the bases alternately connect plane and vertical wave legs 123, the mean plane of which extends perpendicular to the direction D1.
  • the fins of Figures 1 to 3 have a thickness t between 0.25 and 0.6 mm and the pores (not shown) formed in the fin have a diameter ranging from 10 to 100 ⁇ m.
  • the vaporizer-condenser of Figure 4 is almost completely submerged in the liquid oxygen collected in the tank of the low pressure column of an air distillation apparatus. A passage is therefore supplied "in source” with liquid oxygen. This liquid oxygen first enters a first zone of passage 2 to be heated there by the nitrogen circulating in the contiguous passages of the vaporizer-condenser.
  • this first zone preference is given to heat exchange by convection and the materials which constitute it are given a configuration which maximizes this type of exchange.
  • this first zone is filled by heat exchange waves having a large exchange surface without however providing too high pressure losses, such as waves with partial offset (called “serrated waves” Figure 3), or straight waves perforated or not (Figure 1), or herringbone type waves (Figure 2) "herringbone” defining numerous and narrow corridors for the passage of liquid oxygen.
  • a density of at least 10 fpi (10 waves per inch in width, ie 3.9 waves per cm) is recommended, preferably from 14 to 30 fpi (5.5 to 11, 8 waves cm).
  • this first zone can extend over approximately 1/3 of the total height of the vaporizer-condenser, for example over a height of 40 cm for a vaporizer-condenser 1, 20 m high, dimension which is classic for air separation devices.
  • the heat exchange waves could be replaced by a padding of metal foam or a material such as aluminum.
  • the oxygen rising in the passage then enters a second zone 3 where it is sought to promote a phenomenon of boiling nucleated by the formation of bubbles of gaseous oxygen on the walls of the waves located in the passage.
  • waves of sintered aluminum particles are used so that the porosities of the wave multiply the possible initiation sites for the formation of bubbles.
  • Porosities or micro-reliefs can also be provided both on the walls of the plates of the exchanger delimiting the passage. Indeed, even more than in the first zone, it is important to limit the pressure losses of the fluid so as not to hinder the ascent of the liquid oxygen-gaseous oxygen mixture present.
  • the oxygen in liquid and gaseous form rising in the passage finally enters a third zone 4 where it is again sought to promote heat exchanges with the fluid passing through the contiguous passages. It aims to be in a convective boiling regime. Waves of sintered aluminum particles can also be installed there in order to favor the increase of the bubbles of gaseous oxygen present.
  • the walls of the waves and the plates are covered with a layer of liquid oxygen through which heat exchange takes place. Its thickness depends above all on the flow conditions of the liquid oxygen-gaseous oxygen mixture.
  • the heat exchanges are all the more favored as the speed of the fluid is high. It is therefore important to limit as much as possible the pressure drop of the oxygen during its ascent in this third zone.
  • this third zone can represent approximately half of the total height of the passage, or 60 cm for a vaporizer-condenser of 1.20 m high.
  • each of the zones described above can be divided into several sub-zones having exchange surfaces configured in different ways, provided that in each of these sub-zones, the phenomenon to which the corresponding zone is dedicated is effectively privileged: convective exchange for the first zone, nucleated boiling for the second zone, convective boiling for the third zone.
  • the invention can also be applied in vaporizers-condensers treating gases other than oxygen if the advantages which it presents can be exploited.

Abstract

The invention concerns a fin defining a general corrugated direction (D1), comprising a plurality of corrugations (123) alternately linked by a corrugation top (121) and a corrugation base (122). The fins are formed exclusively from sintered metal particles. The invention is applicable to plate heat exchangers of a unit for air separation or H2/CO mixtures by cryogenic distillation.

Description

Ailette pour échangeur de chaleur et échangeur de chaleur muni de telles ailettes Fin for heat exchanger and heat exchanger provided with such fins
La présente invention se rapporte à une ailette ondulée pour échangeur de chaleur à plaques et ailettes et à un vaporiseur-condenseur comprenant des ailettes. Il existe différents types d'échangeurs de chaleur à plaques et ailettes, adaptés chacun à un domaine d'utilisation. L'invention s'applique de façon avantageuse à un vaporiseur-condenseur d'une unité de séparation d'air ou de mélanges contenant principalement de l'hydrogène et du monoxyde de carbone par distillation cryogénique. L'invention s'applique en particulier aux vaporiseurs-condenseurs principaux des appareils de distillation d'air. Ces vaporiseurs-condenseurs vaporisent l'oxygène liquide sous basse pression (typiquement légèrement supérieure à la pression atmosphérique) recueilli en bas d'une colonne, par condensation d'azote moyenne pression (typiquement de 5 à 6 bars absolus) circulant dans des passages voisins des passages dédiés à la circulation d'oxygène. L'azote moyenne pression est le plus souvent prélevé à l'état gazeux en tête d'une colonne de distillation d'air à moyenne pression à laquelle la colonne basse pression citée ci-dessus est connectée. Après son passage et sa condensation au moins partielle dans le vaporiseur-condenseur, cet azote est renvoyé dans la colonne moyenne pression. C'est plus spécifiquement dans le cadre de cette application que l'invention sera décrite par la suite, étant entendu que son application peut être envisagée dans d'autres contextes. Le terme « vaporiseur-condenseur » s'applique également aux vaporiseurs dans lequel le fluide de chauffage est un liquide qui est sous-refroidi dans le vaporiseur, au lieu d'un gaz qui s'y condense. Il s'applique également aux vaporiseurs-condenseurs intermédiaires et de tête de colonne basse pression, aux vaporiseurs-condenseurs de tête de colonne argon, aux vaporiseurs-condenseurs de tête et de cuve de colonne Etienne et aux vaporiseurs-condenseurs de tête de simple colonne. Les installations de séparation cryogénique de l'air du type à double colonne comportent un compresseur d'air dont la consommation énergétique est conditionnée notamment par la différence de température existant entre l'oxygène vaporisé dans la colonne basse pression et l'azote présent sous forme condensée dans la colonne moyenne pression. Cet écart de température est lui- même lié à la différence de pression entre les deux colonnes. Une réduction de cette différence de température permet d'améliorer considérablement la consommation énergétique du compresseur d'air, celui-ci devant alors fournir de l'air sous une pression plus faible que dans le cas où la différence de température est plus élevée. Pour parvenir à ce résultat, il faut obtenir des échanges de chaleur aussi bons que possible à l'intérieur du vaporiseur-condenseur, autrement dit obtenir dans ses différentes parties des coefficients de transfert de chaleur élevés. Cette optimisation des coefficients de transfert de chaleur a conduit à la conception de vaporiseurs-condenseurs relativement complexes, car les fluides qui les traversent ne se trouvent pas dans le même état physique à tous les niveaux de l'appareil. En particulier, l'oxygène se trouve à l'état entièrement liquide dans la partie inférieure du vaporiseur-condenseur, puis voit sa proportion de vapeur progressivement augmenter au fur et à mesure de son ascension dans l'appareil par effet thermosiphon sous l'effet de son réchauffement par l'azote gazeux. La technologie couramment utilisée pour ces échangeurs à changement de phase est celle des échangeurs en aluminium à plaques et ailettes brasés, qui permettent d'obtenir des organes très compacts offrant une grande surface d'échange. Ces échangeurs sont constitués de plaques entre lesquelles sont insérées des ondes ou ailettes, formant ainsi un empilage de « passages » vaporisation et de « passages » condensation. Il existe différents types d'ondes comme les ondes droites (Figure 1), arête de hareng (« herringboπe », Figure 2) perforées ou à décalage partiel (Figure 3). Le côté vaporisation d'un « vaporiseur-condenseur » à bain présente deux zones distinctes d'échange : o Une zone d'échange convectif dans la partie basse du vaporiseur. Les ondes sont en contact avec une phase liquide et réchauffent celui-ci jusqu'à sa température de saturation. o Une zone d'ébullition_où se produit des bulles de vapeur à partir de sites de nucléation. Les ondes sont en contact avec un mélange diphasique (liquide/gaz). Plus l'échange se situe en haut de l'échangeur, plus le taux de gaz est grand. Les bulles de vapeur apparaissent sur la paroi dès que la surchauffe locale atteint une certaine valeur appelée ΔT«0nset boiung » (la surchauffe locale étant l'écart de température ΔTsat entre la température de paroi Tp et la température de saturation du fluide Tsat). Cette valeur varie selon le fluide ainsi que la structure et la nature du matériau utilisé. Les théories classiques de l'ébullition montrent que, pour un écart de température ΔTsat entre la paroi et le fluide à la saturation, il existe une gamme de cavités susceptibles de constituer des sites de nucléation. Cette gamme est limitée par deux valeurs de rayons extrêmes rmin et rmax. Pour que la cavité de rayon Tca . compris entre les deux valeurs extrêmes soit actives, il faut que subsiste constamment une interface liquide-vapeur dans la cavité. Certaines formes de cavité permettent une plus grande stabilité de l'interface liquide- vapeur. Si l'interface est détruite, un écart de température plus grand est nécessaire pour réamorcer le site. La forme des cavités est donc un élément essentiel dans la stabilité du site de nucléation et des performances de la surface d'échange. Une cavité rentrante permet une grande stabilité de l'interface. Une surface d'échange qui favorise l'ébullition doit avoir les caractéristiques suivantes : o Une grande densité de cavités. o Une taille et une forme de cavités adaptées au fluide. o Des cavités connectées entre elles pour un réamorçage plus aisé. Ces caractéristiques se traduisent par un abaissement de la valeur de l'écart de température des premières bulles (ΔT « oπSet boiiing ») et une augmentation du coefficient d'échange. L'art antérieur décrit plusieurs méthodes de fabrication de surface intensifiant l'ébullition. Ces méthodes de fabrication peuvent être regroupées en 3 groupes principaux suivants :The present invention relates to a corrugated fin for plate and fin heat exchanger and to a vaporizer-condenser comprising fins. There are different types of plate and fin heat exchangers, each adapted to a field of use. The invention advantageously applies to a vaporizer-condenser of an air separation unit or of mixtures containing mainly hydrogen and carbon monoxide by cryogenic distillation. The invention applies in particular to the main evaporator-condensers of air distillation apparatus. These vaporizers-condensers vaporize the liquid oxygen under low pressure (typically slightly higher than atmospheric pressure) collected at the bottom of a column, by condensation of medium pressure nitrogen (typically from 5 to 6 bars absolute) circulating in neighboring passages. passages dedicated to the circulation of oxygen. Medium pressure nitrogen is most often taken in the gaseous state at the top of a medium pressure air distillation column to which the low pressure column mentioned above is connected. After its passage and at least partial condensation in the vaporizer-condenser, this nitrogen is returned to the medium pressure column. It is more specifically in the context of this application that the invention will be described below, it being understood that its application can be envisaged in other contexts. The term "vaporizer-condenser" also applies to vaporizers in which the heating fluid is a liquid which is sub-cooled in the vaporizer, instead of a gas which condenses there. It also applies to intermediate and low pressure column vaporizers / condensers, argon column vaporizers / condensers, Etienne column vaporizers and condensers and single column vaporizers / condensers . Double column type cryogenic air separation systems include an air compressor whose energy consumption is conditioned in particular by the temperature difference between the oxygen vaporized in the low pressure column and the nitrogen present in condensed form in the medium pressure column. This temperature difference is itself linked to the pressure difference between the two columns. A reduction in this temperature difference makes it possible to considerably improve the energy consumption of the air compressor, the latter then having to supply air under a lower pressure than in the case where the temperature difference is higher. To achieve this result, it is necessary to obtain as good heat exchanges as possible inside the vaporizer-condenser, in other words to obtain in its different parts high heat transfer coefficients. This optimization of the heat transfer coefficients has led to the design of relatively complex vaporizers-condensers, since the fluids which pass through them are not in the same physical state at all levels of the device. In particular, the oxygen is in the entirely liquid state in the lower part of the vaporizer-condenser, then sees its proportion of vapor progressively increasing as it rises in the device by thermosiphon effect under the effect of its warming by nitrogen gas. The technology commonly used for these phase change exchangers is that of aluminum exchangers with brazed plates and fins, which make it possible to obtain very compact members offering a large exchange surface. These exchangers consist of plates between which waves or fins are inserted, thus forming a stack of vaporization "passages" and condensation "passages". There are different types of waves such as straight waves (Figure 1), herringbone (“herringboπe”, Figure 2) perforated or partially offset (Figure 3). The vaporization side of a bath “vaporizer-condenser” has two distinct exchange zones: o A convective exchange zone in the lower part of the vaporizer. The waves are in contact with a liquid phase and heat it up to its saturation temperature. o A boiling zone_ where vapor bubbles occur from nucleation sites. The waves are in contact with a two-phase mixture (Liquid / gas). The more the exchange is located at the top of the exchanger, the higher the gas rate. The vapor bubbles appear on the wall as soon as the local overheating reaches a certain value called ΔT " 0 nset boiung" (the local overheating being the temperature difference ΔT sat between the wall temperature T p and the saturation temperature of the fluid T sat ). This value varies depending on the fluid as well as the structure and nature of the material used. The classical theories of boiling show that, for a temperature difference ΔT s at between the wall and the fluid at saturation, there is a range of cavities capable of constituting nucleation sites. This range is limited by two values of extreme radii r min and r max . So that the cavity of radius Tca. between the two extreme values is active, there must always be a liquid-vapor interface in the cavity. Certain forms of cavity allow greater stability of the liquid-vapor interface. If the interface is destroyed, a larger temperature difference is required to reboot the site. The shape of the cavities is therefore an essential element in the stability of the nucleation site and the performance of the exchange surface. A re-entrant cavity allows great stability of the interface. An exchange surface which promotes boiling must have the following characteristics: o A high density of cavities. o A size and shape of cavities adapted to the fluid. o Cavities connected together for easier re-priming. These characteristics are reflected in a reduction in the value of the temperature difference of the first bubbles (ΔT " oπS et boiiing") and an increase in the exchange coefficient. The prior art describes several methods of surface manufacture intensifying the boiling. These manufacturing methods can be grouped into the following three main groups:
Méthodes par traitement mécanique - US-A-6 119 770 : fabrication de tubes à surfaces poreuses à l'intérieur ou à l'extérieur du tube. Des rainures sont remplies de particules de métal et déformées. - US-A-4 216 826 : des rainures perpendiculaires sont creusées puis déformées à l'aide de rouleaux. - US-A-4060125 - GB-B-1 468 710 - US-A-3906604, US-A- 3454081 et US-A-3457990.Mechanical treatment methods - US-A-6 119 770: manufacture of tubes with porous surfaces inside or outside the tube. Grooves are filled with metal particles and deformed. - US-A-4 216 826: perpendicular grooves are dug and then deformed using rollers. - US-A-4060125 - GB-B-1 468 710 - US-A-3906604, US-A- 3454081 and US-A-3457990.
Méthodes par attaques :Attack methods:
- US-A-4846267 : après une étape de chauffage et de refroidissement, la surface est subit une attaque chimique en solution acide. - WO 0 223 115 (MANQUE UN CHIFFRE ! !) : amélioration de surfaces de circuits intégrés. Des cavités sont créées par une attaque laser.- US-A-4846267: after a heating and cooling step, the surface is subjected to a chemical attack in acid solution. - WO 0 223 115 (LACKS A NUMBER!!): Improvement of surfaces of integrated circuits. Cavities are created by a laser attack.
Méthodes par dépôts de surface :Surface deposition methods:
EP-A-0 303 493 : projection d'un mélange de particules de métal et de plastique sur une surface conductrice. Après vaporisation à 500/600°C des particules plastiques, la surface présente une couche poreuse. - US-A- 4 371 034 : configuration de vaporiseur à plaques et utilisant des surfaces poreuses côté vaporisation. La couche poreuse est constituée par bombardement à haute vitesse de particules fondues sur la surface plate ou par collage de particules sur la paroi. - FR-A-2 443 515 : fabrication d'une surface poreuse en cuivre. Le procédé consiste à revêtir un tube ou une plaque d'une mousse organique réticulée et à déposer à l'intérieur de cette mousse, un revêtement électrolytique de cuivre. La mousse est ensuite pyrolysée. - US-A-4 064 914 : fabrication d'une couche poreuse en cuivre ou en acier sur une base en cuivre ou en alliage de cuivre. Cette couche poreuse est constituée de poudre métallique assemblée par collage puis brasée. - US-A-3 384 154 : utilisation d'une couche poreuse pour l'ébullition d'un liquide. Cette couche poreuse doit être liée à une paroi métallique conductrice et constituée de particules conductrices liées entre elles et formant des cavités interconnectées. Les procédures de fabrication sont préférentiellement le frittage, la soudure, le brasage et autres procédés. L'épaisseur de la couche poreuse doit être supérieure au diamètre des particules et préférentiellement plus petite que trois fois le diamètre des particules. Le problème posé est d'obtenir une surface d'échange qui réponde à la fois : o au fait d'avoir une géométrie d'ensemble de type onde ou ailette pouvant être brasé dans un échangeur, en particulier un vaporiseur-condenseur, o au fait d'avoir une structure intensifiant l'ébullition et dont les caractéristiques sont une grande densité de cavités, une taille et une forme de cavités adaptées au fluide et des cavités connectées entre elles. Les méthodes de fabrication par traitement mécanique nécessitent une certaine épaisseur de la surface conductrice. Ces traitements mécaniques sont difficilement applicables aux ondes utilisées dans un vaporiseur-condenseur puisque les épaisseurs de tôle varient de 0,2 à 0,5 mm. Les méthodes d'attaques chimiques ou laser engendrent un état de surface limité puisque celles-ci présentent des cavités à un seul niveau de la surface et non interconnectées. Seuls les dépôts de surface présentent une complexité de cavités maximale pour favoriser l'ébullition nucléée. Cependant les techniques proposées dans l'art antérieur, sont des procédés qui ne s'appliquent pas de manière simple à des surfaces d'échange de type onde ou ailette. Les matériaux frittes sous forme d'onde qui permettent d'obtenir une surface d'échange type onde ou ailette et qui possède une couche poreuse formée d'une pluralité de diamètres de cavités interconnectées : Les matériaux frittes (« sintered porous structure ») sont couramment utilisés dans l'industrie pour la filtration des gaz et liquides. Les fabrications standards sont en en acier inoxydable et en bronze. Cependant la fabrication en matériaux fortement conducteur (comme le cuivre ou l'aluminium) est techniquement possible. Ces matériaux poreux peuvent être réalisés à partir de particules de métal ou de fibres métalliques ou encore de toiles métalliques. Selon l'invention, ces structures poreuses en matériaux fortement conducteurs sont utilisées pour une application de transfert thermique et plus précisément d'ébullition nucléée d'un liquide. Nous décrivons ci-dessous leur mise en œuvre sous forme d'onde ou d'ailette afin de pouvoir être insérée dans un vaporiseur-condenseur à plaques et ailettes brasés. Un des paramètres qui fait varier la porosité d'un fritte est la taille des particules de métal utilisées. En effet, les diamètres des cavités créés après frittage est directement lié à la taille des particules de métal utilisées. II est possible de sélectionner une taille de particules de métal à utiliser afin d'obtenir des cavités de diamètre moyen souhaité. Il s'agit (en majorité) de particules d'aluminium de tailles comprises entre 45 et 200 μm (3%>200μm et 15%<45μm). La porosité (après frittage) est de 20%. II est également possible d'utiliser plusieurs tailles de particules de métal afin d'obtenir une gamme de diamètres de cavités. Puisque la pluralité des diamètres de cavités favorise l'ébullition. La répartition des diamètres de cavités (taille des particules) est hétérogène (aléatoire) si les particules de métal sont préalablement mélangées entre-elles. La mise en forme d'onde peut se faire soit directement lors du frittage en utilisant des moules en forme d'onde, soit par usinage (électroérosion) de rainures après frittage d'une plaque poreuse épaisse. Un échangeur de chaleur typique est constitué d'un empilement de plaques rectangulaires parallèles toutes identiques, qui définissent entre elles une pluralité de passages pour des fluides à mettre en relation d'échange thermique indirect. Ces passages sont successivement et cycliquement des passages pour un premier fluide, pour un deuxième fluide et pour un troisième fluide. Chaque passage est bordé de barres de fermeture qui le délimitent en laissant libres des fenêtres d'entrée/sortie du fluide correspondant. Dans chaque passage sont disposées des ondes-entretoises ou ailettes ondulées servant à la fois d'ailettes thermiques, d'entretoises entre les plaques, notamment lors du brasage et pour éviter toute déformation des plaques lors de la mise en oeuvre de fluides sous pression, et de guidage des écoulements de fluides. L'empilement des plaques, des barres de fermeture et des ondes- entretoises est généralement réalisé en aluminium ou en alliage d'aluminium et est assemblé en une seule opération par brasage au four. Des boîtes d'entrée/sortie de fluides, de forme générale semi-cylindrique, sont ensuite soudées sur le corps d'échangeur ainsi réalisé de façon à coiffer les rangées de fenêtres d'entrée/sortie correspondantes, et elles sont reliées à des conduites d'amenée et d'évacuation des fluides. Dans ce domaine industriel, on utilise de façon classique des ondes- entretoises de type à décalage partiel, droites ou droites perforées. Ces ondes sont généralement faites en feuillard d'aluminium et sont fabriquées soit au moyen de molettes, avec des canaux de section triangulaire ou sinusoïdale et des densités limitées ou dans une presse. L'objet de l'invention est donc de proposer une ailette qui pallie aux désavantages de l'art antérieur, et qui puisse être utilisée dans des échangeurs industriels, notamment des échangeurs de chaleur à plaques et ailettes d'une unité de séparation d'air ou de mélanges H2/CO par distillation cryogénique, et en particulier dans un vaporiseur/condenseur. A cet effet, l'invention a pour objet une ailette ondulée pour échangeur de chaleur à plaques et ailettes, du type ayant une direction générale principale d'ondulation, et comprenant un ensemble de jambes d'onde reliées alternativement par un sommet d'onde et par une base d'onde, caractérisée en ce que les jambes d'onde, les sommets et les bases d'onde sont formés d'un feuillard de particules métalliques frittes. Suivant d'autres caractéristiques de l'invention, prises seules ou suivant toutes les combinaisons techniquement envisageables : - les jambes d'onde, les sommets et les bases d'onde forment, en section transversale par rapport à la direction principale d'ondulation, des segments rectilignes, les sommets et les bases étant parallèles entre eux ; - les particules sont en aluminium, en un alliage d'aluminium contenant au moins 90 % mol. d'aluminium, en cuivre ou en un alliage contenant au moins 90 % mol. de cuivre ; - l'ailette a une épaisseur entre 0,25 et 0,6 mm ; - les pores formés dans l'ailette ont un diamètre allant de 10 à 100 μm. Selon un autre objet de l'inventeur il est prévu un vaporiseur-condenseur, du type comprenant un empilement de plaques parallèles, de barres de fermeture et éventuellement d'ondes-entretoises, qui définissent une première série de passages pour un fluide à vaporiser alimenté en source, et une seconde série de passages contigus aux premiers pour au moins un fluide de chauffage dudit fluide à vaporiser, lesdits passages de la première série sont divisés en trois zones successives, du bas vers le haut du vaporiseur-condenseur : - une première zone configurée de manière à privilégier les échanges thermiques par convection ; - une deuxième zone configurée de manière à privilégier le phénomène d'ébullition nucléée ; - une troisième zone configurée de manière à privilégier le phénomène d'ébullition convective ; caractérisé en ce qu'au moins la deuxième zone et éventuellement la troisième zone contient des ailettes conformes à l'une quelconque des revendications 1 à 5. De préférence, ce vaporiseur est du type vaporiseur à bain. Selon un autre objet de l'invention, il est prévu un vaporiseur-condenseur du type vaporiseur à film contenant des ailettes conformes à l'une quelconque des revendications 1 à 5. Selon un autre objet de l'invention, il est prévu un appareil de séparation d'air par distillation cryogénique comprenant au moins un vaporiseur-condenseur selon l'une des revendications 6 à 8. L'appareil peut comprendre au moins deux colonnes thermiquement reliées entre elles au moyen d'un vaporiseur selon l'une des revendications 6 à 8. Ces ailettes peuvent être de type à décalage partiel, droites ou droites perforées. L'invention concerne en outre un échangeur de chaleur équipée d'au moins une ailette telle que décrite précédemment. L'invention sera mieux comprise à lecture de la description qui suit, donnée en référence aux figures annexées, dont les Figures 1 à 3 représentent des ondes selon l'invention et la Figure 4 représente schématiquement un passage d'un vaporiseur-condenseur selon l'invention, dans lequel circule de l'oxygène à l'état liquide et gazeux. Une ailette selon l'invention présente des sommets d'onde 121, définis par les sommets des créneaux, plats et horizontaux. Elle présente des bases d'onde 122, définies par les bases des créneaux, également plats et horizontaux. Les sommets et les bases relient alternativement des jambes d'onde planes et verticales 123, dont le plan moyen s'étend perpendiculairement à la direction D1. Les ailettes des Figures 1 à 3 ont une épaisseur t entre 0,25 et 0,6 mm et les pores (non-illustrés) formés dans l'ailette ont un diamètre allant de 10 à 100 μm. Pour plus de détails concernant la conception d'ensemble du vaporiseur- condenseur selon l'invention appliqué à la distillation d'air, on pourra se reporter de manière non limitative à la demande EP-A-1088578. Le vaporiseur-condenseur de la Figure 4 est à peu près totalement immergé dans l'oxygène liquide rassemblé dans la cuve de la colonne basse pression d'un appareil de distillation d'air. Un passage est donc alimenté « en source » en oxygène liquide. Cet oxygène liquide pénètre d'abord dans une première zone du passage 2 pour y être réchauffé par l'azote circulant dans les passages contigus du vaporiseur-condenseur. Dans cette première zone, on privilégie les échanges thermiques par convection et on confère aux matériaux qui la constituent une configuration maximisant ce type d'échanges. Typiquement, cette première zone est garnie par des ondes d'échange thermique présentant une forte surface d'échange sans cependant procurer des pertes de charge trop élevées, telles que des ondes à décalage partiel (dites « ondes serrated » Figure 3), ou des ondes droites perforées ou non (Figure 1 ), ou des ondes de type arête de hareng (Figure 2) « herringbone » définissant des couloirs nombreux et étroits pour le passage de l'oxygène liquide. Une densité de au moins 10 fpi (10 ondes par pouce de largeur soit 3,9 ondes par cm) est conseillée, préférentiellement de 14 à 30 fpi (5,5 à 11 ,8 ondes cm). A titre d'exemple, on peut utiliser des ondes à décalage partiel de 26 fpi (10,2 ondes par cm) décalées tous les 1/8 de pouce (3,18 mm). Dans cette première zone, on vise avant tout à obtenir un réchauffement rapide de l'oxygène liquide, de façon à le porter à sa température de saturation. Cette première zone peut s'étendre sur environ 1/3 de la hauteur totale du vaporiseur-condenseur, par exemple sur une hauteur de 40 cm pour un vaporiseur-condenseur de 1 ,20 m de haut, dimension qui est classique pour les appareils de séparation d'air. En variante, les ondes d'échange thermique pourraient être remplacées par un garnissage en mousse métallique ou un matériau tel que l'aluminium. L'oxygène montant dans le passage pénètre ensuite dans une deuxième zone 3 où on cherche à favoriser un phénomène d'ébullition nucléée par formation de bulles d'oxygène gazeux sur les parois des ondes se trouvant dans le passage. A cet effet, on utilise des ondes en particules d'aluminium frittes de sorte que les porosités de l'onde multiplient les sites d'amorçage possibles pour la formation des bulles. Des porosités ou micro-reliefs peuvent également être ménagés aussi bien sur les parois des plaques de l'échangeur délimitant le passage. En effet, plus encore que dans la première zone, il importe de limiter les pertes de charge du fluide afin de ne pas gêner l'ascension du mélange oxygène liquide- oxygène gazeux présent. L'oxygène sous forme liquide et gazeuse montant dans le passage pénètre enfin dans une troisième zone 4 où on cherche à nouveau à favoriser les échanges thermiques avec le fluide traversant les passages contigus. On y vise à se trouver dans un régime d'ébullition convective. Des ondes en particules d'aluminium frittes peuvent également y être installés afin de favoriser l'accroissement des bulles d'oxygène gazeux présentes. Les parois des ondes et des plaques sont couvertes d'une couche d'oxygène liquide à travers laquelle s'effectuent les échanges thermiques. Son épaisseur dépend surtout des conditions d'écoulement du mélange oxygène liquide- oxygène gazeux. Les échanges thermiques sont d'autant plus favorisés que la vitesse du fluide est élevée. Il est donc important de limiter autant que possible les pertes de charge de l'oxygène lors de son ascension dans cette troisième zone. A cet effet pour obtenir un compromis satisfaisant entre faibles pertes de charge et bons transferts thermiques, on peut conseiller de garnir cette troisième zone avec des ondes droites, éventuellement perforées, d'une densité supérieure à 10 fpi (3,9 ondes/cm), mais inférieure ou égale à la densité des ondes utilisées dans la première et, éventuellement, la deuxième zone du passage. Des ondes droites perforées à 5% et d'une densité de 10 à 14 fpi (3,9 à 5,5 ondes/cm) seraient cohérentes avec les exemples précédemment donnés. Les ondes à décalage partiel ne sont ici pas recommandées en raison des pertes de charge assez importantes qu'elles généreraient. Cette troisième zone peut représenter environ la moitié de la hauteur totale du passage, soit 60 cm pour un vaporiseur-condenseur de 1 ,20 m de haut. A sa sortie de la troisième zone 4, l'oxygène gazeux OG émerge du vaporiseur-condenseur et monte vers la tête de la colonne basse pression, alors que l'oxygène liquide OL descend dans la cuve de cette même colonne. Il va de soi que les exemples qui ont été donnés ne sont pas limitatifs, et que d'autres configurations peuvent être imaginées. En particulier, on peut diviser chacune des zones précédemment décrites en plusieurs sous-zones présentant des surfaces d'échange configurées de manières différentes, pourvu que dans chacune de ces sous-zones on privilégie effectivement le phénomène auquel la zone correspondante est dédiée : échange convectif pour la première zone, ébullition nucléée pour la deuxième zone, ébullition convective pour la troisième zone. L'invention peut également être appliquée dans des vaporiseurs- condenseurs traitant d'autres gaz que l'oxygène si les avantages qu'elle présente peuvent y être mis à profit. EP-A-0 303 493: projection of a mixture of metal and plastic particles on a conductive surface. After vaporization at 500/600 ° C of the plastic particles, the surface has a porous layer. - US-A- 4 371 034: configuration of plate vaporizer and using porous surfaces on the vaporization side. The porous layer is formed by high speed bombardment of molten particles on the flat surface or by bonding of particles on the wall. - FR-A-2 443 515: manufacture of a porous copper surface. The method consists in coating a tube or a plate with a crosslinked organic foam and depositing inside this foam, an electrolytic coating of copper. The foam is then pyrolyzed. - US-A-4,064,914: manufacture of a porous copper or steel layer on a copper or copper alloy base. This porous layer consists of metallic powder assembled by bonding and then brazed. - US-A-3 384 154: use of a porous layer for boiling a liquid. This porous layer must be bonded to a conductive metal wall and made up of conductive particles linked together and forming interconnected cavities. The manufacturing procedures are preferably sintering, welding, brazing and other processes. The thickness of the porous layer must be greater than the diameter of the particles and preferably less than three times the diameter of the particles. The problem is to obtain an exchange surface which responds to both: o the fact of having an overall geometry of wave or fin type which can be brazed in an exchanger, in particular a vaporizer-condenser, o the having a structure intensifying the boiling and whose characteristics are a high density of cavities, a size and a shape of cavities adapted to the fluid and cavities connected together. Manufacturing methods by mechanical treatment require a certain thickness of the conductive surface. These mechanical treatments are difficult to apply to the waves used in a vaporizer-condenser since the sheet thicknesses vary from 0.2 to 0.5 mm. The methods of chemical or laser attacks generate a limited surface state since these present cavities at only one level of the surface and not interconnected. Only surface deposits have a maximum complexity of cavities to promote nucleated boiling. However, the techniques proposed in the prior art are methods which do not apply in a simple manner to exchange surfaces of the wave or fin type. Sintered materials in wave form which make it possible to obtain a wave or fin type exchange surface and which has a porous layer formed by a plurality of diameters of interconnected cavities: Sintered materials (“sintered porous structure”) are commonly used in industry for the filtration of gases and liquids. Standard products are in stainless steel and bronze. However, manufacturing from highly conductive materials (such as copper or aluminum) is technically possible. These porous materials can be made from metal particles or metallic fibers or even metallic fabrics. According to the invention, these porous structures made of highly conductive materials are used for a heat transfer application and more precisely for nucleated boiling of a liquid. We describe below their implementation in the form of a wave or fin in order to be able to be inserted in a vaporizer-condenser with brazed plates and fins. One of the parameters which varies the porosity of a frit is the size of the metal particles used. Indeed, the diameters of the cavities created after sintering is directly related to the size of the metal particles used. It is possible to select a size of metal particles to be used in order to obtain cavities of desired average diameter. These are (mostly) aluminum particles with sizes between 45 and 200 μm (3%> 200 μm and 15% <45 μm). The porosity (after sintering) is 20%. It is also possible to use several sizes of metal particles in order to obtain a range of cavity diameters. Because the plurality of cavity diameters promotes boiling. The distribution of cavity diameters (particle size) is heterogeneous (random) if the metal particles are mixed together beforehand. Waveforming can be done either directly during sintering using waveform molds, or by machining (EDM) grooves after sintering a thick porous plate. A typical heat exchanger consists of a stack of all identical rectangular rectangular plates, which define between them a plurality of passages for fluids to be brought into indirect heat exchange relationship. These passages are successively and cyclically passages for a first fluid, for a second fluid and for a third fluid. Each passage is bordered by closing bars which delimit it, leaving free entry / exit windows for the corresponding fluid. In each passage are arranged wave-spacers or corrugated fins serving both as thermal fins, as spacers between the plates, especially during brazing and to avoid any deformation of the plates when using fluids under pressure, and for guiding the flow of fluids. The stack of plates, closing bars and spacer waves is generally made of aluminum or aluminum alloy and is assembled in a single operation by brazing in the oven. Fluid inlet / outlet boxes, generally semi-cylindrical in shape, are then welded to the exchanger body thus produced so as to cover the rows of corresponding inlet / outlet windows, and they are connected to pipes. supply and evacuation of fluids. In this industrial field, use is conventionally made of spacer waves of the partial offset type, straight or straight perforated. These waves are generally made of aluminum foil and are produced either by means of rollers, with channels of triangular or sinusoidal section and limited densities or in a press. The object of the invention is therefore to propose a fin which overcomes the disadvantages of the prior art, and which can be used in industrial exchangers, in particular plate and fin heat exchangers of a separation unit of air or H 2 / CO mixtures by cryogenic distillation, and in particular in a vaporizer / condenser. To this end, the subject of the invention is a corrugated fin for a plate and fin heat exchanger, of the type having a main general direction of undulation, and comprising a set of wave legs connected alternately by a wave vertex. and by a wave base, characterized in that the wave legs, the vertices and the wave bases are formed from a strip of sintered metal particles. According to other characteristics of the invention, taken alone or according to all the technically conceivable combinations: the wave legs, the vertices and the wave bases form, in cross section relative to the main direction of undulation, rectilinear segments, the vertices and the bases being parallel to each other; - The particles are made of aluminum, an aluminum alloy containing at least 90% mol. of aluminum, copper or an alloy containing at least 90% mol. of copper ; - the fin has a thickness between 0.25 and 0.6 mm; - the pores formed in the fin have a diameter ranging from 10 to 100 μm. According to another object of the inventor, a vaporizer-condenser is provided, of the type comprising a stack of parallel plates, closing bars and possibly spacer waves, which define a first series of passages for a fluid to be vaporized supplied at source, and a second series of passages contiguous to the first for at least one fluid for heating said fluid to be vaporized, said passages of the first series are divided into three successive zones, from the bottom to the top of the vaporizer-condenser: - a first zone configured to favor heat exchange by convection; - a second zone configured so as to favor the nucleated boiling phenomenon; - a third zone configured so as to favor the phenomenon of convective boiling; characterized in that at least the second zone and possibly the third zone contains fins according to any one of claims 1 to 5. Preferably, this vaporizer is of the bath vaporizer type. According to another object of the invention, there is provided a vaporizer-condenser of the film vaporizer type containing fins according to any one of claims 1 to 5. According to another object of the invention, there is provided an apparatus for separating air by cryogenic distillation comprising at least one vaporizer-condenser according to one of claims 6 to 8. The apparatus may comprise at least two columns thermally connected together by means of a vaporizer according to one of claims 6 to 8. These fins can be of the partial offset type, straight or perforated straight. The invention further relates to a heat exchanger equipped with at least one fin as described above. The invention will be better understood on reading the description which follows, given with reference to the appended figures, of which Figures 1 to 3 represent waves according to the invention and Figure 4 schematically represents a passage of a vaporizer-condenser according to the invention, in which oxygen in the liquid and gaseous state circulates. A fin according to the invention has wave vertices 121, defined by the vertices of the slots, flat and horizontal. It has wave bases 122, defined by the bases of the slots, also flat and horizontal. The vertices and the bases alternately connect plane and vertical wave legs 123, the mean plane of which extends perpendicular to the direction D1. The fins of Figures 1 to 3 have a thickness t between 0.25 and 0.6 mm and the pores (not shown) formed in the fin have a diameter ranging from 10 to 100 μm. For more details concerning the overall design of the evaporator-condenser according to the invention applied to the distillation of air, reference may be made in a nonlimiting manner to application EP-A-1088578. The vaporizer-condenser of Figure 4 is almost completely submerged in the liquid oxygen collected in the tank of the low pressure column of an air distillation apparatus. A passage is therefore supplied "in source" with liquid oxygen. This liquid oxygen first enters a first zone of passage 2 to be heated there by the nitrogen circulating in the contiguous passages of the vaporizer-condenser. In this first zone, preference is given to heat exchange by convection and the materials which constitute it are given a configuration which maximizes this type of exchange. Typically, this first zone is filled by heat exchange waves having a large exchange surface without however providing too high pressure losses, such as waves with partial offset (called "serrated waves" Figure 3), or straight waves perforated or not (Figure 1), or herringbone type waves (Figure 2) "herringbone" defining numerous and narrow corridors for the passage of liquid oxygen. A density of at least 10 fpi (10 waves per inch in width, ie 3.9 waves per cm) is recommended, preferably from 14 to 30 fpi (5.5 to 11, 8 waves cm). As an example, you can use 26 fpi (10.2 waves per cm) partially offset waves offset every 1/8 of an inch (3.18 mm). In this first zone, the main aim is to obtain rapid heating of the liquid oxygen, so as to bring it to its saturation temperature. This first zone can extend over approximately 1/3 of the total height of the vaporizer-condenser, for example over a height of 40 cm for a vaporizer-condenser 1, 20 m high, dimension which is classic for air separation devices. Alternatively, the heat exchange waves could be replaced by a padding of metal foam or a material such as aluminum. The oxygen rising in the passage then enters a second zone 3 where it is sought to promote a phenomenon of boiling nucleated by the formation of bubbles of gaseous oxygen on the walls of the waves located in the passage. For this purpose, waves of sintered aluminum particles are used so that the porosities of the wave multiply the possible initiation sites for the formation of bubbles. Porosities or micro-reliefs can also be provided both on the walls of the plates of the exchanger delimiting the passage. Indeed, even more than in the first zone, it is important to limit the pressure losses of the fluid so as not to hinder the ascent of the liquid oxygen-gaseous oxygen mixture present. The oxygen in liquid and gaseous form rising in the passage finally enters a third zone 4 where it is again sought to promote heat exchanges with the fluid passing through the contiguous passages. It aims to be in a convective boiling regime. Waves of sintered aluminum particles can also be installed there in order to favor the increase of the bubbles of gaseous oxygen present. The walls of the waves and the plates are covered with a layer of liquid oxygen through which heat exchange takes place. Its thickness depends above all on the flow conditions of the liquid oxygen-gaseous oxygen mixture. The heat exchanges are all the more favored as the speed of the fluid is high. It is therefore important to limit as much as possible the pressure drop of the oxygen during its ascent in this third zone. To this end, to obtain a satisfactory compromise between low pressure drops and good heat transfers, it is advisable to fill this third zone with straight waves, possibly perforated, with a density greater than 10 fpi (3.9 waves / cm). , but less than or equal to the density of the waves used in the first and, possibly, the second zone of the passage. Straight waves perforated at 5% and with a density of 10 to 14 fpi (3.9 to 5.5 waves / cm) would be consistent with the examples given above. Partly offset waves are not recommended here because of the fairly large pressure drops they would generate. This third zone can represent approximately half of the total height of the passage, or 60 cm for a vaporizer-condenser of 1.20 m high. At its exit from the third zone 4, the gaseous oxygen OG emerges from the vaporizer-condenser and rises towards the head of the low pressure column, while the liquid oxygen OL descends in the tank of this same column. It goes without saying that the examples which have been given are not limiting, and that other configurations can be imagined. In particular, each of the zones described above can be divided into several sub-zones having exchange surfaces configured in different ways, provided that in each of these sub-zones, the phenomenon to which the corresponding zone is dedicated is effectively privileged: convective exchange for the first zone, nucleated boiling for the second zone, convective boiling for the third zone. The invention can also be applied in vaporizers-condensers treating gases other than oxygen if the advantages which it presents can be exploited.

Claims

REVENDICATIONS
1. Ailette ondulée pour échangeur de chaleur à plaques et ailettes, du type ayant une direction générale principale d'ondulation (D1), et comprenant un ensemble de jambes d'onde (123) reliées alternativement par un sommet d'onde (121) et par une base d'onde (122), caractérisée en ce qu'elle est formée uniquement de particules métalliques frittes. 1. Corrugated fin for plate and fin heat exchanger, of the type having a main general direction of corrugation (D1), and comprising a set of wave legs (123) connected alternately by a wave top (121) and by a wave base (122), characterized in that it is formed only of sintered metal particles.
2. Ailette ondulée suivant la revendication 1, caractérisée en ce que les jambes d'onde (123), les sommets (121) et les bases (122) d'onde forment, en section transversale par rapport à la direction principale d'ondulation (D1), des segments rectilignes, les sommets et les bases étant parallèles entre eux. 2. Corrugated fin according to claim 1, characterized in that the wave legs (123), the vertices (121) and the bases (122) of wave form, in cross section relative to the main direction of undulation (D1), rectilinear segments, the vertices and the bases being parallel to each other.
3. Ailette ondulée suivant la revendication 1 ou 2, caractérisée en ce que les particules sont en aluminium, en un alliage d'aluminium contenant au moins 90 % mol. d'aluminium, en cuivre ou en un alliage contenant au moins 90 % mol. de cuivre. 3. Corrugated fin according to claim 1 or 2, characterized in that the particles are aluminum, an aluminum alloy containing at least 90% mol. of aluminum, copper or an alloy containing at least 90% mol. of copper.
4. Ailette ondulée suivant l'une quelconque des revendications 1 à 3, caractérisée en ce que l'ailette a une épaisseur (t) entre 0,25 et 0,6 mm. 4. Corrugated fin according to any one of claims 1 to 3, characterized in that the fin has a thickness (t) between 0.25 and 0.6 mm.
5. Ailette ondulée suivant l'une quelconque des revendications 1 à 4, dans laquelle les pores formés dans l'ailette ont un diamètre allant de 10 à 100 μm. 5. Corrugated fin according to any one of claims 1 to 4, in which the pores formed in the fin have a diameter ranging from 10 to 100 μm.
6. Vaporiseur-condenseur, du type comprenant un empilement de plaques parallèles, de barres de fermeture et éventuellement d'ondes-entretoises, qui définissent une première série de passages pour un fluide à vaporiser alimenté en source, et une seconde série de passages contigus aux premiers pour au moins un fluide de chauffage dudit fluide à vaporiser, lesdits passages de la première série sont divisés en trois zones successives, du bas vers le haut du vaporiseur-condenseur : - une première zone (2) configurée de manière à privilégier les échanges thermiques par convection ; - une deuxième zone (3) configurée de manière à privilégier le phénomène d'ébullition nucléée ; - une troisième zone (4) configurée de manière à privilégier le phénomène d'ébullition convective ; caractérisé en ce qu'au moins la deuxième zone et éventuellement la troisième zone et même éventuellement la première zone contient des ailettes conformes à l'une quelconque des revendications 1 à 5. 6. Vaporizer-condenser, of the type comprising a stack of parallel plates, closing bars and possibly spacer waves, which define a first series of passages for a fluid to be vaporized supplied at source, and a second series of contiguous passages to the first for at least one fluid for heating said fluid to be vaporized, said passages of the first series are divided into three successive zones, from the bottom to the top of the vaporizer-condenser: - a first zone (2) configured so as to favor the convection heat exchanges; - a second zone (3) configured so as to favor the nucleated boiling phenomenon; - a third zone (4) configured so as to favor the phenomenon of convective boiling; characterized in that at least the second zone and possibly the third zone and even possibly the first zone contains fins according to any one of claims 1 to 5.
7. Vaporiseur-condenseur selon la revendication 6 caractérisé en ce qu'il est du type vaporiseur à bain. 7. vaporizer-condenser according to claim 6 characterized in that it is of the bath vaporizer type.
8. Vaporiseur-condenseur du type vaporiseur à film contenant des ailettes conformes à l'une quelconque des revendications 1 à 5. 8. vaporizer-condenser of the film vaporizer type containing fins according to any one of claims 1 to 5.
9. Appareil de séparation d'air par distillation cryogénique comprenant au moins un vaporiseur-condenseur selon l'une des revendications 6 à 8. 9. Apparatus for air separation by cryogenic distillation comprising at least one vaporizer-condenser according to one of claims 6 to 8.
10. Appareil de séparation d'air selon la revendication 9 comprenant au moins deux colonnes thermiquement reliées entre elles au moyen d'un vaporiseur selon l'une des revendications 6 à 8. 10. An air separation apparatus according to claim 9 comprising at least two columns thermally connected together by means of a vaporizer according to one of claims 6 to 8.
EP04816575A 2004-01-12 2004-12-17 Fin for heat exchanger and heat exchanger equipped with such fins Withdrawn EP1730461A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0450068A FR2865027B1 (en) 2004-01-12 2004-01-12 FIN FOR HEAT EXCHANGER AND HEAT EXCHANGER PROVIDED WITH SUCH FINS
PCT/FR2004/050722 WO2005075920A2 (en) 2004-01-12 2004-12-17 Fin for heat exchanger and heat exchanger equipped with such fins

Publications (1)

Publication Number Publication Date
EP1730461A2 true EP1730461A2 (en) 2006-12-13

Family

ID=34685058

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04816575A Withdrawn EP1730461A2 (en) 2004-01-12 2004-12-17 Fin for heat exchanger and heat exchanger equipped with such fins

Country Status (6)

Country Link
US (2) US20080230212A1 (en)
EP (1) EP1730461A2 (en)
JP (1) JP2007520682A (en)
CN (1) CN100478639C (en)
FR (1) FR2865027B1 (en)
WO (1) WO2005075920A2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005034997A1 (en) * 2005-07-27 2007-02-01 Behr Gmbh & Co. Kg heat exchangers
US20100034335A1 (en) * 2006-12-19 2010-02-11 General Electric Company Articles having enhanced wettability
US20100192628A1 (en) * 2009-01-30 2010-08-05 Richard John Jibb Apparatus and air separation plant
US8726691B2 (en) * 2009-01-30 2014-05-20 Praxair Technology, Inc. Air separation apparatus and method
US20100192629A1 (en) * 2009-01-30 2010-08-05 Richard John Jibb Oxygen product production method
CN101538070B (en) * 2009-04-22 2011-09-07 长安大学 Solar energy sea water desalinating device
CN101691975B (en) * 2009-09-03 2011-06-29 三花丹佛斯(杭州)微通道换热器有限公司 Fin used for heat exchanger and heat exchanger provided with fin
DE102010019369A1 (en) * 2010-05-05 2011-11-10 Mahle International Gmbh cooling device
FR2961894B1 (en) * 2010-06-24 2013-09-13 Valeo Vision HEAT EXCHANGE DEVICE, IN PARTICULAR FOR A MOTOR VEHICLE
US8733103B2 (en) * 2011-12-08 2014-05-27 Gaspar Pablo Paya Diaz Thermal energy conversion plant
FR3035202B1 (en) * 2015-04-16 2017-04-07 Air Liquide HEAT EXCHANGER HAVING MICROSTRUCTURE ELEMENTS AND A SEPARATION UNIT COMPRISING SUCH A HEAT EXCHANGER
FR3075340B1 (en) * 2017-12-19 2021-04-30 Air Liquide SPACER ELEMENT WITH SURFACE TEXTURING, ASSOCIATED HEAT EXCHANGER AND MANUFACTURING PROCESS
FR3075339B1 (en) 2017-12-19 2019-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude HEAT EXCHANGER WITH SURFACE TEXTURING ELEMENTS AND PLATES
FR3075335B1 (en) 2017-12-19 2019-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude HEAT EXCHANGER WITH SUPERIOR INTERCONNECTED ELEMENTS
FR3075080A1 (en) * 2017-12-19 2019-06-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD OF BRAZING SURFACE TEXTURING PARTS, METHOD OF MANUFACTURING A HEAT EXCHANGER INCORPORATING SAID PARTS
FR3075337B1 (en) 2017-12-19 2019-12-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude SURFACE TEXTURING INTERMEDIATE ELEMENT, HEAT EXCHANGER COMPRISING SUCH AN ELEMENT
US11193722B2 (en) * 2018-05-01 2021-12-07 Dana Canada Corporation Heat exchanger with multi-zone heat transfer surface

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6378605B1 (en) * 1999-12-02 2002-04-30 Midwest Research Institute Heat exchanger with transpired, highly porous fins
WO2002046669A1 (en) * 2000-12-08 2002-06-13 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Evaporator-condenser and air distillation plant comprising same

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB562934A (en) * 1942-04-30 1944-07-21 Gen Motors Corp Improved methods of making porous metal plates and apparatus therefor
US3384154A (en) 1956-08-30 1968-05-21 Union Carbide Corp Heat exchange system
US3587730A (en) * 1956-08-30 1971-06-28 Union Carbide Corp Heat exchange system with porous boiling layer
DE1152432B (en) * 1962-04-21 1963-08-08 Linde Eismasch Ag Plate condenser evaporator, especially for gas and air separators
FR1459895A (en) * 1965-08-23 1966-06-17 Kennecott Copper Corp Process for manufacturing metal strips and metal strips thus obtained
US3331435A (en) * 1965-10-11 1967-07-18 Olin Mathieson Heat exchanger with sintered metal matrix
US3577226A (en) * 1967-06-30 1971-05-04 Union Carbide Corp Metal bodies of uniform porosity
US3457990A (en) 1967-07-26 1969-07-29 Union Carbide Corp Multiple passage heat exchanger utilizing nucleate boiling
US3568462A (en) * 1967-11-22 1971-03-09 Mc Donnell Douglas Corp Fractionating device
US3454081A (en) 1968-05-14 1969-07-08 Union Carbide Corp Surface for boiling liquids
US3796563A (en) * 1972-05-24 1974-03-12 Bethlehem Steel Corp Method of manufacturing metal sheet and foil
US3906604A (en) 1974-02-01 1975-09-23 Hitachi Cable Method of forming heat transmissive wall surface
US4064914A (en) 1974-05-08 1977-12-27 Union Carbide Corporation Porous metallic layer and formation
JPS5325379B2 (en) 1974-10-21 1978-07-26
GB1468710A (en) 1975-04-30 1977-03-30 Atomic Energy Authority Uk Methods of forming re-entrant cavities in the surface of heat exchange members or ebulators
DE2808080C2 (en) 1977-02-25 1982-12-30 Furukawa Metals Co., Ltd., Tokyo Heat transfer tube for boiling heat exchangers and process for its manufacture
US4201263A (en) * 1978-09-19 1980-05-06 Anderson James H Refrigerant evaporator
FR2443515A1 (en) 1978-12-06 1980-07-04 Uop Inc Heat exchanger element with extended surface - esp. for boiling liquids having metallic mesh or foam attached to tubular surface
US4371034A (en) 1979-08-03 1983-02-01 Hisaka Works, Limited Plate type evaporator
EP0053452B1 (en) * 1980-12-02 1984-03-14 Marston Palmer Ltd. Heat exchanger
US4715433A (en) * 1986-06-09 1987-12-29 Air Products And Chemicals, Inc. Reboiler-condenser with doubly-enhanced plates
US4700771A (en) * 1987-01-13 1987-10-20 Air Products And Chemicals, Inc. Multi-zone boiling process and apparatus
US4846267A (en) 1987-04-01 1989-07-11 The Boc Group, Inc. Enhanced heat transfer surfaces
GB8719350D0 (en) 1987-08-14 1987-09-23 Boc Group Ltd Heat transfer surface
CA2073575A1 (en) * 1991-07-19 1993-01-20 Paul C. Koehler Pleated metal article
JP2741153B2 (en) * 1993-06-02 1998-04-15 川崎重工業株式会社 Plate fin type reactor for non-equilibrium reaction
US5881353A (en) * 1994-03-31 1999-03-09 Hitachi Chemical Company, Ltd. Method for producing porous bodies
JP3687215B2 (en) * 1995-09-25 2005-08-24 新東工業株式会社 Manufacturing method of heat-resistant metal fiber sintered body
JPH10121110A (en) * 1996-10-15 1998-05-12 Hitachi Chem Co Ltd Boiling heat-transfer member and its production
US6119770A (en) 1996-12-09 2000-09-19 Uop Llc Trapped particle heat transfer tube
US6205815B1 (en) * 1997-04-11 2001-03-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Plant for separation of a gas mixture by distillation
US5893275A (en) * 1997-09-04 1999-04-13 In-X Corporation Compact small volume liquid oxygen production system
US6227287B1 (en) * 1998-05-25 2001-05-08 Denso Corporation Cooling apparatus by boiling and cooling refrigerant
FR2798599B1 (en) * 1999-09-21 2001-11-09 Air Liquide THERMOSIPHON VAPORIZER-CONDENSER AND CORRESPONDING AIR DISTILLATION SYSTEM
FR2807828B1 (en) * 2000-04-17 2002-07-12 Nordon Cryogenie Snc CORRUGATED WING WITH PARTIAL OFFSET FOR PLATE HEAT EXCHANGER AND CORRESPONDING PLATE HEAT EXCHANGER
WO2002023115A2 (en) 2000-09-15 2002-03-21 Mems Optical, Inc. Enhanced surface structures for passive immersion cooling of integrated circuits
JP2002318085A (en) * 2001-04-18 2002-10-31 Hitachi Cable Ltd Heat pipe and its manufacturing method
JP3571314B2 (en) * 2001-08-20 2004-09-29 東芝三菱電機産業システム株式会社 Heat equalizer
US6834515B2 (en) * 2002-09-13 2004-12-28 Air Products And Chemicals, Inc. Plate-fin exchangers with textured surfaces
FR2849848B1 (en) * 2003-01-15 2007-04-27 Saint Gobain Vetrotex THERMAL EXCHANGE DEVICE FOR FIBER CAB

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6378605B1 (en) * 1999-12-02 2002-04-30 Midwest Research Institute Heat exchanger with transpired, highly porous fins
WO2002046669A1 (en) * 2000-12-08 2002-06-13 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Evaporator-condenser and air distillation plant comprising same

Also Published As

Publication number Publication date
US20100313599A1 (en) 2010-12-16
CN100478639C (en) 2009-04-15
FR2865027B1 (en) 2006-05-05
JP2007520682A (en) 2007-07-26
WO2005075920A2 (en) 2005-08-18
FR2865027A1 (en) 2005-07-15
CN1902455A (en) 2007-01-24
WO2005075920A3 (en) 2005-10-13
US20080230212A1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
WO2005075920A2 (en) Fin for heat exchanger and heat exchanger equipped with such fins
EP1899669B1 (en) Plate heat exchanger with exchanging structure forming several channels in a passage
EP0431143B1 (en) Process and device for the simultaneous transfer of material and heat
EP1931929A1 (en) Method for evaporation and/or condensation in a heat exchanger
EP3479044B1 (en) Heat exchanger comprising a device for distributing a liquid/gas mixture
EP1008826A1 (en) Falling film vaporizer and air distillation plant
EP3662222B1 (en) Heat exchanger with distributing element
EP3728976A1 (en) Spacer element with surface texturing, and associated heat exchanger and production method
FR2690503A1 (en) Plate evaporator with high thermal performance operating in nucleated boiling regime.
FR2812935A1 (en) MULTIPLE BLOCK HEAT EXCHANGER WITH A UNIFORM FLUID SUPPLY LINE, AND VAPORIZER-CONDENSER COMPRISING SUCH A EXCHANGER
EP3728977B1 (en) Heat exchanger comprising elements and plates with surface texturing
EP3728979A1 (en) Spacer element with surface texturing, heat exchanger comprising such an element
EP3728978B1 (en) Heat exchanger having superposed spacer inserts
EP3105520A2 (en) Column for separating air by cryogenic distillation, air separation device comprising such a column and method for producing such a column
FR2935473A1 (en) Heat exchanger e.g. printed circuit heat exchanger, for heating liquefied natural gas, has auxiliary passage traversing or adjacent to thickness of plates such that passage connects channels of each plate with atmosphere
FR3127561A1 (en) Exchanger comprising at least one heat exchange structure with a ribbed surface
FR3132851A3 (en) Distillation apparatus
WO2002046669A1 (en) Evaporator-condenser and air distillation plant comprising same
WO2010100367A1 (en) Air separation apparatus including a plate heat exchanger
WO2006103369A2 (en) Device provided with a reaction chamber in which pre-heated fluid reagents are introduced for generating a high-temperature reaction
FR2878944A1 (en) Heat exchange device for nuclear reactor, has fluid recovery and distribution units, in ducts successively arranged in longitudinal direction of heat exchange module, allowing circulation of respective fluids in ducts of respective layers
FR3092772A1 (en) Monobloc assembly for device capable of performing thermal transfer
FR2872266A1 (en) Water cooler for cooling e.g. microprocessor, has fin-type radiator with hollow and thin fins branched on collectors, and circulation unit circulating water in enclosure, and ventilator circulating air between fins to cool microprocessor
FR2872265A1 (en) Unit e.g. microprocessor, cooling process, involves introducing determined volumes of liquid and its vapor into airtight enclosure, and circulating increased air flow in spaces separating hollow plates of thermal exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060814

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TURGIS, CLAIRE

Inventor name: CRAYSSAC, FREDERIC

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

17Q First examination report despatched

Effective date: 20080123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150226