JPH10121110A - Boiling heat-transfer member and its production - Google Patents

Boiling heat-transfer member and its production

Info

Publication number
JPH10121110A
JPH10121110A JP27192696A JP27192696A JPH10121110A JP H10121110 A JPH10121110 A JP H10121110A JP 27192696 A JP27192696 A JP 27192696A JP 27192696 A JP27192696 A JP 27192696A JP H10121110 A JPH10121110 A JP H10121110A
Authority
JP
Japan
Prior art keywords
metal
heat transfer
powder
sintered body
transfer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27192696A
Other languages
Japanese (ja)
Inventor
Koji Nishimura
厚司 西村
Tatsuya Uchida
達也 内田
Toshiji Yoshikawa
利次 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP27192696A priority Critical patent/JPH10121110A/en
Publication of JPH10121110A publication Critical patent/JPH10121110A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/18Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a boiling heat-transfer member having a structure to further increase heat-transfer efficiency and its production method. SOLUTION: This boiling heat-transfer member has a metallic porous body obtained by compressing an open-cell metallic sintered compact in the thickness direction on its surface. The powder of metal or metallic alloy is deposited on the surface of the skeleton of a three-dimensional reticular structure as a substrate. The three-dimensional reticular structure coated with the powder is laminated on the surface of a member 130, then heated and burned off. The metal or metallic alloy is sintered to obtain an open-cell metallic sintered compact 110 which is fused to and integrated with the member surface. The formed metallic sintered compact is compressed in the thickness direction to form a metallic porous body 120 having a specified thickness, and a boiling heat- transfer member 100 is produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、種々の産業分野で
用いられる熱交換のための伝熱管や伝熱板等の伝熱部材
に関し、特に従来のフィン付き伝熱管や伝熱板の大幅な
伝熱効率向上を図ることができる伝熱管や伝熱板等の伝
熱部材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer member such as a heat transfer tube or a heat transfer plate for heat exchange used in various industrial fields. The present invention relates to a heat transfer member such as a heat transfer tube or a heat transfer plate capable of improving heat transfer efficiency and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、液−液、液−ガス、ガス−ガス間
等の熱交換器や熱交換材には、一般的に熱伝導性の良い
銅材を用いた伝熱管や伝熱板が使用されている。熱交換
量は、それぞれの熱媒体間の温度差、熱伝達係数、伝熱
面積に比例するとされている。近年、省エネ、省スペー
スの要求から、熱交換器の小型化、高性能化が進んでい
る。小型化、高性能化を達成するために、熱伝導性の高
い材料を使用するのみならず、管表面や板表面にフィン
や溝を設けることで伝熱面積の増加を図り、さらにフィ
ン構造を工夫することで伝熱面表面に乱流を発生させ熱
伝達係数の増大を図っている。
2. Description of the Related Art Conventionally, heat exchangers and heat exchangers for liquid-liquid, liquid-gas, gas-gas and the like are generally made of a heat transfer tube or a heat transfer plate using a copper material having good heat conductivity. Is used. The amount of heat exchange is said to be proportional to the temperature difference between each heat medium, the heat transfer coefficient, and the heat transfer area. In recent years, heat exchangers have been reduced in size and improved in performance due to demands for energy saving and space saving. In order to achieve miniaturization and high performance, not only use a material with high thermal conductivity, but also provide fins and grooves on the tube surface and plate surface to increase the heat transfer area and further improve the fin structure. By devising, a turbulent flow is generated on the heat transfer surface to increase the heat transfer coefficient.

【0003】また、特に沸騰を伴う熱交換器の高性能化
を図るには、伝熱面構造に工夫が必要である。沸騰の熱
伝達を促進するには蒸気核が多数存在し、さらに、トラ
ップされた蒸気核が逃げ難い表面構造が適している。こ
の沸騰熱伝達の促進のため、伝熱面表面を粗くしたり、
特公昭63−16037号公報では機械加工により溝や
狭い開孔を有する空洞を伝熱面表面に設けたりしてい
る。さらに、特公昭62−42699号公報や特開平4
−110597号公報には、銅や銅合金の多孔質体ある
いは発泡体を一体成形もしくは被着することで、上記効
果を付加して小型化、高性能化を図る技術も見られる。
Further, in order to improve the performance of a heat exchanger particularly involving boiling, it is necessary to devise a heat transfer surface structure. In order to promote the heat transfer of boiling, a large number of vapor nuclei are present, and a surface structure in which the trapped vapor nuclei are difficult to escape is suitable. To promote this boiling heat transfer, the surface of the heat transfer surface can be roughened,
In Japanese Patent Publication No. 63-16037, a cavity having a groove or a narrow opening is provided on the heat transfer surface by machining. Further, Japanese Patent Publication No. Sho 62-42699 and
In JP-A-110597, there is also disclosed a technique for achieving compactness and high performance by adding a porous body or a foamed body of copper or copper alloy to the above-mentioned effects by integrally molding or applying the same.

【0004】[0004]

【発明が解決しようとする課題】特公昭63−1603
7号公報は、沸騰伝熱管を提供するものであり、伝熱面
の表皮下に微小空洞を設けその空洞を覆う表皮に微小孔
があけられた構造を持っている。この沸騰伝熱管は、同
じ熱流束を伝えるのに平滑管に比べ1/5から1/10
の過熱度でよく、熱交換器の小型化、高性能化を可能に
するものであるが、製造費用が高いという問題があっ
た。特公昭62−42699号公報や特開平4−110
597号公報は、銅や銅合金の多孔質体もしくは、発泡
体を一体成形もしくは被着する際、熱媒体を移送するパ
イプと発泡体との結合や密着を図るため、前者では、発
泡体形状鋳型に溶融金属を注入凝固させる方法をとり、
後者では、圧着、ろう付け、めっき等の手段を必要と
し、単に必要面積を増加する以上の製造費用の増加を伴
い、また製造工程と設備費の増加につながるという問題
があった。さらにこれらの技術は、伝熱管内外同時に一
体成形できず本来目的とする効果が得られないことや被
着する多孔質体もしくは発泡体は同一径の連続空隙であ
り一定の乱流効果は得られるもののさらに大きな効果を
得ることができない。
[Problems to be Solved by the Invention] JP-B-63-1603
No. 7 provides a boiling heat transfer tube, which has a structure in which a microcavity is provided under the epidermis on the heat transfer surface and a micropore is formed in a skin covering the cavity. This boiling heat transfer tube is one-fifth to one-tenth that of a smooth tube for transmitting the same heat flux.
Although the superheat degree may be sufficient, the heat exchanger can be downsized and the performance thereof can be improved, but there is a problem that the manufacturing cost is high. JP-B-62-42699 and JP-A-4-110
No. 597 discloses that a porous body made of copper or a copper alloy or a foamed body is integrally formed or adhered so that a pipe for transferring a heat medium and a foamed body are bonded or adhered to each other. Take the method of injecting and solidifying the molten metal into the mold,
The latter requires a means such as crimping, brazing, plating and the like, and involves a problem that the manufacturing cost is increased beyond simply increasing the required area, and that the manufacturing process and equipment costs are increased. Furthermore, these techniques cannot integrally form the inside and outside of the heat transfer tube at the same time, so that the originally intended effect cannot be obtained, and the porous body or the foam to be adhered is a continuous void having the same diameter, and a certain turbulent flow effect can be obtained. But you can't get a bigger effect.

【0005】また、沸騰熱交換器の伝熱促進にこれら金
属多孔質体を適用する場合、沸騰熱伝達率は多孔質体の
厚さ、孔径に大きく依存する。すなわち、多孔質体が薄
く孔径が大きいと、気泡の保持ができないために、核沸
騰現象が見られず、伝熱促進の効果は得られない。逆に
多孔質体が厚く孔径が小さいと、気泡が離脱しにくくな
り膜沸騰現象と同様、熱伝達率が低下し伝熱面温度が非
常に高くなり溶融する場合がある。特公昭62−426
99号公報や特開平4−110597号公報の方法で
は、伝熱面に均一な厚さと孔径の金属多孔質体を設ける
ことは困難であり、部分的に熱伝達率の低い場所ができ
て伝熱促進の効果が得られなかったり、部分的な温度上
昇により溶融事故が発生する。本発明は、かかる問題点
の解決を図ろうとするもので、伝熱効率、特に沸騰伝熱
効率をより一層高めることができる構造を持つ伝熱管や
伝熱板等の沸騰伝熱部材及びその製造方法を提供するも
のである。
[0005] Further, when these metal porous bodies are used for promoting heat transfer in a boiling heat exchanger, the boiling heat transfer coefficient greatly depends on the thickness and pore diameter of the porous body. That is, if the porous body is thin and the pore diameter is large, bubbles cannot be retained, so that the nucleate boiling phenomenon is not observed and the effect of promoting heat transfer cannot be obtained. Conversely, if the porous body is thick and the pore diameter is small, the bubbles are difficult to separate, and the heat transfer coefficient decreases, the temperature of the heat transfer surface becomes extremely high, and melting may occur, as in the film boiling phenomenon. Tokiko Sho 62-426
According to the methods disclosed in Japanese Patent Application Laid-Open No. 99-1992 and Japanese Patent Application Laid-Open No. 4-110597, it is difficult to provide a metal porous body having a uniform thickness and a uniform hole diameter on a heat transfer surface. The effect of heat promotion is not obtained, or a melting accident occurs due to a partial rise in temperature. The present invention is intended to solve such a problem, and provides a heat transfer member such as a heat transfer tube or a heat transfer plate having a structure capable of further improving heat transfer efficiency, particularly boiling heat transfer efficiency, and a method of manufacturing the same. To provide.

【0006】[0006]

【課題を解決するための手段】本発明は、連続気孔の金
属焼結体を厚み方向に圧縮した金属多孔質体を部材表面
に有する沸騰伝熱部材であり、このような沸騰伝熱部材
は、以下の工程を含むことにより製造することができ
る。 (a)基体となる三次元網目構造体の骨格表面に、金属
または金属合金の粉体を被着させる工程、(b)金属ま
たは金属合金の粉体を被着した三次元網目構造体を部材
表面に積層し、加熱して三次元網目構造体を焼失除去す
る工程、(c)金属または金属合金の焼結を行い連続気
孔の金属焼結体を得るとともに、部材表面に熱融着一体
化する工程及び、(d)形成した金属焼結体を厚さ方向
に圧縮して所定の厚みを有する金属多孔質体とする工
程。そして、工程(d)において、金属焼結体をプレス
機により圧縮して金属多孔質体とする沸騰伝熱部材の製
造方法である。
SUMMARY OF THE INVENTION The present invention relates to a boiling heat transfer member having a metal porous body obtained by compressing a metal sintered body having continuous pores in the thickness direction on the surface of the member. Can be produced by including the following steps. (A) a step of depositing a metal or metal alloy powder on the skeleton surface of a three-dimensional network structure serving as a base; and (b) a member comprising a three-dimensional network structure coated with a metal or metal alloy powder. (C) sintering a metal or metal alloy to obtain a continuous-pored metal sintered body, and heat-sealing and integrating the surface of the member. And (d) compressing the formed metal sintered body in the thickness direction to form a metal porous body having a predetermined thickness. Then, in the step (d), the method is a method for manufacturing a boiling heat transfer member in which a metal sintered body is compressed by a press machine into a metal porous body.

【0007】[0007]

【発明の実施の形態】高熱伝導性を有する金属あるいは
金属合金を用いて金属焼結体を形成すると、熱伝導率の
高い材料を用いているにもかかわらず、熱伝導性が低下
する。これは、空隙率が80%以上では、空気の熱伝導
率が支配的となるため全体の熱伝導率は小さくなってし
まうためである。本発明では、金属焼結体の厚みを焼結
形成して得られた初期値に対して使用する際に、または
あらかじめ圧縮して空隙率を小さくすることにより熱伝
導率の高い、また蒸気核が多数存在し、トラップされた
蒸気核が逃げ難い沸騰伝熱部材とする。本発明では、金
属焼結体の空隙率を80〜98%にすることが好まし
く、80%未満では、金属あるいは金属合金粉末を基体
となる三次元網目構造の骨格表面に被着させる工程で多
量に被着させなければならないが、被着にバラツキを生
じ均一な金属焼結体とすることが困難になる。また、空
隙率が98%を越えると、金属または金属合金粉末の被
着量が少なく粉末を焼結できなくなったり、得られる金
属焼結体が脆くなり、取扱性が悪くなるためである。金
属焼結体の空隙率は、85〜96%とすることがより好
ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS When a metal sintered body is formed using a metal or a metal alloy having a high thermal conductivity, the thermal conductivity is reduced even though a material having a high thermal conductivity is used. This is because when the porosity is 80% or more, the thermal conductivity of air becomes dominant, so that the overall thermal conductivity becomes small. In the present invention, when the thickness of the metal sintered body is used with respect to the initial value obtained by sintering, or by pre-compression to reduce the porosity, the heat conductivity is high, and Is a boiling heat transfer member in which trapped steam nuclei are difficult to escape. In the present invention, the porosity of the metal sintered body is preferably set to 80 to 98%. If the porosity is less than 80%, a large amount of the metal or metal alloy powder is applied to the skeleton surface of the three-dimensional network structure serving as the base. However, it is difficult to form a uniform metal sintered body because of unevenness in the adhesion. On the other hand, if the porosity exceeds 98%, the amount of the metal or metal alloy powder to be applied is small and the powder cannot be sintered, or the obtained metal sintered body becomes brittle, resulting in poor handling. The porosity of the metal sintered body is more preferably 85 to 96%.

【0008】金属焼結体の厚みは、1〜5mmにするこ
とが好ましく、1mm未満では、金属焼結体を形成させ
る三次元網目構造の基体とすることが困難であったり、
圧縮することが困難となるためである。また、5mmを
越えると三次元網目構造の基体の内部にまで均一に金属
または金属合金粉末を被着させることが困難となるため
である。金属焼結体の厚みは、2〜4mmとすることが
より好ましい。
[0008] The thickness of the metal sintered body is preferably 1 to 5 mm, and if it is less than 1 mm, it is difficult to form a substrate having a three-dimensional network structure for forming the metal sintered body,
This is because it becomes difficult to compress. On the other hand, if it exceeds 5 mm, it becomes difficult to uniformly apply the metal or metal alloy powder even to the inside of the substrate having the three-dimensional network structure. The thickness of the metal sintered body is more preferably 2 to 4 mm.

【0009】本発明で用いる部材は、通常の熱交換器に
用いられているものであれば特に制限なく使用できる。
一般的には、管形、プレート形、プレート・アンド・フ
ィン形やフィン・アンド・チューブ形などの拡大伝熱面
を有する構造の部材である。これらの部材は、ステンレ
ス、鉄、銅、アルミニウム、ニッケル等の金属や合金か
ら作られ、金属焼結体をこれら金属部材に一旦形成し圧
縮した後、あるいはこれらを組みたててから圧縮し金属
多孔質体とすることもできる。例えば、フィン・アンド
・チューブ形のプレートフィン・アンド・チューブの場
合、プレートのみに金属多孔質体を形成する時は、プレ
ートの片面ないし両面に金属多孔質体を形成しチューブ
(管)を入れる箇所に穴開けしチューブを入れて位置あ
わせして溶接する。チューブに多孔質体を形成する場合
は、多孔質体付きチューブを入れる箇所のプレートに穴
開けを行いチューブを入れて溶接する。プレートとチュ
ーブの両者に多孔質体を形成する時は、形成した部材同
士を組み合わせて溶接する。部材への金属焼結体の焼結
形成は、部材表面に金属または金属合金粉末を基体とな
る三次元網目構造の骨格表面に被着させたものを積層
し、加熱して三次元網目構造体を焼失除去して焼結させ
る際に同時に焼結して形成する。そのために部材を金属
あるいは金属合金が焼結して接着を保つように組合せを
選んで使用したり、部材を粗面化したり、めっきあるい
はクラッドして金属あるいは金属合金と焼結形成できる
ようにする。
The members used in the present invention can be used without any particular limitation as long as they are used in ordinary heat exchangers.
Generally, it is a member having a structure having an enlarged heat transfer surface such as a tube shape, a plate shape, a plate-and-fin shape, a fin-and-tube shape, and the like. These members are made of a metal or alloy such as stainless steel, iron, copper, aluminum, nickel, and the like. A metal sintered body is formed on these metal members once and compressed, or after they are assembled and compressed, It can also be a porous body. For example, in the case of a fin-and-tube type plate fin-and-tube, when a metal porous body is formed only on a plate, a metal porous body is formed on one or both sides of the plate, and a tube (tube) is inserted. Drill holes in the locations, insert tubes, align and weld. When a porous body is formed in a tube, a hole is made in a plate where a tube with a porous body is to be inserted, and the tube is inserted and welded. When the porous body is formed on both the plate and the tube, the formed members are combined and welded. The sintering of a metal sintered body on a member is performed by laminating a metal or metal alloy powder adhered to the skeleton surface of a three-dimensional network structure serving as a substrate on the member surface and heating the three-dimensional network structure. Is formed by sintering at the same time as sintering by removing by burning. For this purpose, select and use a combination of members so that the metal or metal alloy sinters and maintain adhesion, roughen the member, or plating or clad so that it can be sintered with the metal or metal alloy. .

【0010】本発明で得られる金属焼結体は、金属焼結
体の厚みを焼結形成して得られた初期値の1/2以下に
圧縮するのが、高熱伝導性、多数の蒸気核存在そしてト
ラップされた蒸気核が逃げ難くなるために好ましい。圧
縮する方法としては、金属焼結体をプレス機で圧縮して
用いるのが好ましい。これは、均一に圧縮できるからで
ある。金属焼結体の空隙率が高いときや厚みが厚いとき
に有効である。金属多孔質体が平面形状でないときは、
その形状にあわせた治具を作り、プレス機に取付けて圧
縮する。
In the metal sintered body obtained by the present invention, the thickness of the metal sintered body is reduced to less than 1/2 of the initial value obtained by sintering, because of its high thermal conductivity and a large number of steam cores. It is preferred because the presence and trapped vapor nuclei are difficult to escape. As a method of compression, it is preferable to use a metal sintered compact by compressing it with a press. This is because compression can be performed uniformly. This is effective when the porosity of the metal sintered body is high or when the thickness is large. When the metal porous body is not planar,
A jig according to the shape is made, attached to a press and compressed.

【0011】次に沸騰伝熱部材の製造方法について説明
する。沸騰伝熱部材の製造方法は、下記の製造工程を含
むものである。 (a)基体となる三次元網目構造体の骨格表面に、金属
または金属合金の粉体を被着させる工程、(b)金属ま
たは金属合金の粉体を被着した三次元網目構造体を部材
表面に積層し、加熱して三次元網目構造体を焼失除去す
る工程、(c)金属または金属合金の焼結を行い連続気
孔の金属焼結体を得るとともに、部材表面に熱融着一体
化する工程及び、(d)形成した金属焼結体を厚さ方向
に圧縮して所定の厚みを有する金属多孔質体とする工程
である。
Next, a method of manufacturing the boiling heat transfer member will be described. The method for manufacturing the boiling heat transfer member includes the following manufacturing steps. (A) a step of depositing a metal or metal alloy powder on the skeleton surface of a three-dimensional network structure serving as a base; and (b) a member comprising a three-dimensional network structure coated with a metal or metal alloy powder. (C) sintering a metal or metal alloy to obtain a continuous-pored metal sintered body, and heat-sealing and integrating the surface of the member. And (d) compressing the formed metal sintered body in the thickness direction to form a metal porous body having a predetermined thickness.

【0012】基体となる三次元網目構造体は、ウレタン
フォーム等の連続気泡構造を有する発泡性の樹脂、また
は、加熱して焼失する例えば樹脂でできた不織布、織布
等であり、形状は使用目的に応じ適宜選択されるが、厚
みが最終的に1〜5mmとなるようにすることが好まし
い。金属焼結体の空隙率が85〜96%で厚みが1〜5
mmとなるようにするためには、基体となる三次元網目
構造体の空隙率を85%以上とし、厚みを1mm以上と
することが好ましい。これは、三次元網目構造体の骨格
表面に金属または金属合金の粉体が被着されるので、三
次元網目構造体の空隙率や厚みが金属焼結体の空隙率や
厚みに反映されるためであるが、焼結により、金属また
は金属合金が融着し収縮するので得られる金属焼結体の
空隙率や厚みが使用する三次元網目構造体の空隙率や厚
みに較べ小さくなることを配慮し、目的とする空隙率よ
り大きめの空隙率や厚みの厚い三次元網目構造体を選
ぶ。三次元網目構造体の空隙率は、発泡倍率を変えるこ
とにより容易に得ることができる。なお、ここで空隙率
とは、プラスチックフォームの発泡倍率と同義で、発泡
してない金属または金属合金の素材の密度を成形後の金
属焼結体または金属多孔質体の見掛け密度で除した値で
ある。
The three-dimensional network structure serving as a substrate is a foamable resin having an open-cell structure such as urethane foam, or a nonwoven fabric or a woven fabric made of, for example, a resin which is burned off by heating. Although it is appropriately selected according to the purpose, it is preferable that the thickness finally becomes 1 to 5 mm. The porosity of the metal sintered body is 85 to 96% and the thickness is 1 to 5
In order to make the three-dimensional network structure as mm, it is preferable that the porosity of the three-dimensional network structure serving as the substrate is 85% or more and the thickness is 1 mm or more. This is because the metal or metal alloy powder is applied to the skeleton surface of the three-dimensional network structure, so that the porosity and thickness of the three-dimensional network structure are reflected on the porosity and thickness of the metal sintered body. However, because of the sintering, the metal or metal alloy is fused and shrunk, so that the porosity and thickness of the obtained metal sintered body become smaller than the porosity and thickness of the three-dimensional network structure used. Considering this, select a three-dimensional network structure with a larger porosity and a larger thickness than the target porosity. The porosity of the three-dimensional network structure can be easily obtained by changing the expansion ratio. Here, the porosity is synonymous with the expansion ratio of the plastic foam, and is a value obtained by dividing the density of the unfoamed metal or metal alloy material by the apparent density of the metal sintered body or metal porous body after molding. It is.

【0013】この基体となる三次元網目構造体の骨格表
面に粉体の被着を容易にし剥離を防止するため粘着性を
付与することが好ましい。粘着性は、アクリル系、ゴム
系等の粘着剤溶液またはフェノール樹脂、エポキシ樹
脂、フラン樹脂等の接着性の樹脂溶液を三次元網目構造
体に塗布することにより付与される。また、基体が樹脂
であるときプラズマ処理等により基体そのものに粘着性
を付与することも可能である。基体の骨格表面に好まし
くは粘着性を付与した後、粉体中で基体を揺動させた
り、基体に粉体を吹き付ける等の方法により、骨格表面
に粉体を被着させる。これにより乾燥状態の粉体を直接
基体の表面に被着させることができる。粉体を被着させ
た後、さらに粘着性を付与して粉体を被着させることを
繰返し行っても良い。粉体の粒径は、基体表面に被着可
能な範囲であれば良く、通常0.01〜100μmの範
囲にあることが望ましい。粉体の形状は特に制限される
ものでなく、粒径分布は大きな粒子の隙間を小さな粒子
が埋めるような密に充填できるような分布であるとその
後の焼結に有利となる。粉体には、目的により他の金属
あるいは金属合金を同一粉中にあるいは別の粉体として
混ぜても良い。
It is preferable that the skeleton surface of the three-dimensional network structure serving as the substrate is provided with tackiness in order to facilitate adhesion of the powder and prevent peeling. The tackiness is provided by applying an acrylic or rubber-based adhesive solution or an adhesive resin solution such as a phenol resin, an epoxy resin, or a furan resin to the three-dimensional network structure. When the substrate is a resin, it is also possible to impart tackiness to the substrate itself by plasma treatment or the like. After preferably imparting tackiness to the skeleton surface of the substrate, the powder is applied to the skeleton surface by a method such as rocking the substrate in the powder or spraying the powder on the substrate. Thereby, the powder in a dry state can be directly adhered to the surface of the substrate. After the powder is applied, the step of applying the powder by further imparting adhesiveness may be repeated. The particle size of the powder may be within a range in which the powder can be adhered to the surface of the substrate, and is generally preferably in the range of 0.01 to 100 μm. The shape of the powder is not particularly limited, and if the particle size distribution is such that small particles can fill gaps between large particles, the distribution can be advantageous for subsequent sintering. The powder may be mixed with another metal or metal alloy in the same powder or as another powder depending on the purpose.

【0014】本発明で使用する金属あるいは金属合金と
しては、金、銀、銅、ニッケル、アルミニウム、チタ
ン、クロム、亜鉛、錫、マンガン、タングステン、コバ
ルト等の金属粉やその金属と他の元素との化合物、例え
ば、酸化物、硫化物、ハロゲン化物等、また、その金属
と他の金属との合金である。これらの粉体は、不活性も
しくは還元性雰囲気で加熱によりそれぞれ単独に、また
は、混合体として容易に焼結する性質を利用すること
で、金属板や金属管の内外面などの部材に三次元網目構
造の金属焼結体を一体被着した伝熱管や伝熱板を得るも
ので、さらにこの金属多孔質体は、単一孔径のみならず
孔径の異なる複数層の金属多孔質体とすることもでき
る。
The metal or metal alloy used in the present invention includes metal powders such as gold, silver, copper, nickel, aluminum, titanium, chromium, zinc, tin, manganese, tungsten, cobalt and the like, and the metal and other elements. , For example, oxides, sulfides, and halides, and alloys of the metal with other metals. These powders can be three-dimensionally applied to members such as the inner and outer surfaces of metal plates and metal tubes by utilizing the property of being easily sintered alone or as a mixture by heating in an inert or reducing atmosphere. A heat transfer tube or a heat transfer plate to which a metal sintered body having a network structure is integrally adhered is obtained, and the metal porous body is not only a single hole diameter but also a plurality of layers of metal porous bodies having different hole diameters. Can also.

【0015】基体となる三次元網目構造体の骨格表面
に、金属または金属合金の粉体を被着させたものを部材
の表面に積層する。この際、単に積層しても良いが、部
材表面に粉体を被着させたり、部材表面あるいは粉体被
着三次元網目構造体の表面を水、有機溶剤、金属塩を含
む溶液等で濡らして積層すると得られる金属焼結体と部
材の接着性が良好となり好ましい。金属塩は、液体に溶
解するものであれば良いが、樹脂の基体が分解除去され
る温度付近で酸化物を形成するものが強度の向上効果が
大きく好ましい。このため、一般的な樹脂基体が分解す
る500℃以下で酸化物を生成する硝酸塩、酢酸塩、ぎ
酸塩等の塩が好ましい。金属塩の種類は粉体と同種の金
属イオンを含有するものでも良いし、異種の金属イオン
を含有しても良い。これらは、粉体被着三次元網目構造
体に適用し、浸漬やスプレーなどにより粉体を濡らし、
乾燥させることにより粉体同士を凝集させることにより
加熱中の強度維持や得られる金属多孔質体層の強度を高
めることができる。
A three-dimensional network structure serving as a base is coated with a metal or metal alloy powder on the skeleton surface, and is laminated on the surface of the member. At this time, the layers may be simply laminated, but powder may be applied to the member surface, or the member surface or the surface of the powder-coated three-dimensional network structure may be wetted with water, an organic solvent, a solution containing a metal salt, or the like. It is preferable to laminate the metal sintered body so that the obtained metal sintered body and the member have good adhesiveness. Any metal salt may be used as long as it dissolves in a liquid, but a metal salt that forms an oxide at a temperature near the temperature at which the resin substrate is decomposed and removed is preferred because of its large effect of improving strength. For this reason, salts such as nitrates, acetates, and formates that generate oxides at 500 ° C. or lower at which the general resin substrate decomposes are preferable. The kind of the metal salt may contain the same kind of metal ion as the powder, or may contain a different kind of metal ion. These are applied to a powder-coated three-dimensional network structure, wet the powder by dipping or spraying,
By drying and aggregating the powders, the strength can be maintained during heating and the strength of the obtained porous metal layer can be increased.

【0016】部材の表面に積層した粉体被着三次元網目
構造体の加熱は、基体の除去と粉体の焼結を目的とした
ものである。加熱条件は、使用する基体及び粉体の性状
に応じて、処理温度、時間、雰囲気を適宜選択する。基
体に発泡樹脂を使用し、粉体に金属を使用した場合に
は、基体の焼失は酸化性雰囲気、金属粉体の焼結は還元
性雰囲気となるよう雰囲気を変えることが好ましい。工
程(d)の形成した金属焼結体を厚さ方向に圧縮して所
定の厚みの金属多孔質体にする工程は、移動距離を制御
できるプレス機を用い、所定の厚みとなるように小さな
圧縮速度で圧縮することもできる。
The heating of the powder-coated three-dimensional network structure laminated on the surface of the member is intended to remove the substrate and sinter the powder. As the heating conditions, the processing temperature, time, and atmosphere are appropriately selected depending on the properties of the substrate and the powder used. When the foamed resin is used for the base and the metal is used for the powder, it is preferable to change the atmosphere so that the burning of the base becomes an oxidizing atmosphere and the sintering of the metal powder becomes a reducing atmosphere. In the step (d), the step of compressing the formed metal sintered body in the thickness direction to form a metal porous body having a predetermined thickness is performed by using a press machine capable of controlling a moving distance, and using a press machine capable of controlling a moving distance. It can also be compressed at a compression rate.

【0017】[0017]

【実施例】【Example】

(実施例1)図1(a)に本発明の沸騰伝熱部材の製造
工程と本発明により作製した沸騰伝熱部材の一例を示し
た。三次元網目構造体を持つ基体として、厚さ3mmの
ポリウレタンフォーム(エバーライトSF、(株)ブリ
ジストン製商品名)を使用した。このポリウレタンフォ
ームを下記の樹脂分8重量%のアクリル系の粘着剤溶液
に浸漬した後、余分な溶液をロールを通して除去し、基
体骨格表面に粘着性を付与した。 アクリル系共重合体 HTR−600LB(帝国化学産業(株)製商品名) 50重量部 アクリル系共重合体 Q−1851(日本カーバイド工業(株)製商品名) 50重量部 架橋剤 コロネートL(日本ポリウレタン工業(株)製商品名)1重量部 溶剤 トルエン 1161.5重量部 これをさらに、100℃で10分間乾燥し、溶剤を除去
した後、平均粒径5μmの銅粉中に基体を挿入し揺動さ
せることにより被着させた。一方、図1(b)、(c)
に示すように、部材として外寸法300×200mm、
厚み3mmの銅板130を使用し、その片面に銅粉を被
着し、その上に銅粉を被着したポリウレタンフォームを
重ねて積層した。そして、500℃で10分間大気雰囲
気中で加熱保持し、基体のポリウレタンフォームを分解
除去させた。ついで、900℃で20分間、水素ガスを
流した還元性雰囲気中に保持した。これにより酸化銅が
還元され銅粉が焼結してポリウレタンフォームの三次元
網目構造を転写した形状をもつ三次元銅網目構造体であ
る金属焼結体110を表面に有した金属焼結体付き銅板
を得た。金属焼結体110の厚みは2mmで、空隙率は
95%であった。この金属焼結体付き銅板をプレス機の
プレス盤に設置し、金属焼結体付き銅板の周囲に厚み4
mmの銅製スペーサーを配置し、室温で10kgf/c
2の圧力でプレスした。金属焼結体110をプレスし
た後の厚みは、1mmで空隙率48%の金属多孔質体1
20を得た。金属多孔質体の不要部分をカッターで切除
して沸騰伝熱板100を得た。本発明で得られた沸騰伝
熱板の伝熱測定結果を表1に示した。
(Embodiment 1) FIG. 1A shows a manufacturing process of a boiling heat transfer member of the present invention and an example of a boiling heat transfer member manufactured according to the present invention. As a substrate having a three-dimensional network structure, a polyurethane foam (Everlight SF, trade name, manufactured by Bridgestone Corporation) having a thickness of 3 mm was used. This polyurethane foam was immersed in an acrylic pressure-sensitive adhesive solution having the following resin content of 8% by weight, and an excess solution was removed through a roll to impart tackiness to the surface of the substrate skeleton. Acrylic copolymer HTR-600LB (trade name of Teikoku Chemical Industry Co., Ltd.) 50 parts by weight Acrylic copolymer Q-1851 (trade name of Nippon Carbide Industry Co., Ltd.) 50 parts by weight Crosslinking agent Coronate L (Japan 1 part by weight, manufactured by Polyurethane Industry Co., Ltd.) 1 part by weight Solvent: 1161.5 parts by weight This was further dried at 100 ° C. for 10 minutes to remove the solvent, and then the base was inserted into copper powder having an average particle diameter of 5 μm. It was applied by rocking. On the other hand, FIG. 1 (b), (c)
As shown in the figure, the external dimensions of the member 300 × 200 mm,
A copper plate 130 having a thickness of 3 mm was used, copper powder was adhered on one side thereof, and a polyurethane foam having copper powder adhered thereon was layered. Then, the substrate was heated and maintained at 500 ° C. for 10 minutes in an air atmosphere to decompose and remove the polyurethane foam as the substrate. Then, it was kept at 900 ° C. for 20 minutes in a reducing atmosphere in which a hydrogen gas was flowed. With this, the copper oxide is reduced, the copper powder is sintered, and a metal sintered body 110 having a shape obtained by transferring the three-dimensional network structure of the polyurethane foam, which is a three-dimensional copper network structure, is provided. A copper plate was obtained. The thickness of the metal sintered body 110 was 2 mm, and the porosity was 95%. The copper plate with the metal sintered body was placed on a press plate of a press machine, and the thickness 4
mm copper spacer is placed, and at room temperature, 10 kgf / c
Pressed at a pressure of m 2 . The thickness of the metal sintered body 110 after pressing is 1 mm and the metal porous body 1 having a porosity of 48%.
20 was obtained. Unnecessary portions of the metal porous body were cut off with a cutter to obtain a boiling heat transfer plate 100. Table 1 shows the heat transfer measurement results of the boiling heat transfer plate obtained in the present invention.

【0018】(比較例1)実施例1の製造工程途中の金
属焼結体付き部材をプレスしないものを比較例1とし
た。
(Comparative Example 1) A member in which the member with a metal sintered body was not pressed during the manufacturing process of Example 1 was used as Comparative Example 1.

【0019】(比較例2)実施例1で用いた部材のみ使
用したものを比較例2とした。実施例1と同様にして測
定して得られた比較例1、2の沸騰伝熱部材の伝熱測定
結果を表1に示した。項目中に示した模式図で、上の図
は沸騰伝熱部材の平面図を、下の図は、沸騰伝熱部材の
断面図をそれぞれ示す。プレスをしない比較例1の沸騰
伝熱部材では、比較例3の平滑板の約2倍の沸騰熱伝達
率であったが、本発明の圧縮を施した実施例1では、平
滑板の約3倍の沸騰熱伝達率であった。また、金属多孔
質体を部材表面に均一に形成するため、表面の沸騰熱伝
達率も均一となった。
Comparative Example 2 A comparative example 2 was made using only the members used in Example 1. Table 1 shows the heat transfer measurement results of the boiling heat transfer members of Comparative Examples 1 and 2 obtained by performing the measurement in the same manner as in Example 1. In the schematic diagrams shown in the items, the upper figure shows a plan view of the boiling heat transfer member, and the lower figure shows a sectional view of the boiling heat transfer member. The boiling heat transfer member of Comparative Example 1 which was not pressed had a boiling heat transfer coefficient about twice that of the smooth plate of Comparative Example 3, but in the compressed Example 1 of the present invention, about 3 times of the smooth plate. Twice the heat transfer coefficient. Further, since the porous metal body was formed uniformly on the surface of the member, the boiling heat transfer coefficient on the surface became uniform.

【0020】[0020]

【表1】 [Table 1]

【0021】(実施例2)図2に示すように、外径20
mm、厚さ1.8mm、長さ300mmの銅管表面に、
実施例1で使用した粘着剤溶液に銅粉を混合し、塗布乾
燥した。また、実施例1と同様にして粘着剤を塗布し、
銅粉を被着させた長尺で幅15mm、厚み3mmのポリ
ウレタンフォームを用意し、粘着剤を塗布した銅管表面
に巻きつけ、実施例1と同様にして基体であるポリウレ
タンフォームの分解除去、金属焼結体の形成を行った。
得られた金属焼結体の厚みは、約2mmで、空隙率94
%であった。金属焼結体の銅管の端から10mmをカッ
ターで除去し、反対方向に回転する2本のロール間に入
れ、さらに金属焼結体付き銅管の上から別の上下に可動
なロールにより回転させながら圧縮し金属焼結体の厚み
を1mmとした金属多孔質体とし沸騰伝熱管を得た。実
施例1、2で示した以外に、金属多孔質体を形成する面
は、その用途により板の両面でも良い。また、管の場
合、金属多孔質体を形成する面は、管の内壁あるいは外
壁どちらでも良いし両方でも良い。
(Embodiment 2) As shown in FIG.
mm, 1.8mm thick, 300mm long copper tube surface,
Copper powder was mixed with the adhesive solution used in Example 1, and applied and dried. Further, an adhesive was applied in the same manner as in Example 1,
A long polyurethane foam having a width of 15 mm and a thickness of 3 mm to which copper powder was adhered was prepared, wound around a copper tube surface coated with an adhesive, and decomposed and removed of the polyurethane foam as a substrate in the same manner as in Example 1. A metal sintered body was formed.
The thickness of the obtained metal sintered body was about 2 mm, and the porosity was 94 mm.
%Met. Remove 10mm from the end of the copper tube of the metal sintered body with a cutter, put it between two rolls rotating in the opposite direction, and rotate the copper tube with the metal sintered body with another vertically movable roll. The resulting mixture was compressed to obtain a porous metal body having a thickness of 1 mm, and a boiling heat transfer tube was obtained. In addition to those shown in Examples 1 and 2, the surface on which the metal porous body is formed may be both surfaces of the plate depending on the application. In the case of a pipe, the surface on which the metal porous body is formed may be either the inner wall or the outer wall of the pipe, or both.

【0022】(実施例3)実施例1で得られた沸騰伝熱
部材を、下記の黒化処理液により95℃で2分間浸漬処
理することにより、銅を酸化させ酸化銅とした。 亜塩素酸ナトリウム 30g/l 水酸化ナトリウム 15g/l 燐酸三ナトリウム 12g/l 実施例1で得られる伝熱部材は、使用条件により酸化さ
れやすい場合がある。このため予め酸化しておくことに
より、特性の安定した伝熱部材となる。この他に、ペル
オキソアンモニウム、過マンガン酸カリウム、過塩素酸
ナトリウム等の溶液を用いて酸化させることができる。
また、腐食に対して二酸化珪素を含んだ親水性塗料をコ
ーティングすると酸化処理と同様、濡れ性向上による伝
熱性能が高まったり、伝熱性能の長期間の維持が可能で
ある。
Example 3 The boiling heat transfer member obtained in Example 1 was immersed in the following blackening treatment solution at 95 ° C. for 2 minutes to oxidize copper to obtain copper oxide. Sodium chlorite 30 g / l Sodium hydroxide 15 g / l Trisodium phosphate 12 g / l The heat transfer member obtained in Example 1 may be easily oxidized depending on use conditions. Therefore, by oxidizing in advance, a heat transfer member having stable characteristics can be obtained. In addition, oxidation can be performed using a solution of peroxoammonium, potassium permanganate, sodium perchlorate, or the like.
Further, when a hydrophilic paint containing silicon dioxide is coated against corrosion, the heat transfer performance is improved by improving the wettability, and the heat transfer performance can be maintained for a long period of time, as in the case of the oxidation treatment.

【0023】[0023]

【発明の効果】本発明によれば、伝熱部材表面の金属焼
結体を厚み方向に圧縮し金属多孔質体とし、金属焼結体
より孔径の小さい孔を形成することができるため、沸騰
発生時に気泡が離脱しにくくなり核沸騰現象が持続する
ようになる。そのため、沸騰熱伝達率が大きくなり、熱
交換器の小型化や高性能化を図ることができる。本発明
では、圧縮量を制御することで、任意の沸騰伝達率が得
られ、熱交換器の伝熱設計が容易になる。製造面でも、
複雑な機械加工なしで沸騰熱伝達に優れた伝熱部材が得
られ、かつ伝熱部材と金属多孔質体との接着が焼結工程
中に行われるため安価に製造することができる。
According to the present invention, the metal sintered body on the surface of the heat transfer member is compressed in the thickness direction to be a metal porous body, and a hole having a smaller diameter than the metal sintered body can be formed. At the time of generation, the bubbles are hardly detached, and the nucleate boiling phenomenon is maintained. Therefore, the boiling heat transfer coefficient increases, and the heat exchanger can be reduced in size and improved in performance. In the present invention, by controlling the amount of compression, an arbitrary boiling transmissivity can be obtained, and the heat transfer design of the heat exchanger becomes easy. In terms of manufacturing,
A heat transfer member excellent in boiling heat transfer can be obtained without complicated machining, and the bonding between the heat transfer member and the porous metal body is performed during the sintering step, so that the heat transfer member can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (a)は、本発明の一実施例を説明するため
の各工程を示す図であり、(b)は、本製造方法で製造
した沸騰伝熱部材の平面図、(c)は、そのa−a断面
図である。
FIG. 1A is a view showing each step for explaining one embodiment of the present invention, FIG. 1B is a plan view of a boiling heat transfer member manufactured by the present manufacturing method, and FIG. Is an aa cross-sectional view thereof.

【図2】 (a)は、本発明の沸騰伝熱管の平面図、
(b)は、そのa−a断面図である。
FIG. 2 (a) is a plan view of a boiling heat transfer tube of the present invention,
(B) is the aa sectional view.

【符号の説明】[Explanation of symbols]

100.沸騰伝熱部材 110.金属焼結体 120.金属多孔質体 130.部材 100. Boiling heat transfer member 110. Metal sintered body 120. Metal porous body 130. Element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 連続気孔の金属焼結体を厚み方向に圧縮
した金属多孔質体を部材表面に有したことを特徴とする
沸騰伝熱部材。
1. A boiling heat transfer member comprising a metal porous body obtained by compressing a metal sintered body having continuous pores in a thickness direction on a member surface.
【請求項2】 以下の工程を含む沸騰伝熱部材の製造方
法。 (a)基体となる三次元網目構造体の骨格表面に、金属
または金属合金の粉体を被着させる工程、(b)金属ま
たは金属合金の粉体を被着した三次元網目構造体を部材
表面に積層し、加熱して三次元網目構造体を焼失除去す
る工程、(c)金属または金属合金の焼結を行い連続気
孔の金属焼結体を得るとともに、部材表面に熱融着一体
化する工程及び、(d)形成した金属焼結体を厚さ方向
に圧縮して所定の厚みを有する金属多孔質体とする工
程。
2. A method for producing a boiling heat transfer member, comprising the following steps. (A) a step of depositing a metal or metal alloy powder on the skeleton surface of a three-dimensional network structure serving as a base; and (b) a member comprising a three-dimensional network structure coated with a metal or metal alloy powder. (C) sintering a metal or metal alloy to obtain a continuous-pored metal sintered body, and heat-sealing and integrating the surface of the member. And (d) compressing the formed metal sintered body in the thickness direction to form a metal porous body having a predetermined thickness.
【請求項3】 請求項2に記載の工程(d)において、
金属焼結体をプレス機により圧縮して金属多孔質体とす
る沸騰伝熱部材の製造方法。
3. In the step (d) according to claim 2,
A method for producing a boiling heat transfer member in which a sintered metal body is compressed by a press to form a porous metal body.
JP27192696A 1996-10-15 1996-10-15 Boiling heat-transfer member and its production Pending JPH10121110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27192696A JPH10121110A (en) 1996-10-15 1996-10-15 Boiling heat-transfer member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27192696A JPH10121110A (en) 1996-10-15 1996-10-15 Boiling heat-transfer member and its production

Publications (1)

Publication Number Publication Date
JPH10121110A true JPH10121110A (en) 1998-05-12

Family

ID=17506793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27192696A Pending JPH10121110A (en) 1996-10-15 1996-10-15 Boiling heat-transfer member and its production

Country Status (1)

Country Link
JP (1) JPH10121110A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865027A1 (en) * 2004-01-12 2005-07-15 Air Liquide Corrugated fin for heat exchanger e.g. vaporizer-condenser, has pores, and corrugations, each including vertical legs alternatively connected by top and base of corrugation, where top, base and legs are made of sintered aluminum particles
JP2009085407A (en) * 2007-10-02 2009-04-23 Railway Technical Res Inst Installation method and installation structure for porous metal material
CN103940261A (en) * 2014-05-07 2014-07-23 文力 Tubular heat exchanger with micron-sized-hole metal framework and nanometer framework and manufacturing method
US8981556B2 (en) 2013-03-19 2015-03-17 Toyota Motor Engineering & Manufacturing North America, Inc. Jet impingement cooling apparatuses having non-uniform jet orifice sizes
US9131631B2 (en) 2013-08-08 2015-09-08 Toyota Motor Engineering & Manufacturing North America, Inc. Jet impingement cooling apparatuses having enhanced heat transfer assemblies
US9247679B2 (en) 2013-05-24 2016-01-26 Toyota Motor Engineering & Manufacturing North America, Inc. Jet impingement coolers and power electronics modules comprising the same
US9257365B2 (en) 2013-07-05 2016-02-09 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling assemblies and power electronics modules having multiple-porosity structures
EP3026388A1 (en) * 2014-11-26 2016-06-01 Vaillant GmbH Vaporiser
US9460985B2 (en) 2013-01-04 2016-10-04 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling apparatuses having a jet orifice surface with alternating vapor guide channels
US9484283B2 (en) 2013-01-04 2016-11-01 Toyota Motor Engineering & Manufacturing North America Inc. Modular jet impingement cooling apparatuses with exchangeable jet plates
US9803938B2 (en) 2013-07-05 2017-10-31 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling assemblies having porous three dimensional surfaces
CN112996208A (en) * 2019-12-16 2021-06-18 新奥科技发展有限公司 Plasma torch cathode and preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075920A3 (en) * 2004-01-12 2005-10-13 Air Liquide Fin for heat exchanger and heat exchanger equipped with such fins
JP2007520682A (en) * 2004-01-12 2007-07-26 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Fins for heat exchangers and heat exchangers with a plurality of such fins
FR2865027A1 (en) * 2004-01-12 2005-07-15 Air Liquide Corrugated fin for heat exchanger e.g. vaporizer-condenser, has pores, and corrugations, each including vertical legs alternatively connected by top and base of corrugation, where top, base and legs are made of sintered aluminum particles
JP2009085407A (en) * 2007-10-02 2009-04-23 Railway Technical Res Inst Installation method and installation structure for porous metal material
US9460985B2 (en) 2013-01-04 2016-10-04 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling apparatuses having a jet orifice surface with alternating vapor guide channels
US9484283B2 (en) 2013-01-04 2016-11-01 Toyota Motor Engineering & Manufacturing North America Inc. Modular jet impingement cooling apparatuses with exchangeable jet plates
US9903664B2 (en) 2013-03-19 2018-02-27 Toyota Jidosha Kabushiki Kaisha Jet impingement cooling apparatuses having non-uniform jet orifice sizes
US8981556B2 (en) 2013-03-19 2015-03-17 Toyota Motor Engineering & Manufacturing North America, Inc. Jet impingement cooling apparatuses having non-uniform jet orifice sizes
US9247679B2 (en) 2013-05-24 2016-01-26 Toyota Motor Engineering & Manufacturing North America, Inc. Jet impingement coolers and power electronics modules comprising the same
US9803938B2 (en) 2013-07-05 2017-10-31 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling assemblies having porous three dimensional surfaces
US9257365B2 (en) 2013-07-05 2016-02-09 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling assemblies and power electronics modules having multiple-porosity structures
US9131631B2 (en) 2013-08-08 2015-09-08 Toyota Motor Engineering & Manufacturing North America, Inc. Jet impingement cooling apparatuses having enhanced heat transfer assemblies
CN103940261A (en) * 2014-05-07 2014-07-23 文力 Tubular heat exchanger with micron-sized-hole metal framework and nanometer framework and manufacturing method
EP3026388A1 (en) * 2014-11-26 2016-06-01 Vaillant GmbH Vaporiser
CN112996208A (en) * 2019-12-16 2021-06-18 新奥科技发展有限公司 Plasma torch cathode and preparation method thereof
CN112996208B (en) * 2019-12-16 2023-07-07 新奥科技发展有限公司 Plasma torch cathode and preparation method thereof

Similar Documents

Publication Publication Date Title
US5943543A (en) Heat transmitting member and method of manufacturing the same
US6706239B2 (en) Method of co-forming metal foam articles and the articles formed by the method thereof
JPH10121110A (en) Boiling heat-transfer member and its production
JP5175310B2 (en) Metal foam having open pore structure and method for producing the same
CN114025562B (en) Soaking plate with gradient liquid suction core structure and preparation method thereof
JP2012001808A (en) Method for producing porous metal
JP2000054159A (en) Heat transfer material, heat transfer body, production of heat transfer material, and production of heat transfer body
JP2016183390A (en) Metallic porous body
KR20080032324A (en) Heat sink and fabricating method the same using metal foam
JP6182140B2 (en) Porous body manufacturing method, porous body, and structure
JPH08145592A (en) Heat transfer member and manufacture thereof
US7621046B2 (en) Moulding process of composite material including high-thermal conductor and room-temperature magnetic refrigerant
JPH10321890A (en) Solar battery cooling system
JP2003343987A (en) Manufacturing method for wick structural body
JPH11248097A (en) Vessel for hydrogen storage alloy and manufacture of vessel
JPH07190664A (en) Heat transfer member and manufacture thereof
WO2011010612A1 (en) Conductive porous body using spherical metal powder and method for producing the same
JPS6247617B2 (en)
JP2003291241A (en) Method for producing plate laminate, method for producing hollow laminate using plate laminate, and method for producing part using hollow laminate
JPH02175881A (en) Production of pipe with porous inner surface
CN113695568B (en) Preparation method of metal framework capable of designing nano holes and preparation method of catalyst
JPH02225605A (en) Porous material composed of ceramic in at least a part and manufacture thereof
JP2011249146A (en) Method of manufacturing fuel cell separator
JP5164335B2 (en) Method for producing sintered substrate for alkaline storage battery and method for producing alkaline storage battery
CN118272703A (en) Regional heat conduction controllable aluminum-based diamond composite material and preparation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040818

A02 Decision of refusal

Effective date: 20041209

Free format text: JAPANESE INTERMEDIATE CODE: A02