JPH08145592A - Heat transfer member and manufacture thereof - Google Patents
Heat transfer member and manufacture thereofInfo
- Publication number
- JPH08145592A JPH08145592A JP28183994A JP28183994A JPH08145592A JP H08145592 A JPH08145592 A JP H08145592A JP 28183994 A JP28183994 A JP 28183994A JP 28183994 A JP28183994 A JP 28183994A JP H08145592 A JPH08145592 A JP H08145592A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- copper
- heat transfer
- metal powder
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、種々の産業分野で用い
られる熱交換のための伝熱管や伝熱板等の伝熱部材およ
びその製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer member such as a heat transfer tube or a heat transfer plate for heat exchange used in various industrial fields, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】従来、液-液、液-ガス、ガス-ガス間等
の熱交換器や熱交換材には、一般的に熱伝導性の高い銅
やアルミニウムの金属製伝熱管や伝熱板が使用されてい
る。しかし、交換熱容量はそれぞれの熱媒体間の温度
差、伝熱特性、伝熱面積等で求められるとされており、
特に熱交換器の小型化が必要な場合は熱伝導性の高い材
質を使用するのみならず、伝熱管や伝熱板表面にフィン
や溝を設けることで伝熱面積の増加を図り、更にフィン
構造を工夫することで熱媒体に乱流を発生させ熱伝導特
性の増大を図っている。また、特許第1435526号
や特開平4−110597号公報には、銅や銅合金の多
孔質体若しくは発泡体を被着することで伝熱面積と熱伝
導特性の増大を同時に行い熱交換器の小型化を図る提案
もみられる。2. Description of the Related Art Conventionally, for heat exchangers and heat exchange materials for liquid-liquid, liquid-gas, gas-gas, etc., metal heat transfer tubes and heat transfer tubes made of copper or aluminum, which generally have high thermal conductivity, are used. Boards are used. However, the exchange heat capacity is said to be determined by the temperature difference between each heat medium, the heat transfer characteristics, the heat transfer area, etc.
Especially when downsizing of the heat exchanger is required, not only materials with high thermal conductivity are used, but also fins and grooves are provided on the surfaces of the heat transfer tubes and heat transfer plates to increase the heat transfer area. By devising the structure, turbulent flow is generated in the heat medium to increase the heat transfer characteristics. Further, in Japanese Patent No. 1435526 and Japanese Patent Application Laid-Open No. 4-110597, a heat transfer area and a heat transfer characteristic are simultaneously increased by depositing a porous body or a foamed body of copper or a copper alloy on a heat exchanger. There are also proposals for miniaturization.
【0003】[0003]
【発明が解決しようとする課題】しかし、特許第143
5526号や特開平4−110597号公報には銅や銅
合金の多孔質体若しくは発泡体を被着する際、伝熱部材
との結合や密着を図るため、前者では発泡体形状鋳型に
溶融金属を注入し凝固させた後、発泡体形状鋳型を溶解
する方法を採り、後者では、多孔質体と伝熱部材の強固
な接合のために最終工程で圧着、ろう付け、めっき等更
なる手段を必要とし、単に必要伝熱面積を増加できる効
果以上の設備費と製造費用の増加を伴い、また製造工程
が複雑化するという問題点があった。更にこれらの提案
における伝熱管の製造に於いては管の内外に同時に被着
できないという欠点もあった。本発明は、このような問
題点の解決を図ろうとするもので、熱伝導の良い金属板
や金属管等の伝熱部材本体上に単位容積当たりの表面積
が大きくかつ空隙率の大きい三次元網目状構造体を持つ
伝熱部材とその一括製造法を提供するものである。However, Japanese Patent No. 143
No. 5526 and Japanese Patent Laid-Open No. 4-110597, when a porous body or a foam of copper or a copper alloy is applied, the former and the former are designed to bond or adhere to a heat transfer member. After injecting and solidifying, the method of melting the foam shape mold is adopted.In the latter case, further means such as crimping, brazing, plating, etc. in the final step for firm joining of the porous body and the heat transfer member. There is a problem in that the manufacturing cost is increased due to increase in equipment cost and manufacturing cost beyond the effect of simply increasing the required heat transfer area. Further, in the production of the heat transfer tubes in these proposals, there is also a drawback that they cannot be simultaneously adhered to the inside and outside of the tube. The present invention is intended to solve such a problem, and has a three-dimensional mesh having a large surface area per unit volume and a large porosity on a heat transfer member body such as a metal plate or a metal tube having good heat conduction. The present invention provides a heat transfer member having a strip-shaped structure and a batch manufacturing method thereof.
【0004】[0004]
【課題を解決するための手段】本発明は、金,銀,銅,ニ
ッケル,アルミニウム,チタン,クロム,亜鉛,錫,マンガ
ン,タングステン,コバルト等の金属粉が不活性若しく
は還元性雰囲気で加熱によりそれぞれ単独に、または混
合体として容易に焼結する性質を利用するもので、金属
部材表面上への金属焼結体接合や焼結体を挟んだ構造の
金属部材接合体を製造するものである。即ち、金属焼結
体を三次元網目状構造体とし、これを同材質の金属板表
面や金属板間や金属管内外に一体焼結化することで熱伝
導効率の高い伝熱板や伝熱管を得るものである。According to the present invention, metal powders such as gold, silver, copper, nickel, aluminum, titanium, chromium, zinc, tin, manganese, tungsten and cobalt are heated in an inert or reducing atmosphere. Each of them utilizes the property of being easily sintered alone or as a mixture, and is for producing a metal-sintered body joined to the surface of a metal member or a metal-member joined body having a structure sandwiching a sintered body. . That is, a metal sintered body is formed into a three-dimensional mesh structure and is integrally sintered on the surfaces of metal plates of the same material, between metal plates, and inside and outside of a metal pipe, so that a heat transfer plate or heat transfer tube with high heat transfer efficiency is obtained. Is what you get.
【0005】図1は、本発明の製造法の焼結前までの工
程の一例を示す工程図である。まず単位容積当たりの表
面積が大きくかつ空隙率の大きい金属三次元網目状構造
体を得る方法としては、(1)加熱により焼失する材質
から成る三次元網目状構造体例えばウレタンフォ−ム、
ポリエチレンフォ-ム等連続気泡を持つ合成樹脂発泡
体、天然繊維クロス、人造繊維クロス等の骨格に粘着剤
を塗布し、気相中で単一金属粉、複数の混合金属粉また
は微細金属繊維等の金属粉状物を被着した成形体を用い
る方法、(2)加熱により焼失する材質から成り、かつ
三次元網目状構造体を形成することができる材料、例え
ばパルプや羊毛繊維に金属粉状物を抄き込んだシ−ト状
成形体を用いる方法、(3)発泡ウレタンや発泡ポリエ
チレン等の発泡以前の合成樹脂そのものに予め金属粉や
微細金属繊維等の金属粉状物を混練したスラリ-状樹脂
を用いる方法、(4)加熱により焼失する材質から成る
例えばウレタンフォ-ム、ポリエチレンフォ-ム、天然繊
維クロス、人造繊維クロス等三次元網目状構造体の骨格
に予め導電処理を行い電気めっき法や無電解めっき法で
金属の皮膜を被着させた成形体を用いる方法が使用でき
る。FIG. 1 is a process chart showing an example of a process up to before sintering in the manufacturing method of the present invention. First, as a method for obtaining a metal three-dimensional network structure having a large surface area per unit volume and a large porosity, (1) a three-dimensional network structure made of a material which is burned down by heating, such as urethane foam,
Adhesive is applied to the skeleton of synthetic resin foam with open cells such as polyethylene foam, natural fiber cloth, artificial fiber cloth, etc., and single metal powder, multiple mixed metal powder or fine metal fibers in the gas phase, etc. A method of using a molded body to which a metal powder material is applied, (2) a material made of a material that is burned down by heating and capable of forming a three-dimensional network structure, such as pulp or wool fiber (3) Slurry in which metal powder such as metal powder or fine metal fiber is previously kneaded with synthetic resin itself such as urethane foam or polyethylene foam before foaming -Method using a resin, (4) Conductive treatment is applied to the skeleton of the three-dimensional network structure such as urethane foam, polyethylene foam, natural fiber cloth, artificial fiber cloth, etc. Electric It is possible to use a method of using a molded body on which a metal film is deposited by a vapor plating method or an electroless plating method.
【0006】次いで基材となる金属部材本体との積層ま
たは接合方法は、前記(3)の場合はスラリ-状樹脂を
目的とする部分へ予め塗布するか、金属管であれば充填
した後発泡させて焼結すれば良いが、他の3方法におい
ては、金属板の場合は、金属三次元網目状構造体を片面
若しくは両面に圧着する。また2枚の金属板間に挟み込
み圧着する。この時、金属三次元網目状構造体と伝熱部
材本体とのより強度の大きい接合を可能とするため、金
属板の表面には粘着剤を塗布し更に同材質の金属粉を被
着させておくか、金属粉を混練した粘着剤を塗布するこ
とが望ましい。即ち、部材と三次元網目状構造体との焼
結の強化を金属粉同志の接触の増大で図ろうとするもの
で、互いのアンカ-効果が増大しかつ更なる表面積の増
加にも寄与する。[0006] Next, in the case of (3), the slurry-like resin is applied to the intended portion in advance, or if it is a metal pipe, it is filled and then foamed. Although it may be sintered by sintering, in the other three methods, in the case of a metal plate, the metal three-dimensional network structure is pressure-bonded to one side or both sides. Moreover, it is sandwiched between two metal plates and pressure-bonded. At this time, in order to enable stronger bonding between the metal three-dimensional mesh structure and the heat transfer member main body, an adhesive is applied to the surface of the metal plate, and then metal powder of the same material is applied. It is desirable to put the adhesive or to apply the adhesive mixed with the metal powder. That is, it is intended to strengthen the sintering between the member and the three-dimensional network structure by increasing the contact between the metal powders, and the mutual anchor effect is increased and the surface area is further increased.
【0007】金属管の場合も同様で、目的とする表面に
予め粘着剤の塗布や金属粉を被着させて金属三次元網目
状構造体を圧着する。この時、金属管外表面には螺旋上
に巻きつけることで容易に被覆できるが、管内表面への
被覆は予め金属管内径より若干大きい外形の円筒状の網
目状構造体を作り、これを嵌合、挿入して行う。また、
金属三次元網目状構造体は、網目径即ち気孔径の異なる
構造体を予め複数層に重ねたものの圧着や数次にわたっ
ての積層も可能である。更に前記(3)の場合には、ス
ラリ-状樹脂を塗布した伝熱材部位への同様の積層圧着
も可能であることは言うまでもない。更に加えて複数の
金属管を金属三次元網目状構造体で同時に包込むように
したり、金属三次元網目状構造体をブロック状となし複
数本の金属管を貫通して一体化して立体的な伝熱部材の
素材とすることもできる。Similarly, in the case of a metal tube, a target surface is coated with a pressure sensitive adhesive or metal powder is applied in advance to crimp the metal three-dimensional mesh structure. At this time, the outer surface of the metal pipe can be easily coated by winding it in a spiral, but the inner surface of the pipe is coated in advance with a cylindrical mesh-like structure having an outer diameter slightly larger than the inner diameter of the metal pipe and fitted. If it is inserted, insert it. Also,
The metal three-dimensional mesh structure can be formed by stacking a plurality of structures having different mesh diameters, that is, pore diameters in advance, and pressure bonding or stacking for several orders. Further, in the case of the above (3), it goes without saying that the same laminated pressure bonding to the heat transfer material portion coated with the slurry-like resin is also possible. In addition, a plurality of metal pipes may be simultaneously wrapped with a metal three-dimensional network structure, or the metal three-dimensional network structure may not be formed into a block shape and penetrate a plurality of metal pipes to form a three-dimensional structure. It can also be the material of the heat transfer member.
【0008】次いで、三次元網目状構造体を積層、接
合、または塗布した金属部材の焼結方法は、三次元網目
状構造体の基材の除去と金属粉同志の焼結、更には金属
部材との焼結一体化が必要である。先ず基材や粘着材の
除去方法は、動、植物繊維、合成樹脂のいずれも不活性
または還元性雰囲気での加熱焙焼、ガス化や酸化性雰囲
気での加熱燃焼により焼失除去できる。この時、金属粉
が金属酸化物であれば、不活性または還元性雰囲気では
金属酸化物中の酸素は基材中の炭素や水素源の加熱焙焼
により消費されると同時に金属粉は純粋な金属として焼
結する。不活性雰囲気では、窒素、アルゴン、ヘリウム
等のガス中で行い、還元性雰囲気では水素ガス、炭化水
素ガス、水性ガス、アンモニアガス等の導入を行い、更
に基材への炭化水素化合物、硫黄化合物、燐化合物、水
素化物の予備混合、混練を行うことでより積極的な還元
性雰囲気での焼結がなし得る。しかし、用いる三次元網
目状構造体の基材が不活性雰囲気、還元雰囲気でガス化
し難く炭化し易い場合は、空気を導入し酸化性雰囲気で
燃焼、焼失した後、前記の水素ガス、炭化水素ガス、水
性ガス、アンモニアガス等還元性雰囲気での二段階焼結
法を行う。この時、還元性雰囲気を気相中に限らず、液
相中でも可能である。即ち、アルコ-ル類、アルデヒド
類、糖類、水素化物等の水溶液中で液温度、pH等の還元
条件を整えることでなし得る。Next, the method of sintering the metal member on which the three-dimensional network structure is laminated, bonded or applied is as follows: removal of the base material of the three-dimensional network structure, sintering of metal powders, and further metal member. It is necessary to integrate sintering with. First, as a method of removing the base material and the adhesive material, any of the animal, vegetable fiber, and synthetic resin can be burnt and removed by heating and roasting in an inert or reducing atmosphere, or heating and burning in a gasification or oxidizing atmosphere. At this time, if the metal powder is a metal oxide, in an inert or reducing atmosphere, oxygen in the metal oxide is consumed by heating and roasting the carbon and hydrogen sources in the base material while the metal powder is pure. Sinter as metal. In an inert atmosphere, a gas such as nitrogen, argon, or helium is used. In a reducing atmosphere, hydrogen gas, hydrocarbon gas, water gas, ammonia gas, or the like is introduced, and a hydrocarbon compound or a sulfur compound is further added to the base material. By premixing and kneading the phosphorus compound and the hydride, it is possible to achieve more aggressive sintering in a reducing atmosphere. However, if the base material of the three-dimensional network structure used is an inert atmosphere, is difficult to gasify in a reducing atmosphere and is easily carbonized, air is introduced to burn and burn in an oxidizing atmosphere, and then the aforementioned hydrogen gas, hydrocarbon A two-stage sintering method is performed in a reducing atmosphere such as gas, water gas, or ammonia gas. At this time, the reducing atmosphere is not limited to the gas phase, but may be in the liquid phase. That is, it can be achieved by adjusting reducing conditions such as liquid temperature and pH in an aqueous solution of alcohols, aldehydes, sugars, hydrides and the like.
【0009】以上の方法で金属板や金属管等の導電性金
属の伝熱部材本体表面へ金属三次元網目状構造体を焼結
した伝熱部材を得ることができるが、更に最終的にこの
伝熱部材の比表面積増加法として、網目状構造体の骨格
に電気めっきまたは無電解めっきにより微小な凹凸を被
着させることができる。電気めっきでは伝熱部材をカソ
-ドとして電気めっき浴中で比較的高電流密度で同金属
材質若しくはめっきが可能な異なる金属材質をめっきし
てデントライト状の金属を析出させる。無電解めっきで
は、ロ-デングファクタ-(めっき面積/めっき浴容積)を
比較的高くすることで電気めっきと同様の金属析出が得
られる。By the above method, a heat transfer member can be obtained by sintering the metal three-dimensional mesh structure on the surface of the heat transfer member main body made of a conductive metal such as a metal plate or a metal tube. As a method for increasing the specific surface area of the heat transfer member, fine irregularities can be applied to the skeleton of the mesh structure by electroplating or electroless plating. In electroplating, the heat transfer member is
-Dentrite-like metal is deposited by plating the same metal material or a different metal material that can be plated at a relatively high current density in an electroplating bath. In electroless plating, a metal deposition similar to electroplating can be obtained by making the loading factor (plating area / plating bath volume) relatively high.
【0010】また、実際の伝熱材として用いる際を考え
て、耐腐食性を兼ねた伝熱面の予備的な酸化や濡性、ま
た場合によっては撥水性を付与することも性能,特性を
向上させる有効な手段である。前者では、前述のごとく
気相中による加熱酸化やオゾン酸化と過酸化物水溶液,
アルカリ水溶液等の液相酸化でなし得、後者では、ケイ
酸塩系親水性塗料やテフロン系塗料等を塗布することな
どでなし得る。Further, considering the use as an actual heat transfer material, it is also possible to impart preliminary oxidization and wettability of the heat transfer surface which also has corrosion resistance and, in some cases, water repellency to the performance and characteristics. It is an effective way to improve. In the former, as mentioned above, heating oxidation in the gas phase or ozone oxidation and peroxide aqueous solution,
This can be done by liquid-phase oxidation of an alkaline aqueous solution or the like. In the latter case, it can be done by applying a silicate hydrophilic paint or Teflon paint.
【0011】図2に示すように銅粉または酸化銅粉また
はこれらを含む金属粉を気相で被着した三次元網目構造
体と、銅粉または酸化銅粉またはこれらを含む金属粉を
被着した金属銅板に単層または複層重ねて、焼結を行い
金属三次元網目構造体を有する伝熱部材を製造すること
ができる。図2に於いて、1は銅板、2は金属三次元網
目構造体である。As shown in FIG. 2, a copper powder, copper oxide powder, or a metal powder containing them is vapor-deposited in a three-dimensional network structure, and copper powder or copper oxide powder or a metal powder containing them is deposited. It is possible to manufacture a heat transfer member having a metal three-dimensional network structure by performing single layer or multi-layer lamination on the metal copper plate and sintering. In FIG. 2, 1 is a copper plate and 2 is a metal three-dimensional mesh structure.
【0012】図3に示すように銅粉または酸化銅粉また
はこれらを含む金属粉を気相で被着した三次元網目構造
体を、銅粉または酸化銅粉またはこれらを含む金属粉を
内面または外面または両面に被着した金属銅管の内面に
は嵌合挿入するか、外面には圧着しながら巻きつけ、ま
たは管内外に嵌合挿入と巻きつけを同時に行い、次いで
焼結を行い金属三次元網目構造体を有する伝熱部材の製
造することができる。図3に於いて、3は銅管、4は金
属三次元網目構造体である。As shown in FIG. 3, a copper powder, a copper oxide powder, or a metal powder containing them is vapor-deposited in a three-dimensional network structure, and the copper powder or copper oxide powder or the metal powder containing them is used as an inner surface or Fit or insert on the inner surface of a metal copper tube adhered to the outer surface or both sides, or wrap it while crimping on the outer surface, or perform fitting and insertion and wrapping on the inside and outside of the tube at the same time, and then sinter the metal tertiary The heat transfer member having the original mesh structure can be manufactured. In FIG. 3, 3 is a copper tube, and 4 is a metal three-dimensional mesh structure.
【0013】銅粉または酸化銅粉またはこれらを含む金
属粉を動、植物繊維または炭素繊維または顆粒状の活性
炭と混練または抄き込んでシ-ト状成形体となし、銅粉
または酸化銅粉またはこれらを含む金属粉を被着した金
属銅板に重ねるか、または金属銅管の内面には嵌合挿入
し、外面には圧着しながら巻きつけ、または管内外に嵌
合挿入と巻きつけを同時に行い、次いで焼結を行い金属
三次元網目構造体を有する伝熱部材を製造することがで
きる。Copper powder, copper oxide powder, or metal powder containing them is kneaded or kneaded with vegetable fiber, carbon fiber or granular activated carbon to form a sheet-like molded product, copper powder or copper oxide powder. Or, stack them on a metal copper plate coated with metal powder containing them, or insert them on the inner surface of the metal copper tube and wrap them while crimping on the outer surface, or insert and wrap them inside and outside the tube at the same time. The heat transfer member having the metal three-dimensional network structure can be manufactured by performing the sintering and then performing the sintering.
【0014】電気めっきまたは無電解めっきにより表面
に金属を被着した三次元網目構造体に同材質の金属粉を
被着させ、これを同材質の金属粉を被着した金属部材、
金属板には重ねるか、または金属管には内面は嵌合挿
入、外面には圧着しながら巻きつけ、または管内外には
嵌合挿入と巻きつけを同時に行い、次いで焼結を行い金
属三次元網目構造体を有する伝熱部材を製造することが
できる。A three-dimensional mesh structure having a surface coated with metal by electroplating or electroless plating is coated with metal powder of the same material, and this is a metal member coated with metal powder of the same material,
Stacked on a metal plate, or fitted and inserted on the inner surface of the metal tube, wrapped around the outer surface while crimping, or simultaneously fitted and inserted on the inside and outside of the tube, and then sintered to perform metal three-dimensional processing. A heat transfer member having a mesh structure can be manufactured.
【0015】金属粉を気相で被着した三次元網目構造体
または金属粉を動、植物繊維または炭素繊維または顆粒
状の活性炭と混練または抄き込んで得たシ-ト状成形体
または電気めっきまたは無電解めっきにより表面に金属
を被着した三次元網目構造体を金属銅管内外に嵌合挿入
と巻きつけを同時に行い、次いでこれを複数本集合させ
更に前記構造体や成形体で外周部を巻きつけ全体として
円柱状または角柱状にした集合体を焼結し多集合伝熱部
材を製造することができる。Sheet-shaped moldings or electricity obtained by kneading or paper-forming a three-dimensional network structure or metal powder coated with metal powder in the vapor phase with vegetable fiber, carbon fiber or granular activated carbon A three-dimensional mesh structure with a metal deposited on the surface by plating or electroless plating is simultaneously inserted and wound into and out of the metal copper pipe, and then a plurality of these are assembled and further the outer periphery of the structure or molded body. It is possible to manufacture a multi-assembly heat transfer member by sintering an assembly having a cylindrical shape or a prismatic shape as a whole by winding the parts.
【0016】図4に示すように銅粉または酸化銅粉また
はこれらを含む金属粉または微細な金属短繊維を予め三
次元網目構造体を作ることのできる合成樹脂に混合した
後、この合成樹脂を金属銅板または金属銅管表面に塗布
し、または金属銅管内部に充填した後、この合成樹脂を
発泡させて金属銅板表面または金属銅管外面または内部
に金属粉を含んだ三次元網目構造体を形成し次いで焼結
を行い金属三次元網目構造体を有する伝熱部材を製造す
ることができる。図4に於いて、3は銅管、5は金属三
次元網目構造体である。As shown in FIG. 4, copper powder, copper oxide powder, metal powder containing them or fine metal short fibers are mixed in advance with a synthetic resin capable of forming a three-dimensional network structure, and then this synthetic resin is added. After coating the surface of the metal copper plate or metal copper tube or filling the inside of the metal copper tube, foam this synthetic resin to form a three-dimensional network structure containing metal powder on the surface of the metal copper plate or the outer surface or the inside of the metal copper tube. The heat transfer member having the metal three-dimensional network structure can be manufactured by forming and then sintering. In FIG. 4, 3 is a copper tube, and 5 is a metal three-dimensional mesh structure.
【0017】図5に示すように銅粉または酸化銅粉また
はこれらを含む金属粉または微細な金属短繊維を予め三
次元網目構造体を作ることのできる合成樹脂に混合した
後、この合成樹脂を金属銅管が複数本立体的に所定の間
隔で配置された枠体中の空隙部分に注入した後、この合
成樹脂を発泡させて空隙部を発泡樹脂で充填させ、次い
でこれを焼結させて金属銅管外に金属三次元網目構造体
が被着充填された集合伝熱部材を製造することができ
る。図5に於いて、6は銅管、7は枠体、8は金属三次
元網目構造体である。As shown in FIG. 5, copper powder, copper oxide powder, metal powder containing them, or fine metal short fibers are mixed in advance with a synthetic resin capable of forming a three-dimensional network structure, and then this synthetic resin is added. After injecting into the void portion in the frame body in which a plurality of metal copper pipes are three-dimensionally arranged at a predetermined interval, the synthetic resin is foamed to fill the void portion with the foamed resin, and then this is sintered. It is possible to manufacture a collective heat transfer member in which the metal three-dimensional network structure is adhered and filled outside the metal copper tube. In FIG. 5, 6 is a copper tube, 7 is a frame, and 8 is a metal three-dimensional mesh structure.
【0018】三次元網目構造体の骨格に金属粉を気相で
被着した金属粉被着三次元網目構造体を、前記金属粉と
合金が可能な金属粉を被着した金属板に重ねるか、また
は金属管の内面には嵌合挿入し、外面には圧着しながら
巻きつけ、または管内外に嵌合挿入と巻きつけを同時に
行い、次いで焼結を行い伝熱部材を製造することができ
る。Whether the metal powder-deposited three-dimensional network structure in which metal powder is vapor-deposited on the skeleton of the three-dimensional network structure is stacked on the metal plate coated with the metal powder capable of alloying with the metal powder Alternatively, the heat transfer member can be manufactured by fitting and inserting into the inner surface of the metal tube and winding while crimping onto the outer surface, or simultaneously performing fitting and insertion and winding inside and outside the tube, and then sintering. .
【0019】製造条件として、次ぎの方法を採用するこ
とができる。焼結は不活性雰囲気または還元性雰囲気で
行うことができる。銅粉または酸化銅粉またはこれらを
含む金属粉または三次元網目構造体を作ることのできる
合成樹脂に予め還元剤を混合または混練することができ
る。焼結は酸化性雰囲気での三次元網目構造体の焼失工
程と還元性雰囲気による酸化銅粉またはこれを含む金属
酸化物の焼結工程により伝熱部材を製造することができ
る。還元性焼結を還元剤を添加した溶液中で行ことがで
きる。焼結を行った後、更に電気めっきまたは無電解め
っきを行い伝熱部材を製造することができる。焼結を行
った後、再び酸化性雰囲気で加熱する、または焼結を行
った伝熱部材に親水性塗料または撥水性塗料によるプレ
コ-トをすることができる。As a manufacturing condition, the following method can be adopted. Sintering can be done in an inert atmosphere or a reducing atmosphere. A reducing agent can be previously mixed or kneaded with the copper powder, the copper oxide powder, the metal powder containing them, or the synthetic resin capable of forming the three-dimensional network structure. In the sintering, the heat transfer member can be manufactured by a burning process of the three-dimensional network structure in an oxidizing atmosphere and a sintering process of copper oxide powder or a metal oxide containing the powder in a reducing atmosphere. Reductive sintering can be performed in a solution containing a reducing agent. After the sintering, the heat transfer member can be manufactured by further performing electroplating or electroless plating. After sintering, it can be heated again in an oxidizing atmosphere, or the sintered heat transfer member can be pre-coated with a hydrophilic paint or a water repellent paint.
【0020】焼結(加熱)方法としてつぎの方法があ
る。不活性雰囲気としては気相中不活性ガスを使用す
る。還元性雰囲気としては、気相中還元性ガス、基材中
還元性物質の予備混合または成形体中還元性物質の予備
混合する方法がある。酸化性雰囲気(空気)とその後の
還元性雰囲気(気相中還元性ガス、相中還元性溶液等)
を併用することもできる。最終性能、特性向上のために
電気めっき、無電解めっきによる比表面積の増加させた
り、酸化(気相酸化、液相酸化)処理、プレコ-ト(濡
性付与塗料塗布、溌水性塗料塗布)等を適宜実施するこ
とができる。The following methods are available as sintering (heating) methods. An inert gas in the gas phase is used as the inert atmosphere. As the reducing atmosphere, there is a method of premixing the reducing gas in the gas phase, the reducing substance in the base material or preliminarily mixing the reducing substance in the molded body. Oxidizing atmosphere (air) and subsequent reducing atmosphere (reducing gas in gas phase, reducing solution in phase, etc.)
Can also be used together. Increasing the specific surface area by electroplating or electroless plating to improve the final performance and characteristics, oxidation (gas phase oxidation, liquid phase oxidation) treatment, precoat (wetting imparting paint application, water repellent water application paint), etc. Can be appropriately implemented.
【0021】[0021]
実施例1 三次元網目状構造体として厚み3、幅5、長さ20mm
のポリウレタンフォ-ム(商品名エバ-ライトSF、ブリジ
ストン社製、平均気孔径0.6mm)を9枚、長さ60
mmを3枚使用した。これらのポリウレタンフォ-ムに
粘着剤を塗布し粘着性を付与した後乾燥した。次に、こ
れらをそれぞれ酸化銅粉、銅粉、銅粉とニッケル粉の混
合粉3種類の粉体中に挿入し、揺動して気相中で金属粉
を充分被着させた後、水中に浸漬、揺動して過剰に被着
した金属粉を剥離すると同時にポリウレタンフォ-ムの
骨格に均一な被着を行った。一方、金属部材として同様
の面積を持つ厚み0.6mmの銅板6枚を用意し、それ
ぞれに対応する金属粉を銅板表面に粘着剤と共に充分均
一に被着させた。また、金属管として直径約20mmの
3本の銅管を用意し、これらの外表面にも同様にそれぞ
れに対応する金属粉を粘着剤と共に充分被着させた。次
いで、金属粉を被着した3種類のポリウレタンフォ-ム
と銅板および銅管の積層、接合を行った。まず伝熱板
は、銅板に3種類の金属粉を被着したポリウレタンフォ-
ムを片面と両面に、軽くロ-ルプレスにより積層したも
のを用意した。伝熱管も同様に、3種類の金属粉を被着
したポリウレタンフォ-ムを圧着しながら巻きつけたも
のを用意した。次いでこれら9種類の伝熱部材を電気炉
中で空気を供給しながら約500℃で加熱すると、粘着
剤と基材であるポリウレタンフォ-ムは焼失したが、金
属粉は銅板状に三次元網目状構造体の骨格を有したまま
焼結体として残った。次いで、これらを更に電気炉中で
約900℃に加熱しながら水素,窒素の混合ガスを導入して
還元焼結を行った。この結果、図6、7、8に示すよう
に3金属種類、3形状の伝熱部材を得ることができた。
この時、部材上の金属三次元網目状構造体の空隙率はい
ずれも96%であったが、酸化銅を素材金属粉とした伝
熱板と伝熱管上の金属銅三次元網目状構造体は、還元焼
結においてその体積収縮率が約50%となり、伝熱板の
周囲と伝熱管の端部には被着されない部分が生じた。そ
こで、この伝熱板を幅方向にロ−ル加工し端部同志を長
さ方向にろう付けすることにより管内、外に金属銅三次
元網目状構造体が得られた。Example 1 A three-dimensional mesh structure having a thickness of 3, a width of 5 and a length of 20 mm.
Nine polyurethane foams (trade name: Everlight SF, made by Bridgestone, average pore size 0.6 mm), length 60
3 mm were used. An adhesive was applied to these polyurethane foams to give tackiness, and then dried. Next, insert each of these into copper oxide powder, copper powder, and three types of mixed powder of copper powder and nickel powder, shake them to sufficiently deposit metal powder in the gas phase, and then in water. The metal powder that had been excessively adhered was peeled off by immersing in water and rocking, and at the same time, the skeleton of the polyurethane foam was uniformly adhered. On the other hand, six copper plates having a similar area and a thickness of 0.6 mm were prepared as metal members, and metal powders corresponding to the respective copper plates were sufficiently uniformly adhered to the copper plate surface together with an adhesive. Also, three copper pipes having a diameter of about 20 mm were prepared as metal pipes, and metal powders corresponding to the respective copper pipes were similarly adhered to the outer surfaces thereof together with an adhesive. Next, three types of polyurethane foam coated with metal powder, a copper plate and a copper tube were laminated and joined. First of all, the heat transfer plate is a polyurethane foam made by coating a copper plate with three types of metal powder.
One side and both sides were lightly laminated by a roll press. Similarly, a heat transfer tube was prepared by pressing and winding a polyurethane foam coated with three kinds of metal powder. Then, when these 9 kinds of heat transfer members were heated at about 500 ° C in an electric furnace while supplying air, the adhesive and the polyurethane foam which was the base material were burned down, but the metal powder became a copper plate in a three-dimensional mesh. It remained as a sintered body having the skeleton of the structure. Next, these were further heated in an electric furnace at about 900 ° C. while introducing a mixed gas of hydrogen and nitrogen to carry out reduction sintering. As a result, as shown in FIGS. 6, 7 and 8, heat transfer members of three metal types and three shapes could be obtained.
At this time, the porosity of the metal three-dimensional network structure on the member was 96% in all, but the heat transfer plate using copper oxide as the raw material metal powder and the metal copper three-dimensional network structure on the heat transfer tube. In the reduction sintering, the volumetric shrinkage ratio was about 50%, and there was a portion that was not adhered to the periphery of the heat transfer plate and the end of the heat transfer tube. Then, by rolling this heat transfer plate in the width direction and brazing the end portions in the length direction, a metallic copper three-dimensional mesh structure was obtained inside and outside the pipe.
【0022】実施例2 三次元網目状構造体として厚み3、幅5、長さ60mm
のポリウレタンフォ-ム(商品名エバ-ライトSF,ブリジ
ストン社製)A、B二種類(A:平均気孔径0.6mm
およびB:平均気孔径0.8mm)を夫れ夫れ2枚使用
した。これらのポリウレタンフォ-ムに粘着剤を塗布し
粘着性を付与した後乾燥した。次に、これらをA、B対
で空気中で流動している酸化銅粉中に挿入しこれを被着
させた後、水中に浸漬、揺動して過剰に被着した酸化銅
粉を剥離すると同時にポリウレタンフォ-ムの骨格に均
一な被着を行った。次いで、2本の内径約13mm、外
形約16mmの銅管を実施例1と同様に調整し、この管
の一本には、表面にまずBを更にBの上にAを螺旋上に
巻きつけた。また並行して、他の1本には、管内に予め
AとBを重ねたものをBが管壁側になるように円筒上に
しながら嵌合、挿入した。次いでこのうちの前者の一本
は、直接電気炉中で窒素ガスと水素ガスの混合気体を導
入して900℃で還元焼結を行った。ポリウレタンフォ
-ムはガス化して揮散したが、酸化銅粉は金属銅に還元
されて、気孔径が異なった二層の金属銅三次元網目状構
造体となり、かつ収縮により管外全面を被覆した伝熱管
を得ることができた。この時、還元性ガスは、水素の他
炭化水素ガス、硫化水素ガス、アンモニアガス、水性ガ
ス等が使用できる。一方、他の管内に挿入した一本は先
ず電気炉中で空気を導入しポリウレタンフォ-ムを燃焼
焼失させた後、アルカリ性の液中で還元作用を持つホル
ムアルデヒド液を添加して加温しながら化学還元を行な
い前者と同様、管内全面に気孔径が異なった二層の金属
銅三次元網目状構造体(A、B)を持つ伝熱管を得るこ
とができた(図9、10)。還元液は、硼素化水素ナト
リウムや炭酸水素ナトリウム、硫化ソ-ダ、アルコ−ル
等も使用できる。しかし、溶液還元法はガス還元法に比
較して、三次元網目状構造体の骨格の全てを還元するに
は長時間を要し、かつ強度が低いが金属粉を可能な限り
微粉にすることや伝熱管の用途により適用できる。Example 2 A three-dimensional mesh structure having a thickness of 3, a width of 5 and a length of 60 mm.
Polyurethane foam (trade name: Everlite SF, made by Bridgestone) A, B two types (A: average pore size 0.6 mm)
And B: average pore diameter 0.8 mm), and two sheets were used. An adhesive was applied to these polyurethane foams to give tackiness, and then dried. Next, these are inserted into the copper oxide powder flowing in the air in a pair of A and B, and the copper oxide powder is adhered, then immersed in water and rocked to remove the excessively adhered copper oxide powder. At the same time, the skeleton of the polyurethane foam was uniformly applied. Next, two copper tubes having an inner diameter of about 13 mm and an outer diameter of about 16 mm were prepared in the same manner as in Example 1. One of the tubes was wound with B first on the surface and then A on the spiral. It was At the same time, the other tube was fitted and inserted into a tube in which A and B were preliminarily overlapped with each other while forming a cylinder so that B was on the tube wall side. Next, one of the former was subjected to reduction sintering at 900 ° C. by directly introducing a mixed gas of nitrogen gas and hydrogen gas in an electric furnace. Polyurethane foam
-The gas was vaporized and volatilized, but the copper oxide powder was reduced to metallic copper to form a two-layer metallic copper three-dimensional network structure with different pore diameters, and the outer surface of the tube covered by shrinkage. I was able to get At this time, as the reducing gas, in addition to hydrogen, hydrocarbon gas, hydrogen sulfide gas, ammonia gas, water gas and the like can be used. On the other hand, for the one inserted in the other tube, first introduce air in an electric furnace to burn and burn the polyurethane foam, and then add formaldehyde solution with reducing action in alkaline solution while heating. As in the former case, a heat transfer tube having two layers of metal-copper three-dimensional network structures (A, B) having different pore diameters could be obtained as in the former case (FIGS. 9 and 10). As the reducing solution, sodium borohydride, sodium hydrogen carbonate, soda sulfide, alcohol and the like can also be used. However, compared with the gas reduction method, the solution reduction method requires a long time to reduce the entire skeleton of the three-dimensional network structure, and the strength is low, but the metal powder should be made as fine as possible. It can be applied depending on the purpose of the heat transfer tube.
【0023】実施例3 三次元網目状構造体として厚み3、幅5、長さ60mm
のポリウレタンフォ-ム(商品名エバ-ライトSF、ブリジ
ストン社製、平均気孔径0.6mm)を使用し、充分に
アルカリ液中で洗浄を行い更に充分に水洗した後、塩化
パラジウム等で活性化処理を行い、次いで無電解銅めっ
き浴で三次元網目状構造体の骨格表面に銅めっきを行っ
たフォ-ムを得た。これを前述の実施例と同様に銅粉を
被着させた銅板または銅管の表面に積層し、電気炉で空
気による燃焼焼失と水素ガスによる還元焼結を行い伝熱
板または伝熱管を得ることができた(図11、12)。
更にここで得られたこれらの伝熱部材を硫酸銅めっき浴
でカソ-ドとして高電流密度下、電気めっきを行い伝熱
部材の表面全面にデントライト状の形状を持つ表面積の
更に大きいかつ強度の大きな伝熱部材を得ることができ
た。この際、電気めっきは、前段の無電解銅めっきでも
良くまた電気ニッケルめっきや無電解ニッケルめっき必
要とあれば金,銀めっき等の貴金属めっきも適用でき
る。Example 3 A three-dimensional mesh structure having a thickness of 3, a width of 5 and a length of 60 mm.
Polyurethane foam (trade name: Everlite SF, made by Bridgestone Co., average pore size 0.6 mm) is used, thoroughly washed in an alkaline solution, further thoroughly washed with water, and then activated with palladium chloride, etc. After the treatment, a form was obtained in which the surface of the skeleton of the three-dimensional network structure was copper-plated in an electroless copper plating bath. This is laminated on the surface of a copper plate or copper tube to which copper powder is adhered in the same manner as in the above-mentioned example, and burned and burned with air and reduced and sintered with hydrogen gas in an electric furnace to obtain a heat transfer plate or tube. (Figs. 11 and 12).
Further, these heat transfer members obtained here are subjected to electroplating under high current density as a cathode in a copper sulfate plating bath to have a dentrite-like shape over the entire surface of the heat transfer member, which has a larger surface area and strength. It was possible to obtain a large heat transfer member. At this time, the electroplating may be the electroless copper plating in the previous stage, or electroless nickel plating or noble metal plating such as gold or silver plating, if necessary.
【0024】実施例4 微細な酸化銅粉とパルプ繊維及び粘着剤を溶液中で分散
した後、抄紙して乾燥したシ-トとした。この時、酸化
銅と対パルプの重量比は30%以上が望ましい。この乾
燥シ-トを前述の実施例の様に銅板や銅管に積層し、更
に電気炉で空気による燃焼焼失と水素ガスによる還元焼
結を行い伝熱板または伝熱管を得ることができた(図1
3、14)。この時並行して単繊維羊毛,メチルセルロ-
ス,活性炭繊維,顆粒状の活性炭等でも伝熱部材上に空隙
率は異なるものの三次元網目状構造体を得ることができ
た。Example 4 A sheet was prepared by dispersing fine copper oxide powder, pulp fibers and an adhesive in a solution, papermaking and drying. At this time, the weight ratio of copper oxide to pulp is preferably 30% or more. It was possible to obtain a heat transfer plate or a heat transfer tube by laminating this dry sheet on a copper plate or a copper tube as in the above-mentioned embodiment, and further burning and burning with air and reduction sintering with hydrogen gas in an electric furnace. (Fig. 1
3, 14). At this time, in parallel, monofilament wool, methylcellulose
It was possible to obtain a three-dimensional network structure with different porosity on the heat transfer member even with carbon, activated carbon fiber, granular activated carbon, etc.
【0025】実施例5 微細な酸化銅粉を予め発泡剤が混合されたウレタン樹脂
に混合し、溶剤にて流動性を付与したウレタン塗料を、
銅板には表面に塗布し銅管には内部に圧入と外部には塗
布した後加温し発泡させた。これらを前述の様に電気炉
で空気による燃焼焼失と水素ガスによる還元焼結を行い
表裏に銅の三次元網目状構造体を持つ伝熱板と内部には
管容積全体にわたる銅の三次元網目状構造体が内挿され
かつ外側にも三次元網目状構造体を持つ伝熱管を得るこ
とができた(図15、16)。管内の銅の三次元網目状
構造体の空隙率は、発泡剤や温度等の発泡条件を替える
ことで調節できる。この時、この塗料中にさらに硫黄,
燐,硫化ソ−ダ,炭酸水素ナトリウム,硼素化水素ナトリ
ウム等を混合して無酸素状態での加熱のみでも伝熱部材
を得ることができた。Example 5 A urethane paint prepared by mixing fine copper oxide powder with a urethane resin mixed with a foaming agent in advance and imparting fluidity with a solvent,
The copper plate was coated on the surface, and the copper tube was press-fitted inside and coated on the outside, then heated and foamed. As described above, these were burnt and burned with air in an electric furnace and reduced and sintered with hydrogen gas, and a heat transfer plate with a copper three-dimensional mesh structure on the front and back and a copper three-dimensional mesh over the entire tube volume inside It was possible to obtain a heat transfer tube having a three-dimensional mesh structure on the outside with the linear structure inserted therein (FIGS. 15 and 16). The porosity of the copper three-dimensional network structure inside the tube can be adjusted by changing the foaming conditions such as the foaming agent and the temperature. At this time, more sulfur in the paint,
A heat transfer member could be obtained by only mixing phosphorus, soda sulfide, sodium hydrogen carbonate, sodium borohydride, etc. in the anoxic state.
【0026】実施例6 実施例1〜5で得ることができた伝熱部材は、使用条件
により酸化されやすい場合がある。この対応策として、
予め酸化しておく方法がある。即ち、ペルオキソアンモ
ニウムや過マンガン酸カリウム,過塩素酸ソ-ダ等の溶液
中で容易に酸化される。また、腐食に対応するため二酸
化珪素を含んだ親水性塗料をコ-ティングすると濡れ性
向上による電熱性能の向上または維持が可能であった。Example 6 The heat transfer members obtained in Examples 1 to 5 may be easily oxidized depending on the use conditions. As a countermeasure against this,
There is a method of pre-oxidizing. That is, it is easily oxidized in a solution of peroxoammonium, potassium permanganate, soda perchlorate or the like. In addition, it was possible to improve or maintain electric heating performance by improving wettability by coating a hydrophilic coating material containing silicon dioxide in order to cope with corrosion.
【0027】[0027]
【発明の効果】本発明の伝熱部材は、従来のフィン付き
伝熱管や伝熱板と比較して大幅な伝熱効率の向上を図る
ことができる。The heat transfer member of the present invention can significantly improve the heat transfer efficiency as compared with the conventional finned heat transfer tube or heat transfer plate.
【図1】本発明の製造法を示す工程図である。FIG. 1 is a process drawing showing the manufacturing method of the present invention.
【図2】本発明の伝熱部材の一実施例を示す斜視図であ
る。FIG. 2 is a perspective view showing an embodiment of a heat transfer member of the present invention.
【図3】本発明の伝熱部材の一実施例を示す一部切欠斜
視図である。FIG. 3 is a partially cutaway perspective view showing an embodiment of the heat transfer member of the present invention.
【図4】本発明の伝熱部材の一実施例を示す一部切欠斜
視図である。FIG. 4 is a partially cutaway perspective view showing an embodiment of the heat transfer member of the present invention.
【図5】本発明の伝熱部材の一実施例を示す一部切欠斜
視図である。FIG. 5 is a partially cutaway perspective view showing an embodiment of the heat transfer member of the present invention.
【図6】本発明の伝熱部材の一実施例を示す斜視図であ
る。FIG. 6 is a perspective view showing an embodiment of the heat transfer member of the present invention.
【図7】本発明の伝熱部材の一実施例を示す斜視図であ
る。FIG. 7 is a perspective view showing an embodiment of the heat transfer member of the present invention.
【図8】本発明の伝熱部材の一実施例を示す斜視図であ
る。FIG. 8 is a perspective view showing an embodiment of the heat transfer member of the present invention.
【図9】本発明の伝熱部材の一実施例を示す斜視図であ
る。FIG. 9 is a perspective view showing an embodiment of the heat transfer member of the present invention.
【図10】本発明の伝熱部材の一実施例を示す斜視図で
ある。FIG. 10 is a perspective view showing an embodiment of the heat transfer member of the present invention.
【図11】本発明の伝熱部材の一実施例を示す斜視図で
ある。FIG. 11 is a perspective view showing an embodiment of the heat transfer member of the present invention.
【図12】本発明の伝熱部材の一実施例を示す斜視図で
ある。FIG. 12 is a perspective view showing an embodiment of the heat transfer member of the present invention.
【図13】本発明の伝熱部材の一実施例を示す斜視図で
ある。FIG. 13 is a perspective view showing an embodiment of the heat transfer member of the present invention.
【図14】本発明の伝熱部材の一実施例を示す斜視図で
ある。FIG. 14 is a perspective view showing an embodiment of the heat transfer member of the present invention.
【図15】本発明の伝熱部材の一実施例を示す斜視図で
ある。FIG. 15 is a perspective view showing an embodiment of the heat transfer member of the present invention.
【図16】本発明の伝熱部材の一実施例を示す斜視図で
ある。 符号の説明 1.銅板 2.金属三次元網目状構造体 3.銅管 4.金属三次元網目状構造体 5.金属三次元網目状構造体 6.銅管 7.枠体 8.金属三次元網目状構造体 9.銅板 10.金属三次元網目状構造体 11.銅管 12.金属三次元網目状構造体 13.金属三次元網目状構造体A 14.金属三次元網目状構造体B 15.金属三次元網目状構造体 16.金属三次元網目状構造体FIG. 16 is a perspective view showing an embodiment of the heat transfer member of the present invention. Explanation of symbols 1. Copper plate 2. Metal three-dimensional mesh structure 3. Copper tube 4. Metal three-dimensional mesh structure 5. Metal three-dimensional mesh structure 6. Copper tube 7. Frame 8. Metal three-dimensional mesh structure 9. Copper plate 10. Metal three-dimensional mesh structure 11. Copper tube 12. Metal three-dimensional mesh structure 13. Metal three-dimensional mesh structure A 14. Metal three-dimensional mesh structure B 15. Metal three-dimensional mesh structure 16. Metal three-dimensional mesh structure
Claims (6)
体を導電性金属の部材本体に一体被着した伝熱部材。1. A heat transfer member in which a copper porous body or a copper alloy porous body containing copper is integrally attached to a conductive metal member body.
構造体を、金属粉状物を被着した導電性金属の部材本体
に重ね、焼結を行うことを特徴とする伝熱部材の製造
法。2. A transfer method, characterized in that a three-dimensional network structure body obtained by depositing a metal powder material in a vapor phase is overlaid on a conductive metal member body coated with a metal powder material and then sintered. Manufacturing method of thermal components.
で所定のシ-ト状成形体となし、金属粉状物を被着した
導電性金属の部材本体に重ね、焼結を行うことを特徴と
する伝熱部材の製造法。3. A predetermined sheet-like molded body is obtained by kneading or paper-making a metal powder material with fibers, and laminating the metal powder material on a conductive metal member body to which the metal powder material is adhered, followed by sintering. A method for manufacturing a heat transfer member, characterized in that
面に金属を被着した三次元網目構造体に金属粉状物を被
着させ、これを金属粉状物を被着した導電性金属の部材
本体に重ね、焼結を行うことを特徴とする伝熱部材の製
造法。4. A conductive metal member body in which a metal powder is deposited on a three-dimensional network structure having a metal deposited on the surface by electroplating or electroless plating, and the metal powder is deposited on the three-dimensional network structure. A method for manufacturing a heat transfer member, which comprises stacking and sintering.
とのできる合成樹脂に混合した後、この合成樹脂を導電
性の金属部材表面に塗布し、焼結を行うことを特徴とす
る伝熱部材の製造法。5. A method of mixing a metal powder material with a synthetic resin capable of forming a three-dimensional network structure, applying the synthetic resin to the surface of a conductive metal member, and then performing sintering. Manufacturing method of heat transfer member.
とのできる合成樹脂に混合した後、この合成樹脂を金属
銅管が複数本立体的に所定の間隔で配置された枠体中の
空隙部分に注入した後、この合成樹脂を発泡させて空隙
部を発泡樹脂で充填させ、次いでこれを焼結させること
を特徴とする伝熱部材の製造法。6. A metal powder is mixed with a synthetic resin capable of forming a three-dimensional network structure, and the synthetic resin is then placed in a frame body in which a plurality of metallic copper pipes are three-dimensionally arranged at predetermined intervals. Of the synthetic resin, the synthetic resin is foamed to fill the voids with the foamed resin, and then the sintered resin is sintered.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28183994A JPH08145592A (en) | 1994-11-16 | 1994-11-16 | Heat transfer member and manufacture thereof |
CN94194593A CN1093251C (en) | 1993-12-27 | 1994-12-27 | Heat transfer member and manufacturing method |
EP95903987A EP0744586B1 (en) | 1993-12-27 | 1994-12-27 | Method of manufacturing a heat transmitting device and a heat transmitting device |
DE69433629T DE69433629T2 (en) | 1993-12-27 | 1994-12-27 | Method for the production of a thermally conductive device and a thermally conductive device |
KR1019960703444A KR100356646B1 (en) | 1993-12-27 | 1994-12-27 | Heat Transfer Material and Manufacturing Method Thereof |
PCT/JP1994/002249 WO1995018350A1 (en) | 1993-12-27 | 1994-12-27 | Heat transfer material |
US08/669,520 US5943543A (en) | 1993-12-27 | 1994-12-27 | Heat transmitting member and method of manufacturing the same |
TW084100157A TW289084B (en) | 1993-12-27 | 1995-01-10 | |
SG1995000735A SG33388A1 (en) | 1994-11-16 | 1995-06-26 | Heat transmitting member and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28183994A JPH08145592A (en) | 1994-11-16 | 1994-11-16 | Heat transfer member and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08145592A true JPH08145592A (en) | 1996-06-07 |
Family
ID=17644736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28183994A Pending JPH08145592A (en) | 1993-12-27 | 1994-11-16 | Heat transfer member and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08145592A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015090242A (en) * | 2013-11-06 | 2015-05-11 | 住友電気工業株式会社 | Metal pipe, heat transfer pipe, heat exchange device, and manufacturing method of metal pipe |
JP2017002379A (en) * | 2015-06-12 | 2017-01-05 | 三菱マテリアル株式会社 | Copper porous body, copper porous composite member, manufacturing method of copper porous body and manufacturing method of copper porous composite member |
WO2017187938A1 (en) | 2016-04-27 | 2017-11-02 | 三菱マテリアル株式会社 | Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member |
JP2018080900A (en) * | 2016-11-18 | 2018-05-24 | 日本碍子株式会社 | Heat exchanger |
WO2018135575A1 (en) | 2017-01-18 | 2018-07-26 | 三菱マテリアル株式会社 | Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member |
US10478896B2 (en) | 2015-06-12 | 2019-11-19 | Mitsubishi Materials Corporation | Porous copper body, porous copper composite part, method for manufacturing porous copper body, and method for manufacturing porous copper composite part |
US10493528B2 (en) | 2015-06-12 | 2019-12-03 | Mitsubishi Materials Corporation | Porous copper body, porous copper composite part, method for manufacturing porous copper body, and method for manufacturing porous copper composite part |
US10532407B2 (en) | 2014-10-22 | 2020-01-14 | Mitsubishi Materials Corporation | Porous copper sintered material, porous copper composite part, method of producing porous copper sintered material, and method of producing porous copper composite part |
US10543531B2 (en) | 2014-10-30 | 2020-01-28 | Mitsubishi Materials Corporation | Porous aluminum sintered material and method of producing porous aluminum sintered material |
US10981230B2 (en) | 2014-05-30 | 2021-04-20 | Mitsubishi Materials Corporation | Porous aluminum complex and method of producing porous aluminum complex |
-
1994
- 1994-11-16 JP JP28183994A patent/JPH08145592A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015090242A (en) * | 2013-11-06 | 2015-05-11 | 住友電気工業株式会社 | Metal pipe, heat transfer pipe, heat exchange device, and manufacturing method of metal pipe |
WO2015068437A1 (en) * | 2013-11-06 | 2015-05-14 | 住友電気工業株式会社 | Metal tube, heat transfer tube, heat exchange device, and method for manufacturing metal tube |
US10981230B2 (en) | 2014-05-30 | 2021-04-20 | Mitsubishi Materials Corporation | Porous aluminum complex and method of producing porous aluminum complex |
US10532407B2 (en) | 2014-10-22 | 2020-01-14 | Mitsubishi Materials Corporation | Porous copper sintered material, porous copper composite part, method of producing porous copper sintered material, and method of producing porous copper composite part |
US10543531B2 (en) | 2014-10-30 | 2020-01-28 | Mitsubishi Materials Corporation | Porous aluminum sintered material and method of producing porous aluminum sintered material |
JP2017002379A (en) * | 2015-06-12 | 2017-01-05 | 三菱マテリアル株式会社 | Copper porous body, copper porous composite member, manufacturing method of copper porous body and manufacturing method of copper porous composite member |
US10478896B2 (en) | 2015-06-12 | 2019-11-19 | Mitsubishi Materials Corporation | Porous copper body, porous copper composite part, method for manufacturing porous copper body, and method for manufacturing porous copper composite part |
US10493528B2 (en) | 2015-06-12 | 2019-12-03 | Mitsubishi Materials Corporation | Porous copper body, porous copper composite part, method for manufacturing porous copper body, and method for manufacturing porous copper composite part |
WO2017187938A1 (en) | 2016-04-27 | 2017-11-02 | 三菱マテリアル株式会社 | Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member |
JP2018080900A (en) * | 2016-11-18 | 2018-05-24 | 日本碍子株式会社 | Heat exchanger |
WO2018135575A1 (en) | 2017-01-18 | 2018-07-26 | 三菱マテリアル株式会社 | Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member |
KR20190108103A (en) | 2017-01-18 | 2019-09-23 | 미쓰비시 마테리알 가부시키가이샤 | Copper porous body, copper porous composite member, manufacturing method of copper porous body, and manufacturing method of copper porous composite member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5943543A (en) | Heat transmitting member and method of manufacturing the same | |
US6020089A (en) | Electrode plate for battery | |
JP3509031B2 (en) | Method for manufacturing porous metal body with lead and porous metal body with lead manufactured by the method | |
KR100218212B1 (en) | Method of preparing metallic porous body, electrode substrate for battery and process for preparing the same | |
KR100193356B1 (en) | Method of producing a porous body | |
US8637185B2 (en) | Open structures in substrates for electrodes | |
JP3016769B1 (en) | Method of manufacturing electrode plate for battery, electrode plate manufactured by the method, and battery provided with the electrode plate | |
JPH11350006A (en) | High strength spongy fired metal composite plate and its production | |
JPH08145592A (en) | Heat transfer member and manufacture thereof | |
US5582867A (en) | Corrosion-resistant metallic porous member and method of manufacturing the same | |
JP2002513995A (en) | Carbon based electrode | |
EP3287206B1 (en) | Composite material and method for producing same | |
JP2004346411A (en) | Porous board, and its production method | |
JPH10121110A (en) | Boiling heat-transfer member and its production | |
JP6182140B2 (en) | Porous body manufacturing method, porous body, and structure | |
JP2000208144A (en) | Battery electrode substrate and manufacture thereof | |
JPH08180879A (en) | Electrode for fuel cell, its manufacture and manufacture of generating layer | |
EP0948068A1 (en) | Electrode for alkaline storage batteries and process for producing the same | |
US20050277024A1 (en) | Nickel precoat for electrode plates | |
JP3553816B2 (en) | Nickel electrode and method of manufacturing the same | |
JP2004043976A (en) | High strength spongy baked metal composite plate | |
JP3476092B2 (en) | Heat transfer member and method of manufacturing the same | |
JP4423442B2 (en) | Method for producing electrode substrate for alkaline secondary battery | |
JP3781058B2 (en) | Battery electrode substrate and manufacturing method thereof | |
WO2024134893A1 (en) | Metal sheet, battery, nickel-zinc battery, and method for producing metal sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Effective date: 20040311 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20040507 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040617 |