WO2018135575A1 - Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member - Google Patents

Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member Download PDF

Info

Publication number
WO2018135575A1
WO2018135575A1 PCT/JP2018/001370 JP2018001370W WO2018135575A1 WO 2018135575 A1 WO2018135575 A1 WO 2018135575A1 JP 2018001370 W JP2018001370 W JP 2018001370W WO 2018135575 A1 WO2018135575 A1 WO 2018135575A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
copper porous
porous body
composite member
fibers
Prior art date
Application number
PCT/JP2018/001370
Other languages
French (fr)
Japanese (ja)
Inventor
純 加藤
喜多 晃一
俊彦 幸
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US16/468,020 priority Critical patent/US20190381568A1/en
Priority to CN201880003797.7A priority patent/CN109803778A/en
Priority to EP18741976.7A priority patent/EP3572169A4/en
Priority to KR1020197017146A priority patent/KR20190108103A/en
Publication of WO2018135575A1 publication Critical patent/WO2018135575A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/002Manufacture of articles essentially made from metallic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/062Fibrous particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12042Porous component

Definitions

  • the present invention relates to a copper porous body made of copper or a copper alloy, a copper porous composite member obtained by bonding the copper porous body to a member body, a method for producing a copper porous body, and a copper porous composite.
  • the present invention relates to a method for manufacturing a member.
  • Patent Document 1 proposes a heat transfer member in which a copper porous body forming a three-dimensional network structure is integrally attached to a conductive metal member body.
  • the three-dimensional network structure for example, urethane foam, which consists of a material burned down by heating
  • Polyethylene foam synthetic resin foam with continuous cells, natural fiber cloth, man-made fiber cloth, etc.
  • Patent Document 1 when a metal sintered body (copper porous sintered body) is formed using a metal powder, the shrinkage rate during sintering is large. There was a problem that it was difficult to obtain a copper porous sintered body having high strength and high porosity.
  • Patent Documents 2 and 3 a copper porous body using copper fibers made of copper or a copper alloy as a sintering raw material has been proposed.
  • Patent Document 2 discloses a method for obtaining a copper porous body by conducting energization heating of copper fibers under pressure.
  • Patent Document 3 discloses a method of obtaining a copper porous body by heating copper fibers to 800 ° C. in an air atmosphere and then heating to 450 ° C. in a hydrogen atmosphere.
  • the present invention has been made against the background as described above, and has a high porosity and a sufficient strength, a copper porous body in which the copper porous body is bonded to a member main body. It aims at providing the manufacturing method of a composite member, a copper porous body, and the manufacturing method of a copper porous composite member.
  • the copper porous body of the present invention comprises a sintered body of a plurality of copper fibers and has a three-dimensional network structure skeleton portion.
  • the copper fiber forming the skeleton is made of copper or a copper alloy, the diameter R is in the range of 0.01 mm to 1.0 mm, and the ratio L / L of the length L to the diameter R is L / R is in the range of 4 or more and 200 or less, the circularity of the cross section orthogonal to the longitudinal direction is in the range of 0.2 or more and 0.9 or less, and the porosity is 50% or more and 95% or less. It is characterized by being within the range.
  • the diameter R of the copper fiber forming the skeleton is in the range of 0.01 mm to 1.0 mm, and the ratio L / R of the length L to the diameter R is L / R. Is in the range of 4 or more and 200 or less, a sufficient gap is secured between the copper fibers, and the porosity can be in the range of 50% or more and 95% or less.
  • skeleton part is prescribed
  • the circularity C is expressed by the following equation, where A is the cross-sectional area of the copper fiber and Q is the circumferential length of the cross-section of the copper fiber.
  • Circularity C (4 ⁇ A) 0.5 / Q
  • the circularity C is 1, and when the cross-sectional shape is a concave polygon such as a star or a rectangle with a large aspect ratio, the circularity C approaches 0.
  • the circularity of the cross section of the copper fiber forming the skeleton is in the range of 0.2 or more and 0.9 or less, the copper fibers are in surface contact when the copper fibers are laminated.
  • the number of parts to be increased the contact area between the laminated copper fibers can be secured, the bonding strength between the copper fibers can be improved, and a void can be secured between the copper fibers, and the porosity Can be increased. Therefore, it is possible to provide a copper porous body having high porosity and sufficient strength.
  • the copper porous composite member of the present invention is a copper porous composite member comprising a joined body of a member main body and a copper porous body having a three-dimensional network structure skeleton, wherein the copper porous body is the above-mentioned copper porous body. It is characterized by being a copper porous body. According to the copper porous composite member having this configuration, a porous composite member having excellent characteristics is provided since it is a joined body of a copper porous body having a high porosity and excellent strength and a member main body. be able to.
  • the joint surface of the member main body with the copper porous body is composed of copper or a copper alloy, and the joint portion between the copper porous body and the member main body. Is preferably a sintered layer.
  • the joining portion between the copper porous body and the member main body is a sintered layer, the copper porous body and the member main body are firmly joined, and the copper porous composite Excellent strength as a member can be obtained.
  • the manufacturing method of the copper porous body of this invention is a manufacturing method of the copper porous body which consists of a sintered compact of a some copper fiber, and has the frame
  • the ratio L / R of the length L to the diameter R is in the range of 4 to 200 and the circularity of the cross section perpendicular to the length direction is 0.
  • the diameter R of the copper fiber is in the range of 0.01 mm or more and 1.0 mm or less, and the ratio L / R of the length L to the diameter R is 4 or more. Since the circularity of the cross section perpendicular to the length direction is within the range of 0.2 or more and 0.9 or less, the contact area between the copper fibers is secured, A high-strength copper porous body can be obtained. Moreover, a space
  • the method for producing a copper porous composite member of the present invention is a method for producing a copper porous composite member comprising a joined body of a member main body and a copper porous body having a three-dimensional network structure skeleton. It has the joining process which joins a copper porous body and the said member main body, It is characterized by the above-mentioned.
  • the copper porous composite member manufactured by the above-described copper porous body manufacturing method is provided and has excellent properties such as strength. Can be obtained.
  • a member main body a board, a rod, a pipe
  • a joining surface to which the copper porous body is joined in the member body is made of copper or a copper alloy, and the copper porous body It is preferable to join the member main body by sintering.
  • the member main body and the copper porous body can be integrated by sintering, and a copper porous composite member having excellent characteristic stability can be manufactured.
  • a copper porous body having a high porosity and sufficient strength a copper porous composite member in which the copper porous body is joined to a member body, a method for producing a copper porous body, and A method for producing a copper porous composite member can be provided.
  • the copper porous body 10 which is 1st embodiment of this invention is demonstrated with reference to FIGS.
  • the copper porous body 10 which is this embodiment has the frame
  • the porosity P is in the range of 50% to 95%.
  • the copper porous body 10 is present embodiment, the relative normalized by density ratio D A Apparent tensile strength S (N / mm 2) tensile strength S / D A (N / mm 2) 10.0 That's it.
  • the copper fiber 11 which comprises the frame
  • skeleton part 12 consists of copper or a copper alloy
  • the diameter R shall be in the range of 0.01 mm or more and 1.0 mm or less, and ratio L / R of length L and diameter R Is in the range of 4 to 200.
  • the copper fiber 11 is comprised by C1020 (oxygen-free copper), for example.
  • the copper fiber 11 is given a shape such as twisting or bending.
  • the apparent density ratio D A is 0.50 or less of the true density D T of the copper fibers 11.
  • the gap shape between the copper fibers 11 can be formed three-dimensionally and isotropically, and as a result, the copper This leads to an improvement in the isotropy of various characteristics such as strength, heat transfer characteristics, and conductivity of the porous body 10.
  • the copper fiber 11 is adjusted to a predetermined diameter R by a drawing method, a coil cutting method, a wire cutting method, a melt spinning method, etc., and the length of the copper fiber 11 is further adjusted to satisfy a predetermined L / R. It is manufactured by cutting.
  • skeleton part 12 is made into the range whose circularity C of the cross section orthogonal to a length direction is 0.2 or more and 0.9 or less.
  • the circularity C is 1 when it is a perfect circle, and the circularity C decreases as the circumferential length Q increases with respect to the cross-sectional area A. Therefore, when the cross section is a concave polygonal shape such as a star shape or a shape having a large aspect ratio, the circularity C is reduced.
  • a graph showing the circularity C of the regular polygon is shown in FIG. 2
  • a graph showing the relationship between the aspect ratio and the circularity C in the rectangular cross section is shown in FIG.
  • skeleton part 12 shall be a substantially triangular shape.
  • the diameter R of the copper fibers 11 is set in the range of 0.01 mm or more and 1.0 mm or less.
  • the lower limit of the diameter R of the copper fiber 11 is preferably 0.03 mm or more, and the upper limit of the diameter R of the copper fiber 11 is preferably 0.5 mm or less.
  • the ratio L / R of the length L and the diameter R of the copper fibers 11 is set in the range of 4 or more and 200 or less.
  • the lower limit of the ratio L / R between the length L and the diameter R of the copper fiber 11 is preferably 10 or more.
  • the ratio L / R upper limit of the length L and the diameter R of the copper fibers 11 is preferably 100 or less.
  • the cross-sectional shape of the copper fiber 11 forming the skeleton part 12 is a concave polygonal shape such as a star shape and the circularity C is less than 0.2, the surface unevenness of the copper fiber 11 is large. The contact portion between the copper fibers 11 is not ensured at the time of filling, and the strength of the sintered copper porous body 10 may be insufficient. Further, in the cross-sectional shape of the copper fiber 11 forming the skeleton part 12, when the aspect ratio of the long side and the short side is large and the circularity C is less than 0.2, the copper fiber 11 becomes a foil shape.
  • the porosity P of the sintered copper porous body 10 may be lowered.
  • the circularity C of the cross section of the copper fiber 11 forming the skeleton part 12 exceeds 0.9, the cross-sectional shape is close to a perfect circle. Therefore, the bonding strength of the copper fiber 11 at each contact point is lowered, and as a result, the strength of the sintered copper porous body 10 may be insufficient.
  • the circularity C of the cross section of the copper fiber 11 forming the skeleton part 12 is set in the range of 0.2 or more and 0.9 or less.
  • the lower limit of the circularity C of the cross section of the copper fiber 11 forming the skeleton 12 is preferably set to 0.3 or more, and the upper limit is set to 0.00. It is preferable to set it to 85 or less.
  • the manufacturing method of the copper porous body 10 which is this embodiment is demonstrated with reference to the flowchart of FIG. 5, the process drawing of FIG.
  • the copper fibers 11 described above are spread and filled from the spreader 31 into the graphite container 32 to stack the copper fibers 11 (copper fiber laminating step S01).
  • a bulk density D P after filling is stacked a plurality of copper fibers 11 to be equal to or less than 40% of the true density D T of the copper fibers 11.
  • the copper fiber 11 bulk-filled in the graphite container 32 is charged into the atmosphere heating furnace 33 and heated and sintered in a reducing atmosphere, an inert gas atmosphere or a vacuum atmosphere (sintering step S02).
  • the heating conditions of the sintering step S02 in the present embodiment are set such that the holding temperature is 500 ° C. or higher and 1050 ° C. or lower, and the holding time is 5 minutes or longer and 600 minutes or shorter.
  • the holding temperature in the sintering step S02 is set to 500 ° C. or higher and 1050 ° C. or lower.
  • the lower limit of the holding temperature in the sintering step S02 is 600 ° C. or higher and the upper limit of the holding temperature is 1000 ° C. or lower.
  • the holding time in the sintering step S02 is set within a range of 5 minutes or more and 600 minutes or less. In order to reliably sinter the copper fiber 11, it is preferable that the lower limit of the holding time in the sintering step S02 is 10 minutes or more and the upper limit of the holding time is 180 minutes or less.
  • the atmosphere in the sintering step S02 may be a reducing gas such as hydrogen gas, RX gas, ammonia decomposition gas, nitrogen-hydrogen mixed gas, argon-hydrogen mixed gas, or nitrogen gas, argon gas, etc.
  • An inert gas may be used.
  • it is good also as a vacuum atmosphere of 100 Pa or less.
  • the sintering step S02 the sintering proceeds at the contact portion between the copper fibers 11, and the copper fibers 11 are joined together to form the skeleton portion 12.
  • the sintering step S02 is performed in a reducing atmosphere, an inert atmosphere, and a vacuum atmosphere without applying pressure as described above, the bulk shape and the surface shape of the copper fiber 11 are greatly changed.
  • the circularity C of the cross section hardly changes before and after sintering.
  • the diameter R is in the range of 0.01 mm or more and 1.0 mm or less, and the ratio L between the length L and the diameter R is L. Since the skeleton part 12 is formed by sintering the copper fiber 11 having a / R in the range of 4 or more and 200 or less, a sufficient gap is secured between the copper fibers 11, The shrinkage rate during sintering can be suppressed, the porosity P is high, and the dimensional accuracy is excellent.
  • skeleton part 12 shall be in the range of 0.2-0.9, the contact area of copper fibers 11 is ensured.
  • the copper porous composite member 100 includes a copper plate 120 (member main body) made of copper or a copper alloy, and a copper porous body 110 bonded to the surface of the copper plate 120.
  • the copper porous body 110 has a skeleton formed by sintering a plurality of copper fibers, as in the first embodiment. And in the copper porous body 110 which concerns on this embodiment, the porosity P is made into the range of 50% or more and 95% or less.
  • the copper fiber forming the skeleton is made of copper or a copper alloy
  • the diameter R is in the range of 0.01 mm to 1.0 mm
  • the ratio L / R of the length L to the diameter R is L / R.
  • the range is 4 or more and 200 or less.
  • the copper fiber is made of, for example, C1020 (oxygen-free copper).
  • skeleton part is made into the range whose circularity C of the cross section orthogonal to a length direction is 0.2 or more and 0.9 or less.
  • the copper fiber is given a shape such as twisting or bending.
  • the apparent density ratio D A is 50% or less of the true density D T of copper fibers.
  • the copper plate 120 which is a member main body is prepared (copper plate arrangement
  • copper fibers are dispersed and arranged on the surface of the copper plate 120 (copper fiber lamination step S101).
  • bulk density D P is stacked a plurality of copper fibers to be equal to or less than 40% of the true density D T of copper fibers.
  • the copper fibers stacked and arranged on the surface of the copper plate 120 are sintered to form the copper porous body 110, and the copper porous body 110 and the copper plate 120 are bonded (sintering and joining step S102).
  • the heating conditions of the sintering and joining step S102 in the present embodiment are set such that the holding temperature is 500 ° C. or higher and 1050 ° C. or lower, and the holding time is 5 minutes or longer and 600 minutes or shorter.
  • the atmosphere in the sintering and joining step S102 is a reducing atmosphere, an inert gas atmosphere, or a vacuum atmosphere, and specifically, hydrogen gas, RX gas, ammonia decomposition gas, nitrogen-hydrogen mixed gas, argon -A reducing gas such as a hydrogen mixed gas may be used, or an inert gas such as nitrogen gas or argon gas may be used. Furthermore, it is good also as a vacuum atmosphere of 100 Pa or less.
  • the copper fibers are sintered to form the copper porous body 110, and the copper fibers and the copper plate 120 are sintered, so that the copper porous body 110 and the copper plate 120 are joined. Then, the copper porous composite member 100 according to this embodiment is manufactured.
  • the circularity C of the cross section of the copper fiber constituting the copper porous body 110 is in the range of 0.2 to 0.9. Since the contact area between the copper fibers is ensured and the strength can be improved, a void can be secured between the copper fibers, and the porosity of the copper porous body 110 P can be increased. As a result, it is possible to greatly improve various characteristics such as heat exchange efficiency, water retention and evaporation efficiency when the copper porous composite member 100 is used as a heat exchange member such as an evaporator.
  • a copper fiber is laminated
  • this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
  • this invention is not limited to this, Even if it manufactures a copper porous body using another manufacturing equipment Good.
  • the joining method in which the sintered layer was formed in the junction part of a copper porous body and a member main body was illustrated as a desirable method, it is not limited to this, Various welding methods
  • the copper porous body and the member main body may be joined by a joining method using a laser welding method or a resistance welding method or a brazing method using a brazing material that melts at a low temperature.
  • the copper porous composite member having the structure shown in FIG. 7 is described as an example.
  • the present invention is not limited to this, and the copper having the structure shown in FIGS. 9 to 14 is used. It may be a porous composite member.
  • a copper porous composite member 200 having a structure in which a plurality of copper tubes 220 are inserted into a copper porous body 210 as a member main body may be used.
  • a copper porous composite member 300 having a structure in which a copper tube 320 curved in a U shape as a member main body is inserted into a copper porous body 310 may be used.
  • the copper porous composite member 400 of the structure which joined the copper porous body 410 to the internal peripheral surface of the copper pipe 420 which is a member main body may be sufficient.
  • the copper porous composite member 500 of the structure which joined the copper porous body 510 to the outer peripheral surface of the copper pipe 520 which is a member main body may be sufficient.
  • a copper porous composite member 600 having a structure in which a copper porous body 610 is joined to the inner peripheral surface and the outer peripheral surface of a copper tube 620 that is a member main body may be used.
  • the copper porous composite member 700 of the structure which joined the copper porous body 710 to both surfaces of the copper plate 720 which is a member main body may be sufficient.
  • a copper porous composite member 800 having a structure in which a copper porous body 810 is joined to the inner diameter of a copper tube 820 that is a member main body may be used.
  • tube 920 which is a member main body may be sufficient.
  • a copper porous sintered body having a width of 30 mm, a length of 200 mm, and a thickness of 5 mm was manufactured using the sintering raw material (copper fiber) shown in Table 1 by the manufacturing method described in the above embodiment.
  • the diameter R of the copper fiber used as a raw material, the ratio L / R of the length L to the diameter R, and the circularity C were measured as follows.
  • skeleton part, ratio L / R of length L and diameter R, circularity C, porosity, and tensile strength was as follows. The evaluation results are shown in Table 2.
  • the length L of the copper fiber is calculated by performing image analysis on the copper fiber used as a sintering raw material and the copper fiber taken out of the copper porous sintered body using a particle analyzer “Morphology G3” manufactured by Malvern. A simple average value was used. Using this, the ratio L / R between the length L and the diameter R was calculated.
  • Circularity C of cross section Sections perpendicular to the length direction of the copper fibers taken out of the sintered raw material and the copper porous sintered body were observed with an optical microscope, and were calculated by image processing using the photographed images. It calculated with the following formula
  • equation using the area A (mm ⁇ 2 >) and the simple average value of perimeter length Q (mm). Circularity C (4 ⁇ A) 0.5 / Q
  • Porosity P The true density D T (g / cm 3 ) was measured by an underwater method using a precision balance, and the porosity P was calculated by the following equation.
  • the mass of the copper porous sintered body was m (g), and the volume of the copper porous sintered body was V (cm 3 ).
  • Porosity P (%) (1 ⁇ (m / (V ⁇ D T ))) ⁇ 100
  • the copper fiber as the sintering raw material and the copper fiber taken out from the copper porous sintered body had a diameter R, a length L and a diameter R. It was confirmed that the ratio L / R and the circularity C of the cross section did not change greatly.
  • Comparative Example 1 in which the diameter R of the copper fiber is 0.008 mm and Comparative Example 2 in which the diameter R of the copper fiber is 1.20 mm, the tensile strength of the copper porous sintered body is low. It is confirmed that In Comparative Example 3 in which the ratio L / R between the length L and the diameter R of the copper fibers was 2, the porosity P was as low as 46%. Furthermore, in Comparative Example 4 in which the ratio L / R between the length L and the diameter R of the copper fibers is 300, the strength is low. This is presumed to be due to the presence of a portion having a large gap in part and a significant reduction in strength locally.
  • Comparative Example 5 in which the circularity C of the cross section of the copper fiber was 0.95, the tensile strength was low. It is presumed that the shape of the cross section is close to a perfect circle and the contact between the copper fibers is a point contact.
  • Comparative Example 6 in which the shape of the cross section of the copper fiber was a star and the circularity C was 0.15, the tensile strength was low. It is presumed that the unevenness on the surface of the copper fibers is large, and the number of contact points between the copper fibers is reduced.
  • Comparative Example 7 in which the cross-sectional shape of the copper fiber was rectangular and the circularity C was 0.18, the porosity was low. It is presumed that the cross-sectional shape of the copper fiber was foil-like and no gap was formed between the copper fibers.
  • the porosity was as high as 50% or more and the tensile strength was sufficiently ensured. From the above, according to the present invention, it was confirmed that a high-quality copper porous sintered body having high porosity and sufficient strength can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

This copper porous body is composed of a sintered body of a plurality of copper fibers, and has a skeleton part that has a three-dimensional network structure. This copper porous body is characterized in that: the copper fibers constituting the skeleton part are formed from copper or an copper alloy, and have a diameter R within the range of from 0.01 mm to 1.0 mm (inclusive) and a ratio of the length L to the diameter R, namely an L/R ratio within the range of from 4 to 200 (inclusive); and the cross-sections of the copper fibers, said cross-sections being orthogonal to the length direction, have circularities within the range of from 0.2 to 0.9 (inclusive); and the porosity is within the range of from 50% to 95% (inclusive).

Description

銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
 本発明は、銅又は銅合金からなる銅多孔質体、及び、この銅多孔質体が部材本体に接合されてなる銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法に関するものである。
 本願は、2017年1月18日に、日本に出願された特願2017-006749号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a copper porous body made of copper or a copper alloy, a copper porous composite member obtained by bonding the copper porous body to a member body, a method for producing a copper porous body, and a copper porous composite. The present invention relates to a method for manufacturing a member.
This application claims priority based on Japanese Patent Application No. 2017-006749 filed in Japan on January 18, 2017, the contents of which are incorporated herein by reference.
 上述の銅多孔質焼結体及び銅多孔質複合部材は、例えば各種電池における電極及び集電体、ヒートパイプ等の熱交換器用部材、消音部材、フィルター、衝撃吸収部材等として使用されている。
 例えば、特許文献1には、三次元網目状構造体をなす銅多孔質体を導電性金属の部材本体に一体被着した伝熱部材が提案されている。
The above-mentioned copper porous sintered body and copper porous composite member are used as, for example, electrodes and current collectors in various batteries, heat exchanger members such as heat pipes, silencers, filters, impact absorbing members, and the like.
For example, Patent Document 1 proposes a heat transfer member in which a copper porous body forming a three-dimensional network structure is integrally attached to a conductive metal member body.
 ここで、特許文献1においては、三次元網目状構造体をなす金属焼結体(銅多孔質体)の製造方法として、加熱により焼失する材質から成る三次元網目状構造体(例えばウレタンフォーム、ポリエチレンフォーム等連続気泡を持つ合成樹脂発泡体、天然繊維クロス、人造繊維クロス等)の骨格に粘着剤を塗布し、金属粉状物を被着した成形体を用いる方法や、加熱により焼失する材質から成り、かつ三次元網目状構造体を形成することができる材料(例えばパルプや羊毛繊維)に金属粉状物を抄き込んだシート状成形体を用いる方法等が開示されている。 Here, in patent document 1, as a manufacturing method of the metal sintered compact (copper porous body) which makes a three-dimensional network structure, the three-dimensional network structure (for example, urethane foam, which consists of a material burned down by heating) Polyethylene foam, synthetic resin foam with continuous cells, natural fiber cloth, man-made fiber cloth, etc.). And a method of using a sheet-like molded body in which a metal powder is formed on a material (for example, pulp or wool fiber) that can form a three-dimensional network structure.
 ここで、特許文献1に記載されたように、金属粉状物を用いて金属焼結体(銅多孔質焼結体)を成形する場合には、焼結時における収縮率が大きいため、高強度かつ気孔率の高い銅多孔質焼結体を得ることが困難であるといった問題があった。
 そこで、例えば特許文献2,3に示すように、焼結原料として銅又は銅合金からなる銅繊維を用いた銅多孔質体が提案されている。
Here, as described in Patent Document 1, when a metal sintered body (copper porous sintered body) is formed using a metal powder, the shrinkage rate during sintering is large. There was a problem that it was difficult to obtain a copper porous sintered body having high strength and high porosity.
Thus, for example, as shown in Patent Documents 2 and 3, a copper porous body using copper fibers made of copper or a copper alloy as a sintering raw material has been proposed.
 特許文献2には、銅繊維を加圧下において通電加熱を行うことにより、銅多孔質体を得る方法が開示されている。
 特許文献3には、銅繊維を大気雰囲気で800℃に加熱した後に、水素雰囲気で450℃に加熱することにより、銅多孔質体を得る方法が開示されている。
Patent Document 2 discloses a method for obtaining a copper porous body by conducting energization heating of copper fibers under pressure.
Patent Document 3 discloses a method of obtaining a copper porous body by heating copper fibers to 800 ° C. in an air atmosphere and then heating to 450 ° C. in a hydrogen atmosphere.
特開平08-145592号公報Japanese Patent Laid-Open No. 08-145592 特許第3735712号公報Japanese Patent No. 3735712 特開2000-192107号公報JP 2000-192107 A
 ところで、上述の銅多孔質体においては、高い気孔率とオープンセル構造を有することと合わせて、高い強度が要求される。
 ここで、特許文献2においては、銅繊維同士を十分に接合するためには、加圧下において通電焼結を行う必要があるため、加圧によって気孔率が低下してしまうといった問題があった。また、均一に加圧を行う必要があるため、焼結時に使用する成形型の形状が制約されてしまうといった問題があった。
 さらに、特許文献3においては、大気雰囲気で加熱を実施することから、銅繊維中の酸素濃度の増加や、その後の水素雰囲気での加熱時にボイドが発生し、銅多孔質体の強度が低下するおそれがあった。
By the way, in the above-mentioned copper porous body, high strength is required in combination with having a high porosity and an open cell structure.
Here, in patent document 2, in order to fully join copper fibers, since it is necessary to perform electric sintering under pressure, there existed a problem that a porosity fell by pressurization. Moreover, since it is necessary to pressurize uniformly, there existed a problem that the shape of the shaping | molding die used at the time of sintering will be restrict | limited.
Furthermore, in Patent Document 3, since heating is performed in an air atmosphere, voids are generated when the oxygen concentration in the copper fiber is increased and heating is performed in a hydrogen atmosphere thereafter, and the strength of the copper porous body is reduced. There was a fear.
 本発明は、以上のような事情を背景としてなされたものであって、高い気孔率を有するとともに十分な強度を有する銅多孔質体、この銅多孔質体が部材本体に接合された銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法を提供することを目的としている。 The present invention has been made against the background as described above, and has a high porosity and a sufficient strength, a copper porous body in which the copper porous body is bonded to a member main body. It aims at providing the manufacturing method of a composite member, a copper porous body, and the manufacturing method of a copper porous composite member.
 このような課題を解決して、前記目的を達成するために、本発明の銅多孔質体は、複数の銅繊維の焼結体からなり、三次元網目構造の骨格部を有する銅多孔質体であって、前記骨格部を形成する銅繊維は、銅又は銅合金からなり、直径Rが0.01mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上200以下の範囲内とされるとともに、長手方向に直交する断面の円形度が0.2以上0.9以下の範囲内とされており、気孔率が50%以上95%以下の範囲内とされていることを特徴としている。 In order to solve such problems and achieve the above-mentioned object, the copper porous body of the present invention comprises a sintered body of a plurality of copper fibers and has a three-dimensional network structure skeleton portion. The copper fiber forming the skeleton is made of copper or a copper alloy, the diameter R is in the range of 0.01 mm to 1.0 mm, and the ratio L / L of the length L to the diameter R is L / R is in the range of 4 or more and 200 or less, the circularity of the cross section orthogonal to the longitudinal direction is in the range of 0.2 or more and 0.9 or less, and the porosity is 50% or more and 95% or less. It is characterized by being within the range.
 この構成の銅多孔質体によれば、前記骨格部を形成する銅繊維の直径Rが0.01mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上200以下の範囲内とされているので、銅繊維同士の間に十分な空隙が確保され、気孔率を50%以上95%以下の範囲内とすることができる。
 ここで、直径Rとは、各繊維の断面積Aを元に算出される値であり、断面形状に関わらず真円であると仮定し、以下の式により定義されるものである。
 R=(A/π)1/2×2
According to the copper porous body having this configuration, the diameter R of the copper fiber forming the skeleton is in the range of 0.01 mm to 1.0 mm, and the ratio L / R of the length L to the diameter R is L / R. Is in the range of 4 or more and 200 or less, a sufficient gap is secured between the copper fibers, and the porosity can be in the range of 50% or more and 95% or less.
Here, the diameter R is a value calculated on the basis of the cross-sectional area A of each fiber, and is defined by the following equation assuming a perfect circle regardless of the cross-sectional shape.
R = (A / π) 1/2 × 2
 そして、本発明では、前記骨格部を形成する銅繊維の長さ方向に直交する断面の円形度を規定している。ここで、円形度Cは、銅繊維の断面積をA、銅繊維の断面の周長をQとしたときに、下記の式で表されるものである。
  円形度C=(4πA)0.5/Q
 断面形状が真円の場合には円形度Cが1となり、断面形状が星形等の凹多角形、アスペクト比の大きい長方形等になると、円形度Cが0に近づくことになる。
And in this invention, the circularity of the cross section orthogonal to the length direction of the copper fiber which forms the said frame | skeleton part is prescribed | regulated. Here, the circularity C is expressed by the following equation, where A is the cross-sectional area of the copper fiber and Q is the circumferential length of the cross-section of the copper fiber.
Circularity C = (4πA) 0.5 / Q
When the cross-sectional shape is a perfect circle, the circularity C is 1, and when the cross-sectional shape is a concave polygon such as a star or a rectangle with a large aspect ratio, the circularity C approaches 0.
 本発明では、前記骨格部を形成する銅繊維の前記断面の円形度が0.2以上0.9以下の範囲内とされているので、銅繊維を積層した際に、銅繊維同士が面接触する箇所が多くなり、積層した銅繊維同士の接触面積が確保され、銅繊維同士の接合強度を向上させることが可能となるとともに、銅繊維同士の間に空隙を確保することができ、気孔率を高くすることが可能となる。
 よって、高い気孔率を有するとともに十分な強度を有する銅多孔質体を提供することが可能となる。
In the present invention, since the circularity of the cross section of the copper fiber forming the skeleton is in the range of 0.2 or more and 0.9 or less, the copper fibers are in surface contact when the copper fibers are laminated. The number of parts to be increased, the contact area between the laminated copper fibers can be secured, the bonding strength between the copper fibers can be improved, and a void can be secured between the copper fibers, and the porosity Can be increased.
Therefore, it is possible to provide a copper porous body having high porosity and sufficient strength.
 本発明の銅多孔質複合部材は、部材本体と、三次元網目構造の骨格部を有する銅多孔質体との接合体からなる銅多孔質複合部材であって、前記銅多孔質体が前述の銅多孔質体であることを特徴としている。
 この構成の銅多孔質複合部材によれば、気孔率が高くかつ強度に優れた銅多孔質体と部材本体との接合体とされていることから、優れた特性の多孔質複合部材を提供することができる。
The copper porous composite member of the present invention is a copper porous composite member comprising a joined body of a member main body and a copper porous body having a three-dimensional network structure skeleton, wherein the copper porous body is the above-mentioned copper porous body. It is characterized by being a copper porous body.
According to the copper porous composite member having this configuration, a porous composite member having excellent characteristics is provided since it is a joined body of a copper porous body having a high porosity and excellent strength and a member main body. be able to.
 ここで、本発明の銅多孔質複合部材においては、前記部材本体のうち前記銅多孔質体との接合面が銅又は銅合金で構成され、前記銅多孔質体と前記部材本体との接合部が焼結層とされていることが好ましい。
 この場合、前記銅多孔質体と前記部材本体との接合部が焼結層とされているので、前記銅多孔質体と前記部材本体とが強固に接合されることになり、銅多孔質複合部材として優れた強度を得ることができる。
Here, in the copper porous composite member of the present invention, the joint surface of the member main body with the copper porous body is composed of copper or a copper alloy, and the joint portion between the copper porous body and the member main body. Is preferably a sintered layer.
In this case, since the joining portion between the copper porous body and the member main body is a sintered layer, the copper porous body and the member main body are firmly joined, and the copper porous composite Excellent strength as a member can be obtained.
 また、本発明の銅多孔質体の製造方法は、複数の銅繊維の焼結体からなり、三次元網目構造の骨格部を有する銅多孔質体の製造方法であって、直径Rが0.01mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上200以下の範囲内とされるとともに、長さ方向に直交する断面の円形度が0.2以上0.9以下の範囲内とされた前記銅繊維を積層する銅繊維積層工程と、積層された複数の前記銅繊維同士を焼結する焼結工程と、を備えていることを特徴としている。 Moreover, the manufacturing method of the copper porous body of this invention is a manufacturing method of the copper porous body which consists of a sintered compact of a some copper fiber, and has the frame | skeleton part of a three-dimensional network structure, and the diameter R is 0.00. The ratio L / R of the length L to the diameter R is in the range of 4 to 200 and the circularity of the cross section perpendicular to the length direction is 0. A copper fiber laminating step for laminating the copper fibers within a range of 2 or more and 0.9 or less, and a sintering step for sintering the laminated plural copper fibers. It is said.
 この構成の銅多孔質体の製造方法によれば、銅繊維の直径Rが0.01mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上200以下の範囲内とされ、長さ方向に直交する断面の円形度が0.2以上0.9以下の範囲内とされているので、銅繊維同士の接触面積が確保されることになり、強度の高い銅多孔質体を得ることができる。また、銅繊維同士の間に空隙を確保することができ、気孔率が高い銅多孔質体を得ることができる。 According to the method for producing a copper porous body having this configuration, the diameter R of the copper fiber is in the range of 0.01 mm or more and 1.0 mm or less, and the ratio L / R of the length L to the diameter R is 4 or more. Since the circularity of the cross section perpendicular to the length direction is within the range of 0.2 or more and 0.9 or less, the contact area between the copper fibers is secured, A high-strength copper porous body can be obtained. Moreover, a space | gap can be ensured between copper fibers, and a copper porous body with a high porosity can be obtained.
 本発明の銅多孔質複合部材の製造方法は、部材本体と、三次元網目構造の骨格部を有する銅多孔質体との接合体からなる銅多孔質複合部材の製造方法であって、前述の銅多孔質体と、前記部材本体とを接合する接合工程を備えていることを特徴とする。 The method for producing a copper porous composite member of the present invention is a method for producing a copper porous composite member comprising a joined body of a member main body and a copper porous body having a three-dimensional network structure skeleton. It has the joining process which joins a copper porous body and the said member main body, It is characterized by the above-mentioned.
 この構成の銅多孔質複合部材の製造方法によれば、上述の銅多孔質体の製造方法によって製造された銅多孔質体を備えることになり、強度等の特性に優れた銅多孔質複合部材を得ることができる。なお、部材本体としては、例えば、板、棒、管等が挙げられる。 According to the method for manufacturing a copper porous composite member having this configuration, the copper porous composite member manufactured by the above-described copper porous body manufacturing method is provided and has excellent properties such as strength. Can be obtained. In addition, as a member main body, a board, a rod, a pipe | tube, etc. are mentioned, for example.
 ここで、本発明の銅多孔質複合部材の製造方法においては、前記部材本体のうち前記銅多孔質体が接合される接合面は、銅又は銅合金で構成されており、前記銅多孔質体と前記部材本体とを焼結によって接合することが好ましい。
 この場合、前記部材本体と前記銅多孔質体とを焼結によって一体化することができ、特性の安定性に優れた銅多孔質複合部材を製造することが可能となる。
Here, in the method for producing a copper porous composite member of the present invention, a joining surface to which the copper porous body is joined in the member body is made of copper or a copper alloy, and the copper porous body It is preferable to join the member main body by sintering.
In this case, the member main body and the copper porous body can be integrated by sintering, and a copper porous composite member having excellent characteristic stability can be manufactured.
 本発明によれば、高い気孔率を有するとともに十分な強度を有する銅多孔質体、この銅多孔質体が部材本体に接合された銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法を提供することができる。 According to the present invention, a copper porous body having a high porosity and sufficient strength, a copper porous composite member in which the copper porous body is joined to a member body, a method for producing a copper porous body, and A method for producing a copper porous composite member can be provided.
本発明の第一の実施形態である銅多孔質体の拡大模式図である。It is an expansion schematic diagram of the copper porous body which is 1st embodiment of this invention. 正多角形の円形度を示すグラフである。It is a graph which shows the circularity of a regular polygon. 長方形状の円形度を示すグラフである。It is a graph which shows the circularity of a rectangular shape. 図1に示す銅多孔質体の骨格部を構成する銅繊維の断面形状を概略説明図である。It is a schematic explanatory drawing about the cross-sectional shape of the copper fiber which comprises the frame | skeleton part of the copper porous body shown in FIG. 図1に示す銅多孔質体の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the copper porous body shown in FIG. 図1に示す銅多孔質体を製造する製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process which manufactures the copper porous body shown in FIG. 本発明の第二の実施形態である銅多孔質複合部材の外観説明図である。It is external appearance explanatory drawing of the copper porous composite member which is 2nd embodiment of this invention. 図7に示す銅多孔質複合部材の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the copper porous composite member shown in FIG. 本発明の他の実施形態である銅多孔質複合部材の外観図である。It is an external view of the copper porous composite member which is other embodiment of this invention. 本発明の他の実施形態である銅多孔質複合部材の外観図である。It is an external view of the copper porous composite member which is other embodiment of this invention. 本発明の他の実施形態である銅多孔質複合部材の外観図である。It is an external view of the copper porous composite member which is other embodiment of this invention. 本発明の他の実施形態である銅多孔質複合部材の外観図である。It is an external view of the copper porous composite member which is other embodiment of this invention. 本発明の他の実施形態である銅多孔質複合部材の外観図である。It is an external view of the copper porous composite member which is other embodiment of this invention. 本発明の他の実施形態である銅多孔質複合部材の外観図である。It is an external view of the copper porous composite member which is other embodiment of this invention. 本発明の他の実施形態である銅多孔質複合部材の外観図である。It is an external view of the copper porous composite member which is other embodiment of this invention. 本発明の他の実施形態である銅多孔質複合部材の外観図である。It is an external view of the copper porous composite member which is other embodiment of this invention.
 以下に、本発明の実施形態である銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法について、添付した図面を参照して説明する。 Hereinafter, a copper porous body, a copper porous composite member, a copper porous body manufacturing method, and a copper porous composite member manufacturing method according to embodiments of the present invention will be described with reference to the accompanying drawings. .
(第一の実施形態)
 まず、本発明の第一の実施形態である銅多孔質体10について、図1から図6を参照して説明する。
 本実施形態である銅多孔質体10は、図1に示すように、複数の銅繊維11が焼結された骨格部12を有している。
(First embodiment)
First, the copper porous body 10 which is 1st embodiment of this invention is demonstrated with reference to FIGS.
The copper porous body 10 which is this embodiment has the frame | skeleton part 12 in which the some copper fiber 11 was sintered as shown in FIG.
 本実施形態である銅多孔質体10においては、気孔率Pが50%以上95%以下の範囲内とされている。なお、気孔率Pは、以下の式で算出される。
  P(%)=(1-(m/(V×D)))×100
   m:銅多孔質体10の質量(g)
   V:銅多孔質体10の体積(cm
   D:銅多孔質体10を構成する銅繊維11の真密度(g/cm
In the copper porous body 10 according to the present embodiment, the porosity P is in the range of 50% to 95%. The porosity P is calculated by the following formula.
P (%) = (1− (m / (V × D T ))) × 100
m: Mass (g) of the copper porous body 10
V: Volume of the copper porous body 10 (cm 3 )
D T : True density (g / cm 3 ) of the copper fiber 11 constituting the copper porous body 10
 さらに、本実施形態である銅多孔質体10は、引張強度S(N/mm)を見掛け密度比Dで規格化した相対引張強度S/D(N/mm)が10.0以上とされている。なお、見掛け密度比Dは、以下の式で算出される。
  D=m/(V×D
Further, the copper porous body 10 is present embodiment, the relative normalized by density ratio D A Apparent tensile strength S (N / mm 2) tensile strength S / D A (N / mm 2) 10.0 That's it. Incidentally, the apparent density ratio D A is calculated by the following equation.
D A = m / (V × D T )
 ここで、骨格部12を構成する銅繊維11は、銅又は銅合金からなり、直径Rが0.01mm以上1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上200以下の範囲内とされている。本実施形態では、銅繊維11は、例えばC1020(無酸素銅)で構成されている。
 なお、本実施形態では、銅繊維11には、ねじりや曲げ等の形状付与が施されている。また、本実施形態である銅多孔質体10においては、その見掛け密度比Dが銅繊維11の真密度Dの0.50以下とされている。銅繊維11の形状については、前記見掛け密度比Dが銅繊維11の真密度Dの0.50以下となる限りにおいて、直線状、曲線状など任意であるが、銅繊維11の少なくとも一部に、ねじり加工や曲げ加工等により所定の形状付与加工をされたものを用いると、銅繊維11同士の間の空隙形状を立体的かつ等方的に形成させることができ、その結果、銅多孔質体10の強度、伝熱特性及び導電性等の各種特性の等方性向上に繋がる。
Here, the copper fiber 11 which comprises the frame | skeleton part 12 consists of copper or a copper alloy, the diameter R shall be in the range of 0.01 mm or more and 1.0 mm or less, and ratio L / R of length L and diameter R Is in the range of 4 to 200. In this embodiment, the copper fiber 11 is comprised by C1020 (oxygen-free copper), for example.
In the present embodiment, the copper fiber 11 is given a shape such as twisting or bending. Further, in the copper porous body 10 is this embodiment, the apparent density ratio D A is 0.50 or less of the true density D T of the copper fibers 11. The shape of the copper fibers 11, to the extent that the apparent density ratio D A is 0.50 or less of the true density D T of the copper fibers 11, straight, but optionally including curved, at least one copper fibers 11 When a part that has been subjected to a predetermined shape imparting process by twisting or bending is used for the part, the gap shape between the copper fibers 11 can be formed three-dimensionally and isotropically, and as a result, the copper This leads to an improvement in the isotropy of various characteristics such as strength, heat transfer characteristics, and conductivity of the porous body 10.
 なお、銅繊維11は、引き抜き法、コイル切削法、ワイヤ切削法、溶融紡糸法などにより、所定の直径Rに調整され、これをさらに所定のL/Rを満たすように長さを調整して切断することにより、製造される。
 ここで、直径Rとは、各繊維の断面積Aを元に算出される値であり、断面形状に関わらず真円であると仮定し、以下の式により定義されるものである。
   R=(A/π)1/2×2
The copper fiber 11 is adjusted to a predetermined diameter R by a drawing method, a coil cutting method, a wire cutting method, a melt spinning method, etc., and the length of the copper fiber 11 is further adjusted to satisfy a predetermined L / R. It is manufactured by cutting.
Here, the diameter R is a value calculated on the basis of the cross-sectional area A of each fiber, and is defined by the following equation assuming a perfect circle regardless of the cross-sectional shape.
R = (A / π) 1/2 × 2
 そして、骨格部12を構成する銅繊維11は、長さ方向に直交する断面の円形度Cが0.2以上0.9以下の範囲内とされている。
 ここで、円形度Cとは、銅繊維11の断面積をA、銅繊維11の断面の周長をQとしたときに、以下の式により定義されるものである。
  円形度C=(4πA)0.5/Q
And the copper fiber 11 which comprises the frame | skeleton part 12 is made into the range whose circularity C of the cross section orthogonal to a length direction is 0.2 or more and 0.9 or less.
Here, the circularity C is defined by the following equation, where A is the cross-sectional area of the copper fiber 11 and Q is the circumferential length of the cross-section of the copper fiber 11.
Circularity C = (4πA) 0.5 / Q
 真円であると円形度Cは1となり、断面積Aに対して周長Qが長くなると円形度Cが小さくなる。よって、断面が星形形状等の凹多角形状となる場合やアスペクト比が大きい形状となると、円形度Cが小さくなる。
 ここで、正多角形の円形度Cを示すグラフを図2に、長方形断面におけるアスペクト比と円形度Cとの関係を示すグラフを図3に示す。
The circularity C is 1 when it is a perfect circle, and the circularity C decreases as the circumferential length Q increases with respect to the cross-sectional area A. Therefore, when the cross section is a concave polygonal shape such as a star shape or a shape having a large aspect ratio, the circularity C is reduced.
Here, a graph showing the circularity C of the regular polygon is shown in FIG. 2, and a graph showing the relationship between the aspect ratio and the circularity C in the rectangular cross section is shown in FIG.
 図2に示すように、正多角形の場合において円形度Cが0.2以上0.9以下の範囲内となるのは、正三角形及び正方形である。
 また、長方形形状において円形度Cが0.2以上0.9以下の範囲内となるのは、アスペクト比(長辺長さ/短辺長さ)が80以下の場合となる。
 そして、本実施形態においては、骨格部12を構成する銅繊維11は、図4に示すように、断面形状が概略三角形状をなすものとされている。
As shown in FIG. 2, in the case of a regular polygon, regular triangles and squares have a circularity C in the range of 0.2 to 0.9.
Further, in the rectangular shape, the circularity C is in the range of 0.2 or more and 0.9 or less when the aspect ratio (long side length / short side length) is 80 or less.
And in this embodiment, as shown in FIG. 4, the cross-sectional shape of the copper fiber 11 which comprises the frame | skeleton part 12 shall be a substantially triangular shape.
 ここで、銅繊維11の直径Rが0.01mm未満の場合には、銅繊維11同士の接合面積が小さく、焼結強度が不足するおそれがある。一方、銅繊維11の直径Rが1.0mmを超える場合には、銅繊維11同士が接触する接点の数が不足し、やはり、焼結強度が不足するおそれがある。
 以上のことから、本実施形態では、銅繊維11の直径Rを0.01mm以上、1.0mm以下の範囲内に設定している。なお、さらなる強度向上を図る場合には、銅繊維11の直径Rの下限を0.03mm以上とすることが好ましく、銅繊維11の直径Rの上限を0.5mm以下とすることが好ましい。
Here, when the diameter R of the copper fibers 11 is less than 0.01 mm, the bonding area between the copper fibers 11 is small, and the sintered strength may be insufficient. On the other hand, when the diameter R of the copper fibers 11 exceeds 1.0 mm, the number of contacts with which the copper fibers 11 are in contact with each other is insufficient, and the sintering strength may be insufficient.
From the above, in this embodiment, the diameter R of the copper fiber 11 is set in the range of 0.01 mm or more and 1.0 mm or less. In order to further improve the strength, the lower limit of the diameter R of the copper fiber 11 is preferably 0.03 mm or more, and the upper limit of the diameter R of the copper fiber 11 is preferably 0.5 mm or less.
 また、銅繊維11の長さLと直径Rとの比L/Rが4未満の場合には、積層配置したときに嵩密度Dを銅繊維11の真密度Dの50%以下とすることが難しく、気孔率Pの高い銅多孔質体10を得ることが困難となるおそれがある。一方、銅繊維11の長さLと直径Rとの比L/Rが200を超える場合には、積層配置したときに銅繊維11を均一に分散させることができなくなり、均一な気孔率Pを有する銅多孔質体10を得ることが困難となるおそれがある。
 以上のことから、本実施形態では、銅繊維11の長さLと直径Rとの比L/Rを4以上、200以下の範囲内に設定している。なお、さらなる気孔率Pの向上を図る場合には、銅繊維11の長さLと直径Rとの比L/Rの下限を10以上とすることが好ましい。また、気孔率Pがさらに均一な銅多孔質体10を得るためには、銅繊維11の長さLと直径Rとの比L/R上限を100以下とすることが好ましい。
Further, when the ratio L / R of the length L and the diameter R of the copper fibers 11 is less than 4, the bulk density D P and less than 50% of the true density D T copper fibers 11 when stacked It is difficult to obtain a copper porous body 10 having a high porosity P. On the other hand, when the ratio L / R between the length L and the diameter R of the copper fibers 11 exceeds 200, the copper fibers 11 cannot be uniformly dispersed when stacked and disposed, and the uniform porosity P is obtained. There is a possibility that it may be difficult to obtain the copper porous body 10 having the same.
From the above, in this embodiment, the ratio L / R between the length L and the diameter R of the copper fiber 11 is set in the range of 4 or more and 200 or less. In order to further improve the porosity P, the lower limit of the ratio L / R between the length L and the diameter R of the copper fiber 11 is preferably 10 or more. In order to obtain a copper porous body 10 having a more uniform porosity P, the ratio L / R upper limit of the length L and the diameter R of the copper fibers 11 is preferably 100 or less.
 さらに、骨格部12を形成する銅繊維11の断面形状が星形形状等の凹多角形状となって円形度Cが0.2未満になった場合には、銅繊維11の表面の凹凸が大きく、充填時に銅繊維11同士の接触部が確保されず、焼結後の銅多孔質体10の強度が不足するおそれがある。また、骨格部12を形成する銅繊維11の断面形状において長辺と短辺のアスペクト比が大きくなって円形度Cが0.2未満になった場合には、銅繊維11が箔状となるため、充填時に銅繊維11同士の間に隙間が形成されにくく、焼結後の銅多孔質体10の気孔率Pが低くなるそれがある。
 一方、骨格部12を形成する銅繊維11の断面の円形度Cが0.9を超える場合には、断面形状が真円に近くなるため、充填時に銅繊維11同士の接触部が点接触となるため、各接触点での銅繊維11接合強度が低下し、結果的に焼結後の銅多孔質体10の強度が不足するおそれがある。
 これは金属繊維同士を接合させてなる三次元網目状構造体において、引張強度は繊維同士の接合強度が弱い箇所の影響が大きいため、点接触で接合強度が弱い接触点が形成されると、引張時に上記接触点を起点として、破壊が進展するためと考えられる。
 以上のことから、本実施形態では、骨格部12を形成する銅繊維11の断面の円形度Cを0.2以上、0.9以下の範囲内に設定している。なお、さらなる気孔率Pの向上及び強度の向上を図る場合には、骨格部12を形成する銅繊維11の断面の円形度Cの下限を0.3以上とすることが好ましく、上限を0.85以下とすることが好ましい。
Furthermore, when the cross-sectional shape of the copper fiber 11 forming the skeleton part 12 is a concave polygonal shape such as a star shape and the circularity C is less than 0.2, the surface unevenness of the copper fiber 11 is large. The contact portion between the copper fibers 11 is not ensured at the time of filling, and the strength of the sintered copper porous body 10 may be insufficient. Further, in the cross-sectional shape of the copper fiber 11 forming the skeleton part 12, when the aspect ratio of the long side and the short side is large and the circularity C is less than 0.2, the copper fiber 11 becomes a foil shape. For this reason, it is difficult to form a gap between the copper fibers 11 at the time of filling, and the porosity P of the sintered copper porous body 10 may be lowered.
On the other hand, when the circularity C of the cross section of the copper fiber 11 forming the skeleton part 12 exceeds 0.9, the cross-sectional shape is close to a perfect circle. Therefore, the bonding strength of the copper fiber 11 at each contact point is lowered, and as a result, the strength of the sintered copper porous body 10 may be insufficient.
This is a three-dimensional network structure in which metal fibers are bonded to each other, because the tensile strength is greatly affected by the location where the bonding strength between fibers is weak, so when a contact point with weak bonding strength is formed by point contact, It is thought that the breakage progresses starting from the contact point during tension.
From the above, in this embodiment, the circularity C of the cross section of the copper fiber 11 forming the skeleton part 12 is set in the range of 0.2 or more and 0.9 or less. When the porosity P is further improved and the strength is further improved, the lower limit of the circularity C of the cross section of the copper fiber 11 forming the skeleton 12 is preferably set to 0.3 or more, and the upper limit is set to 0.00. It is preferable to set it to 85 or less.
 次に、本実施形態である銅多孔質体10の製造方法について、図5のフロー図及び図6の工程図等を参照して説明する。
 まず、図6に示すように、上述した銅繊維11を、散布機31から黒鉛製容器32内に向けて散布して嵩充填し、銅繊維11を積層する(銅繊維積層工程S01)。
 ここで、この銅繊維積層工程S01では、充填後の嵩密度Dが銅繊維11の真密度Dの40%以下となるように複数の銅繊維11を積層配置する。なお、本実施形態では、銅繊維11にねじり加工や曲げ加工等の形状付与加工が施されているので、積層時に銅繊維11同士の間に立体的かつ等方的な空隙が確保されることになる。
Next, the manufacturing method of the copper porous body 10 which is this embodiment is demonstrated with reference to the flowchart of FIG. 5, the process drawing of FIG.
First, as shown in FIG. 6, the copper fibers 11 described above are spread and filled from the spreader 31 into the graphite container 32 to stack the copper fibers 11 (copper fiber laminating step S01).
Here, in the copper fibers laminating step S01, a bulk density D P after filling is stacked a plurality of copper fibers 11 to be equal to or less than 40% of the true density D T of the copper fibers 11. In addition, in this embodiment, since shape provision processing, such as a twist process and a bending process, is given to the copper fiber 11, a three-dimensional and isotropic space | gap is ensured between the copper fibers 11 at the time of lamination | stacking. become.
 次に、黒鉛製容器32内に嵩充填された銅繊維11を、雰囲気加熱炉33に装入し、還元雰囲気、不活性ガス雰囲気又は真空雰囲気において加熱して焼結する(焼結工程S02)。
 本実施形態における焼結工程S02の加熱条件は、保持温度が500℃以上、1050℃以下、保持時間が5分以上、600分以下の範囲内とされている。
Next, the copper fiber 11 bulk-filled in the graphite container 32 is charged into the atmosphere heating furnace 33 and heated and sintered in a reducing atmosphere, an inert gas atmosphere or a vacuum atmosphere (sintering step S02). .
The heating conditions of the sintering step S02 in the present embodiment are set such that the holding temperature is 500 ° C. or higher and 1050 ° C. or lower, and the holding time is 5 minutes or longer and 600 minutes or shorter.
 ここで、焼結工程S02における保持温度が500℃未満の場合には、焼結速度が遅く焼結が十分に進行しないおそれがある。一方、焼結工程S02における保持温度が1050℃を超える場合には、銅の融点近傍にまで加熱されることになり、強度及び気孔率Pの低下がおこるおそれがある。
 以上のことから、本実施形態においては、焼結工程S02における保持温度を500℃以上、1050℃以下に設定している。なお、銅繊維11の焼結を確実に行うためには、焼結工程S02における保持温度の下限を600℃以上、保持温度の上限を1000℃以下、とすることが好ましい。
Here, when the holding temperature in sintering process S02 is less than 500 degreeC, there exists a possibility that sintering rate may be slow and sintering may not fully advance. On the other hand, when the holding temperature in sintering process S02 exceeds 1050 degreeC, it will heat even to the melting | fusing point vicinity of copper, and there exists a possibility that the intensity | strength and the porosity P may fall.
From the above, in this embodiment, the holding temperature in the sintering step S02 is set to 500 ° C. or higher and 1050 ° C. or lower. In order to reliably sinter the copper fiber 11, it is preferable that the lower limit of the holding temperature in the sintering step S02 is 600 ° C. or higher and the upper limit of the holding temperature is 1000 ° C. or lower.
 また、焼結工程S02における保持時間が5分未満の場合には、焼結速度が遅く焼結が十分に進行しないおそれがある。一方、焼結工程S02における保持時間が600分を超える場合には、焼結による熱収縮が大きくなるとともに強度が低下するおそれがある。 以上のことから、本実施形態においては、焼結工程S02における保持時間を5分以上、600分以下の範囲内に設定している。なお、銅繊維11の焼結を確実に行うためには、焼結工程S02における保持時間の下限を10分以上、保持時間の上限を180分以下とすることが好ましい。 Also, when the holding time in the sintering step S02 is less than 5 minutes, the sintering speed is slow and the sintering may not proceed sufficiently. On the other hand, when the holding time in the sintering step S02 exceeds 600 minutes, the thermal shrinkage due to the sintering may increase and the strength may decrease. From the above, in this embodiment, the holding time in the sintering step S02 is set within a range of 5 minutes or more and 600 minutes or less. In order to reliably sinter the copper fiber 11, it is preferable that the lower limit of the holding time in the sintering step S02 is 10 minutes or more and the upper limit of the holding time is 180 minutes or less.
 さらに、焼結工程S02における雰囲気は、水素ガス、RXガス、アンモニア分解ガス、窒素-水素混合ガス、アルゴン-水素混合ガス等の還元性ガスを用いてもよいし、窒素ガス、アルゴンガス等の不活性ガスを用いても良い。さらに、100Pa以下の真空雰囲気としてもよい。 Further, the atmosphere in the sintering step S02 may be a reducing gas such as hydrogen gas, RX gas, ammonia decomposition gas, nitrogen-hydrogen mixed gas, argon-hydrogen mixed gas, or nitrogen gas, argon gas, etc. An inert gas may be used. Furthermore, it is good also as a vacuum atmosphere of 100 Pa or less.
 この焼結工程S02により、銅繊維11同士の接触部分で焼結が進行し、銅繊維11同士が結合されて骨格部12が形成される。
 ここで、本実施形態では、上述のように焼結工程S02を加圧することなく還元性雰囲気、不活性雰囲気及び真空雰囲気で実施しているので、銅繊維11のバルク形状や表面形状が大きく変化することはなく、焼結前後において断面の円形度Cは殆ど変化しない。
By this sintering step S02, the sintering proceeds at the contact portion between the copper fibers 11, and the copper fibers 11 are joined together to form the skeleton portion 12.
Here, in this embodiment, since the sintering step S02 is performed in a reducing atmosphere, an inert atmosphere, and a vacuum atmosphere without applying pressure as described above, the bulk shape and the surface shape of the copper fiber 11 are greatly changed. The circularity C of the cross section hardly changes before and after sintering.
 以上のような構成とされた本実施形態である銅多孔質体10によれば、直径Rが0.01mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、200以下の範囲内とされた銅繊維11が焼結されることで骨格部12が形成されているので、銅繊維11同士の間に十分な空隙が確保されるとともに、焼結時における収縮率を抑えることができ、気孔率Pが高く、かつ寸法精度に優れている。 According to the copper porous body 10 of the present embodiment configured as described above, the diameter R is in the range of 0.01 mm or more and 1.0 mm or less, and the ratio L between the length L and the diameter R is L. Since the skeleton part 12 is formed by sintering the copper fiber 11 having a / R in the range of 4 or more and 200 or less, a sufficient gap is secured between the copper fibers 11, The shrinkage rate during sintering can be suppressed, the porosity P is high, and the dimensional accuracy is excellent.
 そして、本実施形態では、骨格部12を形成する銅繊維11の断面の円形度Cが0.2以上0.9以下の範囲内とされているので、銅繊維11同士の接触面積が確保され、焼結後の強度を向上させることが可能となるとともに、銅繊維11同士の間に空隙を確保することができ、気孔率Pを高くすることが可能となる。
 よって、本実施形態によれば、気孔率Pが50%以上95%以下の範囲内と高く、かつ、優れた強度を有する銅多孔質体10を提供することが可能となる。
And in this embodiment, since the circularity C of the cross section of the copper fiber 11 which forms the frame | skeleton part 12 shall be in the range of 0.2-0.9, the contact area of copper fibers 11 is ensured. In addition to improving the strength after sintering, it is possible to secure voids between the copper fibers 11 and to increase the porosity P.
Therefore, according to the present embodiment, it is possible to provide the copper porous body 10 having a high porosity P in the range of 50% to 95% and excellent strength.
(第二の実施形態)
 次に、本発明の第二の実施形態である銅多孔質複合部材100について、添付した図面を参照して説明する。
 図7に、本実施形態である銅多孔質複合部材100を示す。この銅多孔質複合部材100は、銅又は銅合金からなる銅板120(部材本体)と、この銅板120の表面に接合された銅多孔質体110と、を備えている。
(Second embodiment)
Next, the copper porous composite member 100 which is 2nd embodiment of this invention is demonstrated with reference to attached drawing.
In FIG. 7, the copper porous composite member 100 which is this embodiment is shown. The copper porous composite member 100 includes a copper plate 120 (member main body) made of copper or a copper alloy, and a copper porous body 110 bonded to the surface of the copper plate 120.
 ここで、本実施形態に係る銅多孔質体110は、第一の実施形態と同様に、複数の銅繊維が焼結されて骨格部が形成されたものである。そして、本実施形態に係る銅多孔質体110においては、気孔率Pが50%以上95%以下の範囲内とされている。 Here, the copper porous body 110 according to the present embodiment has a skeleton formed by sintering a plurality of copper fibers, as in the first embodiment. And in the copper porous body 110 which concerns on this embodiment, the porosity P is made into the range of 50% or more and 95% or less.
 ここで、骨格部を形成する銅繊維は、銅又は銅合金からなり、直径Rが0.01mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、200以下の範囲内とされている。本実施形態では、銅繊維は、例えばC1020(無酸素銅)で構成されている。
 そして、骨格部を形成する銅繊維は、長さ方向に直交する断面の円形度Cが0.2以上0.9以下の範囲内とされている。
 なお、本実施形態では、銅繊維には、ねじりや曲げ等の形状付与が施されている。また、本実施形態である銅多孔質体110においては、その見掛け密度比Dが銅繊維の真密度Dの50%以下とされている。
Here, the copper fiber forming the skeleton is made of copper or a copper alloy, the diameter R is in the range of 0.01 mm to 1.0 mm, and the ratio L / R of the length L to the diameter R is L / R. The range is 4 or more and 200 or less. In the present embodiment, the copper fiber is made of, for example, C1020 (oxygen-free copper).
And the copper fiber which forms a frame | skeleton part is made into the range whose circularity C of the cross section orthogonal to a length direction is 0.2 or more and 0.9 or less.
In the present embodiment, the copper fiber is given a shape such as twisting or bending. Further, in the copper porous body 110 is a present embodiment, the apparent density ratio D A is 50% or less of the true density D T of copper fibers.
 次に、本実施形態である銅多孔質複合部材100を製造する方法について、図8のフロー図を参照して説明する。
 まず、部材本体である銅板120を準備する(銅板配置工程S100)。次に、この銅板120の表面に銅繊維を分散させて積層配置する(銅繊維積層工程S101)。ここで、この銅繊維積層工程S101では、嵩密度Dが銅繊維の真密度Dの40%以下となるように複数の銅繊維を積層配置する。
Next, a method for manufacturing the copper porous composite member 100 according to the present embodiment will be described with reference to the flowchart of FIG.
First, the copper plate 120 which is a member main body is prepared (copper plate arrangement | positioning process S100). Next, copper fibers are dispersed and arranged on the surface of the copper plate 120 (copper fiber lamination step S101). Here, in the copper fibers lamination step S101, bulk density D P is stacked a plurality of copper fibers to be equal to or less than 40% of the true density D T of copper fibers.
 次に、銅板120の表面に積層配置された銅繊維同士を焼結して銅多孔質体110を成形するとともに銅多孔質体110と銅板120とを結合する(焼結及び接合工程S102)。
 本実施形態における焼結及び接合工程S102の加熱条件は、保持温度が500℃以上、1050℃以下、保持時間が5分以上、600分以下の範囲内とされている。
 さらに、焼結及び接合工程S102における雰囲気は、還元性雰囲気、不活性ガス雰囲気又は真空雰囲気とされており、具体的には、水素ガス、RXガス、アンモニア分解ガス、窒素-水素混合ガス、アルゴン-水素混合ガス等の還元性ガスを用いてもよいし、窒素ガス、アルゴンガス等の不活性ガスを用いてもよい。さらに、100Pa以下の真空雰囲気としてもよい。
Next, the copper fibers stacked and arranged on the surface of the copper plate 120 are sintered to form the copper porous body 110, and the copper porous body 110 and the copper plate 120 are bonded (sintering and joining step S102).
The heating conditions of the sintering and joining step S102 in the present embodiment are set such that the holding temperature is 500 ° C. or higher and 1050 ° C. or lower, and the holding time is 5 minutes or longer and 600 minutes or shorter.
Further, the atmosphere in the sintering and joining step S102 is a reducing atmosphere, an inert gas atmosphere, or a vacuum atmosphere, and specifically, hydrogen gas, RX gas, ammonia decomposition gas, nitrogen-hydrogen mixed gas, argon -A reducing gas such as a hydrogen mixed gas may be used, or an inert gas such as nitrogen gas or argon gas may be used. Furthermore, it is good also as a vacuum atmosphere of 100 Pa or less.
 この焼結及び接合工程S102により、銅繊維同士が焼結して銅多孔質体110が形成されるとともに、銅繊維と銅板120が焼結されて、銅多孔質体110と銅板120とが接合され、本実施形態である銅多孔質複合部材100が製造される。 By this sintering and joining step S102, the copper fibers are sintered to form the copper porous body 110, and the copper fibers and the copper plate 120 are sintered, so that the copper porous body 110 and the copper plate 120 are joined. Then, the copper porous composite member 100 according to this embodiment is manufactured.
 以上のような構成とされた本実施形態である銅多孔質複合部材100によれば、銅多孔質体110を構成する銅繊維の断面の円形度Cが0.2以上0.9以下の範囲内とされているので、銅繊維同士の接触面積が確保され、強度を向上させることが可能となるとともに、銅繊維同士の間に空隙を確保することができ、銅多孔質体110の気孔率Pを高くすることが可能となる。
 その結果、銅多孔質複合部材100を蒸発器などの熱交換部材に用いた場合の熱交換効率や保水性、蒸発効率等の各種特性を大幅に向上させることが可能となる。
According to the copper porous composite member 100 of the present embodiment configured as described above, the circularity C of the cross section of the copper fiber constituting the copper porous body 110 is in the range of 0.2 to 0.9. Since the contact area between the copper fibers is ensured and the strength can be improved, a void can be secured between the copper fibers, and the porosity of the copper porous body 110 P can be increased.
As a result, it is possible to greatly improve various characteristics such as heat exchange efficiency, water retention and evaporation efficiency when the copper porous composite member 100 is used as a heat exchange member such as an evaporator.
 また、本実施形態である銅多孔質複合部材100の製造方法によれば、銅及び銅合金からなる銅板120の表面に銅繊維を積層配置し、焼結及び接合工程S102によって焼結と接合を同時に実施しているので、製造プロセスを簡略化することが可能となる。 Moreover, according to the manufacturing method of the copper porous composite member 100 which is this embodiment, a copper fiber is laminated | stacked on the surface of the copper plate 120 which consists of copper and a copper alloy, and sintering and joining are carried out by sintering and joining process S102. Since it is carried out at the same time, the manufacturing process can be simplified.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、図6に示す製造設備を用いて、銅多孔質体を製造するものとして説明したが、これに限定されることはなく、他の製造設備を用いて銅多孔質体を製造してもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, although demonstrated as what manufactures a copper porous body using the manufacturing equipment shown in FIG. 6, it is not limited to this, Even if it manufactures a copper porous body using another manufacturing equipment Good.
 また、本実施形態においては、無酸素銅(JIS C1020)からなる銅繊維を用いるものとして説明したが、これに限定されることはなく、りん脱酸銅(JIS C1201、C1220)やタフピッチ銅(JIS C1100)などの純銅、Cr銅(C18200)やCr-Zr銅(C18150)などの高導電性の銅合金を用いてもよい。 Further, in the present embodiment, the description has been made on the assumption that copper fibers made of oxygen-free copper (JIS C1020) are used. Highly conductive copper alloys such as pure copper such as JIS C1100 and Cr copper (C18200) and Cr—Zr copper (C18150) may be used.
 さらに、第二の実施形態では、銅多孔質体と部材本体の接合部に焼結層が形成されている接合方法を望ましい方法として例示したが、これに限定されることはなく、各種溶接法(レーザー溶接法、抵抗溶接法)や低温で溶融するロウ材を用いたロウ付け法による接合方法によって、銅多孔質体と部材本体を接合してもよい。
 また、第二の実施形態では、図7に示す構造の銅多孔質複合部材を例に挙げて説明したが、これに限定されることはなく、図9から図14に示すような構造の銅多孔質複合部材であってもよい。
Furthermore, in 2nd embodiment, although the joining method in which the sintered layer was formed in the junction part of a copper porous body and a member main body was illustrated as a desirable method, it is not limited to this, Various welding methods The copper porous body and the member main body may be joined by a joining method using a laser welding method or a resistance welding method or a brazing method using a brazing material that melts at a low temperature.
In the second embodiment, the copper porous composite member having the structure shown in FIG. 7 is described as an example. However, the present invention is not limited to this, and the copper having the structure shown in FIGS. 9 to 14 is used. It may be a porous composite member.
 例えば、図9に示すように、銅多孔質体210の中に、部材本体として複数の銅管220が挿入された構造の銅多孔質複合部材200であってもよい。
 あるいは、図10に示すように、銅多孔質体310の中に、部材本体としてU字状に湾曲された銅管320が挿入された構造の銅多孔質複合部材300であってもよい。
For example, as shown in FIG. 9, a copper porous composite member 200 having a structure in which a plurality of copper tubes 220 are inserted into a copper porous body 210 as a member main body may be used.
Alternatively, as shown in FIG. 10, a copper porous composite member 300 having a structure in which a copper tube 320 curved in a U shape as a member main body is inserted into a copper porous body 310 may be used.
 さらに、図11に示すように、部材本体である銅管420の内周面に銅多孔質体410を接合した構造の銅多孔質複合部材400であってもよい。
 また、図12に示すように、部材本体である銅管520の外周面に銅多孔質体510を接合した構造の銅多孔質複合部材500であってもよい。
Furthermore, as shown in FIG. 11, the copper porous composite member 400 of the structure which joined the copper porous body 410 to the internal peripheral surface of the copper pipe 420 which is a member main body may be sufficient.
Moreover, as shown in FIG. 12, the copper porous composite member 500 of the structure which joined the copper porous body 510 to the outer peripheral surface of the copper pipe 520 which is a member main body may be sufficient.
 さらに、図13に示すように、部材本体である銅管620の内周面及び外周面に銅多孔質体610を接合した構造の銅多孔質複合部材600であってもよい。
 また、図14に示すように、部材本体である銅板720の両面に銅多孔質体710を接合した構造の銅多孔質複合部材700であってもよい。
Furthermore, as shown in FIG. 13, a copper porous composite member 600 having a structure in which a copper porous body 610 is joined to the inner peripheral surface and the outer peripheral surface of a copper tube 620 that is a member main body may be used.
Moreover, as shown in FIG. 14, the copper porous composite member 700 of the structure which joined the copper porous body 710 to both surfaces of the copper plate 720 which is a member main body may be sufficient.
 さらに、図15に示すように、部材本体である銅管820の内径に銅多孔質体810を接合した構造の銅多孔質複合部材800であってもよい。
 また、図16に示すように、部材本体である扁平銅管920の両面に銅多孔質体910を接合した構造の銅多孔質複合部材900であってもよい。
Furthermore, as shown in FIG. 15, a copper porous composite member 800 having a structure in which a copper porous body 810 is joined to the inner diameter of a copper tube 820 that is a member main body may be used.
Moreover, as shown in FIG. 16, the copper porous composite member 900 of the structure which joined the copper porous body 910 to both surfaces of the flat copper pipe | tube 920 which is a member main body may be sufficient.
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
 表1に示す焼結原料(銅繊維)を用いて、上述の実施形態で示した製造方法により、幅30mm×長さ200mm×厚さ5mmの銅多孔質焼結体を製造した。なお、原料となる銅繊維の直径R、長さLと直径Rとの比L/R、円形度Cは、以下のように測定した。
 また、得られた銅多孔質焼結体についても、骨格部を形成する銅繊維の断面の直径R、長さLと直径Rとの比L/R、円形度C、気孔率、引張強度について、以下のように評価した。評価結果を表2に示す。
Below, the result of the confirmation experiment performed in order to confirm the effect of this invention is demonstrated.
A copper porous sintered body having a width of 30 mm, a length of 200 mm, and a thickness of 5 mm was manufactured using the sintering raw material (copper fiber) shown in Table 1 by the manufacturing method described in the above embodiment. In addition, the diameter R of the copper fiber used as a raw material, the ratio L / R of the length L to the diameter R, and the circularity C were measured as follows.
Moreover, also about the obtained copper porous sintered compact, about the diameter R of the cross section of the copper fiber which forms frame | skeleton part, ratio L / R of length L and diameter R, circularity C, porosity, and tensile strength The evaluation was as follows. The evaluation results are shown in Table 2.
(銅繊維の直径R)
 焼結原料となる銅繊維、及び、銅多孔質焼結体から取り出した銅繊維の長さ方向に直交する断面を光学顕微鏡で観察し、撮影された画像を用いて画像処理によって算出された円換算径(Heywood径)R=(A/π)0.5×2の単純平均値を算出した。これを銅繊維の直径Rとした。
(Copper fiber diameter R)
A circle calculated by image processing using a photographed image by observing a cross section orthogonal to the length direction of the copper fiber taken out of the sintered raw material and the copper fiber taken from the copper porous sintered body with an optical microscope A simple average value of converted diameter (Heywood diameter) R = (A / π) 0.5 × 2 was calculated. This was designated as the diameter R of the copper fiber.
(長さLと直径Rとの比L/R)
 銅繊維の長さLは、焼結原料となる銅繊維、及び、銅多孔質焼結体から取り出した銅繊維に対してマルバーン社製粒子解析装置「Morphologi G3」を用いて画像解析し、算出された単純平均値を用いた。これを用いて、長さLと直径Rとの比L/Rを算出した。
(L / R ratio between length L and diameter R)
The length L of the copper fiber is calculated by performing image analysis on the copper fiber used as a sintering raw material and the copper fiber taken out of the copper porous sintered body using a particle analyzer “Morphology G3” manufactured by Malvern. A simple average value was used. Using this, the ratio L / R between the length L and the diameter R was calculated.
(断面の円形度C)
 焼結原料となる銅繊維、及び、銅多孔質焼結体から取り出した銅繊維の長さ方向に直交する断面を光学顕微鏡で観察し、撮影された画像を用いて画像処理によって算出された断面積A(mm)、及び周長Q(mm)の単純平均値を用いて、以下の式で算出した。 円形度C=(4πA)0.5/Q
(Circularity C of cross section)
Sections perpendicular to the length direction of the copper fibers taken out of the sintered raw material and the copper porous sintered body were observed with an optical microscope, and were calculated by image processing using the photographed images. It calculated with the following formula | equation using the area A (mm < 2 >) and the simple average value of perimeter length Q (mm). Circularity C = (4πA) 0.5 / Q
(気孔率P)
 精密天秤を用いて水中法により真密度D(g/cm)を測定し、以下の式で気孔率Pを算出した。なお、銅多孔質焼結体の質量をm(g)、銅多孔質焼結体の体積をV(cm)とした。
 気孔率P(%)=(1-(m/(V×D)))×100
(Porosity P)
The true density D T (g / cm 3 ) was measured by an underwater method using a precision balance, and the porosity P was calculated by the following equation. The mass of the copper porous sintered body was m (g), and the volume of the copper porous sintered body was V (cm 3 ).
Porosity P (%) = (1− (m / (V × D T ))) × 100
(引張強度)
 得られた銅多孔質焼結体を幅10mm×長さ100mm×厚さ5mmの試験片に加工した後、インストロン型引張試験機を用いて引張試験を行い、最大引張強度S(N/mm)を測定した。前記測定により得られた最大引張強度は見掛け密度により変化するため、本実施例では、前記最大引張強度Sを前記見掛け密度比Dで規格化した値(S/D)を相対引張強度として定義した。なお、見掛け密度比Dは、以下の式で算出した。
 D(N/mm)=m/(V×D
(Tensile strength)
The obtained copper porous sintered body was processed into a test piece having a width of 10 mm, a length of 100 mm, and a thickness of 5 mm, and then subjected to a tensile test using an Instron type tensile tester to obtain a maximum tensile strength S (N / mm 2 ) was measured. To change the maximum tensile strength apparent density obtained by the measurement, in this embodiment, the maximum tensile value of strength S normalized by the apparent density ratio D A the (S / D A) as the relative tensile strength Defined. Incidentally, the apparent density ratio D A was calculated by the following equation.
D A (N / mm 2 ) = m / (V × D T )
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明例1-15、比較例1-7のいずれにおいても、焼結原料となる銅繊維と、銅多孔質焼結体から取り出された銅繊維とで、直径R、長さLと直径Rとの比L/R、断面の円形度Cについて、大きく変化していないことが確認された。 In each of Invention Example 1-15 and Comparative Example 1-7, the copper fiber as the sintering raw material and the copper fiber taken out from the copper porous sintered body had a diameter R, a length L and a diameter R. It was confirmed that the ratio L / R and the circularity C of the cross section did not change greatly.
 ここで、銅繊維の直径Rが0.008mmとされた比較例1及び銅繊維の直径Rが1.20mmとされた比較例2においては、銅多孔質焼結体の引張強度が低くなっていることが確認される。
 また、銅繊維の長さLと直径Rとの比L/Rが2とされた比較例3においては、気孔率Pが46%と低くなった。
 さらに、銅繊維の長さLと直径Rとの比L/Rが300とされた比較例4においては、強度が低くなっている。これは、部分的に空隙が大きな箇所が存在し、局所的に強度が大幅に低下したためと推測される。
Here, in Comparative Example 1 in which the diameter R of the copper fiber is 0.008 mm and Comparative Example 2 in which the diameter R of the copper fiber is 1.20 mm, the tensile strength of the copper porous sintered body is low. It is confirmed that
In Comparative Example 3 in which the ratio L / R between the length L and the diameter R of the copper fibers was 2, the porosity P was as low as 46%.
Furthermore, in Comparative Example 4 in which the ratio L / R between the length L and the diameter R of the copper fibers is 300, the strength is low. This is presumed to be due to the presence of a portion having a large gap in part and a significant reduction in strength locally.
 銅繊維の断面の円形度Cが0.95とされた比較例5においては、引張強度が低くなった。断面の形状が真円に近く、銅繊維同士の接触が点接触となったためと推測される。 銅繊維の断面の形状が星形であって円形度Cが0.15とされた比較例6においては、引張強度が低くなった。銅繊維の表面の凹凸が大きく、銅繊維同士の接触点が少なくなったためと推測される。
 銅繊維の断面の形状が長方形であって円形度Cが0.18とされた比較例7においては、気孔率が低くなった。銅繊維の断面形状が箔状となって、銅繊維同士の間にすき間が形成されなかったためと推測される。
In Comparative Example 5 in which the circularity C of the cross section of the copper fiber was 0.95, the tensile strength was low. It is presumed that the shape of the cross section is close to a perfect circle and the contact between the copper fibers is a point contact. In Comparative Example 6 in which the shape of the cross section of the copper fiber was a star and the circularity C was 0.15, the tensile strength was low. It is presumed that the unevenness on the surface of the copper fibers is large, and the number of contact points between the copper fibers is reduced.
In Comparative Example 7 in which the cross-sectional shape of the copper fiber was rectangular and the circularity C was 0.18, the porosity was low. It is presumed that the cross-sectional shape of the copper fiber was foil-like and no gap was formed between the copper fibers.
 これに対して、本発明例の銅多孔質焼結体においては、気孔率が50%以上と高く、かつ、引張強度も十分に確保されていた。
 以上のことから、本発明によれば、高い気孔率を有するとともに十分な強度を有する高品質の銅多孔質焼結体を提供可能であることが確認された。
On the other hand, in the copper porous sintered body of the present invention example, the porosity was as high as 50% or more and the tensile strength was sufficiently ensured.
From the above, according to the present invention, it was confirmed that a high-quality copper porous sintered body having high porosity and sufficient strength can be provided.
10、110 銅多孔質体
11 銅繊維
12 骨格部
100 銅多孔質複合部材
120 銅板(部材本体)
10, 110 Copper porous body 11 Copper fiber 12 Skeletal part 100 Copper porous composite member 120 Copper plate (member main body)

Claims (6)

  1.  複数の銅繊維の焼結体からなり、三次元網目構造の骨格部を有する銅多孔質体であって、
     前記骨格部を形成する銅繊維は、銅又は銅合金からなり、直径Rが0.01mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上200以下の範囲内とされるとともに、長さ方向に直交する断面の円形度が0.2以上0.9以下の範囲内とされており、
     気孔率が50%以上95%以下の範囲内とされていることを特徴とする銅多孔質体。
    A copper porous body comprising a sintered body of a plurality of copper fibers and having a three-dimensional network structure skeleton,
    The copper fiber forming the skeleton is made of copper or a copper alloy, the diameter R is in the range of 0.01 mm or more and 1.0 mm or less, and the ratio L / R of the length L to the diameter R is 4 or more. The circularity of the cross section perpendicular to the length direction is within the range of 0.2 or more and 0.9 or less, and within the range of 200 or less,
    A porous copper body having a porosity of 50% to 95%.
  2.  部材本体と、三次元網目構造の骨格部を有する銅多孔質体との接合体からなる銅多孔質複合部材であって、
     前記銅多孔質体が請求項1に記載の銅多孔質体であることを特徴とする銅多孔質複合部材。
    A copper porous composite member comprising a joined body of a member main body and a copper porous body having a three-dimensional network structure skeleton,
    The said copper porous body is a copper porous body of Claim 1, The copper porous composite member characterized by the above-mentioned.
  3.  前記部材本体のうち前記銅多孔質体との接合面が銅又は銅合金で構成され、前記銅多孔質体と前記部材本体との接合部が焼結層とされていることを特徴とする請求項2に記載の銅多孔質複合部材。 The joint surface of the member main body with the copper porous body is made of copper or a copper alloy, and the joint portion between the copper porous body and the member main body is a sintered layer. Item 3. A copper porous composite member according to Item 2.
  4.  複数の銅繊維の焼結体からなり、三次元網目構造の骨格部を有する銅多孔質体の製造方法であって、
     直径Rが0.01mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上200以下の範囲内とされるとともに、長さ方向に直交する断面の円形度が0.2以上0.9以下の範囲内とされた前記銅繊維を積層する銅繊維積層工程と、
     積層された複数の前記銅繊維同士を焼結する焼結工程と、を備えていることを特徴とする銅多孔質体の製造方法。
    A method for producing a porous copper body comprising a sintered body of a plurality of copper fibers and having a three-dimensional network structure skeleton,
    The diameter R is in the range of 0.01 mm or more and 1.0 mm or less, the ratio L / R of the length L to the diameter R is in the range of 4 or more and 200 or less, and the cross section is orthogonal to the length direction. A copper fiber laminating step of laminating the copper fibers having a circularity of 0.2 or more and 0.9 or less,
    And a sintering step of sintering a plurality of the laminated copper fibers. A method for producing a copper porous body, comprising:
  5.  部材本体と、三次元網目構造の骨格部を有する銅多孔質体との接合体からなる銅多孔質複合部材の製造方法であって、
     請求項1に記載の銅多孔質体と、前記部材本体とを接合する接合工程を備えていることを特徴とする銅多孔質複合部材の製造方法。
    A method for producing a copper porous composite member comprising a joined body of a member main body and a copper porous body having a three-dimensional network structure skeleton,
    The manufacturing method of the copper porous composite member characterized by including the joining process which joins the copper porous body of Claim 1, and the said member main body.
  6.  前記部材本体のうち前記銅多孔質体が接合される接合面は、銅又は銅合金で構成されており、前記接合工程は、前記銅多孔質体と前記部材本体とを焼結によって接合することを特徴とする請求項5に記載の銅多孔質複合部材の製造方法。 The joining surface to which the copper porous body is joined among the member bodies is made of copper or a copper alloy, and the joining step joins the copper porous body and the member body by sintering. The method for producing a copper porous composite member according to claim 5.
PCT/JP2018/001370 2017-01-18 2018-01-18 Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member WO2018135575A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/468,020 US20190381568A1 (en) 2017-01-18 2018-01-18 Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
CN201880003797.7A CN109803778A (en) 2017-01-18 2018-01-18 The manufacturing method of the porous composite component of copper porous body, copper, the manufacturing method of copper porous body and the porous composite component of copper
EP18741976.7A EP3572169A4 (en) 2017-01-18 2018-01-18 Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
KR1020197017146A KR20190108103A (en) 2017-01-18 2018-01-18 Copper porous body, copper porous composite member, manufacturing method of copper porous body, and manufacturing method of copper porous composite member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017006749A JP6724801B2 (en) 2017-01-18 2017-01-18 Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
JP2017-006749 2017-01-18

Publications (1)

Publication Number Publication Date
WO2018135575A1 true WO2018135575A1 (en) 2018-07-26

Family

ID=62908106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001370 WO2018135575A1 (en) 2017-01-18 2018-01-18 Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member

Country Status (7)

Country Link
US (1) US20190381568A1 (en)
EP (1) EP3572169A4 (en)
JP (1) JP6724801B2 (en)
KR (1) KR20190108103A (en)
CN (1) CN109803778A (en)
TW (1) TW201842200A (en)
WO (1) WO2018135575A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176948A1 (en) * 2018-03-12 2019-09-19 株式会社フジクラ Flat heat pipe
EP4000710A1 (en) * 2020-11-20 2022-05-25 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Filter
CN117637975A (en) * 2023-12-04 2024-03-01 山东省科学院新材料研究所 Three-dimensional multistage zinc negative plate, aqueous zinc ion battery electrolyte and aqueous zinc ion battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145592A (en) 1994-11-16 1996-06-07 Hitachi Chem Co Ltd Heat transfer member and manufacture thereof
JP2000192107A (en) 1998-12-25 2000-07-11 Kogi Corp Porous metal, and its manufacture
JP3735712B2 (en) 2002-03-12 2006-01-18 独立行政法人産業技術総合研究所 Method for producing porous material and molded body thereof
WO2016199565A1 (en) * 2015-06-12 2016-12-15 三菱マテリアル株式会社 Porous copper body, porous copper composite member, method for producing porous copper body, and method for producing porous copper composite member
JP2017002379A (en) * 2015-06-12 2017-01-05 三菱マテリアル株式会社 Copper porous body, copper porous composite member, manufacturing method of copper porous body and manufacturing method of copper porous composite member
JP2017006749A (en) 2016-10-18 2017-01-12 株式会社藤商事 Game machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202671730U (en) * 2012-06-15 2013-01-16 大连渡边过滤有限公司 Spinning assembly
JP2015081399A (en) * 2013-10-24 2015-04-27 Tmtマシナリー株式会社 Filter and spinning method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145592A (en) 1994-11-16 1996-06-07 Hitachi Chem Co Ltd Heat transfer member and manufacture thereof
JP2000192107A (en) 1998-12-25 2000-07-11 Kogi Corp Porous metal, and its manufacture
JP3735712B2 (en) 2002-03-12 2006-01-18 独立行政法人産業技術総合研究所 Method for producing porous material and molded body thereof
WO2016199565A1 (en) * 2015-06-12 2016-12-15 三菱マテリアル株式会社 Porous copper body, porous copper composite member, method for producing porous copper body, and method for producing porous copper composite member
JP2017002379A (en) * 2015-06-12 2017-01-05 三菱マテリアル株式会社 Copper porous body, copper porous composite member, manufacturing method of copper porous body and manufacturing method of copper porous composite member
JP2017006749A (en) 2016-10-18 2017-01-12 株式会社藤商事 Game machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3572169A4

Also Published As

Publication number Publication date
EP3572169A1 (en) 2019-11-27
JP6724801B2 (en) 2020-07-15
KR20190108103A (en) 2019-09-23
JP2018115370A (en) 2018-07-26
EP3572169A4 (en) 2020-07-08
CN109803778A (en) 2019-05-24
TW201842200A (en) 2018-12-01
US20190381568A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
JP6011593B2 (en) Method for producing copper porous sintered body and method for producing copper porous composite member
WO2018135575A1 (en) Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
WO2016199565A1 (en) Porous copper body, porous copper composite member, method for producing porous copper body, and method for producing porous copper composite member
CN107530776B (en) Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
WO2016199571A1 (en) Porous copper body, and porous copper composite member
JP6589402B2 (en) Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
WO2017187938A1 (en) Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
WO2018212039A1 (en) Porous copper body, porous copper composite member, method for producing porous copper body, and method for producing porous copper composite member
JP6249060B2 (en) Copper porous composite material
JP6459725B2 (en) Porous aluminum sintered body, porous aluminum composite member, method for producing porous aluminum sintered body, method for producing porous aluminum composite member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197017146

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018741976

Country of ref document: EP

Effective date: 20190819