JP2017002379A - Copper porous body, copper porous composite member, manufacturing method of copper porous body and manufacturing method of copper porous composite member - Google Patents

Copper porous body, copper porous composite member, manufacturing method of copper porous body and manufacturing method of copper porous composite member Download PDF

Info

Publication number
JP2017002379A
JP2017002379A JP2015119695A JP2015119695A JP2017002379A JP 2017002379 A JP2017002379 A JP 2017002379A JP 2015119695 A JP2015119695 A JP 2015119695A JP 2015119695 A JP2015119695 A JP 2015119695A JP 2017002379 A JP2017002379 A JP 2017002379A
Authority
JP
Japan
Prior art keywords
copper
copper porous
porous body
composite member
skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015119695A
Other languages
Japanese (ja)
Other versions
JP6589402B2 (en
Inventor
喜多 晃一
Koichi Kita
晃一 喜多
純 加藤
Jun Kato
純 加藤
俊彦 幸
Toshihiko Saiwai
俊彦 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015119695A priority Critical patent/JP6589402B2/en
Publication of JP2017002379A publication Critical patent/JP2017002379A/en
Application granted granted Critical
Publication of JP6589402B2 publication Critical patent/JP6589402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper porous body having stable properties without largely changing surface quality of a skeleton section under use environment, a copper porous composite member where the copper porous body is jointed to a member body, a manufacturing method of copper porous body and a manufacturing method of a copper porous composite member.SOLUTION: There is provided a copper porous body having a skeleton section with a three-dimensional network, an oxidation reduction layer formed by an oxidation reduction treatment on a surface of the skeleton section and oxygen concentration of whole skeleton section in a range of 0.03 mass% to 1.0 mass%.SELECTED DRAWING: None

Description

本発明は、銅又は銅合金からなる銅多孔質体、及び、この銅多孔質体が部材本体に接合されてなる銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法に関するものである。   The present invention relates to a copper porous body made of copper or a copper alloy, a copper porous composite member obtained by bonding the copper porous body to a member body, a method for producing a copper porous body, and a copper porous composite. The present invention relates to a method for manufacturing a member.

上述の銅多孔質体及び銅多孔質複合部材は、例えば各種電池における電極及び集電体、熱交換器用部材、消音部材、フィルター、衝撃吸収部材等として使用されている。
例えば特許文献1には、銅又は銅合金からなる粉末を原料として、還元雰囲気で焼結することにより、三次元網目構造とした伝熱部材が提案されている。
また、特許文献2には、銅又は銅合金からなる繊維を用いて成形された多孔体を、通電接合によりパイプと接合したヒートシンクが提案されている。
さらに、特許文献3には、三次元網目構造の金属多孔体の表面を多孔質金属膜に改質した金属多孔質体が提案されている。
The above-mentioned copper porous body and copper porous composite member are used as, for example, electrodes and current collectors, heat exchanger members, silencers, filters, impact absorbing members and the like in various batteries.
For example, Patent Document 1 proposes a heat transfer member having a three-dimensional network structure by using powder made of copper or a copper alloy as a raw material and sintering in a reducing atmosphere.
Patent Document 2 proposes a heat sink in which a porous body formed using a fiber made of copper or a copper alloy is joined to a pipe by energization joining.
Further, Patent Document 3 proposes a metal porous body obtained by modifying the surface of a metal porous body having a three-dimensional network structure into a porous metal film.

特開平08−145592号公報Japanese Patent Laid-Open No. 08-145592 特開2006−253346号公報JP 2006-253346 A 特許第5166615号公報Japanese Patent No. 5166615

ところで、特許文献1及び特許文献2においては、不活性ガス雰囲気あるいは還元性雰囲気で焼結を行っており、特許文献3においては、酸化還元処理によって表面の改質を行っている。ここで、特許文献2には、銅多孔質体をホットプレートで加熱した際に黒色に変色することが報告されている。すなわち、特許文献1〜3に記載されたような銅多孔質体においては、実際に使用される環境下、特に、100℃以上の高温や水中などの弱い腐食環境下で長期間使用すると、例えば高温部と低温部とでは異なる酸化現象が起こり、局所的な特性変化が生じるおそれがあった。   By the way, in patent document 1 and patent document 2, sintering is performed in an inert gas atmosphere or a reducing atmosphere, and in patent document 3, surface modification is performed by oxidation-reduction treatment. Here, Patent Document 2 reports that when a copper porous body is heated with a hot plate, the color changes to black. That is, in the copper porous body as described in Patent Documents 1 to 3, when used for a long time in an environment where it is actually used, particularly under a weak corrosive environment such as high temperature of 100 ° C. or higher and water, for example, Different oxidation phenomena occur between the high temperature portion and the low temperature portion, and local characteristic changes may occur.

本発明は、以上のような事情を背景としてなされたものであって、使用環境下においても骨格部の表面性状が大きく変化せず、安定した特性を有する銅多孔質体、この銅多孔質体が部材本体に接合された銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法を提供することを目的としている。   The present invention has been made against the background as described above, and a copper porous body having stable characteristics in which the surface properties of the skeleton do not change greatly even under the use environment, and the copper porous body. It aims at providing the manufacturing method of the copper porous composite member, the copper porous body, and the copper porous composite member joined to the member main body.

このような課題を解決して、前記目的を達成するために、本発明の銅多孔質体は、三次元網目構造の骨格部を有する銅多孔質体であって、前記骨格部の表面に、酸化還元処理によって形成された酸化還元層を有しており、前記骨格部全体の酸素濃度が0.03mass%以上、1.0mass%以下の範囲内とされていることを特徴としている。   In order to solve such problems and achieve the above object, the copper porous body of the present invention is a copper porous body having a three-dimensional network structure skeleton part, on the surface of the skeleton part, It has a redox layer formed by a redox treatment, and the oxygen concentration of the entire skeleton is in the range of 0.03 mass% or more and 1.0 mass% or less.

この構成の銅多孔質体によれば、前記骨格部の表面に、酸化還元処理によって形成された酸化還元層を有しているので、比表面積が大きくなり、例えば多孔体骨格表面を介した熱交換効率等の各種特性を大幅に向上させることが可能となる。
そして、前記骨格部全体の酸素濃度が0.03mass%以上、1.0mass%以下の範囲内とされているので、骨格部表面に薄い酸化膜が形成されており、使用環境下においても、表面性状が変化することを抑制できる。
According to the copper porous body having this configuration, since the redox layer formed by the redox treatment is provided on the surface of the skeleton portion, the specific surface area is increased, for example, the heat passing through the porous skeleton surface. Various characteristics such as exchange efficiency can be greatly improved.
And since the oxygen concentration of the whole skeleton part is in the range of 0.03 mass% or more and 1.0 mass% or less, a thin oxide film is formed on the skeleton part surface, It can suppress that a property changes.

ここで、本発明の銅多孔質体においては、前記骨格部は、複数の銅繊維の焼結体とされていることが好ましい。
この場合、銅繊維同士の間に十分な空隙が確保されるとともに、焼結時における収縮率を抑えることができ、気孔率を比較的高くすることが可能となる。
そして、焼結体からなる骨格部全体の酸素濃度が0.03mass%以上、1.0mass%以下とされていることから、過度の酸化による銅繊維の劣化及び銅繊維同士の接合部の劣化を引き起こさず、骨格強度や熱伝導性及び電気伝導性を維持したまま、表面性状の安定化を図ることが可能である。
Here, in the copper porous body of the present invention, the skeleton is preferably a sintered body of a plurality of copper fibers.
In this case, a sufficient gap is secured between the copper fibers, the shrinkage rate during sintering can be suppressed, and the porosity can be made relatively high.
And since the oxygen concentration of the whole skeleton part made of a sintered body is 0.03 mass% or more and 1.0 mass% or less, the deterioration of the copper fiber and the deterioration of the joint part between the copper fibers due to excessive oxidation. It is possible to stabilize the surface properties while maintaining the skeletal strength, thermal conductivity, and electrical conductivity without causing them.

また、本発明の銅多孔質体においては、前記銅繊維は、直径Rが0.02mm以上1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上2500以下の範囲内とされていることが好ましい。
この場合、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされた銅繊維同士が焼結されることで構成されているので、銅繊維同士の間に十分な空隙が確保されるとともに、焼結時における収縮率を抑えることができ、気孔率を高くすることが可能となり、さらに寸法精度に優れている。
In the copper porous body of the present invention, the copper fiber has a diameter R in the range of 0.02 mm to 1.0 mm, and a ratio L / R of the length L to the diameter R of 4 to 2500. It is preferable to be within the following range.
In this case, copper fibers having a diameter R in the range of 0.02 mm to 1.0 mm and a ratio L / R of the length L to the diameter R in the range of 4 to 2500 are baked. Since it is configured by being bonded, a sufficient gap is secured between the copper fibers, the shrinkage rate during sintering can be suppressed, the porosity can be increased, and the dimensions are further increased. Excellent accuracy.

本発明の銅多孔質複合部材は、部材本体と、上述の銅多孔質体と、が接合されてなることを特徴としている。
この構成の銅多孔質複合部材によれば、表面性状の安定性に優れた銅多孔質体が部材本体と強固に接合されていることから、使用環境下において特性が大きく変化せず、銅多孔質複合部材として、優れた伝熱特性及び電気伝導性を発揮することができる。
The copper porous composite member of the present invention is characterized in that a member main body and the above-mentioned copper porous body are joined.
According to the copper porous composite member having this configuration, since the copper porous body having excellent surface texture stability is firmly joined to the member main body, the characteristics do not change greatly in the use environment, and the copper porous body As a quality composite member, excellent heat transfer characteristics and electrical conductivity can be exhibited.

ここで、本発明の銅多孔質複合部材においては、前記部材本体のうち前記銅多孔質体との接合面が銅又は銅合金で構成され、前記銅多孔質体と前記部材本体とが焼結によって接合されていることが好ましい。
この場合、前記銅多孔質体と前記部材本体とが、焼結によって一体に結合しているので、前記銅多孔質体と前記部材本体とが強固に接合されることになり、銅多孔質複合部材として優れた強度、伝熱特性及び導電性等の各種特性を発揮する。
Here, in the copper porous composite member of the present invention, the joint surface of the member main body with the copper porous body is composed of copper or a copper alloy, and the copper porous body and the member main body are sintered. It is preferable that it is joined by.
In this case, since the copper porous body and the member main body are integrally bonded by sintering, the copper porous body and the member main body are firmly bonded, and the copper porous composite Various properties such as excellent strength, heat transfer characteristics and conductivity are exhibited as members.

本発明の銅多孔質体の製造方法は、上述の銅多孔質体を製造する銅多孔質体の製造方法であって、前記骨格部を酸化還元処理して前記酸化還元層を形成する酸化還元処理工程と、前記骨格部の表面を酸化させる安定化処理工程と、を備えていることを特徴としている。   The method for producing a copper porous body according to the present invention is a method for producing a copper porous body for producing the above-described copper porous body, wherein the redox layer is formed by oxidation-reduction treatment of the skeleton portion. It is characterized by comprising a treatment step and a stabilization treatment step for oxidizing the surface of the skeleton part.

この構成の銅多孔質体の製造方法によれば、前記骨格部を酸化還元処理して前記酸化還元層を形成する酸化還元処理工程と、前記骨格部の表面を酸化させる安定化処理工程と、を備えているので、安定化処理工程において、前記骨格部の表面に酸化膜を形成することができ、使用環境下における表面性状の変化を抑制することができる。なお、この安定化処理工程においては、酸化雰囲気下での熱処理や酸性液による表面処理等を適用することができる。   According to the method for producing a copper porous body having this configuration, an oxidation-reduction treatment step for forming the oxidation-reduction layer by oxidation-reduction treatment of the skeleton portion, a stabilization treatment step for oxidizing the surface of the skeleton portion, Therefore, in the stabilization process, an oxide film can be formed on the surface of the skeleton part, and the change in surface properties under the use environment can be suppressed. In this stabilization treatment step, heat treatment under an oxidizing atmosphere, surface treatment with an acidic liquid, or the like can be applied.

ここで、本発明の銅多孔質体の製造方法においては、銅原料を焼結して前記骨格部を形成してもよい。
この場合、銅原料を焼結することで、三次元網目構造を有する骨格部を形成することができ、焼結体からなる銅多孔質体を得ることができる。また、安定化処理工程により、焼結体からなる骨格部全体の酸素濃度を0.03mass%以上、1.0mass%以下とすることができ、骨格強度や熱伝導性及び電気伝導性を維持したまま、表面性状の安定化を図ることが可能である。
Here, in the method for producing a copper porous body of the present invention, the skeleton may be formed by sintering a copper raw material.
In this case, by sintering the copper raw material, a skeleton having a three-dimensional network structure can be formed, and a copper porous body made of a sintered body can be obtained. Moreover, the oxygen concentration of the whole frame | skeleton part which consists of a sintered compact can be 0.03 mass% or more and 1.0 mass% or less by the stabilization process, and frame | skeleton intensity | strength, thermal conductivity, and electrical conductivity were maintained. It is possible to stabilize the surface texture as it is.

本発明の銅多孔質複合部材の製造方法は、部材本体と銅多孔質体とが接合された銅多孔質複合部材を製造する銅多孔質複合部材の製造方法であって、上述の銅多孔質体の製造方法によって製造された銅多孔質体と、前記部材本体とを接合する接合工程を備えていることを特徴とする。   The method for producing a copper porous composite member according to the present invention is a method for producing a copper porous composite member for producing a copper porous composite member in which a member main body and a copper porous body are joined. It has the joining process which joins the copper porous body manufactured by the manufacturing method of a body, and the said member main body, It is characterized by the above-mentioned.

この構成の銅多孔質複合部材の製造方法によれば、上述の銅多孔質体の製造方法によって製造された銅多孔質体を備えることになり、使用環境下における表面性状の変化を抑制することができ、特性の安定性に優れた銅多孔質複合部材を製造することが可能となる。   According to the method for producing a copper porous composite member having this configuration, the copper porous body produced by the above-described method for producing a copper porous body is provided, and the change in surface properties under the use environment is suppressed. Thus, it becomes possible to produce a copper porous composite member having excellent characteristic stability.

ここで、本発明の銅多孔質複合部材の製造方法においては、前記部材本体のうち前記銅多孔質体が接合される接合面は、銅又は銅合金で構成されており、前記銅多孔質体と前記部材本体とを焼結によって接合することが好ましい。
この場合、前記部材本体と前記銅多孔質体とを焼結によって一体化することができ、特性の安定性に優れた銅多孔質複合部材を製造することが可能となる。
Here, in the method for producing a copper porous composite member of the present invention, a joining surface to which the copper porous body is joined in the member body is made of copper or a copper alloy, and the copper porous body It is preferable to join the member main body by sintering.
In this case, the member main body and the copper porous body can be integrated by sintering, and a copper porous composite member having excellent characteristic stability can be manufactured.

本発明によれば、使用環境下においても骨格部の表面性状が大きく変化せず、安定した特性を有する銅多孔質体、この銅多孔質体が部材本体に接合された銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法を提供することができる。   According to the present invention, the surface property of the skeleton does not change greatly even under the use environment, and a copper porous body having stable characteristics, a copper porous composite member in which this copper porous body is joined to a member body, The manufacturing method of a copper porous body and the manufacturing method of a copper porous composite member can be provided.

本発明の第一の実施形態である銅多孔質体の拡大模式図である。It is an expansion schematic diagram of the copper porous body which is 1st embodiment of this invention. 図1に示す銅多孔質体の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the copper porous body shown in FIG. 図1に示す銅多孔質体を製造する製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process which manufactures the copper porous body shown in FIG. 本発明の第二の実施形態である銅多孔質複合部材の外観説明図である。It is external appearance explanatory drawing of the copper porous composite member which is 2nd embodiment of this invention. 図4に示す銅多孔質複合部材の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the copper porous composite member shown in FIG. 本発明の他の実施形態である銅多孔質複合部材の外観図である。It is an external view of the copper porous composite member which is other embodiment of this invention. 本発明の他の実施形態である銅多孔質複合部材の外観図である。It is an external view of the copper porous composite member which is other embodiment of this invention. 本発明の他の実施形態である銅多孔質複合部材の外観図である。It is an external view of the copper porous composite member which is other embodiment of this invention. 本発明の他の実施形態である銅多孔質複合部材の外観図である。It is an external view of the copper porous composite member which is other embodiment of this invention. 本発明の他の実施形態である銅多孔質複合部材の外観図である。It is an external view of the copper porous composite member which is other embodiment of this invention. 本発明の他の実施形態である銅多孔質複合部材の外観図である。It is an external view of the copper porous composite member which is other embodiment of this invention.

以下に、本発明の実施形態である銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法について、添付した図面を参照して説明する。   Hereinafter, a copper porous body, a copper porous composite member, a copper porous body manufacturing method, and a copper porous composite member manufacturing method according to embodiments of the present invention will be described with reference to the accompanying drawings. .

(第一の実施形態)
まず、本発明の第一の実施形態である銅多孔質体10について、図1から図3を参照して説明する。
本実施形態である銅多孔質体10は、図1に示すように、複数の銅繊維11が焼結された骨格部12を有している。
(First embodiment)
First, the copper porous body 10 which is 1st embodiment of this invention is demonstrated with reference to FIGS. 1-3.
The copper porous body 10 which is this embodiment has the frame | skeleton part 12 in which the some copper fiber 11 was sintered as shown in FIG.

ここで、銅繊維11は、銅又は銅合金からなり、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされている。本実施形態では、銅繊維11は、例えばC1100(タフピッチ銅)で構成されている。
なお、本実施形態では、銅繊維11には、ねじりや曲げ等の形状付与が施されている。また、本実施形態である銅多孔質体10においては、その見掛け密度Dが銅繊維11の真密度Dの51%以下とされている。銅繊維11の形状については、前記見掛け密度Dが銅繊維11の真密度Dの51%以下となる限りにおいて、直線状、曲線状など任意であるが、銅繊維11の少なくとも一部に、ねじり加工や曲げ加工等により所定の形状付与加工をされたものを用いると、繊維同士の間の空隙形状を立体的かつ等方的に形成させることができ、その結果、銅多孔質体10の伝熱特性及び導電性等の各種特性の等方性向上に繋がる。
Here, the copper fiber 11 is made of copper or a copper alloy, the diameter R is in the range of 0.02 mm or more and 1.0 mm or less, and the ratio L / R of the length L to the diameter R is 4 or more and 2500. Within the following range. In this embodiment, the copper fiber 11 is comprised by C1100 (tough pitch copper), for example.
In the present embodiment, the copper fiber 11 is given a shape such as twisting or bending. Further, in the copper porous body 10 is this embodiment, the apparent density D A is less 51% of the true density D T of the copper fibers 11. The shape of the copper fiber 11 is arbitrary as long as the apparent density D A is 51% or less of the true density DT of the copper fiber 11. When using a material that has been subjected to a predetermined shape-forming process by twisting, bending, or the like, the void shape between the fibers can be formed three-dimensionally and isotropically. As a result, the copper porous body 10 This leads to an improvement in isotropy of various characteristics such as heat transfer characteristics and conductivity.

なお、銅繊維11は、引き抜き法、コイル切削法、ワイヤ切削法、溶融紡糸法などにより、所定の換算繊維径に調整され、これをさらに所定のL/Rを満たすように長さを調整して切断することにより、製造される。
ここで、換算繊維径Rとは、各繊維の断面積Aを元に算出される値であり、断面形状に関わらず真円であると仮定し、以下の式により定義されるものである。
R=(A/π)1/2×2
The copper fiber 11 is adjusted to a predetermined converted fiber diameter by a drawing method, a coil cutting method, a wire cutting method, a melt spinning method, etc., and the length is further adjusted to satisfy a predetermined L / R. It is manufactured by cutting.
Here, the converted fiber diameter R is a value calculated based on the cross-sectional area A of each fiber, and is defined by the following equation assuming that it is a perfect circle regardless of the cross-sectional shape.
R = (A / π) 1/2 × 2

また、本実施形態である銅多孔質体10においては、骨格部12(銅繊維11)の表面に酸化還元層が形成されており、銅繊維11、11同士の結合部においては、互いの表面に形成された酸化還元層同士が一体に結合している。
なお、この酸化還元層は、ポーラスな構造とされており、骨格部12(銅繊維11)の表面に微細な凹凸を生じさせている。これにより、銅多孔質体10全体の比表面積が0.01m/g以上とされ、気孔率が50%以上90%以下の範囲内とされている。
Moreover, in the copper porous body 10 which is this embodiment, the oxidation reduction layer is formed in the surface of the frame | skeleton part 12 (copper fiber 11), and in the coupling | bond part of copper fibers 11 and 11, mutual surface The redox layers formed on each other are bonded together.
The redox layer has a porous structure, and has fine irregularities on the surface of the skeleton 12 (copper fibers 11). Thereby, the specific surface area of the whole copper porous body 10 shall be 0.01 m < 2 > / g or more, and the porosity shall be in the range of 50% or more and 90% or less.

そして、本実施形態である銅多孔質体10においては、骨格部12全体の酸素濃度が0.03mass%以上、1.0mass%以下の範囲内とされている。
本実施形態においては、骨格部12の表面に酸化膜が形成されている。
And in the copper porous body 10 which is this embodiment, the oxygen concentration of the whole frame | skeleton part 12 is made into the range of 0.03 mass% or more and 1.0 mass% or less.
In the present embodiment, an oxide film is formed on the surface of the skeleton part 12.

次に、本実施形態である銅多孔質体10の製造方法について、図2のフロー図及び図3の工程図等を参照して説明する。
まず、図3に示すように、均質化処理を施した銅繊維11を、散布機31からステンレス製容器32内に向けて散布して嵩充填し、銅繊維11を積層する(銅繊維積層工程S01)。
ここで、この銅繊維積層工程S01では、充填後の嵩密度Dが銅繊維11の真密度Dの50%以下となるように複数の銅繊維11を積層配置する。なお、本実施形態では、銅繊維11にねじり加工や曲げ加工等の形状付与加工が施されているので、積層時に銅繊維11同士の間に立体的かつ等方的な空隙が確保されることになる。
Next, the manufacturing method of the copper porous body 10 which is this embodiment is demonstrated with reference to the flowchart of FIG. 2, the process drawing of FIG.
First, as shown in FIG. 3, the homogenized copper fiber 11 is sprinkled from the spreader 31 toward the stainless steel container 32 to be bulk-filled, and the copper fiber 11 is laminated (copper fiber laminating step). S01).
Here, in the copper fibers laminating step S01, a bulk density D P after filling is stacked a plurality of copper fibers 11 to be equal to or less than 50% of the true density D T of the copper fibers 11. In addition, in this embodiment, since shape provision processing, such as a twist process and a bending process, is given to the copper fiber 11, a three-dimensional and isotropic space | gap is ensured between the copper fibers 11 at the time of lamination | stacking. become.

次に、ステンレス製容器32内に嵩充填された銅繊維11を酸化還元処理する(酸化還元処理工程S02)。
この酸化還元処理工程S02においては、図2及び図3に示すように、銅繊維11の酸化処理を行う酸化処理工程S21と、酸化処理された銅繊維11を還元して焼結する還元処理工程S22と、を備えている。
Next, the copper fiber 11 bulk-filled in the stainless steel container 32 is subjected to oxidation reduction treatment (oxidation reduction treatment step S02).
In this oxidation-reduction treatment step S02, as shown in FIGS. 2 and 3, an oxidation treatment step S21 for carrying out the oxidation treatment of the copper fibers 11, and a reduction treatment step for reducing and sintering the oxidized copper fibers 11 S22.

本実施形態では、図3に示すように、銅繊維11が充填されたステンレス製容器32を加熱炉33内に装入し、大気雰囲気で加熱して銅繊維11を酸化処理する(酸化処理工程S21)。この酸化処理工程S21により、銅繊維11の表面に、例えば厚さ1μm以上、100μm以下の酸化物層が形成される。
本実施形態における酸化処理工程S21の条件は、保持温度が520℃以上、1050℃以下、保持時間が5分以上、300分以下の範囲内とされている。
In this embodiment, as shown in FIG. 3, the stainless steel container 32 filled with the copper fibers 11 is charged into a heating furnace 33 and heated in an air atmosphere to oxidize the copper fibers 11 (oxidation treatment step). S21). By this oxidation treatment step S21, an oxide layer having a thickness of 1 μm or more and 100 μm or less, for example, is formed on the surface of the copper fiber 11.
The conditions of the oxidation treatment step S21 in the present embodiment are set such that the holding temperature is 520 ° C. or higher and 1050 ° C. or lower, and the holding time is 5 minutes or longer and 300 minutes or shorter.

ここで、酸化処理工程S21における保持温度が520℃未満の場合には、銅繊維11の表面に酸化物層が十分に形成されないおそれがある。一方、酸化処理工程S21における保持温度が1050℃を超える場合には、銅繊維11の内部にまで酸化が進行してしまうおそれがある。
以上のことから、本実施形態においては、酸化処理工程S21における保持温度を520℃以上、1050℃以下に設定している。なお、銅繊維11の表面に酸化物層を確実に形成するためには、酸化処理工程S21における保持温度の下限を600℃以上、保持温度の上限を1000℃以下、とすることが好ましい。
Here, when the holding temperature in the oxidation treatment step S <b> 21 is less than 520 ° C., the oxide layer may not be sufficiently formed on the surface of the copper fiber 11. On the other hand, when the holding temperature in the oxidation treatment step S <b> 21 exceeds 1050 ° C., the oxidation may progress to the inside of the copper fiber 11.
From the above, in the present embodiment, the holding temperature in the oxidation treatment step S21 is set to 520 ° C. or higher and 1050 ° C. or lower. In order to reliably form the oxide layer on the surface of the copper fiber 11, it is preferable that the lower limit of the holding temperature in the oxidation treatment step S21 is 600 ° C. or higher and the upper limit of the holding temperature is 1000 ° C. or lower.

また、酸化処理工程S21における保持時間が5分未満の場合には、銅繊維11の表面に酸化物層が十分に形成されないおそれがある。一方、酸化処理工程S21における保持時間が300分を超える場合には、銅繊維11の内部にまで酸化が進行してしまうおそれがある。
以上のことから、本実施形態においては、酸化処理工程S21における保持時間を5分以上、300分以下の範囲内に設定している。なお、銅繊維11の表面に酸化物層を確実に形成するためには、酸化処理工程S21における保持時間の下限を10分以上とすることが好ましい。また、銅繊維11の内部にまで酸化することを確実に抑制するためには、酸化処理工程S21における保持時間の上限を100分以下とすることが好ましい。
Moreover, when the retention time in the oxidation treatment step S <b> 21 is less than 5 minutes, the oxide layer may not be sufficiently formed on the surface of the copper fiber 11. On the other hand, when the holding time in the oxidation treatment step S <b> 21 exceeds 300 minutes, the oxidation may progress to the inside of the copper fiber 11.
From the above, in this embodiment, the holding time in the oxidation treatment step S21 is set within a range of 5 minutes or more and 300 minutes or less. In addition, in order to form an oxide layer reliably on the surface of the copper fiber 11, it is preferable that the minimum of the retention time in oxidation treatment process S21 shall be 10 minutes or more. Moreover, in order to suppress reliably oxidizing to the inside of the copper fiber 11, it is preferable to make the upper limit of the retention time in oxidation treatment process S21 into 100 minutes or less.

次に、本実施形態では、図3に示すように、酸化処理工程S21を実施した後、銅繊維11が充填されたステンレス製容器32を加熱炉34内に装入し、還元雰囲気で加熱して、酸化された銅繊維11を還元処理して酸化還元層を形成するとともに、銅繊維11同士を結合して骨格部12を形成する(還元処理工程S22)。
本実施形態における還元処理工程S22の条件は、雰囲気がアルゴンと水素の混合ガス雰囲気、保持温度が600℃以上、1080℃以下、保持時間が5分以上、300分以下の範囲内とされている。
Next, in this embodiment, as shown in FIG. 3, after performing the oxidation treatment step S21, the stainless steel container 32 filled with the copper fibers 11 is charged into the heating furnace 34 and heated in a reducing atmosphere. Then, the oxidized copper fibers 11 are reduced to form a redox layer, and the copper fibers 11 are joined together to form the skeleton part 12 (reduction treatment step S22).
The conditions of the reduction treatment step S22 in the present embodiment are such that the atmosphere is a mixed gas atmosphere of argon and hydrogen, the holding temperature is 600 ° C. or higher and 1080 ° C. or lower, and the holding time is 5 minutes or longer and 300 minutes or shorter. .

ここで、還元処理工程S22における保持温度が600℃未満の場合には、銅繊維11の表面に形成された酸化物層を十分に還元できないおそれがある。一方、還元処理工程S22における保持温度が1080℃を超える場合には、銅の融点近傍にまで加熱されることになり、強度及び気孔率の低下がおこるおそれがある。
以上のことから、本実施形態においては、還元処理工程S22における保持温度を600℃以上、1080℃以下に設定している。なお、銅繊維11の表面に形成された酸化物層を確実に還元するためには、還元処理工程S22における保持温度の下限を650℃以上とすることが好ましい。また、強度及び気孔率の低下を確実に抑制するためには、還元処理工程S22における保持温度の上限を1050℃以下とすることが好ましい。
Here, when the holding temperature in the reduction treatment step S <b> 22 is less than 600 ° C., the oxide layer formed on the surface of the copper fiber 11 may not be sufficiently reduced. On the other hand, when the holding temperature in the reduction treatment step S22 exceeds 1080 ° C., it is heated to the vicinity of the melting point of copper, and the strength and the porosity may be reduced.
From the above, in this embodiment, the holding temperature in the reduction treatment step S22 is set to 600 ° C. or higher and 1080 ° C. or lower. In order to reliably reduce the oxide layer formed on the surface of the copper fiber 11, the lower limit of the holding temperature in the reduction treatment step S22 is preferably set to 650 ° C. or higher. Moreover, in order to suppress reliably the fall of intensity | strength and a porosity, it is preferable to make the upper limit of the retention temperature in reduction process process S22 into 1050 degrees C or less.

また、還元処理工程S22における保持時間が5分未満の場合には、銅繊維11の表面に形成された酸化物層を十分に還元できないおそれがあるとともに、焼結が不十分となるおそれがある。一方、還元処理工程S22における保持時間が300分を超える場合には、焼結による熱収縮が大きくなるとともに強度が低下するおそれがある。
以上のことから、本実施形態においては、還元処理工程S22における保持時間を5分以上、300分以下の範囲内に設定している。なお、銅繊維11の表面に形成された酸化物層を確実に還元するとともに焼結を十分に進行させるためには、還元処理工程S22における保持時間の下限を10分以上とすることが好ましい。また、焼結による熱収縮や強度低下を確実に抑制するためには、還元処理工程S22における保持時間の上限を100分以下とすることが好ましい。
Further, when the holding time in the reduction treatment step S22 is less than 5 minutes, the oxide layer formed on the surface of the copper fiber 11 may not be sufficiently reduced, and the sintering may be insufficient. . On the other hand, when the holding time in the reduction treatment step S22 exceeds 300 minutes, the thermal shrinkage due to sintering increases and the strength may decrease.
From the above, in this embodiment, the holding time in the reduction treatment step S22 is set within a range of 5 minutes or more and 300 minutes or less. In order to surely reduce the oxide layer formed on the surface of the copper fiber 11 and sufficiently advance the sintering, the lower limit of the holding time in the reduction treatment step S22 is preferably set to 10 minutes or more. Moreover, in order to suppress reliably the heat shrinkage and strength reduction by sintering, it is preferable that the upper limit of the holding time in the reduction treatment step S22 is 100 minutes or less.

この酸化処理工程S21及び還元処理工程S22により、銅繊維11(骨格部12)の表面には、酸化還元層が形成され、微細な凹凸が生じることになる。
また、酸化処理工程S21によって銅繊維11の表面に酸化物層が形成され、この酸化物層によって複数の銅繊維11同士が架橋される。その後、還元処理工程S22を行うことで、銅繊維11の表面に形成された酸化物層が還元されて上述の酸化還元層が形成されるとともに、この酸化還元層同士が結合することにより、銅繊維11同士が焼結されて骨格部12が形成される。
By the oxidation treatment step S21 and the reduction treatment step S22, an oxidation reduction layer is formed on the surface of the copper fiber 11 (frame portion 12), and fine irregularities are generated.
Moreover, an oxide layer is formed on the surface of the copper fiber 11 by the oxidation treatment step S21, and the plurality of copper fibers 11 are cross-linked by the oxide layer. Thereafter, by performing the reduction treatment step S22, the oxide layer formed on the surface of the copper fiber 11 is reduced to form the above-described oxidation-reduction layer, and the oxidation-reduction layers are bonded to each other. The fibers 11 are sintered to form the skeleton part 12.

次に、酸化還元処理工程S02によって骨格部12及び酸化還元層を形成した後、銅繊維11が充填されたステンレス製容器32を酸化雰囲気の熱処理炉35内に装入し、骨格部12の安定化処理を行う(安定化処理工程S03)。
本実施形態における安定化処理工程S03の条件は、大気雰囲気で、保持温度が250℃以上、450℃以下、保持時間が5分以上、120分以下とされている。
この安定化処理工程S03により、骨格部12全体の酸素濃度が0.03mass%以上、1.0mass%以下の範囲内とされる。
Next, after forming the skeleton part 12 and the redox layer by the oxidation-reduction treatment step S02, the stainless steel container 32 filled with the copper fibers 11 is charged into the heat treatment furnace 35 in an oxidizing atmosphere to stabilize the skeleton part 12. The stabilization process is performed (stabilization process step S03).
The conditions of the stabilization treatment step S03 in the present embodiment are an air atmosphere, a holding temperature of 250 ° C. or higher and 450 ° C. or lower, and a holding time of 5 minutes or longer and 120 minutes or shorter.
By this stabilization processing step S03, the oxygen concentration of the entire skeleton part 12 is set in the range of 0.03 mass% or more and 1.0 mass% or less.

ここで、安定化処理工程S03における保持温度が250℃未満の場合には、酸化が不十分となり酸素濃度を0.03mass%以上とすることができないおそれがある。一方、安定化処理工程S03における保持温度が450℃を超える場合には、酸化が進行して、酸素濃度が1.0mass%を超えるおそれがある。
以上のことから、本実施形態においては、安定化処理工程S03における保持温度を250℃以上、450℃以下に設定している。
Here, when the holding temperature in the stabilization treatment step S03 is less than 250 ° C., the oxidation is insufficient and the oxygen concentration may not be 0.03 mass% or more. On the other hand, when the holding temperature in the stabilization treatment step S03 exceeds 450 ° C., the oxidation proceeds and the oxygen concentration may exceed 1.0 mass%.
From the above, in this embodiment, the holding temperature in the stabilization processing step S03 is set to 250 ° C. or higher and 450 ° C. or lower.

また、安定化処理工程S03における保持時間が5分未満の場合には、骨格部12の表面に十分な酸化膜を形成することができないおそれがある。一方、安定化処理工程S03における保持時間が120分を超える場合には、酸化が進行して、酸素濃度が1.0mass%を超えるおそれがある。
以上のことから、本実施形態においては、安定化処理工程S03における保持時間を5分以上、120分以下の範囲内に設定している。なお、骨格部12全体の酸素濃度が0.03mass%以上、1.0mass%以下の範囲内に確実に制御するためには、安定化処理工程S03における保持時間の下限は15分以上、上限は100分以下とすることが好ましい。
Further, when the holding time in the stabilization treatment step S03 is less than 5 minutes, there is a possibility that a sufficient oxide film cannot be formed on the surface of the skeleton part 12. On the other hand, when the retention time in the stabilization treatment step S03 exceeds 120 minutes, the oxidation proceeds and the oxygen concentration may exceed 1.0 mass%.
From the above, in this embodiment, the holding time in the stabilization processing step S03 is set within a range of 5 minutes or more and 120 minutes or less. In order to surely control the oxygen concentration of the entire skeleton part 12 within a range of 0.03 mass% or more and 1.0 mass% or less, the lower limit of the holding time in the stabilization treatment step S03 is 15 minutes or more, and the upper limit is It is preferable to set it as 100 minutes or less.

以上のような製造方法により、銅繊維11、11同士が焼結されて骨格部12が形成されるとともに、骨格部12(銅繊維11)の表面に酸化還元層が形成される。そして、安定化処理工程S03によって、骨格部12全体の酸素濃度が0.03mass%以上、1.0mass%以下の範囲内とされ、本実施形態である銅多孔質体10が製造される。   According to the manufacturing method as described above, the copper fibers 11 and 11 are sintered to form the skeleton portion 12, and a redox layer is formed on the surface of the skeleton portion 12 (copper fiber 11). And the oxygen concentration of the whole frame | skeleton part 12 shall be in the range of 0.03 mass% or more and 1.0 mass% or less by stabilization process S03, and the copper porous body 10 which is this embodiment is manufactured.

以上のような構成とされた本実施形態である銅多孔質体10によれば、骨格部12全体の酸素濃度が0.03mass%以上、1.0mass%以下の範囲内とされているので、骨格部表面に薄い酸化膜が形成されており、優れた骨格強度や熱伝導性及び電気伝導性を維持したままで、100℃以上の高温や水中などの弱い腐食環境下で長期間使用した場合であっても、表面性状が大きく変化することを抑制できる。   According to the copper porous body 10 of the present embodiment configured as described above, the oxygen concentration of the entire skeleton 12 is in the range of 0.03 mass% or more and 1.0 mass% or less. When a thin oxide film is formed on the surface of the skeletal part, and it is used for a long time in a weak corrosive environment such as high temperature of 100 ° C or higher or water while maintaining excellent skeletal strength, thermal conductivity and electrical conductivity. Even so, it is possible to suppress the surface property from changing greatly.

ここで、骨格部12全体の酸素濃度が0.03mass%未満の場合、骨格部12の表面に十分な酸化膜が形成されず、使用環境下において表面性状が変化してしまうおそれがある。一方、骨格部12全体の酸素濃度が1.0mass%を超える場合には、骨格部12を形成する銅繊維11の内部まで酸化が進み、結果、骨格部12自体の強度が低下してしまうおそれがある。
以上のことから、本実施形態では、骨格部12全体の酸素濃度を0.03mass%以上、1.0mass%以下の範囲内に設定している。なお、確実に骨格部12の表面性状を安定させるためには、骨格部12全体の酸素濃度の下限を0.05mass%以上、上限を0.8mass%以下とすることが好ましい。
Here, when the oxygen concentration of the whole skeleton part 12 is less than 0.03 mass%, a sufficient oxide film is not formed on the surface of the skeleton part 12, and there is a possibility that the surface properties may change in the use environment. On the other hand, when the oxygen concentration of the entire skeleton part 12 exceeds 1.0 mass%, oxidation proceeds to the inside of the copper fiber 11 forming the skeleton part 12, and as a result, the strength of the skeleton part 12 itself may be reduced. There is.
From the above, in this embodiment, the oxygen concentration of the entire skeleton part 12 is set within a range of 0.03 mass% or more and 1.0 mass% or less. In order to reliably stabilize the surface properties of the skeleton part 12, it is preferable to set the lower limit of the oxygen concentration of the entire skeleton part 12 to 0.05 mass% or more and the upper limit to 0.8 mass% or less.

また、本実施形態である銅多孔質体10によれば、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされた銅繊維11が焼結されることで骨格部12が形成されているので、銅繊維11同士の間に十分な空隙が確保されるとともに、焼結時における収縮率を抑えることができ、気孔率の高く、かつ寸法精度に優れている。   Further, according to the copper porous body 10 of the present embodiment, the diameter R is in the range of 0.02 mm or more and 1.0 mm or less, and the ratio L / R of the length L to the diameter R is 4 or more, Since the skeleton part 12 is formed by sintering the copper fiber 11 within the range of 2500 or less, a sufficient gap is secured between the copper fibers 11 and the shrinkage rate during sintering The porosity is high and the dimensional accuracy is excellent.

また、本実施形態においては、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされた銅繊維11を、嵩密度Dが銅繊維11の真密度Dの50%以下となるように積層配置する銅繊維積層工程S01を備えているので、銅繊維11同士の間の空隙を確保することができ、収縮を抑えることが可能となる。これにより、気孔率の高く寸法精度に優れた銅多孔質体10を製造することができる。
具体的には、嵩密度Dが銅繊維11の真密度Dの50%以下となるように積層配置して焼結することによって製造された銅多孔質体10の見掛け密度Dが銅繊維11の真密度Dの51%以下とされているので、焼結時の収縮が抑制されており、高い気孔率を確保することが可能となる。
In the present embodiment, the diameter R is in the range of 0.02 mm to 1.0 mm, and the ratio L / R of the length L to the diameter R is in the range of 4 to 2500. copper fibers 11, since the bulk density D P is provided with a copper fiber lamination step S01 of stacked so that more than 50% of the true density D T of the copper fibers 11, ensuring a gap between the copper fibers 11 to each other It is possible to suppress shrinkage. Thereby, the copper porous body 10 with high porosity and excellent dimensional accuracy can be manufactured.
Specifically, the bulk density D P is the true density D apparent density D A copper porous body 10 produced by sintering and stacked so that more than 50% of T copper fibers 11 Copper Since it is 51% or less of the true density DT of the fiber 11, the shrinkage | contraction at the time of sintering is suppressed and it becomes possible to ensure a high porosity.

ここで、銅繊維11の直径Rが0.02mm未満の場合には、銅繊維11同士の接合面積が小さく、焼結強度が不足するおそれがある。一方、銅繊維11の直径Rが1.0mmを超える場合には、銅繊維11同士が接触する接点の数が不足し、やはり、焼結強度が不足するおそれがある。
以上のことから、本実施形態では、銅繊維11の直径Rを0.02mm以上、1.0mm以下の範囲内に設定している。なお、さらなる強度向上を図る場合には、銅繊維11の直径Rの下限を0.05mm以上とすることが好ましく、銅繊維11の直径Rの上限を0.5mm以下とすることが好ましい。
Here, when the diameter R of the copper fibers 11 is less than 0.02 mm, the bonding area between the copper fibers 11 is small, and the sintered strength may be insufficient. On the other hand, when the diameter R of the copper fibers 11 exceeds 1.0 mm, the number of contacts with which the copper fibers 11 are in contact with each other is insufficient, and the sintering strength may be insufficient.
From the above, in this embodiment, the diameter R of the copper fiber 11 is set in the range of 0.02 mm or more and 1.0 mm or less. In order to further improve the strength, the lower limit of the diameter R of the copper fiber 11 is preferably 0.05 mm or more, and the upper limit of the diameter R of the copper fiber 11 is preferably 0.5 mm or less.

また、銅繊維11の長さLと直径Rとの比L/Rが4未満の場合には、積層配置したときに嵩密度Dが銅繊維11の真密度Dの50%以下とすることが難しく、気孔率の高い銅多孔質体10を得ることが困難となるおそれがある。一方、銅繊維11の長さLと直径Rとの比L/Rが2500を超える場合には、銅繊維11を均一に分散させることができなくなり、均一な気孔率を有する銅多孔質体10を得ることが困難となるおそれがある。
以上のことから、本実施形態では、銅繊維11の長さLと直径Rとの比L/Rを4以上、2500以下の範囲内に設定している。なお、さらなる気孔率の向上を図る場合には、銅繊維11の長さLと直径Rとの比L/Rの下限を10以上とすることが好ましい。また、確実に気孔率が均一な銅多孔質体10を得るためには、銅繊維11の長さLと直径Rとの比L/R上限を500以下とすることが好ましい。
Further, when the ratio L / R of the length L and the diameter R of the copper fibers 11 is less than 4, bulk density D P is 50% or less of the true density D T copper fibers 11 when stacked It is difficult to obtain a copper porous body 10 having a high porosity. On the other hand, when the ratio L / R between the length L and the diameter R of the copper fiber 11 exceeds 2500, the copper fiber 11 cannot be uniformly dispersed, and the copper porous body 10 having a uniform porosity. May be difficult to obtain.
From the above, in this embodiment, the ratio L / R between the length L and the diameter R of the copper fiber 11 is set in the range of 4 or more and 2500 or less. In order to further improve the porosity, the lower limit of the ratio L / R between the length L and the diameter R of the copper fiber 11 is preferably 10 or more. Moreover, in order to obtain the copper porous body 10 with a uniform porosity, it is preferable to set the ratio L / R upper limit of the length L and the diameter R of the copper fiber 11 to 500 or less.

また、本実施形態である銅多孔質体の製造方法によれば、銅繊維11を酸化させる酸化処理工程S21と、酸化された銅繊維11を還元する還元処理工程S22と、を備えているので、銅繊維11(骨格部12)の表面に酸化還元層を形成することができる。
そして、本実施形態である銅多孔質体の製造方法によれば、骨格部12を酸化させる安定化処理工程S03を備えているので、骨格部12全体の酸素濃度を0.03mass%以上、1.0mass%以下の範囲内とすることができる。
Moreover, according to the manufacturing method of the copper porous body which is this embodiment, since the oxidation treatment process S21 which oxidizes the copper fiber 11 and the reduction treatment process S22 which reduces the oxidized copper fiber 11 are provided. A redox layer can be formed on the surface of the copper fiber 11 (skeleton part 12).
And according to the manufacturing method of the copper porous body which is this embodiment, since the stabilization process process S03 which oxidizes the frame part 12 is provided, the oxygen concentration of the whole frame part 12 is 0.03 mass% or more, 1 It can be within the range of 0.0 mass% or less.

(第二の実施形態)
次に、本発明の第二の実施形態である銅多孔質複合部材100について、添付した図面を参照して説明する。
図4に、本実施形態である銅多孔質複合部材100を示す。この銅多孔質複合部材100は、銅又は銅合金からなる銅板120(部材本体)と、この銅板120の表面に接合された銅多孔質体110と、を備えている。
(Second embodiment)
Next, the copper porous composite member 100 which is 2nd embodiment of this invention is demonstrated with reference to attached drawing.
In FIG. 4, the copper porous composite member 100 which is this embodiment is shown. The copper porous composite member 100 includes a copper plate 120 (member main body) made of copper or a copper alloy, and a copper porous body 110 bonded to the surface of the copper plate 120.

ここで、本実施形態である銅多孔質体110は、第一の実施形態と同様に、複数の銅繊維が焼結されて骨格部が形成されたものである。ここで、銅繊維は、銅又は銅合金からなり、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされている。本実施形態では、銅繊維は、例えばC1100(タフピッチ銅)で構成されている。
なお、本実施形態では、銅繊維には、ねじりや曲げ等の形状付与が施されている。また、本実施形態である銅多孔質体110においては、その見掛け密度Dが銅繊維の真密度Dの51%以下とされている。
Here, the copper porous body 110 according to the present embodiment is obtained by sintering a plurality of copper fibers to form a skeleton portion, as in the first embodiment. Here, the copper fiber is made of copper or a copper alloy, the diameter R is in the range of 0.02 mm to 1.0 mm, and the ratio L / R of the length L to the diameter R is 4 or more and 2500 or less. It is within the range. In the present embodiment, the copper fiber is made of, for example, C1100 (tough pitch copper).
In the present embodiment, the copper fiber is given a shape such as twisting or bending. Further, in the copper porous body 110 is a present embodiment, the apparent density D A is less 51% of the true density D T of copper fibers.

さらに、本実施形態においては、銅多孔質体110を構成する銅繊維(骨格部)及び銅板120の表面に、後述するように酸化還元処理(酸化処理及び還元処理)を行うことによって酸化還元層が形成されており、これにより、銅繊維(骨格部)及び銅板120の表面に微細な凹凸が生じている。本実施形態では、銅多孔質体110全体の比表面積が0.01m/g以上とされ、気孔率が50%以上90%以下の範囲内とされている。
また、銅多孔質体110を構成する銅繊維と銅板120の表面との結合部においては、銅繊維の表面に形成された酸化還元層と銅板の表面に形成された酸化還元層とが一体に結合している。
そして、本実施形態においては、銅多孔質体110の骨格部全体の酸素濃度が0.03mass%以上、1.0mass%以下の範囲内とされている。
Furthermore, in this embodiment, a redox layer is formed by performing redox treatment (oxidation treatment and reduction treatment) on the surfaces of the copper fibers (skeleton part) and the copper plate 120 constituting the copper porous body 110 as described later. As a result, fine irregularities are formed on the surfaces of the copper fibers (skeleton part) and the copper plate 120. In the present embodiment, the specific surface area of the entire copper porous body 110 is 0.01 m 2 / g or more, and the porosity is in the range of 50% to 90%.
Moreover, in the joint part of the copper fiber which comprises the copper porous body 110, and the surface of the copper plate 120, the oxidation reduction layer formed in the surface of the copper fiber and the oxidation reduction layer formed in the surface of the copper plate are united. Are connected.
And in this embodiment, the oxygen concentration of the whole frame | skeleton part of the copper porous body 110 is made into the range of 0.03 mass% or more and 1.0 mass% or less.

次に、本実施形態である銅多孔質複合部材100を製造する方法について、図5のフロー図を参照して説明する。
まず、部材本体である銅板120を準備する(銅板配置工程S100)。次に、この銅板120の表面に銅繊維を分散させて積層配置する(銅繊維積層工程S101)。ここで、この銅繊維積層工程S101では、嵩密度Dが銅繊維の真密度Dの50%以下となるように複数の銅繊維を積層配置する。
Next, a method for manufacturing the copper porous composite member 100 according to the present embodiment will be described with reference to the flowchart of FIG.
First, the copper plate 120 which is a member main body is prepared (copper plate arrangement | positioning process S100). Next, copper fibers are dispersed and arranged on the surface of the copper plate 120 (copper fiber lamination step S101). Here, in the copper fibers lamination step S101, bulk density D P is stacked a plurality of copper fibers to be equal to or less than 50% of the true density D T of copper fibers.

次に、銅板120の表面に積層配置された銅繊維同士を焼結して銅多孔質体110を成形するとともに銅多孔質体110と銅板120とを結合する(焼結工程S102及び接合工程S103)。この焼結工程S102及び接合工程S103においては、図5に示すように、銅繊維及び銅板120の酸化処理を行う酸化処理工程S121と、酸化処理された銅繊維及び銅板120を還元して焼結する還元処理工程S122と、を備えている。   Next, the copper fibers stacked and arranged on the surface of the copper plate 120 are sintered to form the copper porous body 110, and the copper porous body 110 and the copper plate 120 are bonded (sintering step S102 and joining step S103). ). In the sintering step S102 and the joining step S103, as shown in FIG. 5, the oxidation treatment step S121 for performing the oxidation treatment of the copper fiber and the copper plate 120 and the oxidized copper fiber and the copper plate 120 are reduced and sintered. Reduction processing step S122.

本実施形態では、銅繊維が積層配置された銅板120を加熱炉内に装入し、大気雰囲気で加熱して銅繊維を酸化処理する(酸化処理工程S121)。この酸化処理工程S121により、銅繊維及び銅板120の表面に、例えば厚さ1μm以上、100μm以下の酸化物層が形成される。
ここで、本実施形態における酸化処理工程S121の条件は、保持温度が520℃以上、1050℃以下、望ましくは600℃以上、1000℃以下、保持時間が5分以上、300分以下、望ましくは10分以上、100分以下の範囲内とされている。
In the present embodiment, the copper plate 120 on which the copper fibers are laminated is placed in a heating furnace and heated in an air atmosphere to oxidize the copper fibers (oxidation treatment step S121). By this oxidation treatment step S121, an oxide layer having a thickness of 1 μm or more and 100 μm or less is formed on the surfaces of the copper fiber and the copper plate 120, for example.
Here, the conditions of the oxidation treatment step S121 in this embodiment are that the holding temperature is 520 ° C. or higher and 1050 ° C. or lower, desirably 600 ° C. or higher and 1000 ° C. or lower, and the holding time is 5 minutes or longer and 300 minutes or shorter, preferably 10 It is within the range of not less than 100 minutes and not more than 100 minutes.

次に、本実施形態では、酸化処理工程S121を実施した後、銅繊維が積層配置された銅板120を焼成炉内に装入し、還元雰囲気で加熱して、酸化された銅繊維及び銅板120を還元処理し、銅繊維同士を結合するとともに銅繊維と銅板120とを結合する(還元処理工程S122)。
ここで、本実施形態における還元処理工程S122の条件は、雰囲気が窒素と水素の混合ガス雰囲気、保持温度が600℃以上、1080℃以下、望ましくは650℃以上、1050℃以下、保持時間が5分以上、300分以下、望ましくは10分以上、100分以下の範囲内とされている。
Next, in the present embodiment, after performing the oxidation treatment step S121, the copper plate 120 on which the copper fibers are laminated is placed in a firing furnace, heated in a reducing atmosphere, and oxidized copper fibers and the copper plate 120. The copper fiber and the copper plate 120 are combined with each other (reduction process step S122).
Here, the conditions of the reduction treatment step S122 in the present embodiment are that the atmosphere is a mixed gas atmosphere of nitrogen and hydrogen, the holding temperature is 600 ° C. or higher and 1080 ° C. or lower, desirably 650 ° C. or higher and 1050 ° C. or lower, and the holding time is 5 Min. To 300 min., Preferably 10 min. To 100 min.

この酸化処理工程S121及び還元処理工程S122により、銅繊維(骨格部)及び銅板120の表面に酸化還元層が形成され、微細な凹凸が生じることになる。
また、酸化処理工程S121によって銅繊維(骨格部)及び銅板120の表面に酸化物層が形成され、この酸化物層によって複数の銅繊維同士及び銅板120が架橋される。その後、還元処理工程S122を行うことで、銅繊維(骨格部)及び銅板120の表面に形成された酸化物層が還元され、酸化還元層を介して銅繊維同士が焼結されて骨格部が形成されるとともに銅多孔質体110と銅板120とが結合される。
By the oxidation treatment step S121 and the reduction treatment step S122, a redox layer is formed on the surfaces of the copper fibers (skeleton part) and the copper plate 120, and fine irregularities are generated.
In addition, an oxide layer is formed on the surfaces of the copper fibers (skeleton) and the copper plate 120 by the oxidation treatment step S121, and the plurality of copper fibers and the copper plate 120 are cross-linked by the oxide layer. Thereafter, by performing the reduction treatment step S122, the copper fiber (skeleton part) and the oxide layer formed on the surface of the copper plate 120 are reduced, and the copper fibers are sintered through the oxidation-reduction layer, so that the skeleton part is formed. As formed, the copper porous body 110 and the copper plate 120 are bonded.

次に、骨格部の表面を酸化させる安定化処理工程を行う(安定化処理工程S104)。
本実施形態における安定化処理工程S104においては、市販の酸化性水溶液(エッチング剤)に、銅多孔質体110及び銅板120を浸漬し、所定の酸素濃度になるまで酸化膜を形成させる。
以上のような製造方法によって、本実施形態である銅多孔質複合部材100が製造される。
Next, the stabilization process process which oxidizes the surface of a skeleton part is performed (stabilization process process S104).
In the stabilization treatment step S104 in the present embodiment, the copper porous body 110 and the copper plate 120 are immersed in a commercially available oxidizing aqueous solution (etching agent), and an oxide film is formed until a predetermined oxygen concentration is reached.
The copper porous composite member 100 according to the present embodiment is manufactured by the manufacturing method as described above.

以上のような構成とされた本実施形態である銅多孔質複合部材100によれば、銅多孔質体110の骨格部全体の酸素濃度が0.03mass%以上、1.0mass%以下の範囲内とされているので、骨格部表面に薄い酸化膜が形成されており、100℃以上の高温や水中などの弱い腐食環境下で長期間使用した場合であっても、表面性状が変化することを抑制できる。   According to the copper porous composite member 100 of the present embodiment configured as described above, the oxygen concentration of the entire skeleton of the copper porous body 110 is in the range of 0.03 mass% or more and 1.0 mass% or less. Therefore, a thin oxide film is formed on the surface of the skeletal part, and the surface properties change even when used for a long time in a weak corrosive environment such as high temperature of 100 ° C or higher and water. Can be suppressed.

また、本実施形態である銅多孔質複合部材100においては、銅板120の表面に、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされた銅繊維が焼結されてなる気孔率が高く、強度や寸法精度に優れた銅多孔質体110が接合されており、熱伝導特性及び電気伝導特性に優れている。   Further, in the copper porous composite member 100 according to the present embodiment, the diameter R is within the range of 0.02 mm to 1.0 mm on the surface of the copper plate 120, and the ratio L between the length L and the diameter R is L. / R is 4 or more and 2500 or less, and the copper porous body 110 having high porosity and excellent strength and dimensional accuracy is joined by sintering copper fibers, and has heat conduction characteristics and electrical properties. Excellent conduction characteristics.

さらに、本実施形態においては、銅多孔質体110を構成する銅繊維及び銅板120の表面に酸化還元層が形成され、銅多孔質体110全体の比表面積が0.01m/g以上とされ、気孔率が50%以上90%以下の範囲内とされており、多孔体骨格表面を介した熱交換効率等の各種特性を大幅に向上させることが可能となる。
また、本実施形態においては、銅多孔質体110を構成する銅繊維と銅板120の表面との結合部においては、銅繊維の表面に形成された酸化還元層と銅板120の表面に形成された酸化還元層とが一体に結合しているので、銅多孔質体110と銅板120とが強固に接合されることになり、接合界面の強度、熱伝導特性及び電気伝導特性に優れている。
Furthermore, in this embodiment, an oxidation-reduction layer is formed on the surfaces of the copper fibers and the copper plate 120 constituting the copper porous body 110, and the specific surface area of the entire copper porous body 110 is 0.01 m 2 / g or more. The porosity is in the range of 50% to 90%, and various properties such as heat exchange efficiency through the porous skeleton surface can be greatly improved.
Moreover, in this embodiment, in the coupling | bond part of the copper fiber which comprises the copper porous body 110, and the surface of the copper plate 120, it formed in the surface of the copper plate 120 and the oxidation reduction layer formed in the surface of the copper fiber. Since the oxidation-reduction layer is integrally bonded, the copper porous body 110 and the copper plate 120 are firmly bonded, and the bonding interface strength, heat conduction characteristics, and electric conduction characteristics are excellent.

本実施形態である銅多孔質複合部材100の製造方法によれば、骨格部の表面を酸化させる安定化処理工程S104を備えているので、銅多孔質体110の骨格部全体の酸素濃度が0.03mass%以上、1.0mass%以下の範囲内とすることができる。
また、本実施形態である銅多孔質複合部材100の製造方法によれば、銅及び銅合金からなる銅板120の表面に銅繊維を積層配置し、焼結工程S102及び接合工程S103を同時に実施しているので、製造プロセスを簡略化することが可能となる。
According to the manufacturing method of the copper porous composite member 100 according to the present embodiment, since the stabilization processing step S104 for oxidizing the surface of the skeleton part is provided, the oxygen concentration of the entire skeleton part of the copper porous body 110 is 0. It can be in the range of 0.03 mass% or more and 1.0 mass% or less.
Moreover, according to the manufacturing method of the copper porous composite member 100 which is this embodiment, a copper fiber is laminated | stacked on the surface of the copper plate 120 which consists of copper and a copper alloy, and sintering process S102 and joining process S103 are implemented simultaneously. Therefore, the manufacturing process can be simplified.

以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、図3に示す製造設備を用いて、銅多孔質体を製造するものとして説明したが、これに限定されることはなく、他の製造設備を用いて銅多孔質体を製造してもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, although demonstrated as what manufactures a copper porous body using the manufacturing equipment shown in FIG. 3, it is not limited to this, Even if it manufactures a copper porous body using another manufacturing equipment Good.

酸化処理工程S21、S121の雰囲気については、所定温度で銅もしくは銅合金が酸化する酸化性雰囲気であればよく、具体的には、大気中に限らず、不活性ガス(例えば、窒素)に10vol%以上の酸素を含有する雰囲気であればよい。また、還元処理工程S22,S122の雰囲気についても、所定温度で銅酸化物が金属銅に還元もしくは酸化銅が分解する還元性雰囲気であればよく、具体的には、数vol%以上の水素を含有する窒素―水素混合ガス、アルゴン―水素混合ガス、純水素ガス、もしくは工業的によく用いられるアンモニア分解ガス、プロパン分解ガスなども好適に用いることができる。   The atmosphere of the oxidation treatment steps S21 and S121 may be any oxidizing atmosphere in which copper or a copper alloy is oxidized at a predetermined temperature. Specifically, the atmosphere is not limited to the atmosphere, and 10 vol. In inert gas (for example, nitrogen). Any atmosphere containing at least% oxygen may be used. Also, the atmosphere of the reduction treatment steps S22 and S122 may be any reducing atmosphere in which copper oxide is reduced to metallic copper or copper oxide is decomposed at a predetermined temperature. Specifically, hydrogen of several vol% or more is used. A nitrogen-hydrogen mixed gas, an argon-hydrogen mixed gas, a pure hydrogen gas, or an ammonia decomposition gas or a propane decomposition gas that is often used industrially can also be suitably used.

さらに、本実施形態においては、銅繊維を焼結することで銅多孔質体の骨格部を形成するものとして説明したが、これに限定されることはなく、繊維不織布や金属フィルター等の銅多孔質体を準備し、この銅多孔質体に対して、酸化還元処理工程及び安定化処理工程を行ってもよい。   Furthermore, in this embodiment, although demonstrated as what forms the frame | skeleton part of a copper porous body by sintering copper fiber, it is not limited to this, Copper porous materials, such as a fiber nonwoven fabric and a metal filter, A material may be prepared, and the copper porous body may be subjected to a redox treatment step and a stabilization treatment step.

また、本実施形態においては、タフピッチ銅(JIS C1100)または無酸素銅(JIS C1020)からなる銅繊維を用いるものとして説明したが、これに限定されることはなく、銅繊維11の材質としては、リン脱酸銅(JIS C1201,C1220)、銀入り銅(たとえばCu−0.02〜0.5mass%Ag)、クロム銅(たとえばCu−0.02〜1.0mass%Cr)、ジルコン銅(たとえばCu−0.02〜1.0mass%Zr)、錫入り銅(たとえばCu−0.1〜1.0mass%Sn)などを好適に用いることができる。特に、200℃以上の高温環境下で使用する場合には、高温強度に優れた銀入り銅、クロム銅、錫入り銅、ジルコン銅などを用いることが好ましい。   Moreover, in this embodiment, although demonstrated as what uses the copper fiber which consists of tough pitch copper (JIS C1100) or oxygen-free copper (JIS C1020), it is not limited to this, As a material of the copper fiber 11, , Phosphorus deoxidized copper (JIS C1201, C1220), copper containing silver (for example, Cu-0.02-0.5 mass% Ag), chromium copper (for example, Cu-0.02-1.0 mass% Cr), zircon copper ( For example, Cu-0.02 to 1.0 mass% Zr), copper containing tin (for example, Cu-0.1 to 1.0 mass% Sn), or the like can be suitably used. In particular, when used in a high temperature environment of 200 ° C. or higher, it is preferable to use silver-containing copper, chromium copper, tin-containing copper, zircon copper, or the like excellent in high-temperature strength.

また、第二の実施形態では、図4に示す構造の銅多孔質複合部材を例に挙げて説明したが、これに限定されることはなく、図6から図11に示すような構造の銅多孔質複合部材であってもよい。   In the second embodiment, the copper porous composite member having the structure shown in FIG. 4 has been described as an example. However, the present invention is not limited to this, and the copper having the structure as shown in FIGS. It may be a porous composite member.

例えば、図6に示すように、銅多孔質体210の中に、部材本体として複数の銅管220が挿入された構造の銅多孔質複合部材200であってもよい。
あるいは、図7に示すように、銅多孔質体310の中に、部材本体としてU字状に湾曲された銅管320が挿入された構造の銅多孔質複合部材300であってもよい。
For example, as shown in FIG. 6, a copper porous composite member 200 having a structure in which a plurality of copper tubes 220 are inserted into a copper porous body 210 as a member main body may be used.
Alternatively, as shown in FIG. 7, a copper porous composite member 300 having a structure in which a copper tube 320 curved in a U shape as a member main body is inserted into a copper porous body 310 may be used.

さらに、図8に示すように、部材本体である銅管420の内周面に銅多孔質体410を接合した構造の銅多孔質複合部材400であってもよい。
また、図9に示すように、部材本体である銅管520の外周面に銅多孔質体510を接合した構造の銅多孔質複合部材500であってもよい。
Furthermore, as shown in FIG. 8, the copper porous composite member 400 of the structure which joined the copper porous body 410 to the internal peripheral surface of the copper pipe 420 which is a member main body may be sufficient.
Moreover, as shown in FIG. 9, the copper porous composite member 500 of the structure which joined the copper porous body 510 to the outer peripheral surface of the copper tube 520 which is a member main body may be sufficient.

さらに、図10に示すように、部材本体である銅管620の内周面及び外周面に銅多孔質体610を接合した構造の銅多孔質複合部材600であってもよい。
また、図11に示すように、部材本体である銅板720の両面に銅多孔質体710を接合した構造の銅多孔質複合部材700であってもよい。
Furthermore, as shown in FIG. 10, a copper porous composite member 600 having a structure in which a copper porous body 610 is bonded to the inner peripheral surface and the outer peripheral surface of a copper tube 620 that is a member main body may be used.
Moreover, as shown in FIG. 11, the copper porous composite member 700 of the structure which joined the copper porous body 710 to both surfaces of the copper plate 720 which is a member main body may be sufficient.

以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
表1に示す原料を用いて、三次元網目構造の骨格部を有する銅多孔質体を製造した。
そして、表2に示す条件で酸化還元処理及び安定化処理を行い、幅30mm×長さ200mm×厚さ5mmの銅多孔質体を製造した。なお、比較例1〜4においては、安定化処理を省略した。
さらに、得られた銅多孔質体について、酸素濃度、気孔率、相対引張強度、表面変色について評価した。評価結果を表3に示す。なお、評価方法を以下に示す。
Below, the result of the confirmation experiment performed in order to confirm the effect of this invention is demonstrated.
Using the raw materials shown in Table 1, a copper porous body having a three-dimensional network structure skeleton was produced.
And the oxidation reduction process and the stabilization process were performed on the conditions shown in Table 2, and the copper porous body of width 30mm * length 200mm * thickness 5mm was manufactured. In Comparative Examples 1 to 4, the stabilization process was omitted.
Furthermore, about the obtained copper porous body, oxygen concentration, porosity, relative tensile strength, and surface discoloration were evaluated. The evaluation results are shown in Table 3. The evaluation method is shown below.

(繊維径R)
繊維径Rは、マルバーン社製粒子解析装置「Morphologi G3」を用いて、JIS Z 8827−1に基づいて、画像解析により算出された換算繊維径(Heywood径)R=(A/π)1/2×2の平均値を用いた。
(Fiber diameter R)
The fiber diameter R is a converted fiber diameter (Heywood diameter) R = (A / π) 1 / calculated by image analysis based on JIS Z 8827-1 using a particle analyzer “Morphology G3” manufactured by Malvern. An average value of 2 × 2 was used.

(繊維長L)
銅繊維の繊維長Lは、マルバーン社製粒子解析装置「Morphologi G3」を用いて、画像解析により算出された単純平均値を用いた。
(Fiber length L)
As the fiber length L of the copper fiber, a simple average value calculated by image analysis using a particle analyzer “Morphology G3” manufactured by Malvern, Inc. was used.

(酸素濃度C
得られた銅多孔質体から切り出したサンプル約1gをLECO社製ガス分析装置(型番:TCEN−600)に投入し、キャリアガスとしてヘリウムガスを用いた不活性ガス融解法により、酸素濃度C(mass%)を測定した。
(Oxygen concentration C O )
About 1 g of the sample cut out from the obtained copper porous body was put into a gas analyzer (model number: TCEN-600) manufactured by LECO, and the oxygen concentration C O was obtained by an inert gas melting method using helium gas as a carrier gas. (Mass%) was measured.

(見掛け密度比D及び気孔率P)
得られた銅多孔質体の質量M(g)、体積V(cm)、銅多孔質体を構成する銅繊維の真密度D(g/cm)を測定し、以下の式で見掛け密度比D及び気孔率P(%)を算出した。なお、真密度Dは、精密天秤を用いて、水中法によって測定した。
=M/(V×D
P=(1−(M÷(V×D)))×100
(Apparent density ratio D A and porosity P)
The mass M (g), the volume V (cm 3 ), and the true density DT (g / cm 3 ) of the copper fiber constituting the copper porous body were measured and apparent from the following formula: It was calculated density ratio D a and porosity P (%). The true density DT was measured by an underwater method using a precision balance.
D A = M / (V × D T )
P = (1− (M ÷ (V × D T ))) × 100

(相対引張強度S
得られた銅多孔質体を幅10mm×長さ100mm×厚さ5mmの試験片に加工した後、インストロン型引張試験機を用いて引張試験を行い、最大引張荷重Smax(N)を見掛け上の試料断面積 50mm で除算して最大引張強度S(N/mm)を測定した。前記測定により得られた最大引張強度Sは見掛け密度により変化するため、本実施例では、前記最大引張強度S(N/mm)を前記見掛け密度Dで規格化した値S/Dを相対引張強度S(N/mm)として定義し、比較した。
(Relative tensile strength S R )
After processing the obtained copper porous body into a test piece having a width of 10 mm, a length of 100 mm, and a thickness of 5 mm, a tensile test is performed using an Instron type tensile tester, and the maximum tensile load S max (N) is apparent. was measured maximum tensile strength S (N / mm 2) is divided by the sample cross-sectional area 50 mm 2 above. To change the maximum tensile strength S is the apparent density obtained by the measurement, in this embodiment, the maximum tensile strength S of the (N / mm 2) were normalized by the apparent density D A value S / D A The relative tensile strength S R (N / mm 2 ) was defined and compared.

(表面変色)
得られた銅多孔質体を、湿度80%、温度80℃の恒温恒湿槽中に100時間放置し、前後での色の変化を目視で確認した。
(Surface discoloration)
The obtained copper porous body was left in a constant temperature and humidity chamber at a humidity of 80% and a temperature of 80 ° C. for 100 hours, and the color change before and after was visually confirmed.

Figure 2017002379
Figure 2017002379

Figure 2017002379
Figure 2017002379

Figure 2017002379
Figure 2017002379

安定化処理を実施しなかった比較例1〜3においては、顕著な表面変色が認められた。一方、比較例4においては、表面変色は見られなかったものの過度の酸化による引張強度の顕著な低下が見られた。
これに対して、安定化処理を実施した本発明例1〜12においては、相対引張強度が十分に高く、かつ、表面変色が認められなかった。
以上のことから、本発明例によれば、使用環境下においても骨格部の表面性状が大きく変化せず、安定した特性を有する銅多孔質体を提供可能であることが確認された。
In Comparative Examples 1 to 3 in which the stabilization treatment was not performed, significant surface discoloration was observed. On the other hand, in Comparative Example 4, although the surface discoloration was not observed, a significant decrease in tensile strength due to excessive oxidation was observed.
On the other hand, in the inventive examples 1 to 12 in which the stabilization treatment was performed, the relative tensile strength was sufficiently high and no surface discoloration was observed.
From the above, according to the present invention example, it was confirmed that the surface property of the skeleton did not change greatly even under the use environment, and it was possible to provide a copper porous body having stable characteristics.

10、110 銅多孔質体
11 銅繊維
12 骨格部
100 銅多孔質複合部材
120 銅板(部材本体)
10, 110 Copper porous body 11 Copper fiber 12 Skeletal part 100 Copper porous composite member 120 Copper plate (member main body)

Claims (9)

三次元網目構造の骨格部を有する銅多孔質体であって、
前記骨格部の表面に、酸化還元処理によって形成された酸化還元層を有しており、
前記骨格部全体の酸素濃度が0.03mass%以上、1.0mass%以下の範囲内とされていることを特徴とする銅多孔質体。
A porous copper body having a three-dimensional network structure skeleton,
It has a redox layer formed by redox treatment on the surface of the skeleton part,
The copper porous body, wherein the oxygen concentration of the entire skeleton is in the range of 0.03 mass% or more and 1.0 mass% or less.
前記骨格部は、複数の銅繊維の焼結体とされていることを特徴とする請求項1に記載の銅多孔質体。   The copper skeleton according to claim 1, wherein the skeleton is a sintered body of a plurality of copper fibers. 前記銅繊維は、直径Rが0.02mm以上1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上2500以下の範囲内とされていることを特徴とする請求項2に記載の銅多孔質体。   The copper fiber has a diameter R in the range of 0.02 mm to 1.0 mm, and a ratio L / R of the length L to the diameter R in the range of 4 to 2500. The copper porous body according to claim 2. 部材本体と、請求項1から請求項3のいずれか一項に記載の銅多孔質体と、が接合されてなることを特徴とする銅多孔質複合部材。   A copper porous composite member comprising a member main body and the copper porous body according to any one of claims 1 to 3 joined together. 前記部材本体のうち前記銅多孔質体との接合面が銅又は銅合金で構成され、前記銅多孔質体と前記部材本体とが焼結によって接合されていることを特徴とする請求項4に記載の銅多孔質複合部材。   The joining surface with the said copper porous body among the said member main bodies is comprised with copper or a copper alloy, and the said copper porous body and the said member main body are joined by sintering. The copper porous composite member described. 請求項1から請求項3のいずれか一項に記載の銅多孔質体を製造する銅多孔質体の製造方法であって、
前記骨格部を酸化還元処理して前記酸化還元層を形成する酸化還元処理工程と、前記骨格部の表面を酸化させる安定化処理工程と、を備えていることを特徴とする銅多孔質体の製造方法。
It is a manufacturing method of the copper porous body which manufactures the copper porous body according to any one of claims 1 to 3,
A copper porous body comprising: a redox treatment step of oxidizing and reducing the skeleton portion to form the redox layer; and a stabilization treatment step of oxidizing the surface of the skeleton portion. Production method.
銅原料を焼結して前記骨格部を形成することを特徴とする請求項6に記載の銅多孔質体の製造方法。   The method for producing a copper porous body according to claim 6, wherein the skeleton is formed by sintering a copper raw material. 部材本体と銅多孔質体とが接合された銅多孔質複合部材を製造する銅多孔質複合部材の製造方法であって、
請求項6または請求項7に記載の銅多孔質体の製造方法によって製造された銅多孔質体と、前記部材本体とを接合する接合工程を備えていることを特徴とする銅多孔質複合部材の製造方法。
A method for producing a copper porous composite member for producing a copper porous composite member in which a member main body and a copper porous body are joined,
A copper porous composite member comprising a joining step of joining the copper porous body produced by the method for producing a copper porous body according to claim 6 or 7 and the member main body. Manufacturing method.
前記部材本体のうち前記銅多孔質体が接合される接合面は、銅又は銅合金で構成されており、前記銅多孔質体と前記部材本体とを焼結によって接合することを特徴とする請求項8に記載の銅多孔質複合部材の製造方法。   The joining surface to which the copper porous body is joined of the member main body is made of copper or a copper alloy, and the copper porous body and the member main body are joined by sintering. Item 9. A method for producing a copper porous composite member according to Item 8.
JP2015119695A 2015-06-12 2015-06-12 Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member Active JP6589402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015119695A JP6589402B2 (en) 2015-06-12 2015-06-12 Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015119695A JP6589402B2 (en) 2015-06-12 2015-06-12 Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member

Publications (2)

Publication Number Publication Date
JP2017002379A true JP2017002379A (en) 2017-01-05
JP6589402B2 JP6589402B2 (en) 2019-10-16

Family

ID=57751447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015119695A Active JP6589402B2 (en) 2015-06-12 2015-06-12 Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member

Country Status (1)

Country Link
JP (1) JP6589402B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135575A1 (en) * 2017-01-18 2018-07-26 三菱マテリアル株式会社 Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
JP2018141604A (en) * 2017-02-28 2018-09-13 三菱マテリアル株式会社 Cooling structure in storage space, heat pipe, and method of manufacturing heat pipe
JP2020169363A (en) * 2019-04-04 2020-10-15 山田 榮子 Method for manufacturing metal porous body having porous surface
KR20210062134A (en) 2019-11-20 2021-05-31 김종림 Nasolabial folds improver comprising detachable protrusions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145592A (en) * 1994-11-16 1996-06-07 Hitachi Chem Co Ltd Heat transfer member and manufacture thereof
JP2000192107A (en) * 1998-12-25 2000-07-11 Kogi Corp Porous metal, and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145592A (en) * 1994-11-16 1996-06-07 Hitachi Chem Co Ltd Heat transfer member and manufacture thereof
JP2000192107A (en) * 1998-12-25 2000-07-11 Kogi Corp Porous metal, and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135575A1 (en) * 2017-01-18 2018-07-26 三菱マテリアル株式会社 Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
EP3572169A4 (en) * 2017-01-18 2020-07-08 Mitsubishi Materials Corporation Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
JP2018141604A (en) * 2017-02-28 2018-09-13 三菱マテリアル株式会社 Cooling structure in storage space, heat pipe, and method of manufacturing heat pipe
JP2020169363A (en) * 2019-04-04 2020-10-15 山田 榮子 Method for manufacturing metal porous body having porous surface
KR20210062134A (en) 2019-11-20 2021-05-31 김종림 Nasolabial folds improver comprising detachable protrusions

Also Published As

Publication number Publication date
JP6589402B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP6065059B2 (en) Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
JP6011593B2 (en) Method for producing copper porous sintered body and method for producing copper porous composite member
JP6107888B2 (en) Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
JP6589402B2 (en) Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
JP6065058B2 (en) Copper porous body and copper porous composite member
JP6724801B2 (en) Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
WO2017187938A1 (en) Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
JP6565710B2 (en) Manufacturing method of copper member assembly
JP6249060B2 (en) Copper porous composite material
WO2018212039A1 (en) Porous copper body, porous copper composite member, method for producing porous copper body, and method for producing porous copper composite member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R150 Certificate of patent or registration of utility model

Ref document number: 6589402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150