JP3476092B2 - Heat transfer member and method of manufacturing the same - Google Patents

Heat transfer member and method of manufacturing the same

Info

Publication number
JP3476092B2
JP3476092B2 JP33320293A JP33320293A JP3476092B2 JP 3476092 B2 JP3476092 B2 JP 3476092B2 JP 33320293 A JP33320293 A JP 33320293A JP 33320293 A JP33320293 A JP 33320293A JP 3476092 B2 JP3476092 B2 JP 3476092B2
Authority
JP
Japan
Prior art keywords
heat transfer
metal
copper
powder
resin foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33320293A
Other languages
Japanese (ja)
Other versions
JPH07190664A (en
Inventor
達也 内田
次彦 平塚
健 吉田
康雄 上方
秀文 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP33320293A priority Critical patent/JP3476092B2/en
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to US08/669,520 priority patent/US5943543A/en
Priority to DE69433629T priority patent/DE69433629T2/en
Priority to PCT/JP1994/002249 priority patent/WO1995018350A1/en
Priority to CN94194593A priority patent/CN1093251C/en
Priority to KR1019960703444A priority patent/KR100356646B1/en
Priority to EP95903987A priority patent/EP0744586B1/en
Priority to TW084100157A priority patent/TW289084B/zh
Publication of JPH07190664A publication Critical patent/JPH07190664A/en
Application granted granted Critical
Publication of JP3476092B2 publication Critical patent/JP3476092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、種々の産業分野で用い
られる熱交換のための伝熱管や伝熱板等の伝熱部材に関
し、特に従来のフィン付き伝熱管や伝熱板の大幅な伝熱
効率向上を図ることができる伝熱管や伝熱板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer member such as a heat transfer tube or a heat transfer plate for heat exchange used in various industrial fields, and particularly to a large amount of conventional heat transfer tubes with fins or heat transfer plates. The present invention relates to a heat transfer tube or a heat transfer plate capable of improving heat transfer efficiency.

【0002】[0002]

【従来の技術】従来、液−液、液−ガス、ガス−ガス間
等の熱交換器や熱交換材には一般的に熱伝導性の良い鋼
材を用いた伝熱管や伝熱板が使用されている。しかし、
交換熱容量は、夫れ夫れの熱媒体間の温度差、伝熱係
数、伝熱面積等で求められるとされており、特に小型化
が必要な場合は熱伝導性の高い材質を使用するのみなら
ず、管表面や板表面にフィンや溝を設けることで伝熱面
積の増加を図り、更にフィン構造を工夫することで熱媒
体の乱流を発生させ伝熱係数の増大を図っている。ま
た、特許1435526や特開平4−110597に
は、銅や銅合金の多孔質体若しくは発泡体を一体成形若
しくは被着することで、これらの効果を付加して更に小
型化を図る考案も見られる。
2. Description of the Related Art Conventionally, a heat transfer tube or a heat transfer plate made of steel having good heat conductivity is generally used as a heat exchanger or heat exchange material for liquid-liquid, liquid-gas, gas-gas, etc. Has been done. But,
The exchange heat capacity is said to be determined by the temperature difference between each heat medium, the heat transfer coefficient, the heat transfer area, etc. Only use a material with high thermal conductivity when downsizing is required. Instead, fins or grooves are provided on the tube surface or plate surface to increase the heat transfer area, and by devising the fin structure, turbulent flow of the heat medium is generated to increase the heat transfer coefficient. Further, in Japanese Patent No. 1435526 and Japanese Patent Laid-Open No. 4-110597, there is a device for integrally molding or adhering a porous body or a foamed body of copper or a copper alloy to add these effects to further reduce the size. .

【0003】[0003]

【発明が解決しようとする課題】しかし、特許1435
526や特開平4−110597には、銅や銅合金の多
孔質体若しくは発泡体を一体成形若しくは被着する際、
熱媒体を移送するパイプと発泡体の結合や密着を図るた
め、前者では発泡体形状鋳型に溶融金属を注入凝固させ
る方法をとり、後者では圧着、ろう付け、めっき等の手
段を必要とし、単に必要面積を増加する以上の製造費用
の増加を伴い、また製造工程と設備費の増加につながる
という問題があった。更にこれらの考案は、伝熱管内外
同時に一体成形できずに本来目的とする効果が得られな
いことや、被着する多孔質体若しくは発泡体は同一径の
連続空隙であり一定の乱流効果は得られるものの更に大
きな効果を得ることができない。本発明は、かかる問題
点の解決を図ろうとするもので、伝熱効率をより一層高
めることができる構造を持つ伝熱管や伝熱板等の伝熱部
材とその製造法を提供すものである。
However, Japanese Patent No. 1435
526 and Japanese Patent Application Laid-Open No. 4-110597, when a porous body or a foamed body of copper or a copper alloy is integrally molded or adhered,
In order to bond or adhere the pipe for transferring the heat medium and the foam, the former adopts the method of pouring and solidifying the molten metal into the foam shape mold, and the latter requires means such as crimping, brazing and plating. There is a problem that the manufacturing cost increases more than the required area increases, and the manufacturing process and equipment cost increase. In addition, these devices cannot achieve the intended effect because they cannot be integrally molded inside and outside the heat transfer tube at the same time, and the porous body or foam to be adhered has continuous voids of the same diameter, so that a constant turbulence effect cannot be obtained. Although it can be obtained, the larger effect cannot be obtained. The present invention is intended to solve such a problem, and provides a heat transfer member such as a heat transfer tube or a heat transfer plate having a structure capable of further increasing the heat transfer efficiency, and a manufacturing method thereof.

【0004】[0004]

【課題を解決するための手段】本発明は、酸化銅粉また
は酸化銅粉と他のニッケル、アルミニウム、クロム、パ
ラジウム、銀等金属の混合粉が還元雰囲気で金属として
焼結する性質及び金属板上でこれを行えば金属板と一体
化できる性質を利用することで、金属板や金属管内外に
三次元網目構造の金属多孔質体を一体被着した伝熱管や
伝熱板を得るものである。図1本発明の方法の一例を示
すものである。予め接着剤が塗布された合成樹脂発泡体
に、気相中で酸化銅粉や酸化銅と他の金属粉の混合金属
粉を被着した後、同一の金属粉を被着した銅板を片面若
しくは両面に重ねロールプレス等で軽く圧着し積層す
る。この際、合成樹脂発泡体及び銅板上への被着量は多
いほど最終的に金属板と金属発泡体の強固な焼結−結合
となり、また金属板上の凹凸も増加し熱伝導性と伝熱面
積の増加を得ることができる。次いで燃焼炉ではこの積
層体の中の合成樹脂発泡体を焼失せしめ、銅板上に酸化
銅や酸化銅を含む金属合金を骨格とする金属発泡体を得
る。更に、これを水素還元炉等還元性雰囲気で還元焼結
し銅板を片面若しくは両面に備えた銅や銅合金発泡体を
得ることができる。ここで、この銅や銅合金発泡体は、
そのまま熱交換器の伝熱板の加工材として用いることが
できるが、伝熱管として用いる場合は、銅や銅合金発泡
体が還元焼結する段階で始めの体積が収縮する性質の利
用、即ち銅板の全周に銅や銅合金発泡体が被着されない
余剰端部が生じることを利用し、同方向の端部同志を内
側若しくは外側にロール等でパイプ加工後、ろう付け若
しくは熱溶着する方法で管内または管外に金属発泡体を
被着した伝熱管を得ることができる。また、管外に金属
発泡体を被着した伝熱管は、図2に示すように前述の金
属粉を被着した合成樹脂発泡体を同一の金属粉を被着し
た銅管に圧着するように巻き付け同様に燃焼−還元焼結
して一括製造することができる。一方管内に金属発泡体
を被着した伝熱管は、図3に示すように金属粉を被着し
た合成樹脂発泡体を円筒状に成形し、同一の金属粉を内
部に被着した銅管に嵌合させるように挿入し同様に一括
製造することができる。ここで、銅管内外に同時に金属
発泡体層を被着した伝熱管は、図2及び図3に示す管外
への圧着巻き付けと管内への嵌合挿入を同一管で行い同
様に一括製造することができる。なお、複数層の空隙孔
径の異なる金属発泡体層を被着した伝熱管及び伝熱板
は、二種類以上の空隙孔径の異なる合成樹脂発泡体に、
夫れ夫れ金属粉を被着した後、ロールプレス等で軽く圧
着しながら積層体とし、前述の目的とする製品に合わせ
た工程に組み込むことで成し得る。金属粉としては、酸
化銅粉や酸化銅と他の金属粉の混合金属粉にかぎらず、
用途に応じて適宜金属は選定される。
DISCLOSURE OF THE INVENTION According to the present invention, a property and a metal plate that a copper oxide powder or a mixed powder of copper oxide powder and another metal such as nickel, aluminum, chromium, palladium and silver is sintered as a metal in a reducing atmosphere. If you do this above, you can obtain a heat transfer tube or heat transfer plate by integrally depositing a metal porous body with a three-dimensional mesh structure inside and outside the metal plate or metal tube by utilizing the property that it can be integrated with the metal plate. is there. 1 shows an example of the method of the present invention. The synthetic resin foam to which the adhesive is applied in advance is coated with copper oxide powder or a mixed metal powder of copper oxide and another metal powder in the gas phase, and then a copper plate coated with the same metal powder is used on one side or Laminate on both sides by lightly pressing with a roll press. At this time, the larger the amount of deposition on the synthetic resin foam and the copper plate, the stronger the sintering-bonding between the metal plate and the metal foam, and the more the unevenness on the metal plate increases, so that the thermal conductivity and the thermal conductivity are improved. An increase in thermal area can be obtained. Next, in a combustion furnace, the synthetic resin foam in this laminated body is burned down to obtain a metal foam having a skeleton of copper oxide or a metal alloy containing copper oxide on the copper plate. Further, this can be reduced and sintered in a reducing atmosphere such as a hydrogen reduction furnace to obtain a copper or copper alloy foam having a copper plate on one side or both sides. Here, this copper and copper alloy foam,
It can be used as it is as a material for heat transfer plates of heat exchangers, but when it is used as a heat transfer tube, it uses the property that the initial volume shrinks when the copper or copper alloy foam is reduced and sintered, that is, the copper plate. By utilizing the fact that there are surplus ends that are not covered with copper or copper alloy foam on the entire circumference of, the pipes with the ends in the same direction are rolled inward or outward by a method such as brazing or heat welding. It is possible to obtain a heat transfer tube in which a metal foam is adhered inside or outside the tube. Further, as shown in FIG. 2, the heat transfer tube having the metal foam adhered to the outside of the tube is formed by pressing the synthetic resin foam having the metal powder adhered thereto onto the copper tube having the same metal powder adhered thereto. It can be manufactured in a batch by burning-reducing and sintering like winding. On the other hand, the heat transfer tube with metal foam adhered to the inside of the tube is a synthetic resin foam with metal powder formed into a cylindrical shape, as shown in Fig. 3, and a copper tube with the same metal powder applied inside. They can be inserted so that they can be fitted together, and similarly manufactured in a batch. Here, the heat transfer tube in which the metal foam layer is simultaneously adhered to the inside and outside of the copper tube is manufactured in the same batch by performing the crimp winding outside the tube and the fitting insertion into the tube as shown in FIGS. 2 and 3. be able to. The heat transfer tube and the heat transfer plate coated with a plurality of layers of metal foam layers having different pore diameters are two or more kinds of synthetic resin foams having different pore diameters.
After applying the respective metal powders, lightly pressure-bonding them with a roll press or the like to form a laminated body, and incorporating it into a process suitable for the above-mentioned desired product. The metal powder is not limited to copper oxide powder or mixed metal powder of copper oxide and other metal powders,
The metal is appropriately selected according to the application.

【0005】[0005]

【実施例】【Example】

実施例1 合成樹脂発泡体として厚み3mm幅5cm長さ20cm
のポリウレタンフォーム(商品名エバーライトSF、ブ
リストン社製)a、b二種類(a気泡平均孔径0.6m
m及びb気泡平均孔径0.8mm)を使用した。これら
のポリウレタンフォームを粘着剤を塗布し粘着性を付与
した後、更に乾燥した。次に、これらを酸化銅粉中に挿
入し揺動させ気相中で被着させた後、水中で浸漬揺動し
てポリウレタンフォームの骨格に均一に酸化銅粉を被着
させた。また、銅板には厚み0.8mm(幅、長さは同
一寸法)を使用し同様に粘着剤を塗布し粘着性を付与し
た後、酸化銅粉を全面に均一に被着させた。更に、銅管
は厚み0.8mm外径10mmを同様に処理し用いた。
先ず伝熱板は、ポリウレタンフォーム−aの片面に、ポ
リウレタンフォーム−bには両面に重ね合わせて軽く圧
着した後、500℃、10分間大気雰囲気でウレタンフ
ォームを焼失させた後、次いで900℃、20分間水素
ガス中の還元性雰囲気で焼結を行う工程で多孔度96%
の銅板片面及び両面に金属発泡体を被着し一体化された
伝熱板図4、図5を得た。4aはポリウレタンフォーム
−a、4bはポリウレタンフォーム−b、4cは銅板で
ある。ここで、フォーム−aを二枚以上またはフォーム
−aとフォームbを重ね同様の工程でも複層化された金
属銅発泡体を被着した銅板と一体化された伝熱板図6を
得ることができた。また、ここで得られた銅板上の金属
銅発泡体の面積の収縮率は、約50%であり銅板周囲に
は金属銅発泡体が被着されない端部が生じた。そこで、
この長さ方向の端部同志の接合を図るため伝熱板を幅方
向にロール加工した後、ろう付けして銅管内と銅管外に
金属銅発泡体を被着した伝熱板図7、図8を得た。図
7、図8の5はろう付け部である。
Example 1 A synthetic resin foam having a thickness of 3 mm, a width of 5 cm, and a length of 20 cm.
Polyurethane foams (brand name Everlite SF, manufactured by Bliston Co.) a, b two types (a average pore size of 0.6 m)
m and b bubble average pore size 0.8 mm) was used. These polyurethane foams were coated with a pressure-sensitive adhesive to impart tackiness, and then dried. Next, these were inserted into copper oxide powder, rocked to be deposited in the gas phase, and then immersed in water and rocked to uniformly deposit the copper oxide powder on the skeleton of the polyurethane foam. A copper plate having a thickness of 0.8 mm (width and length have the same dimensions) was similarly applied with an adhesive to give adhesiveness, and then copper oxide powder was uniformly applied to the entire surface. Further, a copper tube having a thickness of 0.8 mm and an outer diameter of 10 mm was similarly treated and used.
First, the heat transfer plate was superposed on one side of polyurethane foam-a and lightly pressed on both sides of polyurethane foam-b, and then lightly crimped at 500 ° C. for 10 minutes in the atmospheric atmosphere, and then 900 ° C. 96% porosity in the process of sintering in a reducing atmosphere in hydrogen gas for 20 minutes
The heat transfer plates in which the metal foam was adhered to one surface and both surfaces of the copper plate to obtain an integrated heat transfer plate were obtained. 4a is a polyurethane foam-a, 4b is a polyurethane foam-b, 4c is a copper plate. Here, a heat transfer plate integrated with a copper plate coated with a multi-layered metallic copper foam is also obtained in the same step by stacking two or more foam-a or foam-a and foam b. I was able to. Further, the shrinkage ratio of the area of the metal copper foam on the copper plate obtained here was about 50%, and an end portion where the metal copper foam was not adhered was formed around the copper plate. Therefore,
In order to join the ends in the length direction, the heat transfer plate is roll-processed in the width direction and then brazed to adhere the metal copper foam inside and outside the copper pipe. 8 was obtained. Reference numeral 5 in FIGS. 7 and 8 is a brazing portion.

【0006】実施例2 実施例1のポリウレタンフォーム−aとポリウレタンフ
ォーム−b及び銅管を使用し、銅管外側へ金属銅発泡体
を被着した二種類の伝熱管の製作を行った。一種類は、
酸化銅粉とニッケル微粉(酸化銅粉に対し重量比10
%)の混合粉体を被着したフォームbを積層し、他は混
合粉体を被着したフォーム−aとフォーム−bを積層す
る。これらを、夫れ夫れ銅管に螺旋状に圧着しながら巻
き付け、次いで実施例1と同様の燃焼、還元焼結を行い
目的の銅管外側へ金属銅発泡体を被着した伝熱管図9、
図10を得た。図9、図10において6は銅管である。
Example 2 Using the polyurethane foam-a and polyurethane foam-b of Example 1 and a copper tube, two types of heat transfer tubes were produced by depositing a metallic copper foam on the outside of the copper tube. One type is
Copper oxide powder and nickel fine powder (weight ratio of 10 to copper oxide powder)
%) Is laminated with the form b coated with the mixed powder, and the others are laminated with the form-a and the form-b coated with the mixed powder. Each of these is wrapped around a copper tube while being helically pressure-bonded, then burned and reduced and sintered in the same manner as in Example 1, and a metallic copper foam is adhered to the outside of the intended copper tube. ,
FIG. 10 was obtained. In FIGS. 9 and 10, 6 is a copper tube.

【0007】実施例3 実施例1のポリウレタンフォーム−a二枚と銅管を使用
し、銅管内外へ金属銅発泡体を被着した伝熱管の製作を
行った。二枚のフォーム−aに酸化銅粉を被着しその中
の一枚は、外径が銅管内径より若干大きい円筒状に加工
し、銅管内周に嵌合させるように挿入し、他の一枚は銅
管に螺旋状に圧着しながら巻き付け、次いで実施例1と
同様の燃焼、還元焼結を行い目的の銅管内外へ金属銅発
泡体を被着した伝熱管図11を得た。
Example 3 Using the two polyurethane foam-a of Example 1 and a copper tube, a heat transfer tube was produced in which a metallic copper foam was adhered to the inside and outside of the copper tube. Two pieces of foam-a are coated with copper oxide powder, one of which is processed into a cylindrical shape with an outer diameter slightly larger than the inner diameter of the copper pipe, and inserted so that it fits inside the copper pipe. One of them was wound around a copper tube while helically pressure-bonding, and then burned and reduced and sintered in the same manner as in Example 1 to obtain a heat transfer tube shown in FIG. .

【0008】[0008]

【発明の効果】本発明によれば、従来の銅または銅合金
からなる発泡体を被着した伝熱管や伝熱板に比較し、性
能面では粉体同志を結合の原理とすること、即ち金属発
泡体と伝熱管の強固な焼結が成されることで熱伝導性の
大幅な改善が図れ、また多層化や複層化することで熱媒
体の流束の拡散による伝熱面表面の乱流化が増大し熱伝
導率も増大する。また従来の製造法は多くの工程と高い
加工精度が要求されていたが、本発明では極めて簡単な
工程で一体化した伝熱板、伝熱管の製造が可能となっ
た。
According to the present invention, compared with the conventional heat transfer tube or heat transfer plate to which the foam made of copper or copper alloy is adhered, in terms of performance, the powders are used as the principle of coupling, that is, The metal foam and the heat transfer tube are strongly sintered to significantly improve the thermal conductivity.The multilayered structure and the multilayered structure make it possible to diffuse the flux of the heat transfer medium so that the heat transfer surface Turbulence increases and thermal conductivity also increases. Further, the conventional manufacturing method requires many steps and high processing accuracy, but in the present invention, the integrated heat transfer plate and heat transfer tube can be manufactured by an extremely simple process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一製造法を示す工程図である。FIG. 1 is a process drawing showing one manufacturing method of the present invention.

【図2】本発明の一製造法を示す工程図である。FIG. 2 is a process drawing showing one manufacturing method of the present invention.

【図3】本発明の一製造法を示す工程図である。FIG. 3 is a process drawing showing one manufacturing method of the present invention.

【図4】〜[Figure 4]

【図6】実施例1で得られた伝熱板の斜視図である。6 is a perspective view of the heat transfer plate obtained in Example 1. FIG.

【図7】〜[Figure 7] ~

【図8】実施例1で得られた伝熱管の断面図である。8 is a cross-sectional view of the heat transfer tube obtained in Example 1. FIG.

【図9】〜FIG. 9

【図10】実施例2で得られた伝熱管の斜視図であるFIG. 10 is a perspective view of a heat transfer tube obtained in Example 2.

【図11】実施例3で得られた伝熱管の斜視図である。11 is a perspective view of a heat transfer tube obtained in Example 3. FIG.

【符号の説明】[Explanation of symbols]

4a:ポリウレタンフォーム−a 4b:ポリウレタンフォーム−b 4c:銅板 5:ろう付け部 6:銅管 4a: Polyurethane foam-a 4b: Polyurethane foam-b 4c: Copper plate 5: Brazing part 6: Copper tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 健 茨城県つくば市和台48番 日立化成工業 株式会社 筑波開発研究所内 (72)発明者 上方 康雄 茨城県つくば市和台48番 日立化成工業 株式会社 筑波開発研究所内 (72)発明者 坪井 秀文 東京都千代田区神田駿河台三丁目1番地 2 日立化成テクノプラント株式会社内 (56)参考文献 特開 平4−110597(JP,A) (58)調査した分野(Int.Cl.7,DB名) F28F 1/40 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Ken Yoshida 48 Wadai, Tsukuba City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Tsukuba R & D Laboratory (72) Inventor Yasuo Kamiwa 48 Wadai, Tsukuba City, Ibaraki Hitachi Chemical Co., Ltd. Company Tsukuba R & D Laboratories (72) Inventor Hidefumi Tsuboi 3-1, Kanda Surugadai, Chiyoda-ku, Tokyo 2 Hitachi Chemical Techno Plant Co., Ltd. (56) Reference JP-A-110597 (JP, A) (58) Survey Areas (Int.Cl. 7 , DB name) F28F 1/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】合成樹脂発泡体の骨格に酸化銅粉または酸
化銅粉を含む金属粉を気相で被着した金属粉被着合成樹
脂発泡体を、酸化銅粉または酸化銅粉を含む金属粉を被
着した銅板に重ね、次いで酸化性雰囲気で合成樹脂発泡
体を焼失除去後、還元性雰囲気で還元焼結を行う伝熱板
の製造法。
1. A metal powder-adhered synthetic resin foam obtained by vapor-depositing copper oxide powder or metal powder containing copper oxide powder on the skeleton of a synthetic resin foam, copper oxide powder or metal containing copper oxide powder. A method for manufacturing a heat transfer plate in which a copper plate coated with powder is laminated, then the synthetic resin foam is burned and removed in an oxidizing atmosphere, and then reduction sintering is performed in a reducing atmosphere.
【請求項2】合成樹脂発泡体の骨格に酸化銅粉または酸
化銅粉を含む金属粉を気相で被着した金属粉被着合成樹
脂発泡体を、酸化銅粉または酸化銅粉を含む金属粉を被
着した銅管外部に圧着しながら巻き付けるか、円筒状に
して銅管内に嵌合挿入するか、または銅管内外に巻付け
と嵌合挿入を同時に行い、次いで酸化性雰囲気で合成樹
脂発泡体を焼失除去後、還元性雰囲気で還元焼結を行う
伝熱管の製造法。
2. A metal powder-adhered synthetic resin foam obtained by vapor-depositing copper oxide powder or metal powder containing copper oxide powder on the skeleton of a synthetic resin foam in the form of copper oxide powder or metal containing copper oxide powder. Wound while crimping on the outside of the copper tube to which the powder is adhered, make it into a cylindrical shape and insert it into the copper tube, or perform winding and fitting insertion inside and outside the copper tube at the same time, then synthesize in an oxidizing atmosphere A method for manufacturing heat transfer tubes in which resin foam is burned and removed, and then reduction sintering is performed in a reducing atmosphere.
【請求項3】合成樹脂発泡体の骨格に金属粉を気相で被
着した金属粉被着合成樹脂発泡体を部材本体に重ね、合
成樹脂発泡体を焼失除去させ金属粉を焼結させ金属多孔
質体とすると共に金属多孔質体と部材本体を一体化する
伝熱部材の製造法。
3. A metal powder-deposited synthetic resin foam obtained by depositing metal powder in a vapor phase on a skeleton of a synthetic resin foam is laid on a member main body, and the synthetic resin foam is burned and removed to sinter the metal powder. A method for manufacturing a heat transfer member, which is a porous body and is made by integrating a metal porous body and a member body.
JP33320293A 1993-12-27 1993-12-27 Heat transfer member and method of manufacturing the same Expired - Fee Related JP3476092B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP33320293A JP3476092B2 (en) 1993-12-27 1993-12-27 Heat transfer member and method of manufacturing the same
DE69433629T DE69433629T2 (en) 1993-12-27 1994-12-27 Method for the production of a thermally conductive device and a thermally conductive device
PCT/JP1994/002249 WO1995018350A1 (en) 1993-12-27 1994-12-27 Heat transfer material
CN94194593A CN1093251C (en) 1993-12-27 1994-12-27 Heat transfer member and manufacturing method
US08/669,520 US5943543A (en) 1993-12-27 1994-12-27 Heat transmitting member and method of manufacturing the same
KR1019960703444A KR100356646B1 (en) 1993-12-27 1994-12-27 Heat Transfer Material and Manufacturing Method Thereof
EP95903987A EP0744586B1 (en) 1993-12-27 1994-12-27 Method of manufacturing a heat transmitting device and a heat transmitting device
TW084100157A TW289084B (en) 1993-12-27 1995-01-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33320293A JP3476092B2 (en) 1993-12-27 1993-12-27 Heat transfer member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07190664A JPH07190664A (en) 1995-07-28
JP3476092B2 true JP3476092B2 (en) 2003-12-10

Family

ID=18263457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33320293A Expired - Fee Related JP3476092B2 (en) 1993-12-27 1993-12-27 Heat transfer member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3476092B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582371B1 (en) 2013-02-26 2014-09-03 住友電気工業株式会社 Aluminum porous body, heat transfer material and heat exchange device
JP2015090242A (en) * 2013-11-06 2015-05-11 住友電気工業株式会社 Metal pipe, heat transfer pipe, heat exchange device, and manufacturing method of metal pipe

Also Published As

Publication number Publication date
JPH07190664A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
EP0744586B1 (en) Method of manufacturing a heat transmitting device and a heat transmitting device
CA1318911C (en) Device for heat transfer
WO2008099235A1 (en) Article for magnetic heat exchange and method of manufacturing the same
JPH0444603B2 (en)
US10527328B2 (en) Coiled adsorption heat exchanger
US4291758A (en) Preparation of boiling heat transfer surface
JP3476092B2 (en) Heat transfer member and method of manufacturing the same
JPH10121110A (en) Boiling heat-transfer member and its production
WO1997030321A1 (en) Carbon/carbon heat exchanger and manufacturing method
JPH0217948A (en) Metal carrier matrix for supporting catalyst for purifying exhaust gas and preparation thereof
WO2007076110A2 (en) Grooved porous surface, production method and application in heat transfer
JP3462308B2 (en) Manufacturing method of heat conductive composite material
JPH08145592A (en) Heat transfer member and manufacture thereof
JP2003343987A (en) Manufacturing method for wick structural body
CN213238538U (en) Microchannel heat exchanger and contain its battery box
US4821389A (en) Method of making a pin fin heat exchanger
JPS6247617B2 (en)
US20020050346A1 (en) Method of manufacturing a brazed-plate heat exchanger and exchanger thus produced
JP2010132986A (en) Method for manufacturing aluminum member with layer of soldering material and method for manufacturing heat exchanger
US3212573A (en) Composite metal structure
JPH04110597A (en) Heat transfer pipe of heat exchanger
CN114025562B (en) Soaking plate with gradient liquid suction core structure and preparation method thereof
JPS6167529A (en) Manufacture of heat exchanging pipe provided with inner fin
JPS6338894A (en) Heat exchanger with pin fin of laminated structure and manufacture thereof
JPH0284253A (en) Heat exchanger tube and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees