JP3462308B2 - Manufacturing method of heat conductive composite material - Google Patents

Manufacturing method of heat conductive composite material

Info

Publication number
JP3462308B2
JP3462308B2 JP17418995A JP17418995A JP3462308B2 JP 3462308 B2 JP3462308 B2 JP 3462308B2 JP 17418995 A JP17418995 A JP 17418995A JP 17418995 A JP17418995 A JP 17418995A JP 3462308 B2 JP3462308 B2 JP 3462308B2
Authority
JP
Japan
Prior art keywords
metal plate
thermal expansion
composite material
low thermal
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17418995A
Other languages
Japanese (ja)
Other versions
JPH091361A (en
Inventor
雅春 山本
治 山下
雅巳 植田
信裕 貞富
正和 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP17418995A priority Critical patent/JP3462308B2/en
Publication of JPH091361A publication Critical patent/JPH091361A/en
Application granted granted Critical
Publication of JP3462308B2 publication Critical patent/JP3462308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、パワー半導体チップ
搭載用放熱基板の如く、半導体チップによる発熱を効率
良く外部に放熱するための熱伝導複合材料の製造方法に
係り、セラミックス等の被着相手材との熱膨張係数の整
合性と良好な熱伝導性を両立できるように、熱膨張係数
及び熱伝導率を任意に変化させるため、高熱伝導金属板
に厚み方向に所要の貫通孔を有する低熱膨張金属板を圧
接し、前記貫通孔から高熱伝導金属を低熱膨張金属板表
面に露出させた3層材あるいは更に多層材を得るに際
し、低熱膨張金属板と高熱伝導金属板を所定温度で接合
並びに所要形状への塑性変形を同時に行うホットプレス
を施すことにより、板厚みにかかわらず高い接合強度が
得られ、同時に形状加工を行うことから量産性よく高品
位の熱伝導複合材料を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a heat conductive composite material for efficiently dissipating heat generated by a semiconductor chip to the outside, such as a heat dissipation board for mounting a power semiconductor chip. The thermal expansion coefficient and the thermal conductivity are arbitrarily changed so that the matching of the thermal expansion coefficient with the material and good thermal conductivity can both be achieved. In obtaining a three-layer material or a further multilayer material in which the high-thermal-conductivity metal is exposed on the surface of the low-thermal-expansion metal plate from the through-hole by press-contacting the low-expansion metal plate, the low-heat-expansion metal plate and the high-heat-conduction metal plate are joined at a predetermined temperature. By performing hot pressing that simultaneously performs plastic deformation into the required shape, high joint strength can be obtained regardless of the plate thickness, and since shape processing is performed at the same time, high-quality heat conductive composite material with good mass productivity It relates to a method for manufacturing.

【0002】[0002]

【従来の技術】大型コンピューター用のLSIやULS
Iは、高集積度化、演算速度の高速化が著しく、作動中
における消費電力の増加に伴う発熱量が非常に大きく、
また、電力用半導体パッケージも同様に発熱量が非常に
大きいことが知られている。これに伴ない半導体パッケ
ージの設計も、熱放散性を考慮したものとなり、チップ
を搭載する基板にも放熱性が要求されるようになり、基
板材料の熱伝導率が大きいことが求められ、基板にはチ
ップと熱膨張係数が近く、かつ熱伝導率が大きいことが
要求されている。
2. Description of the Related Art LSIs and ULSs for large computers
In I, the degree of integration is high and the calculation speed is high, and the amount of heat generated by the increase in power consumption during operation is extremely large.
It is also known that the power semiconductor package also has a very large amount of heat generation. Along with this, the design of semiconductor packages also takes heat dissipation into consideration, so that the board on which the chip is mounted also requires heat dissipation, and the board material is required to have high thermal conductivity. Is required to have a thermal expansion coefficient close to that of the chip and high thermal conductivity.

【0003】従来の半導体パッケージとしては種々の構
成が提案されており、例えば基板に放熱フィンを付設し
た構成があり、放熱性を確保するためにクラッド板やC
u−MoあるいはCu−W合金等の放熱基板用複合材料
(特開昭59−141247号公報、特開昭62−29
4147号公報)が提案されている。前記複合体は熱膨
張係数、熱伝導度とも実用上満足すべき条件にかなって
いるが、Mo、W等が高密度であるため重くかつ脆いた
め、所定の寸法を得るには研削等の非塑性加工により成
形加工しなければならず、加工費が高く、歩留りが悪く
なっていた。
Various structures have been proposed as conventional semiconductor packages. For example, there is a structure in which a radiation fin is attached to a substrate, and a clad plate or C is used to secure heat radiation.
Composite materials for heat dissipation substrates such as u-Mo or Cu-W alloys (Japanese Patent Laid-Open Nos. 59-141247 and 62-29).
No. 4147) has been proposed. Although the above-mentioned composite material satisfies both the thermal expansion coefficient and the thermal conductivity in terms of practical use, it is heavy and brittle because of high density of Mo, W, etc. Molding has to be performed by plastic working, resulting in high processing cost and poor yield.

【0004】樹脂封止の半導体パッケージにおいて多用
されているリードフレーム用銅合金は、熱伝導性は優れ
ているが機械的強度が低く、チップとの熱膨張係数の整
合性が悪く、また、チップとの熱膨張係数の整合性を図
った42%Ni−Fe合金等の低熱膨張係数を有するN
i−Fe系合金は、熱伝導率が悪いため、現在の要求を
満すだけの熱の放散性が得られていない。
Copper alloys for lead frames, which are widely used in resin-sealed semiconductor packages, have excellent thermal conductivity but low mechanical strength, and have a poor thermal expansion coefficient matching with the chip. N having a low coefficient of thermal expansion, such as a 42% Ni-Fe alloy, whose thermal expansion coefficient is consistent with
Since the i-Fe alloy has a poor thermal conductivity, it has not been able to obtain heat dissipation enough to meet the current requirements.

【0005】そこで、出願人は半導体パッケージにおけ
る上述の熱膨張係数および/または熱伝導率の整合性の
問題を解決するため、高熱伝導金属板に厚み方向に所要
の貫通孔を有する低熱膨張金属板を一体化し、前記貫通
孔から高熱伝導金属を低熱膨張金属板表面に露出させた
芯材の両面に高熱伝導金属箔を圧接し、これら金属板の
厚さ比や貫通孔面積比を適宜選定することにより、熱膨
張係数、熱伝導率を可変となし、受熱の均一化、熱拡散
効果の向上をはかり、表面微細孔がなくめっきやろう材
など後付け薄膜の被着性にすぐれた特徴を有する熱伝導
複合材料を提案(特開平3−227621号)した。
Therefore, in order to solve the above-mentioned problem of the matching of the thermal expansion coefficient and / or the thermal conductivity in the semiconductor package, the applicant has a low thermal expansion metal plate having a required through hole in the thickness direction in the high thermal conductivity metal plate. And the high thermal conductive metal foil is pressure-welded to both surfaces of the core material in which the high thermal conductive metal is exposed on the surface of the low thermal expansion metal plate from the through hole, and the thickness ratio and the through hole area ratio of these metal plates are appropriately selected. As a result, the coefficient of thermal expansion and thermal conductivity are variable, uniform heat reception is achieved, and the heat diffusion effect is improved. A heat conductive composite material has been proposed (Japanese Patent Laid-Open No. 3-227621).

【0006】上記の熱伝導複合材料を得るには、まずプ
レスによる打ち抜き加工を行い小さな孔を多数個穿孔し
て網目状となし、焼鈍後に巻き取ったコバール板等の低
熱膨張金属板コイルを、銅板などの高熱伝導金属板コイ
ルを巻き戻し時にその上方及び下方より巻き戻して、冷
間または温間で大径ロールにより圧延接合し拡散焼鈍し
て芯材を得た後、さらにこの芯材の上方及び下方より巻
き戻したCu、Al等の高熱伝導金属箔を重ねて、冷間
または温間で圧延ロールにより圧接接合し拡散焼鈍して
製造する。
In order to obtain the above-mentioned heat-conductive composite material, first, punching with a press is performed to form a number of small holes into a mesh shape, and a coil of low thermal expansion metal such as a Kovar plate wound after annealing is used to form a coil. When rewinding a coil of a high thermal conductive metal plate such as a copper plate, it is rewound from above and below, and after cold or warm rolling and joining with a large diameter roll and diffusion annealing to obtain a core material, the core material is further It is manufactured by stacking high heat conductive metal foils of Cu, Al, etc. unwound from above and below, press-bonding them with a rolling roll cold or warm, and diffusion annealing.

【0007】かかる製造に際して、上記の芯材にCu、
Al等の高熱伝導金属箔を重ねて冷間圧接するが、接合
強度を高めるために圧下力を大きくすると、芯材表面の
Cu、Al等の高熱伝導金属の露出面の形状が円形ある
いは楕円から長い楕円形状となり、貫通孔と高熱伝導金
属との間に空隙が生じて充填性が悪化する上、選定した
高熱伝導金属と低熱膨張金属との表面積比が変わって熱
膨張係数および/または熱伝導率が変動し、また熱膨張
係数に異方性が生じる問題がある。
At the time of manufacturing, Cu is added to the above core material,
High heat conductive metal foils such as Al are stacked and cold pressed, but if the reduction force is increased to increase the bonding strength, the exposed surface of the high heat conductive metal such as Cu or Al on the surface of the core material will be round or oval. It becomes a long elliptical shape, and a void is created between the through-hole and the high thermal conductive metal to deteriorate the filling property, and the surface area ratio between the selected high thermal conductive metal and low thermal expansion metal is changed to change the thermal expansion coefficient and / or the thermal conductivity. There is a problem that the coefficient fluctuates and the coefficient of thermal expansion becomes anisotropic.

【0008】そこで、出願人はこの熱伝導材料の圧接に
よる製造に際し、圧下力を大きくして低熱膨張金属板に
設けた貫通孔形状を大きく変化させることなく、接合強
度を向上させる製造方法として、加熱した高熱伝導金属
板に厚み方向に所要の貫通孔を有する低熱膨張金属板を
圧接し、前記貫通孔から高熱伝導金属を低熱膨張金属板
表面に露出させた3層材の両面に加熱した高熱伝導金属
箔を圧接することにより製造する方法を提案(特開平5
−75008号)した。
[0008] Therefore, the Applicant, as a manufacturing method for increasing the bonding strength without greatly changing the shape of the through hole provided in the low thermal expansion metal plate by increasing the rolling force when manufacturing the heat conductive material by pressure welding, A low thermal expansion metal plate having a required through hole in the thickness direction is pressed against a heated high thermal conductivity metal plate, and high heat is applied to both surfaces of a three-layer material in which the high thermal conductivity metal is exposed on the surface of the low thermal expansion metal plate from the through hole. Proposal of a method for manufacturing by pressing a conductive metal foil
No. 75008).

【0009】[0009]

【発明が解決しようとする課題】先に提案した熱伝導材
料は、熱膨張係数及び熱伝導率を任意に変化させること
ができ、かつ相手材との接合性並びに表面性状のすぐれ
た特性を有するが、半導体パッケージに要求される段付
き形状やキャップ形状など種々の形状に成形するため、
複雑な絞り加工、プレス打ち抜き加工や切断、曲げ加工
を行うと、積層した複合材に部分的な剥離の発生が懸念
される問題があった。
The heat-conducting material proposed above has properties such that the coefficient of thermal expansion and the coefficient of thermal conductivity can be arbitrarily changed, and the bondability with the mating material and the surface properties are excellent. However, because it is molded into various shapes such as stepped shapes and cap shapes required for semiconductor packages,
When complicated drawing, press punching, cutting and bending are performed, there is a concern that partial peeling may occur in the laminated composite material.

【0010】また、得られた3層芯材表面にCu、Al
等の高熱伝導金属箔を被覆するのに、上記の圧接法に代
えてめっき法にて行うことが考えられるが、めっき浴に
浸漬した際に芯材表面の高熱伝導金属と低熱膨張金属と
の境界にめっき液が残存し、これが後の拡散焼鈍時に気
化してめっき膨れや剥がれを発生させる恐れがある。め
っき法では低熱膨張金属の大きな剥がれは覆いきれず、
熱伝導率の低下にもつながる。
On the surface of the obtained three-layer core material, Cu, Al
It is conceivable to use a plating method instead of the above-mentioned pressure welding method to coat the high thermal conductivity metal foil such as the above, but when immersed in a plating bath, the high thermal conductivity metal and the low thermal expansion metal of the core material surface The plating solution may remain at the boundary, and this may vaporize during the subsequent diffusion annealing, causing plating swelling or peeling. With the plating method, large peeling of low thermal expansion metal cannot be covered,
It also leads to a decrease in thermal conductivity.

【0011】この発明は、先に提案した熱伝導複合材料
が有する熱膨張係数及び熱伝導率を任意に変化させるこ
とができる機能、相手材との接合性並びに表面性状のす
ぐれた特性を損なうことなく、接合強度を著しく向上さ
せ、複雑なプレス打ち抜き加工や切断、曲げ加工を施し
ても剥離がない熱伝導複合材料とその製造方法の提供を
目的としている。
The present invention impairs the ability to arbitrarily change the thermal expansion coefficient and the thermal conductivity of the previously proposed thermal conductive composite material, the bondability with the mating material and the excellent surface properties. In other words, it is an object of the present invention to provide a heat conductive composite material which has significantly improved joint strength and which is not peeled off even when subjected to complicated press punching, cutting and bending, and a manufacturing method thereof.

【0012】[0012]

【課題を解決するための手段】発明者は、低熱膨張金属
板と高熱伝導金属板とを所要の多層材とする場合、圧接
積層した後の両者の接合強度を著しく高める方法を目的
に種々検討した結果、非酸化性、不活性ガス雰囲気ある
いは真空中で、例えば、高熱伝導金属と多数の貫通孔を
設けた低熱膨張金属板とを所定温度に加熱して軟化させ
て、該金属の厚み方向に加圧して接合と形状加工を同時
に行い、前記貫通孔から高熱伝導金属を低熱膨張金属板
表面に露出させて一体化した後、さらに必要に応じて焼
鈍して両金属の拡散層を形成すると、貫通孔内への充填
が孔形状を損なうことなく均一に行われ、接合強度を著
しく向上させることができ、圧接と同時に複雑なプレス
打ち抜き加工や切断、曲げ加工を施しても剥離がなく、
また貫通孔を設けない単板同士の接合も同様の作用効果
で多層の熱伝導複合材料が量産性よく得られることを知
見し、この発明を完成した。
When the low thermal expansion metal plate and the high thermal conductivity metal plate are used as a required multilayer material, the inventor has variously studied for the purpose of significantly increasing the bonding strength between the pressure-bonded and laminated metal plates. As a result, in a non-oxidizing, inert gas atmosphere or vacuum, for example, a high thermal conductive metal and a low thermal expansion metal plate having a large number of through holes are heated to a predetermined temperature to be softened, and the thickness direction of the metal When pressure is applied to the joint and shape processing is performed at the same time, the high thermal conductive metal is exposed from the through hole to the surface of the low thermal expansion metal plate and integrated, and then annealed as necessary to form a diffusion layer of both metals. The filling into the through-holes is performed uniformly without impairing the hole shape, and the joining strength can be significantly improved, and there is no peeling even if complicated press punching, cutting, and bending are performed at the same time as pressure welding,
Further, they have found that a multi-layered heat conductive composite material can be obtained with good mass productivity by the same effect in joining single plates without providing through holes, and completed the present invention.

【0013】すなわち、この発明は、Ni−Fe系合金
又はNi−Co−Fe系合金からなり、厚み方向に多数
の貫通孔を設けた低熱膨張金属板とCu、Cu合金、A
l、Al合金のいずれかからなる高熱伝導金属板とを多
層に積層し、不活性ガス雰囲気中あるいは真空中で40
0℃〜1000℃に加熱し、板厚み方向に50〜250
kg/cm 2 圧力を加えて接合並びに所要形状への塑
性変形を同時に行うことを特徴とする熱伝導複合材料の
製造方法である。この発明において、得られる多層材は
後述の製造方法による3層材、並びにこの3層材同士、
または3層材と他の金属材を積層するほか、4層や5
層、それ以上の多層等の用途に応じて要求される種々の
積層構成のものも製造することができる。
That is, the present invention is a Ni--Fe alloy
Or it is made of Ni-Co-Fe alloy and has many in the thickness direction.
Low thermal expansion metal plate with through holes of Cu, Cu alloy, A
1 and a high thermal conductive metal plate made of an Al alloy are laminated in a multi-layer, and are laminated in an inert gas atmosphere or in a vacuum.
Heat to 0 ° C to 1000 ° C , 50 to 250 in the plate thickness direction
a method for producing a thermally conductive composite material characterized by applying a pressure of kg / cm 2 performs plastic deformation of the joint as well as a desired shape at the same time. In the present invention, the obtained multi-layered material is a three-layered material manufactured by the manufacturing method described below, and the three-layered materials,
Or 3 layer material and other metal material are laminated and 4 layer or 5 layer
It is also possible to manufacture various laminated structures that are required depending on the application, such as layers and more layers.

【0014】また、この発明は、上記の熱伝導複合材料
の製造方法において、前記高熱伝導金属板の両面に前記
厚み方向に多数の貫通孔を設けた低熱膨張金属板が圧接
されて前記貫通孔から高熱伝導金属を低熱膨張金属板表
面に露出させて一体化した3層材を得ることを特徴とす
る熱伝導複合材料の製造方法、前記厚み方向に多数の貫
通孔を設けた低熱膨張金属板の両面に前記高熱伝導金属
板が圧接されて前記貫通孔内に高熱伝導金属が充填され
て一体化した3層材を得ることを特徴とする熱伝導複合
材料の製造方法を併せて提案する。
Further, the present invention is a method of manufacturing the thermally conductive composite material, the <br/> low thermal expansion metal plate provided with many through holes in the thickness direction on both sides of the high thermal conductivity metal plate is pressed against method for producing a thermally conductive composite material characterized by obtaining a three-layer material that combines high thermal conductivity metal is exposed to the low thermal expansion metal plate surface from the through-hole Te, provided with a plurality of through holes in the thickness direction combined method for producing thermally conductive composite material characterized by obtaining a three-layer material high thermal conductivity metal in the through-hole wherein the high thermal conductive metal plate on both sides of the low thermal expansion metal plate is pressed against the integrated filled To propose.

【0015】[0015]

【作用】この発明による熱伝導複合材料の製造方法と作
用を図に基づいて詳述する。図1〜図3のAはホットプ
レス前の各素材の斜視説明図であり、各Bはホットプレ
ス後の熱伝導複合材料の縦断説明図である。図1に示す
製造方法は、まず、所定厚みにした低熱膨張金属板1,
2にプレス打ち抜き等の機械加工で多数の貫通孔3を設
け、高熱伝導金属板4の両面に低熱膨張金属板1,2を
積層し、これらを非酸化性、不活性ガス雰囲気中あるい
は真空中で、低熱膨張金属板1,2及び高熱伝導金属板
4の種類に応じて選定した400℃〜1000℃の温度
に加熱し、さらに、材料厚みに応じて選定した所定圧力
で板厚み方向にプレスして圧接し、前記貫通孔3から高
熱伝導金属材を低熱膨張金属板1,2表面に露出させて
一体化した3層複合材を作製する。
The manufacturing method and operation of the heat conductive composite material according to the present invention will be described in detail with reference to the drawings. 1 to 3 are perspective explanatory views of respective materials before hot pressing, and respective B are longitudinal explanatory views of the heat conductive composite material after hot pressing. In the manufacturing method shown in FIG. 1, first, a low thermal expansion metal plate 1 having a predetermined thickness 1
2 is provided with a large number of through holes 3 by mechanical processing such as press punching, and low thermal expansion metal plates 1 and 2 are laminated on both sides of a high thermal conductive metal plate 4 and these are placed in a non-oxidizing, inert gas atmosphere or in a vacuum. Then, it is heated to a temperature of 400 ° C. to 1000 ° C. selected according to the types of the low thermal expansion metal plates 1 and 2 and the high thermal conductive metal plate 4, and further pressed in the plate thickness direction with a predetermined pressure selected according to the material thickness. Then, the three-layer composite material is produced by pressing and contacting, exposing the high thermal conductive metal material from the through hole 3 to the surface of the low thermal expansion metal plates 1 and 2 and integrating them.

【0016】上記のホットプレスの際に、プレス金型に
所要の用途形状を与えておくことにより、板厚み方向に
プレスして圧接と所要形状への塑性変形を同時に行うこ
とができる。複合材の厚みによってプレス装置の圧力を
代えることにより、比較的厚物の製品を得ることがで
き、材料の軟化時に圧接、塑性変形するため板厚みにか
かわらず密着強度が安定し、また、従来の圧延と異なる
ため貫通孔3への充填が孔形状を変形することなく材料
全体に均一に行われる。
In the above hot pressing, by giving the press die a desired use shape, it is possible to press in the plate thickness direction and perform pressure contact and plastic deformation to the required shape at the same time. By changing the pressure of the pressing device depending on the thickness of the composite material, it is possible to obtain a relatively thick product, and because the material is pressed and plastically deformed when the material softens, the adhesion strength is stable regardless of the plate thickness. Since it is different from the rolling method described above, the filling of the through holes 3 is uniformly performed on the entire material without deforming the hole shape.

【0017】また、ホットプレス加熱時に高熱伝導金属
と低熱膨張金属が拡散し、高い接合強度が得られるが、
さらに、その後、非酸化性、不活性ガス雰囲気中で、3
層複合材の低熱膨張金属板1,2及び高熱伝導金属板4
の種類に応じて選定した上記の加熱温度以上の温度域、
例えば500℃〜1050℃の雰囲気で焼鈍処理する
と、両材料の圧接界面で相互拡散が進み拡散層が形成さ
れ、この拡散層により得られた3層材の接合強度が著し
く向上し、この複合材料に施した複雑な絞り加工、プレ
ス打ち抜き加工や切断、曲げ加工後に、高熱伝導金属と
低熱膨張金属との間に剥離が発生しない。
Further, the high thermal conductive metal and the low thermal expansion metal are diffused at the time of hot press heating, and high bonding strength can be obtained.
Furthermore, after that, in an atmosphere of non-oxidizing and inert gas, 3
Low thermal expansion metal plates 1 and 2 and high thermal conductivity metal plate 4 of layer composite material
Temperature range above the above heating temperature selected according to the type of
For example, when annealing is performed in an atmosphere of 500 ° C. to 1050 ° C., mutual diffusion proceeds at the pressure contact interface between both materials to form a diffusion layer, and the bonding strength of the three-layer material obtained by this diffusion layer is significantly improved. No peeling occurs between the high thermal conductivity metal and the low thermal expansion metal after the complicated drawing process, press punching process, cutting process, and bending process applied to the.

【0018】この発明において、高熱伝導金属板は圧接
にて低熱膨張金属板の貫通孔内に圧入充填されることか
ら、Cu、Cu合金、Al、Al合金等の展延伸性に富
み、かつ高い熱伝導性を有する材料を用いることが好ま
しい。また、低熱膨張金属板には、展延性のあるMo、
30〜50wt%Niを含有するNi−Fe系合金、2
5〜35wt%Ni、4〜20wt%Coを含有するN
i−Co−Fe系合金、Wなどを用いることができる。
In the present invention, since the high thermal conductivity metal plate is press-fitted into the through hole of the low thermal expansion metal plate by pressure welding, Cu, Cu alloy, Al, Al alloy and the like are rich in extensibility and high. It is preferable to use a material having thermal conductivity. In addition, the low thermal expansion metal plate,
Ni-Fe based alloy containing 30 to 50 wt% Ni, 2
N containing 5 to 35 wt% Ni and 4 to 20 wt% Co
An i-Co-Fe based alloy, W or the like can be used.

【0019】この発明において、ホットプレス時の加熱
温度を400℃〜1000℃とするのは、加圧時に充填
材となる高熱伝導金属が加工硬化するため、それを常に
軟化した状態にし、低熱膨張金属板の貫通孔へ容易に充
填させるためである。さらに、加圧力としては、充填材
(高熱伝導金属)の硬さおよび充填深さによって選定す
ればよいが、一般的には50〜250kg/cm2が望
ましい。
In the present invention, the heating temperature at the time of hot pressing is set to 400 ° C. to 1000 ° C. because the high thermal conductive metal as a filler is work-hardened at the time of pressurizing, so that it is always in a softened state and has a low thermal expansion. This is for easily filling the through holes of the metal plate. Further, the pressing force may be selected depending on the hardness and the filling depth of the filler (highly heat-conductive metal), but generally 50 to 250 kg / cm 2 is desirable.

【0020】さらに、必要に応じて複合材の最外層に高
熱伝導金属膜層を設けることができ、Cu、Cu合金、
Al、Al合金、Ni、Ni合金などの材料が選定で
き、用途やさらに被着する薄膜層材質を考慮して、芯材
の高熱伝導金属板と同材質あるいは異材質を圧接あるい
はめっき法にて接合するなど、適宜選定するとよい。ま
た、低熱膨張金属板の板厚み方向に設ける貫通孔は、プ
レス打ち抜き等の機械加工の他、エッチングなどの化学
加工も採用でき、貫通孔の形状も横断面が円、多角形状
等、横断面がストレート、テーパーなど種々形状が採用
できる。
Further, a high thermal conductive metal film layer can be provided on the outermost layer of the composite material if necessary, and Cu, Cu alloy,
Materials such as Al, Al alloys, Ni, Ni alloys can be selected, and in consideration of the application and the material of the thin film layer to be deposited, the same or different material as the high thermal conductive metal plate of the core material is pressed or plated. Appropriate selection may be made such as joining. In addition, mechanical processing such as press punching and chemical processing such as etching can be adopted for the through holes provided in the plate thickness direction of the low thermal expansion metal plate, and the cross section of the through hole is circular, polygonal, etc. However, various shapes such as straight and tapered can be adopted.

【0021】図2に示す製造方法は、まず、所定厚みに
した低熱膨張金属板5にプレス打ち抜き等の機械加工で
多数の貫通孔6を設けたのち、この低熱膨張金属板5の
両面に所定厚みにした高熱伝導金属板7,8を積層し、
これらを非酸化性、不活性ガス雰囲気中あるいは真空中
で、選定した金属材料の種類に応じて選定した400℃
〜1000℃の温度に加熱し、さらに、材料厚みに応じ
て選定した所定圧力で板厚み方向にプレスして圧接し、
低熱膨張金属板5の前記貫通孔6内に高熱伝導金属材を
嵌入させて一体化した3層複合材を作製する際に、プレ
ス金型に所要の用途形状を与えておくことにより、板厚
み方向にプレスして圧接と所要形状への塑性変形を同時
に行うことができる。
In the manufacturing method shown in FIG. 2, first, a large number of through holes 6 are formed in a low-thermal-expansion metal plate 5 having a predetermined thickness by mechanical processing such as press punching, and then the low-heat-expansion metal plate 5 is predetermined on both sides. By stacking the high thermal conductive metal plates 7 and 8 having a thickness,
400 ° C which is selected according to the kind of metal material selected in non-oxidizing, inert gas atmosphere or vacuum
Heating to a temperature of up to 1000 ° C., and further pressing and pressing in the plate thickness direction at a predetermined pressure selected according to the material thickness,
When a high thermal conductive metal material is fitted into the through hole 6 of the low thermal expansion metal plate 5 to produce an integrated three-layer composite material, the press die is given a desired use shape to obtain a plate thickness. By pressing in the same direction, pressure welding and plastic deformation to the required shape can be performed simultaneously.

【0022】その後、非酸化性、不活性ガス雰囲気中
で、3層複合材の金属種類に応じて選定した500℃〜
1050℃の雰囲気で焼鈍処理すると、両材料の圧接界
面で相互拡散が進み拡散層が形成され、この拡散層によ
り得られた3層材の接合強度が著しく向上し、圧接並び
に形状加工後に、高熱伝導金属と低熱膨張金属との間に
剥離が発生しない。
After that, in a non-oxidizing, inert gas atmosphere, the temperature of 500 ° C. selected according to the metal type of the three-layer composite material
When annealing is performed in an atmosphere of 1050 ° C., mutual diffusion proceeds at the pressure contact interface between both materials to form a diffusion layer, the bonding strength of the three-layer material obtained by this diffusion layer is significantly improved, and high heat treatment is performed after pressure welding and shape processing. No peeling occurs between the conductive metal and the low thermal expansion metal.

【0023】図3に示す製造方法は、材料に貫通孔を設
けない場合で、低熱膨張金属板10の両面に高熱伝導金
属板11,12を積層し、これらを非酸化性、不活性ガ
ス雰囲気中あるいは真空中で、選定した金属材料の種類
に応じて選定した400℃〜1000℃の温度に加熱
し、材料厚みに応じて選定した所定圧力で板厚み方向に
プレスして圧接するとともに、所要形状への塑性変形を
行う。3層複合材の厚みによってプレス装置の圧力を代
えることにより、比較的厚物の製品を得ることができ、
材料の軟化時に圧接、塑性変形するため板厚みにかかわ
らず密着強度が向上する。さらに、非酸化性、不活性ガ
ス雰囲気中で、3層複合材の金属種類に応じて選定した
500℃〜1050℃の雰囲気で焼鈍処理し、低熱膨張
金属板10と高熱伝導金属板11,12の接合界面に拡
散層を形成して3層材の接合強度を著しく向上させるこ
とができる。
In the manufacturing method shown in FIG. 3, the high thermal conductive metal plates 11 and 12 are laminated on both surfaces of the low thermal expansion metal plate 10 in the case where the through holes are not provided in the material, and these are placed in a non-oxidizing, inert gas atmosphere. While heating in a vacuum or in vacuum to a temperature of 400 ° C to 1000 ° C selected according to the type of the selected metal material, pressing in the plate thickness direction at a predetermined pressure selected according to the material thickness, and pressing Performs plastic deformation into a shape. By changing the pressure of the pressing device depending on the thickness of the three-layer composite material, a relatively thick product can be obtained.
Since the material is pressed and plastically deformed when the material is softened, the adhesion strength is improved regardless of the plate thickness. Further, in a non-oxidizing, inert gas atmosphere, annealing treatment is performed in an atmosphere of 500 ° C. to 1050 ° C. selected according to the metal type of the three-layer composite material, and the low thermal expansion metal plate 10 and the high thermal conductive metal plates 11 and 12 are used. It is possible to form a diffusion layer at the bonding interface of (3) to significantly improve the bonding strength of the three-layer material.

【0024】この発明による熱伝導複合材料は、高熱伝
導金属板の両面の全面に低熱膨張金属板を積層化するに
際し、低熱膨張金属板の全面あるいは部分的に厚み方向
の貫通孔を所要間隔、パターンで配置し、例えば貫通孔
の孔寸法、形状、配置パターン等を種々変えたり、圧延
時の変形を考慮して厚み方向に貫通あるいは貫通しない
切り目を設けるなど、芯材の金属板の厚さ比および/ま
たは低熱膨張金属板表面に露出した高熱伝導金属と低熱
膨張金属との表面積比を選定するなどの手段を選定組み
合せることにより、材料の全体あるいは部分的に、用
途、目的に応じた熱膨張係数及び熱伝導率を設定でき、
例えば、所要の金属、セラミックス、Si等の半導体、
プラスチックス等の相手材の熱膨張係数との整合性を図
り、かつ所要の熱伝導性を有する材料が得られる。
According to the heat conductive composite material of the present invention, when the low thermal expansion metal plate is laminated on both surfaces of the high heat conductive metal plate, through holes in the thickness direction are formed on the entire surface of the low heat expansion metal plate or partially in the thickness direction, The thickness of the core metal plate, for example, by arranging in a pattern, for example, changing the hole size, shape, arrangement pattern, etc. of the through holes, and making cuts or through holes in the thickness direction in consideration of deformation during rolling. The ratio and / or the means for selecting the surface area ratio of the high thermal conductive metal and the low thermal expansion metal exposed on the surface of the low thermal expansion metal plate can be selected and combined to suit the whole or part of the material according to the use and purpose. You can set the thermal expansion coefficient and thermal conductivity,
For example, required metals, ceramics, semiconductors such as Si,
It is possible to obtain a material, such as plastics, having a matching thermal expansion coefficient with that of the mating material and having a required thermal conductivity.

【0025】[0025]

【実施例】 実施例1 板厚0.35mmのコバール板(29Ni−17Co−
Fe合金)に、各々孔径0.8mm、孔間隔1.3mm
で多数の穿孔を施し、板厚0.75mm、40mm×4
0mmのCu板の両面に、貫通孔を設けた板厚0.35
mm、40mm×40mmのコバール板を対向させて積
層し、窒素ガス雰囲気、1000℃に加熱して圧力15
0kg/cm2でホットプレス成形し、板厚み1.0m
m、内径20mm、深さ0.3mm、鍔外径30mm寸
法のキャップ状の3層材試料を得た。さらに、得られた
3層材試料を水素雰囲気で、1000℃、15分の条件
で焼鈍処理を施し、割れや剥がれのないキャップ材が作
製できた。なお、得られた3層材の主面におけるCu露
出面は変形が少なくほぼ円形で、孔間隔も変動がなかっ
た。
Example 1 A Kovar plate (29Ni-17Co-) having a plate thickness of 0.35 mm
Fe alloy) with 0.8 mm hole diameter and 1.3 mm hole spacing
Made a large number of perforations with a plate thickness of 0.75 mm, 40 mm x 4
Plate thickness 0.35 with through holes on both sides of 0 mm Cu plate
mm, 40 mm × 40 mm Kovar plates are laminated facing each other, heated to 1000 ° C. in a nitrogen gas atmosphere, and pressure is 15
Hot press molding at 0 kg / cm 2 and plate thickness 1.0 m
m, an inner diameter of 20 mm, a depth of 0.3 mm, and a brim outer diameter of 30 mm, a cap-shaped three-layer material sample was obtained. Furthermore, the obtained three-layer material sample was annealed in a hydrogen atmosphere at 1000 ° C. for 15 minutes, and a cap material without cracking or peeling could be manufactured. The exposed Cu surface of the main surface of the obtained three-layer material was substantially circular with little deformation, and the hole spacing did not change.

【0026】なお、コバール板の30〜200°Cにお
ける平均熱膨張係数は 5.2×10-6/°Cであり、
Cu板の30〜200°Cにおける平均熱膨張係数は1
7.2×10-6/°Cであり、得られた3層材の厚み方
向の熱伝導率は160W/m・K、及び各主面における
熱膨張係数は8×10-6/℃であった。また、比較例と
して、圧接時に加熱しない以外は全く同一の素材条件
で、キャップ状の3層材を試料をプレス成形したとこ
ろ、貫通孔付近を絞って引き延ばす部分において割れや
剥がれを生じた。
The average thermal expansion coefficient of the Kovar plate at 30 to 200 ° C. is 5.2 × 10 -6 / ° C.,
The average thermal expansion coefficient of the Cu plate at 30 to 200 ° C is 1
It is 7.2 × 10 -6 / ° C, the thermal conductivity of the obtained three-layer material in the thickness direction is 160 W / m · K, and the thermal expansion coefficient of each main surface is 8 × 10 -6 / ° C. there were. Further, as a comparative example, when a sample of a cap-shaped three-layer material was press-molded under exactly the same material conditions except that it was not heated at the time of pressure welding, cracking or peeling occurred in the portion where the vicinity of the through hole was narrowed and stretched.

【0027】実施例2 板厚0.5mmのコバール板(29Ni−17Co−F
e合金)に、各々孔径0.8mm、孔間隔1.3mmで
多数の穿孔を施し、板厚0.5mm、40mm×40m
mのコバール板の両面に、板厚1.0mm、40mm×
40mmのCu板を対向させて積層し、窒素ガス雰囲
気、1000℃に加熱して圧力200kg/cm2でホ
ットプレス成形し、板厚み1.8mm、内径20mm、
深さ0.8mm、鍔外径30mm寸法のキャップ状の3
層材試料を得た。割れや剥がれのないキャップ材が作製
できた。
Example 2 Kovar plate (29Ni-17Co-F) having a plate thickness of 0.5 mm
(e-alloy) with a large number of holes each having a hole diameter of 0.8 mm and a hole interval of 1.3 mm, and a plate thickness of 0.5 mm, 40 mm × 40 m
m Kovar plate on both sides, 1.0 mm thick, 40 mm x
40 mm Cu plates are laminated facing each other, heated to 1000 ° C. in a nitrogen gas atmosphere, and hot-press molded at a pressure of 200 kg / cm 2 to obtain a plate thickness of 1.8 mm, an inner diameter of 20 mm,
Cap-shaped 3 with a depth of 0.8 mm and an outer diameter of 30 mm
A layer material sample was obtained. A cap material without cracking or peeling could be manufactured.

【0028】比較例として、圧接時に加熱しない以外は
全く同一の素材条件で、キャップ状の3層材を試料をプ
レス成形したところ、曲げ部分において割れや膨れ剥が
れを生じた。
As a comparative example, when a sample of a cap-shaped three-layer material was press-molded under exactly the same material conditions except that it was not heated at the time of pressure welding, cracks and swelling occurred at the bent portion.

【0029】実施例3 板厚2.0mm、40mm×40mmのコバール板の両
面に、板厚3.0mm、40mm×40mmのCu板を
対向させて積層し、窒素ガス雰囲気、1000℃に加熱
して圧力250kg/cm2でホットプレス成形し、板
厚み5.5mm、内径20mm、深さ2mm、鍔外径3
0mm寸法のキャップ状の3層材試料を得た。さらに、
得られた3層材試料を水素雰囲気で、1000℃、15
分の条件で焼鈍処理を施したところ、割れや剥がれのな
いキャップ材が作製できた。
Example 3 A Cubar plate having a plate thickness of 3.0 mm and 40 mm × 40 mm was laminated on both surfaces of a Kovar plate having a plate thickness of 2.0 mm and 40 mm × 40 mm so as to face each other, and heated to 1000 ° C. in a nitrogen gas atmosphere. Hot press molding at a pressure of 250 kg / cm 2 , plate thickness 5.5 mm, inner diameter 20 mm, depth 2 mm, flange outer diameter 3
A cap-shaped three-layer material sample having a size of 0 mm was obtained. further,
The obtained three-layer material sample was stored in a hydrogen atmosphere at 1000 ° C. for 15
When the annealing treatment was performed under the condition of minutes, a cap material without cracking or peeling could be produced.

【0030】比較例として、圧接時に加熱しない以外は
全く同一の素材条件で、キャップ状の3層材を試料をプ
レス成形したところ、ほとんどの部分において割れや膨
れ剥がれを生じた。
As a comparative example, when a sample of a cap-shaped three-layer material was press-molded under the same material conditions except that it was not heated at the time of pressure contact, cracking and swelling and peeling occurred in almost all parts.

【0031】[0031]

【発明の効果】この発明は、実施例に明らかなように、
非酸化性、不活性ガス雰囲気中あるいは真空中で、高熱
伝導金属と多数の貫通孔を設けた低熱膨張金属板とを所
定温度に加熱して軟化させて、該金属の厚み方向に加圧
して接合と形状加工を同時に行い、前記貫通孔から高熱
伝導金属を低熱膨張金属板表面に露出させて一体化した
後、貫通孔内への充填が孔形状を損なうことなく均一に
行われ、接合強度を著しく向上させることができ、ま
た、単板同士の場合も同様に接合強度を著しく向上させ
ることができ、圧接と同時に複雑なプレス打ち抜き加工
や切断、曲げ加工を施しても剥離がない多層の熱伝導複
合材料が得られ、特に、接合と形状加工を同時にできる
ことから量産性にすぐれている。
The present invention, as is apparent from the examples,
In a non-oxidizing, inert gas atmosphere or in a vacuum, a high thermal conductive metal and a low thermal expansion metal plate provided with a large number of through holes are heated to a predetermined temperature to soften it, and pressure is applied in the thickness direction of the metal. After joining and shaping at the same time, exposing the high thermal conductive metal from the through hole to the surface of the low thermal expansion metal plate and integrating it, the filling into the through hole is performed uniformly without damaging the hole shape, and the bonding strength It is possible to remarkably improve the bonding strength, and also to significantly improve the bonding strength between single plates as well. A heat conductive composite material can be obtained, and in particular, it is excellent in mass productivity because it can perform bonding and shape processing at the same time.

【図面の簡単な説明】[Brief description of drawings]

【図1】Aはホットプレス前の各素材の斜視説明図であ
り、各Bはホットプレス後の熱伝導複合材料の縦断説明
図である。
FIG. 1A is a perspective explanatory diagram of each material before hot pressing, and each B is a longitudinal sectional explanatory diagram of a heat conductive composite material after hot pressing.

【図2】Aはホットプレス前の各素材の斜視説明図であ
り、各Bはホットプレス後の熱伝導複合材料の縦断説明
図である。
FIG. 2A is a perspective explanatory diagram of each material before hot pressing, and each B is a longitudinal sectional explanatory diagram of a heat conductive composite material after hot pressing.

【図3】Aはホットプレス前の各素材の斜視説明図であ
り、各Bはホットプレス後の熱伝導複合材料の縦断説明
図である。
FIG. 3A is a perspective explanatory diagram of each material before hot pressing, and each B is a vertical sectional explanatory diagram of the heat conductive composite material after hot pressing.

【符号の説明】[Explanation of symbols]

1,2,5,10 低熱膨張金属板 3,6 貫通孔 4,7,8,11,12 高熱伝導金属板 1,2,5,10 low thermal expansion metal plate 3,6 through holes 4,7,8,11,12 High heat conductive metal plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 貞富 信裕 大阪府吹田市南吹田2丁目19−1 住友 特殊金属株式会社 吹田製作所内 (72)発明者 梅田 正和 大阪府吹田市南吹田2丁目19−1 住友 特殊金属株式会社 吹田製作所内 (56)参考文献 特開 平6−268115(JP,A) 特開 平5−75008(JP,A) 特開 平3−13331(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23K 20/00 - 20/26 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuhiro Sadatomi 2-19-1 Minami Suita, Suita City, Osaka Prefecture Sumitomo Special Metals Co., Ltd., Suita Works (72) Masakazu Umeda 2-19 Minami Suita, Suita City, Osaka Prefecture -1 Sumitomo Special Metals Co., Ltd. in Suita Works (56) Reference JP-A-6-268115 (JP, A) JP-A-5-75008 (JP, A) JP-A-3-13331 (JP, A) (58) ) Fields surveyed (Int.Cl. 7 , DB name) B23K 20/00-20/26

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Ni−Fe系合金又はNi−Co−Fe
系合金からなり、厚み方向に多数の貫通孔を設けた低熱
膨張金属板とCu、Cu合金、Al、Al合金のいずれ
かからなる高熱伝導金属板とを多層に積層し、不活性ガ
ス雰囲気中あるいは真空中で400℃〜1000℃に加
熱し、板厚み方向に50〜250kg/cm 2 圧力を
加えて接合並びに所要形状への塑性変形を同時に行うこ
とを特徴とする熱伝導複合材料の製造方法。
1. A Ni-Fe based alloy or Ni-Co-Fe
Any of a low thermal expansion metal plate made of a system alloy and having a large number of through holes in the thickness direction and Cu, Cu alloy, Al, Al alloy
A high heat conductive metal plate composed of the above is laminated in multiple layers, heated to 400 ° C. to 1000 ° C. in an inert gas atmosphere or in a vacuum, and a pressure of 50 to 250 kg / cm 2 is applied in the plate thickness direction for bonding and required. A method for manufacturing a heat-conducting composite material, which comprises simultaneously performing plastic deformation into a shape.
【請求項2】 請求項1において、前記高熱伝導金属板
の両面に前記低熱膨張金属板が圧接されて前記貫通孔か
ら高熱伝導金属を低熱膨張金属板表面に露出させて一体
化した3層材を得ることを特徴とする熱伝導複合材料の
製造方法。
2. The method of claim 1, 3-layer material the low thermal expansion metal plate on both surfaces of the high thermal conductivity metal plate are integrated by exposed from the through hole is pressed against the high thermal conductivity metal to the low thermal expansion metal plate surface A method for producing a heat-conductive composite material, comprising:
【請求項3】 請求項1において、前記低熱膨張金属板
の両面に前記高熱伝導金属板が圧接されて前記貫通孔内
に高熱伝導金属が充填されて一体化した3層材を得るこ
とを特徴とする熱伝導複合材料の製造方法。
3. The method of claim 1, wherein the high thermal conductive metal to obtain a three-layer material and integrated filled in the low thermal expansion metal plate the through-hole wherein the high thermal conductive metal plate on both surfaces is pressed against the And a method for producing a heat conductive composite material.
JP17418995A 1995-06-16 1995-06-16 Manufacturing method of heat conductive composite material Expired - Lifetime JP3462308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17418995A JP3462308B2 (en) 1995-06-16 1995-06-16 Manufacturing method of heat conductive composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17418995A JP3462308B2 (en) 1995-06-16 1995-06-16 Manufacturing method of heat conductive composite material

Publications (2)

Publication Number Publication Date
JPH091361A JPH091361A (en) 1997-01-07
JP3462308B2 true JP3462308B2 (en) 2003-11-05

Family

ID=15974284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17418995A Expired - Lifetime JP3462308B2 (en) 1995-06-16 1995-06-16 Manufacturing method of heat conductive composite material

Country Status (1)

Country Link
JP (1) JP3462308B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207294B1 (en) * 1999-04-30 2001-03-27 Philip A. Rutter Self-sharpening, laminated cutting tool and method for making the tool
US6984685B2 (en) * 2000-04-05 2006-01-10 The Bergquist Company Thermal interface pad utilizing low melting metal with retention matrix
JP4062994B2 (en) 2001-08-28 2008-03-19 株式会社豊田自動織機 Heat dissipation substrate material, composite material and manufacturing method thereof
JP4471646B2 (en) 2003-01-15 2010-06-02 株式会社豊田自動織機 Composite material and manufacturing method thereof
US7416789B2 (en) * 2004-11-01 2008-08-26 H.C. Starck Inc. Refractory metal substrate with improved thermal conductivity
JP3862737B1 (en) 2005-10-18 2006-12-27 栄樹 津島 Cladding material and manufacturing method thereof, cladding material molding method, and heat dissipation substrate using cladding material
JP2015015274A (en) * 2013-07-03 2015-01-22 三菱電機株式会社 Semiconductor device for electric power
DE102015122398A1 (en) * 2015-12-21 2017-06-22 GEDIA Gebrüder Dingerkus GmbH Process for the production of a semi-finished composite product in the form of a board / coil form as well as a product as a composite material semi-finished product
DE102015122396A1 (en) * 2015-12-21 2017-06-22 GEDIA Gebrüder Dingerkus GmbH Process for producing a composite component / composite product and composite component / composite product
JP6041117B1 (en) * 2016-07-28 2016-12-07 株式会社半導体熱研究所 Heat dissipation substrate, semiconductor package, semiconductor module, and method of manufacturing heat dissipation substrate
JP6304670B1 (en) * 2017-04-14 2018-04-04 株式会社半導体熱研究所 Heat dissipation substrate, heat dissipation substrate electrode, semiconductor package, and semiconductor module
CN112005366A (en) * 2018-04-26 2020-11-27 京瓷株式会社 Heat dissipation substrate and electronic device
CN113628975A (en) * 2020-05-07 2021-11-09 哈尔滨工业大学(威海) High-thermal-conductivity complex and preparation method thereof

Also Published As

Publication number Publication date
JPH091361A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
KR930009314B1 (en) Heat-conductive composite material
US5358795A (en) Heat-conductive material and method of producing the same
JP3462308B2 (en) Manufacturing method of heat conductive composite material
JPH0837257A (en) Laminated body and manufacture thereof
JP2003152144A (en) Composite material and method for its manufacture
JPH0313331A (en) Composite material variable in coefficient of thermal expansion and heat conductivity
JPH09266280A (en) Lead frame for packaging semiconductor element
US5300809A (en) Heat-conductive composite material
US6419149B1 (en) Method for producing wiring layer transfer composite
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
JPH0924500A (en) Production of thermally conductive composite material
JPH05109947A (en) Heat conducting material and its manufacture
JP3670381B2 (en) Thermally conductive composite material and manufacturing method thereof
JPH0780272B2 (en) Thermal conductive composite material
JP4623622B2 (en) Manufacturing method of clad material for semiconductor package and manufacturing method of semiconductor package
JP3037485B2 (en) Thermal conductive material and method of manufacturing the same
JP2602161B2 (en) High heat dissipation integrated circuit package
JPH11226775A (en) Solder material and its production
JPH0575008A (en) Thermally conductive material and manufacture thereof
JP2000312066A (en) Composite material used for transcribing method, and its manufacture
JPH09312364A (en) Composite material for electronic component and its manufacture
JP4633443B2 (en) Metal composite material, heat dissipation member including the metal composite material, and method for producing metal composite material
JPH0716981A (en) Metallic composite component
JP2003080376A (en) Producing method of composite material
JP2011066250A (en) Heat sink and method of manufacturing the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term