JP3037485B2 - Thermal conductive material and method of manufacturing the same - Google Patents

Thermal conductive material and method of manufacturing the same

Info

Publication number
JP3037485B2
JP3037485B2 JP29249491A JP29249491A JP3037485B2 JP 3037485 B2 JP3037485 B2 JP 3037485B2 JP 29249491 A JP29249491 A JP 29249491A JP 29249491 A JP29249491 A JP 29249491A JP 3037485 B2 JP3037485 B2 JP 3037485B2
Authority
JP
Japan
Prior art keywords
thermal expansion
expansion metal
metal plate
high thermal
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29249491A
Other languages
Japanese (ja)
Other versions
JPH05109946A (en
Inventor
恭之 中村
川上  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP29249491A priority Critical patent/JP3037485B2/en
Priority to DE69217810T priority patent/DE69217810T2/en
Priority to EP92309275A priority patent/EP0537965B1/en
Priority to US07/959,606 priority patent/US5358795A/en
Publication of JPH05109946A publication Critical patent/JPH05109946A/en
Application granted granted Critical
Publication of JP3037485B2 publication Critical patent/JP3037485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、半導体チップ搭載用
放熱基板やリードフレーム用材料の如く、半導体チップ
による発熱を効率良く外部に放熱するため、金属、セラ
ミックス、Si等の半導体、プラスチックス等の被着相
手材との熱膨張係数の整合性と良好な熱伝導性を両立で
きるように、熱膨張係数及び熱伝導率を任意に変化さ
せ、かつ相手材との接合性並びに表面性状のすぐれた熱
伝導複合材料に係り、低熱膨張金属板の両面に高熱膨張
金属箔を圧接して一体化したのち、厚み方向に多数の貫
通孔を設けた3層材を、常温あるいは再結晶温度以上に
加熱した高熱膨張金属板の片面または両面に圧接するこ
とにより、接合強度が高く選定したこれら金属板の厚さ
比や貫通孔面積比を変化させることなく、熱膨張係数、
熱伝導率を可変となし、受熱の均一化、熱拡散効果の向
上をはかり、表面微細孔がなくメッキやろう材など薄膜
の被着性にすぐれた熱伝導材料とその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor such as metal, ceramics, Si, plastics, etc. for efficiently radiating heat generated by a semiconductor chip to the outside, such as a heat dissipation board for mounting a semiconductor chip or a material for a lead frame. The coefficient of thermal expansion and the thermal conductivity are arbitrarily changed so that both the matching of the thermal expansion coefficient with the material to be adhered and the good thermal conductivity can be achieved. After joining the high thermal expansion metal foil to both surfaces of the low thermal expansion metal plate by pressing and integrating them, the three-layer material provided with a large number of through holes in the thickness direction is brought to room temperature or above the recrystallization temperature. By pressing against one or both sides of the heated high thermal expansion metal plate, the thermal expansion coefficient, without changing the thickness ratio and through hole area ratio of these metal plates with high bonding strength selected
The present invention relates to a heat conductive material having a variable heat conductivity, uniform heat reception, an improved heat diffusion effect, no surface micropores, and excellent adhesion of thin films such as plating and brazing material, and a method for producing the same.

【0002】[0002]

【従来の技術】半導体パッケージの集積回路チップ(以
下チップ)、とりわけ大型コンピューター用のLSI
やULSIは、高集積度化、演算速度の高速化の方向に
進んでおり、作動中における消費電力の増加に伴う発熱
量が非常に大きくなっている。該チップは大容量化して
発熱量が大きくなっており、基板材料の熱膨張係数がチ
ップ材料であるシリコンやガリウムヒ素等と大きな差が
あると、チップが剥離あるいは割れを生ずる問題があ
る。
2. Description of the Related Art Integrated circuit chips (hereinafter referred to as "chips") of semiconductor packages, especially LSIs for large computers
And ULSIs have been moving toward higher integration and higher calculation speed, and the amount of heat generated by the increase in power consumption during operation has become extremely large. The chip has a large capacity and generates a large amount of heat. If the coefficient of thermal expansion of the substrate material is significantly different from that of the chip material such as silicon or gallium arsenide, there is a problem that the chip is peeled or cracked.

【0003】これに伴ない半導体パッケージの設計も、
熱放散性を考慮したものとなり、チップを搭載する基板
にも放熱性が要求されるようになり、基板材料の熱伝導
率が大きいことが求められている。従って、基板にはチ
ップと熱膨張係数が近く、かつ熱伝導率が大きいことが
要求されている。
Along with this, the design of a semiconductor package has also been
In consideration of heat dissipation, the substrate on which the chip is mounted also needs to have heat dissipation, and the substrate material is required to have high thermal conductivity. Therefore, the substrate is required to have a thermal expansion coefficient close to that of the chip and a high thermal conductivity.

【0004】従来の半導体パッケージとしては種々の構
成が提案されており、例えば基板に放熱フィンを付設し
た構成があり、放熱性を確保するためにクラッド板やC
u−MoあるいはCu−W合金等の放熱基板用複合材料
(特開昭59−141247号公報、特開昭62−29
4147号公報)が提案されている。前記複合体は熱膨
張係数、熱伝導度とも実用上満足すべき条件にかなって
いるが、Mo、W等が高密度であるため重くかつ脆いた
め、所定の寸法を得るには研削等の非塑性加工により成
形加工しなければならず、加工費が高く、歩留りが悪く
なっていた。
Various configurations have been proposed as conventional semiconductor packages. For example, there is a configuration in which a radiating fin is provided on a substrate.
Composite materials for heat dissipation substrates such as u-Mo or Cu-W alloys (JP-A-59-141247, JP-A-62-29
No. 4147) has been proposed. Although the composite has a practically satisfactory coefficient of thermal expansion coefficient and thermal conductivity, it is heavy and brittle because Mo, W, etc. have a high density, and therefore, in order to obtain predetermined dimensions, non-grinding or the like is required. The forming process has to be performed by plastic working, so that the processing cost is high and the yield is low.

【0005】樹脂封止の半導体パッケージにおいては、
リードフレームがチップの外部への電気的接続の経路と
なるだけでなく、チップで発生する熱の放散経路として
重要な役割を果しているため、銅合金からなるリードフ
レームが多用されている。
In a resin-sealed semiconductor package,
Since the lead frame not only serves as a path for electrical connection to the outside of the chip but also plays an important role as a path for dissipating heat generated in the chip, lead frames made of copper alloy are often used.

【0006】ところが、高信頼性を要求される用途に
は、銅合金は、機械的強度が低く、チップとの熱膨張係
数の整合性が悪く、チップとアイランドとの接着界面の
剥離等が懸念されるため、チップとの熱膨張係数の整合
性から42%Ni−Fe合金等の低熱膨張係数を有する
Ni−Fe系合金を採用した半導体パッケージも提案さ
れている。しかし、Ni−Fe系合金は熱伝導率が悪い
ため、現在の要求を満すだけの熱の放散性が得られてい
ない。また、チップと封止樹脂との熱膨張差は非常に大
きく、リードフレームとチップとの熱膨張係数の整合性
がよい場合でも、リードフレームと樹脂との間の整合性
が悪く、封止樹脂に発生するクラックを完全に防止する
ことは困難であった。
However, for applications requiring high reliability, copper alloys have low mechanical strength, poor matching of the coefficient of thermal expansion with the chip, and separation of the bonding interface between the chip and the island is a concern. Therefore, a semiconductor package employing a Ni-Fe alloy having a low coefficient of thermal expansion, such as a 42% Ni-Fe alloy, has been proposed in view of the matching of the coefficient of thermal expansion with the chip. However, Ni-Fe-based alloys have poor thermal conductivity, and thus do not have sufficient heat dissipation properties to satisfy current requirements. In addition, the difference in thermal expansion between the chip and the sealing resin is very large, and even when the thermal expansion coefficient between the lead frame and the chip is good, the matching between the lead frame and the resin is poor. It has been difficult to completely prevent cracks from occurring in the steel.

【0007】さらに、セラミックス半導体パッケージで
は、Alワイヤーボンディング及びガラス封着するため
に、リードフレームにはボンディングエリア及び封着位
置にAlを設けたNi−Fe系合金が多用されている。
しかし、Ni−Fe系合金は上述の如く、熱放散性が悪
く、セラミックスとの熱膨張係数の整合性に問題があっ
た。
Further, in the ceramic semiconductor package, in order to perform Al wire bonding and glass sealing, a lead frame is often made of a Ni—Fe alloy having Al provided in a bonding area and a sealing position.
However, as described above, Ni-Fe alloys have poor heat dissipation properties, and have a problem in matching thermal expansion coefficients with ceramics.

【0008】そこで、出願人は半導体パッケージにおけ
る上述の熱膨張係数および / または熱伝導率の整合
性の問題を解決するため、高熱膨張金属板に厚み方向に
所要の貫通孔を有する低熱膨張金属板を一体化し、前記
貫通孔から高熱膨張金属を低熱膨張金属板表面に露出さ
せた芯材の両面に高熱膨張金属箔を圧接し、これら金属
板の厚さ比や貫通孔面積比を適宜選定することにより、
熱膨張係数、熱伝導率を可変となし、受熱の均一化、熱
拡散効果の向上をはかり、表面微細孔がなくめっきやろ
う材など薄膜の被着性にすぐれた特徴を有する熱伝導複
合材料を提案(特願平2−40550号)した。
In order to solve the above-mentioned problem of matching of the coefficient of thermal expansion and / or thermal conductivity in a semiconductor package, the applicant of the present invention has proposed a low thermal expansion metal plate having a required through hole in a thickness direction in a high thermal expansion metal plate. And a high thermal expansion metal foil is pressed against both surfaces of a core material in which the high thermal expansion metal is exposed to the surface of the low thermal expansion metal plate from the through hole, and the thickness ratio and the through hole area ratio of these metal plates are appropriately selected. By doing
A thermally conductive composite material with variable thermal expansion coefficient and thermal conductivity, uniform heat reception, and improved thermal diffusion effect, with no surface pores and excellent adhesion of thin films such as plating and brazing material. (Japanese Patent Application No. 2-40550).

【0009】[0009]

【発明が解決しようとする課題】上記の熱伝導複合材料
を得るには、まずプレスによる打ち抜き加工を行い小さ
な孔を多数個穿孔して網目状となし、焼鈍後に巻き取っ
たコバール板等の低熱膨張金属板コイルを、銅板などの
高熱膨張金属板コイルを巻き戻し時にその上方及び下方
より巻き戻して、冷間または温間で大径ロールにより圧
延接合し拡散焼鈍して芯材を得た後、さらにこの芯材の
上方及び下方より巻き戻したCu、Al等の高熱膨張金
属箔を重ねて、冷間または温間で圧延ロールにより圧接
接合し拡散焼鈍して製造する。
In order to obtain the above-mentioned heat conductive composite material, first, a punching process is carried out by a press to form a large number of small holes to form a mesh, and a low-heat material such as a Kovar plate wound after annealing is wound. After unwinding the expanded metal sheet coil from above and below when unwinding a high thermal expansion metal sheet coil such as a copper sheet, roll-joining with a large-diameter roll in cold or warm and diffusion annealing to obtain a core material Further, a high thermal expansion metal foil such as Cu, Al or the like unwound from above and below this core material is superposed, pressed and joined by a rolling roll in a cold or warm state, and diffusion-annealed.

【0010】この熱伝導複合材料の製造に際して、上記
の芯材にCu、Al等の高熱膨張金属箔を重ねて冷間圧
接するが、接合強度を高めるために圧下力を大きくする
と、芯材表面のCu、Al等の高熱膨張金属の露出面の
形状が円形あるいは楕円から長い楕円形状となり、選定
した高熱膨張金属と低熱膨張金属との表面積比が変わっ
て熱膨張係数および / または熱伝導率が変動し、ま
た熱膨張係数に異方性が生じる問題がある。また上述の
製造工程では、圧接工程を2度繰り返すために圧下率が
高くなり、芯材の展延量の増大とともに高熱膨張金属の
露出面の形状が大きく変形する原因となる。
In the production of this heat conductive composite material, a high thermal expansion metal foil such as Cu, Al or the like is superimposed on the above core material and cold-welded, but if the rolling force is increased in order to increase the bonding strength, the surface of the core material is increased. The shape of the exposed surface of the high thermal expansion metal such as Cu or Al becomes a long or elliptical shape from a circle or an ellipse, and the surface area ratio between the selected high thermal expansion metal and the low thermal expansion metal changes, so that the thermal expansion coefficient and / or the thermal conductivity are changed. There is a problem that the thermal expansion coefficient fluctuates and anisotropic thermal expansion coefficient occurs. Further, in the above-described manufacturing process, since the pressing step is repeated twice, the rolling reduction becomes high, which increases the spreading amount of the core material and causes the shape of the exposed surface of the high thermal expansion metal to be greatly deformed.

【0011】そこで、芯材表面にCu、Al等の高熱膨
張金属箔を被覆するのに、上記の圧接法に代えてめっき
法にて行うことが考えられるが、めっき浴に浸漬した際
に芯材表面の高熱膨張金属と低熱膨張金属との境界にめ
っき液が残存し、これが後の拡散焼鈍時に気化してめっ
き膨れや剥がれを発生させる恐れがあり、まためっき工
程は概して煩雑で多大の製造時間を要する問題がある。
In order to cover the surface of the core material with a high thermal expansion metal foil such as Cu and Al, plating may be considered in place of the above pressure welding method. The plating solution remains at the boundary between the high thermal expansion metal and the low thermal expansion metal on the surface of the material, which may evaporate during subsequent diffusion annealing, causing blistering or peeling of the plating. There is a problem that takes time.

【0012】この発明は、受熱の均一化、熱拡散効果の
向上を図り、表面微細孔がなくめっきやろう材など薄膜
の被着性にすぐれ、チップや封止樹脂等の接着相手材の
熱膨張係数との整合性にすぐれかつ熱伝導性が良好で、
用途や目的に応じて熱膨張係数と熱伝導率を任意に選定
できる熱伝導材料の提供を目的とし、さらに、この熱伝
導材料の圧接による製造に際し、低熱膨張金属板に設け
た貫通孔形状を大きく変化させることなく、選定した熱
膨張係数および / または熱伝導率が得られ、また積
層される各高熱膨張金属と低熱膨張金属との接合強度を
向上させることが可能な熱伝導材料の製造方法の提供を
目的としている。
According to the present invention, the uniformity of heat reception and the improvement of the heat diffusion effect are achieved, there is no fine pores on the surface, the adherence of a thin film such as a plating or brazing material is excellent, and the heat of a bonding partner material such as a chip or a sealing resin is improved. Excellent consistency with expansion coefficient and good thermal conductivity,
The purpose is to provide a heat conductive material that can arbitrarily select the coefficient of thermal expansion and the thermal conductivity according to the application and purpose, and when manufacturing this heat conductive material by pressure welding, the shape of the through hole provided in the low thermal expansion metal plate A method for producing a heat conductive material capable of obtaining a selected coefficient of thermal expansion and / or thermal conductivity without significant change and improving the bonding strength between the laminated high thermal expansion metal and low thermal expansion metal The purpose is to provide.

【0013】[0013]

【課題を解決するための手段】この発明は高熱膨張金
属板の片面または両面に、低熱膨張金属板の片面に高熱
膨張金属箔を一体化し厚み方向に多数の貫通孔を設けた
2層材を、該高熱膨張金属箔が外表面に配置するように
積層一体化するとともに、高熱膨張金属箔外表面に形成
される前記貫通孔から高熱膨張金属板の一部が侵入して
露出しことを特徴とする熱伝導材料である。また、こ
の発明は、高熱膨張金属板の片面または両面に、低熱膨
張金属板の両面に高熱膨張金属箔を一体化して厚み方向
に多数の貫通孔を設けた3層材を積層一体化するととも
に、高熱膨張金属箔外表面に形成される前記貫通孔から
高熱膨張金属板の一部が侵入して露出したことを特徴と
する熱伝導材料である。
SUMMARY OF THE INVENTION The present invention relates to a high-thermal-expansion metal plate on one or both surfaces, and a low-thermal-expansion metal plate on one surface.
Integrating expanded metal foil and providing many through holes in the thickness direction
The two-layer material is arranged such that the high thermal expansion metal foil is disposed on the outer surface.
Laminated and integrated, formed on the outer surface of high thermal expansion metal foil
A thermally conductive material, wherein a part of the high thermal expansion metal plate from the through-hole is <br/> exposed invade being. Also,
The invention of the present invention relates to a low thermal expansion
High thermal expansion metal foil is integrated on both sides of the metal sheet
3 layers with many through holes are integrated
From the through hole formed on the outer surface of the high thermal expansion metal foil
The feature is that a part of the high thermal expansion metal plate enters and is exposed.
Heat conductive material.

【0014】さらに、この発明は、低熱膨張金属板の片
面に高熱膨張金属箔を圧接して一体化したのち、厚み方
向に多数の貫通孔を設けた2層材を、常温あるいは再結
晶温度以上に加熱した高熱膨張金属板の片面または両面
前記高熱膨張金属箔が外表面に配置するように圧接し
積層一体化するとともに、高熱膨張金属箔が外表面に
形成される前記貫通孔から高熱膨張金属板の一部を侵入
させ露出させことを特徴とする熱伝導材料の製造方法
である。
Further , the present invention provides a two-layer material having a large number of through-holes in the thickness direction after pressure-welding a high-thermal-expansion metal foil to one side of a low-thermal-expansion metal plate to form a two-layer material. On one or both sides of the high-thermal-expansion metal plate heated to a high-expansion metal foil, the high-thermal-expansion metal foil is pressed and laminated so as to be arranged on the outer surface, and the high-thermal expansion metal foil is
Part of the high thermal expansion metal plate enters through the formed through hole
A method for producing a heat conductive material, characterized by being exposed.

【0015】また、この発明は、低熱膨張金属板の両面
に高熱膨張金属箔を圧接して一体化したのち、厚み方向
に多数の貫通孔を設けた3層材を、常温あるいは再結晶
温度以上に加熱した高熱膨張金属板の片面または両面に
圧接して積層一体化するとともに、高熱膨張金属箔が外
表面に形成される前記貫通孔から高熱膨張金属板の一部
を侵入させ露出させことを特徴とする熱伝導材料の製
造方法である。
Further, the present invention provides a three-layer material having a plurality of through-holes in the thickness direction after a high-thermal-expansion metal foil is pressed and integrated on both surfaces of a low-thermal-expansion metal plate, and is then subjected to room temperature or recrystallization temperature or higher. with integrally laminated in pressure contact with the one side or both sides of the high thermal expansion metal plate heated to, outside the high thermal expansion metal foil
Part of the high thermal expansion metal plate from the through hole formed on the surface
A method for producing a heat conducting material characterized in that exposed to invade.

【0016】さらにこの発明は、前記構成の熱伝導材料
において、高熱膨張金属板が、Cu、Cu合金、Al、
Al合金のうちいずれか、低熱膨張金属板が、Mo、3
0〜50wt%Niを含有するNi−Fe系合金、25
〜35wt%Niと4〜20wt%Coを含有するNi
−Co−Fe系合金、Wのうちいずれか、高熱膨張金属
箔がCu、Cu合金、Al、Al合金のうちいずれかか
らなり、実質的に5層材を構成する熱伝導材料のうち、
高熱膨張金属板の厚みt1、低熱膨張金属板の厚みt2
、及び高熱膨張金属箔層の厚みt3 が、 t1 =1t2 〜5t2 、t3 ≦1/10 t21+t2=0.1〜30mm、t3=2〜100μm を満足することが好ましい。
Further, according to the present invention, in the heat conductive material having the above-mentioned structure, the high thermal expansion metal plate may be made of Cu, Cu alloy, Al,
One of the Al alloys, the low thermal expansion metal plate is Mo,
Ni-Fe based alloy containing 0 to 50 wt% Ni, 25
Ni containing up to 35 wt% Ni and 4 to 20 wt% Co
-Co-Fe-based alloy, any of W, the high thermal expansion metal foil is made of any of Cu, Cu alloy, Al, Al alloy, and among the heat conductive materials substantially constituting the five-layer material,
The thickness t 1 of the high thermal expansion metal plate and the thickness t 2 of the low thermal expansion metal plate
, And the thickness t 3 of the high thermal expansion metal foil layer, t 1 = 1t 2 ~5t 2 , t 3 ≦ 1/10 t 2 t 1 + t 2 = 0.1~30mm, satisfies t 3 = 2 to 100 m Is preferred.

【0017】また、この発明は、前記構成の熱伝導材料
において、熱伝導材料の少なくとも一主面の所要位置
に、Cu、Al、Ni、Snのうちいずれかからなる金
属メッキを被着したことを特徴とする熱伝導材料であ
る。例えば、Cu、Al等の高熱膨張金属板の両主面
に、片面または両面に高熱膨張金属箔を圧接して厚み方
向に多数の貫通孔を設けたNi−Fe系合金、Ni−C
o−Fe系合金等の低熱膨張金属板を一体化して、前記
貫通孔から高熱膨張金属を低熱膨張金属板表面に露出さ
せ、さらに最外層の高熱膨張金属箔の所要位置に、上記
の金属メッキやろう材の被着等の加工を施してプレス成
形、積層などの加工を施すことにより、セラミックスパ
ッケージ、メタルパッケージなどのチップ搭載用放熱基
板、リードフレーム等、種々用途の熱伝導材料が得られ
る。
Further, according to the present invention, in the heat conductive material having the above-described structure, a metal plating made of any one of Cu, Al, Ni, and Sn is applied to a required position on at least one main surface of the heat conductive material. It is a heat conductive material characterized by the following. For example, a Ni-Fe alloy having a large number of through-holes in the thickness direction by pressing a high-thermal-expansion metal foil on one or both sides of both main surfaces of a high-thermal-expansion metal plate of Cu, Al, or the like, Ni-C
A low thermal expansion metal plate such as an o-Fe alloy is integrated, a high thermal expansion metal is exposed to the surface of the low thermal expansion metal plate from the through hole, and the metal plating is applied to a required position of the outermost high thermal expansion metal foil. By applying processes such as press-fitting and laminating by applying processing such as brazing material attachment, heat conductive materials for various uses such as heat dissipation substrates for mounting chips such as ceramic packages and metal packages, lead frames, etc. can be obtained. .

【0018】[0018]

【作用】この発明による熱伝導材料は、常温あるいは再
結晶温度以上に加熱した高熱膨張金属板の片面または両
面に、少なくとも外表面に高熱膨張金属箔を圧接されて
厚み方向に多数の貫通孔を設けた低熱膨張金属板が圧接
されて、前記貫通孔から高熱膨張金属が高熱膨張金属箔
表面に露出して一体化されたことを特徴とし、主に高熱
膨張金属板の厚さ比の選定により熱膨張係数を任意に変
化させることができ、芯材となる高熱膨張金属に高熱伝
導性金属を用い、貫通孔内に嵌入した高熱膨張金属と低
熱膨張金属板との同一平面上での露出面積比を適宜選定
することにより熱伝導率を任意に変化させ得るもので、
高熱膨張金属板と低熱膨張金属板の材質選定、組合せ、
並びに前記厚さ比と露出面積比の選定により、種々の用
途、目的に応じた熱膨張係数及び熱伝導率を設定でき、
多種の熱伝導材料を提供できる。
The heat conductive material according to the present invention has a plurality of through holes in the thickness direction by pressing a high thermal expansion metal foil on at least one outer surface of one or both surfaces of a high thermal expansion metal plate heated to room temperature or a recrystallization temperature or higher. The provided low-thermal-expansion metal plate is press-contacted, and the high-thermal-expansion metal is exposed and integrated with the high-thermal-expansion metal foil surface from the through hole, mainly by selecting the thickness ratio of the high-thermal-expansion metal plate. The coefficient of thermal expansion can be changed arbitrarily, and the high thermal expansion metal used as the core material is made of a high thermal conductive metal, and the exposed area of the high thermal expansion metal and the low thermal expansion metal plate fitted in the through hole on the same plane. The thermal conductivity can be changed arbitrarily by appropriately selecting the ratio,
Material selection and combination of high thermal expansion metal plate and low thermal expansion metal plate,
In addition, by selecting the thickness ratio and the exposed area ratio, various applications, the thermal expansion coefficient and the thermal conductivity can be set according to the purpose,
Many types of heat conductive materials can be provided.

【0019】この発明による製造方法は、片面または両
面に高熱膨張金属箔を圧接して厚み方向に多数の貫通孔
を設けた低熱膨張金属板と高熱膨張金属板を圧接する簡
単な工程のみで熱伝導材料を得ることができ、この場合
圧接が1回のみであるために高熱膨張金属の露出面の形
状変形が少なく、予め選定した高熱膨張金属と低熱膨張
金属板との同一平面上での露出面積比を変動させること
なく、所要の熱膨張係数と熱伝導率を有する熱伝導材料
を得ることができる。また、この発明による製造方法
は、低熱膨張金属板に貫通孔を設ける前に高熱膨張金属
箔を圧接しているため、低熱膨張金属板と高熱膨張金属
板との圧接時に貫通孔周辺に空気を巻き込むことも少な
く、高熱膨張金属箔の剥がれが防止され、均質ですぐれ
た性状の外表面が得られるため、再度クラッドしたり高
熱膨張金属箔をめっきする必要がない。
The manufacturing method according to the present invention comprises a simple step of pressing a high-thermal-expansion metal plate and a low-thermal-expansion metal plate provided with a large number of through holes in the thickness direction by pressing a high-thermal-expansion metal foil on one or both surfaces. A conductive material can be obtained. In this case, since only one press-contact is performed, the shape of the exposed surface of the high-thermal-expansion metal is small, and the high-thermal-expansion metal and the low-thermal-expansion metal plate selected in advance are exposed on the same plane. A heat conductive material having a required coefficient of thermal expansion and thermal conductivity can be obtained without changing the area ratio. Further, in the manufacturing method according to the present invention, since the high thermal expansion metal foil is pressed against the low thermal expansion metal plate before the through hole is provided, air is blown around the through hole when the low thermal expansion metal plate and the high thermal expansion metal plate are pressed against each other. There is little entanglement, the peeling of the high-thermal-expansion metal foil is prevented, and a uniform and excellent outer surface is obtained. Therefore, there is no need to clad or plate the high-thermal-expansion metal foil again.

【0020】この発明による熱伝導材料は、高熱膨張金
属板と片面または両面に高熱膨張金属箔を圧接されて厚
み方向に多数の貫通孔を設けた低熱膨張金属板を圧接す
る際に、高熱膨張金属板を再結晶温度以上に加熱するた
め、またさらに低熱膨張金属板に圧接した高熱膨張金属
材料同士で圧接されるため、小さな圧下力でも高い圧接
強度が得られ、低熱膨張金属板に設けた貫通孔形状の変
形が少なく、予め選定した貫通孔内に嵌入した高熱膨張
金属と低熱膨張金属板との同一平面上での露出面積比
(貫通孔面積比)を変動させることなく、所定の熱膨張
係数及び熱伝導率が得られる。特に、片面または両面に
高熱膨張金属箔を圧接されて厚み方向に多数の貫通孔を
設けた低熱膨張金属板との圧接に際して高熱膨張金属板
を再結晶温度以上に加熱することにより、小さな圧下力
で高熱膨張金属が低熱膨張金属板の貫通孔内に嵌入して
高熱膨張金属箔表面に露出し、また圧接強度も著しく向
上し、さらに低熱膨張金属板に圧接した高熱膨張金属箔
と加熱高熱膨張金属板の同材質の圧接効果とあいまっ
て、より小さな圧下力で高い圧接強度が得られて圧延率
を小さくでき、上記の露出面積比の変動が少なくなる。
また、高熱膨張金属箔表面に露出した高熱膨張金属は同
材質の場合、圧接時に露出する高熱膨張金属板を再結晶
温度以上に加熱しているため、高熱膨張金属箔との一体
化が可能で表面性状が極めてすぐれている。
The thermal conductive material according to the present invention has a high thermal expansion coefficient when a high thermal expansion metal plate is pressed against a high thermal expansion metal foil on one or both sides and a low thermal expansion metal plate provided with a large number of through holes in the thickness direction. Since the metal plate is heated to a temperature higher than the recrystallization temperature, and furthermore, the high thermal expansion metal materials pressed against the low thermal expansion metal plate are pressed together, a high pressing strength can be obtained even with a small rolling force, and the metal plate is provided on the low thermal expansion metal plate. There is little deformation of the shape of the through hole, and a predetermined heat can be obtained without changing the exposed area ratio (through hole area ratio) of the high thermal expansion metal and the low thermal expansion metal plate fitted in the through hole selected in advance on the same plane. Expansion coefficient and thermal conductivity are obtained. In particular, when a high thermal expansion metal foil is pressed against one or both surfaces and is pressed against a low thermal expansion metal plate provided with a large number of through holes in the thickness direction, the high thermal expansion metal plate is heated to a temperature higher than the recrystallization temperature to reduce the rolling reduction force. The high thermal expansion metal fits into the through hole of the low thermal expansion metal plate and is exposed on the surface of the high thermal expansion metal foil, and the pressure contact strength is also significantly improved, and the high thermal expansion metal foil pressed against the low thermal expansion metal plate and heat high thermal expansion Combined with the pressing effect of the same material of the metal plate, a high pressing strength can be obtained with a smaller rolling force, the rolling ratio can be reduced, and the variation in the exposed area ratio is reduced.
In addition, if the high thermal expansion metal exposed on the surface of the high thermal expansion metal foil is the same material, the high thermal expansion metal plate exposed during pressure welding is heated to a temperature higher than the recrystallization temperature, so it can be integrated with the high thermal expansion metal foil. Very good surface properties.

【0021】この発明による熱伝導材料は、高熱膨張金
属板の片面または両面の全面に、少なくとも一方表面に
高熱膨張金属箔を圧接した低熱膨張金属板を積層化する
に際し、この低熱膨張金属板の全面あるいは部分的に厚
み方向の貫通孔を所要間隔、パターンで配置し、例えば
貫通孔の孔寸法、形状、配置パターン等を種々変えた
り、圧延時の変形を考慮して厚み方向に貫通あるいは貫
通しない切り目を設けるなど、芯材の金属板の厚さ比お
よび / または低熱膨張金属板表面に露出した高熱膨
張金属と低熱膨張金属との表面積比を選定するなどの手
段を選定組み合せることにより、材料の全体あるいは部
分的に、用途、目的に応じた熱膨張係数及び熱伝導率を
設定でき、例えば、所要の金属、セラミックス、Si等
の半導体、プラスチックス等の相手材の熱膨張係数との
整合性を図り、かつ所要の熱伝導性を有する材料が得ら
れる。
The heat conductive material according to the present invention is used for laminating a low thermal expansion metal plate having a high thermal expansion metal foil pressed against at least one surface on one or both surfaces of the high thermal expansion metal plate. The through holes in the thickness direction are arranged on the entire surface or partially in the required interval and pattern, for example, the hole size, shape, arrangement pattern, etc. of the through holes are variously changed, and the through holes are penetrated or penetrated in the thickness direction in consideration of deformation during rolling. By selecting and combining means such as selecting a thickness ratio of the metal plate of the core material and / or a surface area ratio of the high thermal expansion metal and the low thermal expansion metal exposed on the surface of the low thermal expansion metal plate, The coefficient of thermal expansion and the thermal conductivity can be set according to the application and purpose for the whole or part of the material. For example, required metals, ceramics, semiconductors such as Si, plastics, etc. Achieving consistency with the thermal expansion coefficient of the counterpart material of the scan or the like, and a material having the required thermal conductivity.

【0022】好ましい実施態様この発明において、高熱
膨張金属板は圧接にて低熱膨張金属板の貫通孔内に圧入
充填されることから、Cu、Cu合金、Al、Al合金
等の展延伸性に富み、かつ高い熱伝導性を有する材料を
用いることが好ましい。また、低熱膨張金属板には、展
延性のあるMo、30〜50wt% Niを含有するN
i−Fe系合金、25〜35wt% Ni、4〜20w
t% Coを含有するNi−Co−Fe系合金、Wなど
を用いることができる。最外層の高熱膨張金属箔には、
Cu、Cu合金、Al、Al合金などの材料が選定で
き、用途やさらに被着する薄膜層材質を考慮して、芯材
の高熱膨張金属板と同材質あるいは異材質を適宜選定す
るとよい。
In the present invention, since the high thermal expansion metal plate is press-fitted into the through-hole of the low thermal expansion metal plate by pressure welding, it is rich in the extensibility of Cu, Cu alloy, Al, Al alloy and the like. It is preferable to use a material having high thermal conductivity. In addition, the low thermal expansion metal plate is made of an extensible Mo, 30 to 50 wt% Ni containing Ni.
i-Fe alloy, 25 to 35 wt% Ni, 4 to 20 w
A Ni-Co-Fe-based alloy containing t% Co, W, or the like can be used. In the outermost layer of high thermal expansion metal foil,
Materials such as Cu, Cu alloy, Al, and Al alloy can be selected, and the same material or a different material as the core material of the high thermal expansion metal plate may be appropriately selected in consideration of the application and the material of the thin film layer to be adhered.

【0023】さらに用途などに応じて、ろう付け性や耐
食性を向上させるため、あるいはAu、Agメッキの被
着性を向上させるため、Cu、Al、Ni、Snなどを
メッキ、蒸着、イオンプレーティング、CVD(che
mical vapor deposition)等の
公知のコーティング技術によって被着する他、はんだ、
Agろう材、セラミックス、ガラス層などを被覆、ある
いは所要位置に被着することができる。
Further, depending on the application, Cu, Al, Ni, Sn, etc. are plated, vapor-deposited, ion-plated, etc. in order to improve brazing properties and corrosion resistance, or to improve the adhesion of Au and Ag plating. , CVD (che
In addition to applying by a known coating technique such as physical vapor deposition, solder,
It can be coated with an Ag brazing material, ceramics, glass layer, or the like, or can be applied at a required position.

【0024】また、表面に高熱膨張金属箔を圧接した低
熱膨張金属板の板厚み方向の貫通孔は、プレス打ち抜き
等の機械加工のほか、エッチング等の化学的加工も採用
でき、貫通孔間隔が狭いほうが製品のばらつきを低減す
る上で有利であり、通常3mm以下、好ましくは1mm
以下、さらに好ましくは0.5mm以下であり、貫通孔
形状も横断面が円、多角形状等、縦断面がストレート、
テーパー等種々形状が採用でき、テーパー状の場合、貫
通孔内への圧入を容易にしかつ接合強度を高めることが
できる。さらに、当該低熱膨張金属板の板厚み方向の貫
通孔は、圧接、圧延後に高熱膨張金属板が充填される所
要の貫通孔になればよく、例えば、圧延前の低熱膨張金
属板に、板厚みの所要方向に貫通するかあるいは貫通直
前の切り目を入れたり、該金属板の両面から切り目方向
や種々の切り目の形状を変えて入れたりして、上述の貫
通孔配置となるよう種々選定でき、切り目の形状も、−
+ < など種々の形状が採用でき、また、板厚みの
所要方向に例えば、三角錐の如き楔状の切り目を入れる
こともできる。またこの発明において、圧延率は冷間の
場合は60%程度必要であるが、この発明の場合は高熱
膨張金属同士の結合が結晶学的にも極めて好ましい状態
となり20%程度まで少なくできるが、30〜50%の
圧延率が好ましい。
The through-holes in the thickness direction of the low-thermal-expansion metal plate with the high-thermal-expansion metal foil pressed against the surface can be formed by mechanical processing such as press punching or chemical processing such as etching. A smaller width is advantageous in reducing the variation in products, and is usually 3 mm or less, preferably 1 mm.
The following, more preferably 0.5 mm or less, the cross-section of the through-hole shape is also a circular cross-section, polygonal, etc., the vertical cross-section is straight,
Various shapes such as a taper can be adopted, and in the case of the taper shape, press-fitting into the through hole can be facilitated and bonding strength can be increased. Further, the through hole in the thickness direction of the low thermal expansion metal plate may be a required through hole to be filled with the high thermal expansion metal plate after pressing and rolling. It is possible to make various choices so as to make the above-mentioned through-hole arrangement by penetrating in the required direction or making a cut just before penetration, or by changing the cut direction and various cut shapes from both sides of the metal plate, The shape of the cut is also-
Various shapes such as + <can be adopted, and a wedge-shaped cut such as a triangular pyramid can be formed in a required direction of the plate thickness. In the present invention, the rolling reduction is required to be about 60% when cold, but in the case of the present invention, the bonding between the high thermal expansion metals is extremely favorable in crystallography and can be reduced to about 20%. A rolling reduction of 30 to 50% is preferred.

【0025】図面に基づく発明の開示 以下に図面に基づいてこの発明による熱伝導材料とその
製造方法を詳述する。図1に示すこの発明の熱伝導材料
は、高熱膨張金属板として銅板を、低熱膨張金属板とし
てコバール(Fe−Co−Ni合金)板を用いた例であ
り、いずれも銅板1の両面に、両面に高熱膨張金属箔層
3を設けて厚み方向に多数の貫通孔4を有するコバール
板2が圧接された構成からなる。
Disclosure of the Invention Based on the Drawings The heat conducting material according to the present invention and the method for manufacturing the same will be described below in detail with reference to the drawings. The heat conductive material of the present invention shown in FIG. 1 is an example in which a copper plate is used as a high thermal expansion metal plate and a Kovar (Fe—Co—Ni alloy) plate is used as a low thermal expansion metal plate. A high-expansion metal foil layer 3 is provided on both sides, and a Kovar plate 2 having a large number of through holes 4 in the thickness direction is pressed.

【0026】銅板1の両面に圧接する高熱膨張金属箔層3
を有するコバール板2には、板厚み方向に同一寸法の貫
通孔4が形成されて高熱膨張金属箔層3上に円状の銅露出
面5が配列されているが、高熱膨張金属箔層3が同一材質
の銅材の場合は銅露出面5は判別できないほどに拡散一
体化される。また、ここでは板厚み方向に同一寸法の貫
通孔4が形成されているが、孔寸法が表裏で異なるよう
にテーパー状としかつ隣接孔が孔寸法の大小の組合せと
なるように配置することもできる。
High thermal expansion metal foil layer 3 pressed against both sides of copper plate 1
The Kovar plate 2 having a through hole 4 having the same dimensions in the plate thickness direction and a circular copper exposed surface 5 is arranged on the high thermal expansion metal foil layer 3, but the high thermal expansion metal foil layer 3 Are made of the same material, the copper exposed surface 5 is diffused and integrated so as to be indistinguishable. Further, here, the through holes 4 having the same size are formed in the thickness direction of the plate, but the through holes 4 may be tapered so that the hole sizes are different on the front and back, and may be arranged so that the adjacent holes have a combination of the sizes of the hole sizes. it can.

【0027】銅板1の両面に高熱膨張金属箔層3を介し
て圧接されるコバール板2の各々の厚み及び銅露出面5
の比率や分散状態等を選定することにより、各主面の熱
的特性を要求される特性に近似させることできる。さら
に、最外層の高熱膨張金属箔層3に、用途やさらに被着
する薄膜層材質を考慮してCu、Cu合金、Al、Al
合金などを選定しているため、受熱の均一化、熱拡散効
果、相手材との接合性、薄膜の被着性の向上効果が得ら
れる。
The thickness and the exposed copper surface 5 of the Kovar plate 2 pressed against both surfaces of the copper plate 1 via the high thermal expansion metal foil layer 3
By selecting the ratio, dispersion state, and the like, the thermal characteristics of each main surface can be approximated to the required characteristics. Further, the outermost high thermal expansion metal foil layer 3 may be formed of Cu, Cu alloy, Al, Al
Since an alloy or the like is selected, it is possible to obtain effects of uniform heat reception, a thermal diffusion effect, a bonding property with a counterpart material, and an improvement in adherence of a thin film.

【0028】上述の銅板とコバール板及び銅箔を用いた
熱伝導材料を製造するには、図2に示すように、まず所
要寸法、厚みのコバール板2の両面に予め銅箔6を圧接
ロール7により圧接され、ルーパー装置にて所要長さが
ストックされた後、さらにプレス機8による打ち抜き加
工を行い、例えば、小さな孔を多数個穿孔して網目状と
なし、さらに、焼鈍後、表面処理を施してコイルに巻き
取っておく。なお、圧接ロール7により圧接した後、一
旦コイルに巻き取りしてから、再度巻き戻してプレス機
8へ送り加工することもできる。次に、図3に示すよう
に、所要寸法、厚みの銅板1コイルを巻き戻して加熱装
置10で再結晶温度以上に加熱し、上方及び下方より巻
き戻した前記の打ち抜き加工3層材9,9を重ねて、圧
接ロール7により圧接する。
In order to manufacture the above-mentioned heat conductive material using the copper plate, the Kovar plate and the copper foil, first, as shown in FIG. After the required length has been stocked by the looper device, punching is further performed by a press machine 8. For example, a large number of small holes are drilled to form a mesh, and after annealing, surface treatment is performed. And wind it up on a coil. After being pressed by the pressure roller 7, it can be wound once on a coil, then rewound again and fed to the press machine 8. Next, as shown in FIG. 3, the copper sheet 1 coil having the required size and thickness is rewound, heated to a temperature higher than the recrystallization temperature by the heating device 10, and rewound from above and below. 9 are stacked and pressed by the pressing roller 7.

【0029】打ち抜き加工3層材9,9との圧接に際し
て銅板1を再結晶温度以上に加熱するため、小さな圧下
力で銅板1がコバール板2の貫通孔内に嵌入してコバー
ル板2の銅箔6表面に露出し、また、銅板1とコバール
板2との間の銅箔6と銅板1及び最外層の銅箔6と銅板
1同士が拡散一体化されるため、小さな圧下力でも高い
圧接強度が得られ、コバール板2に設けた貫通孔形状の
変形が少なく、予め選定したコバール板2表面における
露出した銅板1とコバール板2との露出面積比を変動さ
せることなく、熱膨張に異方性を生じることなく、所定
の熱膨張係数及び熱伝導率が得られる。
In order to heat the copper plate 1 to a temperature higher than the recrystallization temperature at the time of press-contact with the three-layer punched material 9, 9, the copper plate 1 is fitted into the through hole of the Kovar plate 2 with a small rolling force and the copper of the Kovar plate 2 is pressed. Exposed on the surface of the foil 6, the copper foil 6 and the copper plate 1 between the copper plate 1 and the Kovar plate 2 and the copper foil 6 of the outermost layer and the copper plate 1 are diffused and integrated with each other. The strength is obtained, the deformation of the shape of the through-hole provided in the Kovar plate 2 is small, and the thermal expansion is different without changing the exposed area ratio of the exposed copper plate 1 and Kovar plate 2 on the surface of the Kovar plate 2 selected in advance. A predetermined coefficient of thermal expansion and thermal conductivity can be obtained without causing anisotropy.

【0030】上述の圧接に際して、高熱膨張金属材の加
熱雰囲気並びに圧接雰囲気は、非酸化性雰囲気が好まし
く、N2中、Ar中、H2中あるいはこれらの混合ガス雰
囲気やアンモニア分解ガス、プロパン燃焼ガス(DX)
ガス等を用いることができる。また、加熱装置は使用す
る高熱膨張金属材材質に応じて適宜選定するが、管状
炉、光ビーム加熱装置、レーザー加熱装置、高周波加熱
装置、プラズマ加熱装置等を採用することができる。高
熱膨張金属材の加熱温度は、選定した材料の再結晶温度
以上で融点未満の温度範囲から適宜選定するが、融点よ
り100℃程度低い温度から融点未満が好ましく、銅、
銅合金材の場合は、950〜1050℃、Al、Al合
金材の場合は、550〜650℃、Ag、Ag合金材の
場合は、800〜900℃である。
In the above pressure welding, the heating atmosphere and the pressure welding atmosphere of the high thermal expansion metal material are preferably non-oxidizing atmospheres, such as N 2 , Ar, H 2 or a mixed gas atmosphere thereof, ammonia decomposition gas, and propane combustion. Gas (DX)
Gas or the like can be used. Further, the heating device is appropriately selected according to the material of the high thermal expansion metal material to be used, but a tubular furnace, a light beam heating device, a laser heating device, a high frequency heating device, a plasma heating device, or the like can be employed. The heating temperature of the high thermal expansion metal material is appropriately selected from a temperature range not lower than the melting point and higher than the recrystallization temperature of the selected material.
In the case of a copper alloy material, it is 950 to 1050 ° C, in the case of Al and an Al alloy material, it is 550 to 650 ° C, and in the case of Ag and an Ag alloy material, it is 800 to 900 ° C.

【0031】また、コバール板2の両面に銅箔6を圧接
した打ち抜き加工3層材9に代えて、図4に示す如く、
コバール板2の上面に銅箔6を圧接ロール7により圧接
され、ルーパー装置にて所要長さがストックされた後、
プレス機8による打ち抜き加工を行い、得られた打ち抜
き加工2層材11を図3と同様に、再結晶温度以上に加
熱した銅板1の両面に打ち抜き加工2層材11のコバー
ル板2を当接させて圧接を行い、この発明による熱伝導
材料を製造することができる。なお、圧接ロール7によ
り圧接した後、一旦コイルに巻き取りしてから、再度巻
き戻してプレス機8へ送り加工することもできる。な
お、打ち抜き加工2層材11を用いる上記の熱伝導材料
は、銅板1の両面にコバール板2を圧接するため、銅材
同士の圧接となる3層材9を用いたものと同等の圧接強
度を得るには、圧接後に低温焼鈍を施すことが望まし
い。また、熱伝導材料の最外層の銅箔6は予めコバール
板2に圧接されているため、はがれなどの欠陥が少ない
利点は、素材に打ち抜き加工3層材9、打ち抜き加工2
層材11の何れを用いても同様である。
As shown in FIG. 4, instead of the three-layer punching material 9 in which the copper foil 6 is pressed against both surfaces of the Kovar plate 2,
After the copper foil 6 is pressed against the upper surface of the Kovar plate 2 by the pressing roll 7 and the required length is stocked by the looper device,
Punching is performed by a press machine 8 and the obtained two-layer punched material 11 is brought into contact with the Kovar plate 2 of the two-layer punched material 11 on both surfaces of the copper plate 1 heated to a recrystallization temperature or higher in the same manner as in FIG. Then, pressure welding is performed to produce the heat conductive material according to the present invention. After being pressed by the pressure roller 7, it can be wound once on a coil, then rewound again and fed to the press machine 8. In addition, the above-mentioned heat conductive material using the punched two-layer material 11 presses the Kovar plate 2 against both surfaces of the copper plate 1, and thus has the same press-contact strength as the one using the three-layer material 9 that is pressed between copper materials. In order to obtain, it is desirable to perform low-temperature annealing after the pressure welding. Further, since the outermost copper foil 6 of the heat conductive material is press-contacted to the Kovar plate 2 in advance, the advantage that there are few defects such as peeling is that the material is a punched three-layer material 9 and a punched material 2.
The same applies to any of the layer materials 11.

【0032】[0032]

【実施例】実施例1 板厚0.5 mm、板幅30mmのコバール板(29N
i−16Co−Fe合金)を、 900℃で焼鈍してワ
イヤーブラッシングしたのち、その片面に0.2mm厚
み、幅30mmのCu箔を圧接してCu箔厚み60μ
m、全厚み0.28mmの2層材となし、孔径1.0m
m、圧延方向孔間隔2.0mm、幅方向孔間隔2.0m
mで多数の穿孔を施した。なお、コバール板の30〜2
00°Cにおける平均熱膨張係数は 5.2×10-6
°Cであった。
EXAMPLE 1 Kovar plate (29N) having a thickness of 0.5 mm and a width of 30 mm was used.
An i-16Co-Fe alloy) was annealed at 900 ° C. and wire brushed. Then, a Cu foil having a thickness of 0.2 mm and a width of 30 mm was pressed against one surface thereof to obtain a Cu foil having a thickness of 60 μm.
m, a two-layer material with a total thickness of 0.28 mm and a hole diameter of 1.0 m
m, rolling direction hole spacing 2.0 mm, width direction hole spacing 2.0 m
Many perforations were made at m. In addition, 30-2 of Kovar plate
The average coefficient of thermal expansion at 00 ° C. is 5.2 × 10 −6 /
° C.

【0033】板厚0.35 mm、板幅30mmのCu
板をワイヤーブラッシングしたのち900℃に加熱し、
前記2層材のコバール面側に前記Cu板を圧接機により
圧接して、Cu/コバール複合板の貫通孔中に銅が侵入
し、最外層の銅箔の所要位置に銅板表面が部分的に露出
して一体化した板厚0.25mm の3層材を得た。圧
延率は60%であった。得られた熱伝導材の主面におけ
るCu露出面は圧延方向に略円形となり、孔間隔は圧延
方向に2.0mmであり、コバール板に対するCu露出
面の比率は35%であった。Cu板の30〜200°C
における平均熱膨張係数は17.2×10-6/°Cであ
った。得られた材料の厚み方向の熱伝導率は250w/
m・K、及び各主面における熱膨張係数は9×10-6
℃であった。
Cu having a thickness of 0.35 mm and a width of 30 mm
After wire brushing the plate, heat it to 900 ° C,
The Cu plate is pressed against the Kovar surface side of the two-layer material by a pressure welding machine, and copper penetrates into the through-holes of the Cu / Kovar composite plate, and the copper plate surface is partially located at a required position of the outermost copper foil. An exposed and integrated three-layer material having a thickness of 0.25 mm was obtained. The rolling reduction was 60%. The exposed Cu surface on the main surface of the obtained heat conductive material was substantially circular in the rolling direction, the hole interval was 2.0 mm in the rolling direction, and the ratio of the exposed Cu surface to the Kovar plate was 35%. 30-200 ° C for Cu plate
The average coefficient of thermal expansion was 17.2 × 10 −6 / ° C. The thermal conductivity in the thickness direction of the obtained material is 250 w /
m · K and the coefficient of thermal expansion on each main surface are 9 × 10 −6 /
° C.

【0034】実施例2 板厚0.5 mm、板幅30mmのコバール板(29N
i−16Co−Fe合金)を、 900℃で焼鈍してワ
イヤーブラッシングしたのち、その片面に0.2mm厚
み、他面に0.05mm厚み、幅30mmのCu箔を圧
接してCu箔厚み30μm、全厚み0.29mmの3層
材となし、孔径1.0mm、圧延方向孔間隔2.0m
m、幅方向孔間隔2.0mmで多数の穿孔を施した。
Example 2 A Kovar plate (29N) having a thickness of 0.5 mm and a width of 30 mm was used.
An i-16Co-Fe alloy) was annealed at 900 ° C. and wire brushed. Then, a Cu foil having a thickness of 0.2 mm on one side, a thickness of 0.05 mm on the other side, and a width of 30 mm was pressed to obtain a Cu foil thickness of 30 μm. A 3-layer material with a total thickness of 0.29 mm, a hole diameter of 1.0 mm, and a hole interval of 2.0 m in the rolling direction
A large number of perforations were made at a distance of 2.0 mm in the width direction between holes.

【0035】板厚0.35 mm、板幅30mmのCu
板をワイヤーブラッシングしたのち900℃に加熱し、
前記3層材のCu厚みの薄い面側に前記Cu板を圧接機
により圧接して、Cu/コバール複合板の貫通孔中に銅
が侵入し、最外層の銅箔の所要位置に銅板表面が部分的
に露出して一体化した板厚0.25mm の3層材を得
た。圧延率は62%であった。得られた熱伝導材の主面
におけるCu露出面は圧延方向に略円形となり、孔間隔
は圧延方向に2.0mmであり、コバール板に対するC
u露出面の比率は35%であった。得られた材料の厚み
方向の熱伝導率は250w/m・K、及び各主面におけ
る熱膨張係数は9×10-6/℃であった。
Cu having a thickness of 0.35 mm and a width of 30 mm
After wire brushing the plate, heat it to 900 ° C,
The Cu plate is pressed against the thinner side of the three-layered material by a pressure welding machine, and copper penetrates into the through-holes of the Cu / Kovar composite plate, and the surface of the copper plate is positioned at a required position of the outermost copper foil. A partially exposed, three-layer material having a plate thickness of 0.25 mm was obtained. The rolling reduction was 62%. The exposed surface of Cu on the main surface of the obtained heat conductive material was substantially circular in the rolling direction, the hole interval was 2.0 mm in the rolling direction, and the C
The ratio of the u-exposed surface was 35%. The thermal conductivity in the thickness direction of the obtained material was 250 w / m · K, and the coefficient of thermal expansion on each main surface was 9 × 10 −6 / ° C.

【0036】実施例3 板厚0.3 mm、板幅30mmのコバール板(29N
i−16Co−Fe合金)を、 900℃で焼鈍してワ
イヤーブラッシングしたのち、その両面に0.05mm
厚み幅30mmのCu箔を圧接してCu箔厚み30μ
m、全厚み0.25mmの3層材となし、孔径1.0m
m、圧延方向孔間隔2.0mm、幅方向孔間隔2.0m
mで多数の穿孔を施した。
Example 3 A Kovar plate (29N) having a thickness of 0.3 mm and a width of 30 mm was used.
i-16Co-Fe alloy), annealed at 900 ° C and wire brushed, then 0.05mm on both sides
A 30 mm thick Cu foil is pressed into contact with a 30 μm thick Cu foil.
m, a three-layer material with a total thickness of 0.25 mm, a hole diameter of 1.0 m
m, rolling direction hole spacing 2.0 mm, width direction hole spacing 2.0 m
Many perforations were made at m.

【0037】板厚0.5 mm、板幅30mmのCu板
をワイヤーブラッシングしたのち800℃に加熱し、そ
の両面に前記3層材を図3に示す如く圧接機により圧接
して、コバール板の貫通孔中に銅が侵入し、最外層の銅
箔の所要位置に銅板表面が部分的に露出して一体化した
板厚0.4mm の3層材を得た。圧延率は60%であ
った。得られた熱伝導材の主面におけるCu露出面は圧
延方向に略円形となり、孔間隔は圧延方向に2.0mm
であり、コバール板に対するCu露出面の比率は35%
であった。得られた材料の厚み方向の熱伝導率は230
w/m・K、及び各主面における熱膨張係数は8×10
-6/℃であった。この熱伝導材料においてCu板の厚さ
(t1)は0.15mm、コバール板の厚さ(t2)はそ
れぞれ0.115mm、表面のCu箔の厚さ(t3)は
それぞれ0.01mmであった(図1参照)。
A Cu plate having a thickness of 0.5 mm and a width of 30 mm was subjected to wire brushing, heated to 800 ° C., and the above three-layered material was pressed against both surfaces thereof by a pressing machine as shown in FIG. Copper penetrated into the through-holes, and the surface of the copper plate was partially exposed at a required position of the outermost copper foil to obtain an integrated three-layer material having a plate thickness of 0.4 mm. The rolling reduction was 60%. The exposed surface of Cu on the main surface of the obtained heat conductive material was substantially circular in the rolling direction, and the hole interval was 2.0 mm in the rolling direction.
And the ratio of the Cu-exposed surface to the Kovar plate is 35%.
Met. The thermal conductivity of the obtained material in the thickness direction is 230.
w / m · K and the coefficient of thermal expansion on each main surface is 8 × 10
−6 / ° C. In this heat conductive material, the thickness (t 1 ) of the Cu plate is 0.15 mm, the thickness (t 2 ) of the Kovar plate is 0.115 mm, and the thickness (t 3 ) of the Cu foil on the surface is 0.01 mm, respectively. (See FIG. 1).

【0038】板厚0.4mmの熱伝導材料を所要寸法に
切断して、これを2枚積層して放熱基板となした。上記
放熱基板を用いて、セラミックスパッケージを作製した
ところ、良好な熱放散性が得られ、熱的整合性も優れて
いることを確認できた。
A heat conductive material having a thickness of 0.4 mm was cut to a required size, and two sheets were laminated to form a heat dissipation substrate. When a ceramic package was produced using the above-mentioned heat dissipation substrate, it was confirmed that good heat dissipation was obtained and thermal matching was excellent.

【0039】さらに、板厚0.4mmの熱伝導材料を1
000℃、5分間、水素雰囲気焼鈍後、冷間圧延にて板
厚0.15mmに加工した。得られた熱伝導材料におい
て、芯材を構成するCu板の厚さ(t1)は0.068
mm、コバール板の厚さ(t2)はそれぞれ0.038
mm、表面のCu箔の厚さ(t3)はそれぞれ0.00
3mmであった。その後、公知の方法にてリードフレー
ムに加工し、半導体パッケージを作製したところ、チッ
プとアイランドとの接着界面の剥離や封止樹脂のクラッ
ク等が発生することなく、また、従来の銅合金を用いた
リードフレームに近似する良好な熱放散性が得られた。
Further, a heat conductive material having a thickness of 0.4 mm
After annealing in a hydrogen atmosphere at 000 ° C. for 5 minutes, it was worked to a sheet thickness of 0.15 mm by cold rolling. In the obtained heat conductive material, the thickness (t 1 ) of the Cu plate constituting the core is 0.068.
mm and the thickness (t 2 ) of the Kovar plate are 0.038, respectively.
mm, and the thickness (t 3 ) of the Cu foil on the surface is 0.00
3 mm. After that, it was processed into a lead frame by a known method, and a semiconductor package was fabricated.Without peeling of the bonding interface between the chip and the island, cracking of the sealing resin, etc. did not occur, and a conventional copper alloy was used. Good heat dissipation similar to that of a lead frame was obtained.

【0040】[0040]

【発明の効果】この発明による熱伝導材料は、低熱膨張
金属板の両面または片面に高熱膨張金属箔を圧接して一
体化したのち、厚み方向に多数の貫通孔を設けた3層材
または2層材を、常温あるいは再結晶温度以上に加熱し
た高熱膨張金属板の片面または両面に圧接して前記貫通
孔から高熱膨張金属を高熱膨張金属箔表面に露出させて
一体化することにより、接合強度を高くでき、選定した
これら金属板の厚さ比や貫通孔面積比を変化させること
なく、熱膨張係数、熱伝導率を任意に変化させることが
でき、金属、セラミックス、Si等の半導体、プラスチ
ックス等の被着相手材との熱膨張係数の整合性と良好な
熱伝導性を両立でき、さらに受熱の均一化、熱拡散効果
の向上をはかり、表面微細孔がなくめっきやろう材など
薄膜の被着性にすぐれており、半導体チップ搭載用放熱
基板やリードフレーム用材料に最適な熱伝導材料であ
る。また、金属板の厚さ比や貫通孔面積比の変動の要因
である圧接が1回ですむため、工程が簡素化され、熱伝
導材料を安価に提供できる。
The heat conductive material according to the present invention is a three-layer material or a two-layer material having a large number of through-holes in the thickness direction after a high-thermal-expansion metal foil is pressed and integrated on both or one side of a low-thermal-expansion metal plate. The layer material is pressed against one or both surfaces of a high thermal expansion metal plate heated to room temperature or a recrystallization temperature or higher to expose and integrate the high thermal expansion metal from the through hole to the surface of the high thermal expansion metal foil, thereby obtaining a bonding strength. The coefficient of thermal expansion and the thermal conductivity can be changed arbitrarily without changing the thickness ratio or through-hole area ratio of these selected metal plates, and semiconductors such as metals, ceramics, and Si, plastics The balance of the coefficient of thermal expansion with the material to be adhered to, such as metal, and good thermal conductivity can be achieved.Furthermore, uniform heat reception and improvement of the heat diffusion effect are achieved. To adhere to Are, the optimal heat transfer material to the radiating substrate and the material for the lead frame for semiconductor chip mounting. Further, since only one press-contact, which is a factor of the change in the thickness ratio of the metal plate and the area ratio of the through-hole, is required, the process is simplified and the heat conductive material can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による熱伝導材料の一部破断斜視説明
図である。
FIG. 1 is a partially cutaway perspective explanatory view of a heat conductive material according to the present invention.

【図2】この発明による熱伝導材料素材を製造するため
の設備例を示す斜視説明図である。
FIG. 2 is a perspective explanatory view showing an example of equipment for producing a heat conductive material according to the present invention.

【図3】この発明による熱伝導材料を製造するための設
備例を示す斜視説明図である。
FIG. 3 is a perspective explanatory view showing an example of equipment for producing a heat conductive material according to the present invention.

【図4】この発明による他の熱伝導材料素材を製造する
ための設備例を示す斜視説明図である。
FIG. 4 is an explanatory perspective view showing an example of equipment for manufacturing another heat conductive material according to the present invention.

【符号の説明】[Explanation of symbols]

1 銅板 2 コバール板 3 高熱膨張金属箔層 4 貫通孔 5 銅露出面 6 銅箔 7 圧接ロール 8 プレス 機 9 打ち抜き加工3層材 10 加熱装置 11 打ち抜き加工2層材 DESCRIPTION OF SYMBOLS 1 Copper plate 2 Kovar plate 3 High thermal expansion metal foil layer 4 Through-hole 5 Copper exposure surface 6 Copper foil 7 Pressing roll 8 Press machine 9 Punching three-layer material 10 Heating device 11 Punching two-layer material

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高熱膨張金属板の片面または両面に、低
熱膨張金属板の片面に高熱膨張金属箔を一体化して厚み
方向に多数の貫通孔を有する2層材を、該高熱膨張金属
箔が外表面に配置するように積層一体化するとともに、
高熱膨張金属箔外表面に形成される前記貫通孔から高熱
膨張金属板の一部が侵入して露出したことを特徴とする
熱伝導材料。
1. A low thermal expansion metal plate having one or both surfaces
High thermal expansion metal foil integrated on one side of thermal expansion metal plate and thickness
A two-layer material having a large number of through holes in the
While laminating and integrating so that the foil is placed on the outer surface,
Thermally conductive material, wherein a part of the through hole formed in the high thermal expansion metal Hakugai surface of the high thermal expansion metal plate is exposed to intrusion.
【請求項2】 高熱膨張金属板の片面または両面に、低
熱膨張金属板の両面に高熱膨張金属箔を一体化して厚み
方向に多数の貫通孔を有する3層材を積層一体化すると
ともに、高熱膨張金属箔外表面に形成される前記貫通孔
から高熱膨張金属板の一部が侵入して露出したことを特
徴とする熱伝導材料。
2. A low thermal expansion metal plate having one or both surfaces
High thermal expansion metal foil integrated on both sides of thermal expansion metal plate and thickness
When three layers with many through holes in the direction are laminated and integrated
Both the through holes formed on the outer surface of the high thermal expansion metal foil
Note that part of the high thermal expansion metal plate
Characteristic heat conductive material.
【請求項3】 低熱膨張金属板の片面に高熱膨張金属箔
を圧接して一体化したのち、厚み方向に多数の貫通孔を
設けた2層材を、常温あるいは再結晶温度以上に加熱し
た高熱膨張金属板の片面または両面に前記高熱膨張金属
箔が外表面に配置するように圧接して積層一体化すると
ともに、高熱膨張金属箔が外表面に形成される前記貫通
孔から高熱膨張金属板の一部を侵入させ露出させこと
を特徴とする熱伝導材料の製造方法。
3. A two-layer material provided with a large number of through holes in a thickness direction after a high-thermal-expansion metal foil is pressed into contact with one side of a low-thermal-expansion metal plate, and then heated to room temperature or a recrystallization temperature or higher. On one or both sides of the expansion metal plate, the high thermal expansion metal
When laminating and integrating by pressing so that the foil is placed on the outer surface
In both cases, a method of manufacturing a heat conductive material is characterized in that a part of the high thermal expansion metal plate is made to enter and expose through the through hole in which the high thermal expansion metal foil is formed on the outer surface .
【請求項4】 低熱膨張金属板の両面に高熱膨張金属箔
を圧接して一体化したのち、厚み方向に多数の貫通孔を
設けた3層材を、常温あるいは再結晶温度以上に加熱し
た高熱膨張金属板の片面または両面に圧接して積層一体
化するとともに、高熱膨張金属箔が外表面に形成される
前記貫通孔から高熱膨張金属板の一部を侵入させ露出さ
ことを特徴とする熱伝導材料の製造方法。
4. A three-layer material provided with a large number of through holes in a thickness direction after a high-thermal-expansion metal foil is pressed into contact with both surfaces of a low-thermal-expansion metal plate, and then heated to room temperature or a recrystallization temperature or higher. Press-contact one or both sides of the expanded metal plate to laminate and integrate
As well as reduction method of thermally conductive material, characterized in that the high thermal expansion metal foil exposed infested part of the high thermal expansion metal plate from <br/> the through holes formed on the outer surface.
JP29249491A 1991-10-12 1991-10-12 Thermal conductive material and method of manufacturing the same Expired - Lifetime JP3037485B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP29249491A JP3037485B2 (en) 1991-10-12 1991-10-12 Thermal conductive material and method of manufacturing the same
DE69217810T DE69217810T2 (en) 1991-10-12 1992-10-12 Process for the production of a thermally conductive material
EP92309275A EP0537965B1 (en) 1991-10-12 1992-10-12 Process of manufacturing a heat-conductive material
US07/959,606 US5358795A (en) 1991-10-12 1992-10-13 Heat-conductive material and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29249491A JP3037485B2 (en) 1991-10-12 1991-10-12 Thermal conductive material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05109946A JPH05109946A (en) 1993-04-30
JP3037485B2 true JP3037485B2 (en) 2000-04-24

Family

ID=17782550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29249491A Expired - Lifetime JP3037485B2 (en) 1991-10-12 1991-10-12 Thermal conductive material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3037485B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014150949A (en) * 2013-02-07 2014-08-25 Kose Corp Middle plate for solid powder cosmetic

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2941801B1 (en) * 1998-09-17 1999-08-30 北川工業株式会社 Thermal conductive material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014150949A (en) * 2013-02-07 2014-08-25 Kose Corp Middle plate for solid powder cosmetic

Also Published As

Publication number Publication date
JPH05109946A (en) 1993-04-30

Similar Documents

Publication Publication Date Title
EP0537965B1 (en) Process of manufacturing a heat-conductive material
US5106433A (en) Heat-conductive composite material
US4611745A (en) Method for preparing highly heat-conductive substrate and copper wiring sheet usable in the same
JPH0313331A (en) Composite material variable in coefficient of thermal expansion and heat conductivity
JPH0837257A (en) Laminated body and manufacture thereof
US5156923A (en) Heat-transferring circuit substrate with limited thermal expansion and method for making
JP3119630B2 (en) Multilayer circuit board for semiconductor chip module and method of manufacturing the same
US5300809A (en) Heat-conductive composite material
JP3462308B2 (en) Manufacturing method of heat conductive composite material
JP2860037B2 (en) Method of manufacturing heat dissipation board for semiconductor device
US7830001B2 (en) Cu-Mo substrate and method for producing same
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
JP3037485B2 (en) Thermal conductive material and method of manufacturing the same
JPH05109947A (en) Heat conducting material and its manufacture
JP3670381B2 (en) Thermally conductive composite material and manufacturing method thereof
JPH03227621A (en) Thermally conductive composing material
JPH0924500A (en) Production of thermally conductive composite material
JP2602161B2 (en) High heat dissipation integrated circuit package
JPH11226775A (en) Solder material and its production
JPH0575008A (en) Thermally conductive material and manufacture thereof
JPS61121489A (en) Cu wiring sheet for manufacture of substrate
JPS62229973A (en) Semiconductor device
WO2024014532A1 (en) Multilayer assembly, semiconductor device using same, and method for manufacturing same
JP2000312066A (en) Composite material used for transcribing method, and its manufacture
JP2657610B2 (en) Metal composite materials and electronic circuit components

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090225

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100225

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110225

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120225

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12