JPH03227621A - Thermally conductive composing material - Google Patents

Thermally conductive composing material

Info

Publication number
JPH03227621A
JPH03227621A JP2040550A JP4055090A JPH03227621A JP H03227621 A JPH03227621 A JP H03227621A JP 2040550 A JP2040550 A JP 2040550A JP 4055090 A JP4055090 A JP 4055090A JP H03227621 A JPH03227621 A JP H03227621A
Authority
JP
Japan
Prior art keywords
thermal expansion
composite material
conductive composite
plate
thermally conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2040550A
Other languages
Japanese (ja)
Other versions
JPH0780272B2 (en
Inventor
Yasuyuki Nakamura
恭之 中村
Kenji Hirano
健治 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2040550A priority Critical patent/JPH0780272B2/en
Publication of JPH03227621A publication Critical patent/JPH03227621A/en
Publication of JPH0780272B2 publication Critical patent/JPH0780272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Lead Frames For Integrated Circuits (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To improve the matching properties of the subject material with materials to which the former is bonded such as chips or sealing resin in terms of coefficient of thermal expansion and also improve thermal conductivity by constituting the subject material with a core consisting of a metal plate having a low thermal expansion factor with through holes in a thickness direction formed in a single piece and a high thermal expansion metal foil layer attached to the both surfaces of the core under pressure, on the both surfaces of a high thermal expansion metal plate. CONSTITUTION:A thermally conductive composite material 10 consists of for example, a core 14 obtained by press bonding a copal plate 12 having may through holes 13 in a thickness direction onto both surfaces of a copper plate 11 and a high thermal expansion metal foil layer 16 press bonded to the both surfaces of the core 14. In addition, an exposed copper surface 15 appearing on the surface of the copal plate 12 through a through hole 13 is formed on the both surfaces of the core 14. Subsequently, the heat dissipation effect and the functioning properties of the subject material with matching materials and the coating properties of a film are enhanced.

Description

【発明の詳細な説明】 利用産業分野 この発明は、例えば、半導体チップ搭載用放熱基板やリ
ードフレーム用材料の如く、半導体チップによる発熱を
効率良く外部に放熱するため、金属、セラミックス、S
i等の半導体、プラスチックス等の被着相手材との熱膨
張係数の整合性と良好な熱伝導性を両立できるように、
熱膨張係数及び熱伝導率を任意に変化させ、かつ相手材
との接合性並びに表面性状のすぐれた熱伝導複合材料に
係り、高熱膨張金属板に厚み方向に所要の貫通孔を有す
る低熱膨張金属板を一体化し、前記貫通孔から高熱膨張
金属を低熱膨張金属板表面に露出させた芯材の両面に高
熱膨張金属箔を圧接し、これら金属板の厚さ比や貫通孔
面積比を適宜選定することにより、熱膨張係数、熱伝導
率を可変となし、受熱の均一化、熱拡散効果の向上をは
かり、表面微細孔がなくメッキやろう材など薄膜の被着
性にすぐれた熱伝導複合材料に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application This invention is applicable to materials such as metals, ceramics, S
In order to achieve both good thermal conductivity and consistency in thermal expansion coefficient with other materials such as semiconductors such as i and plastics,
A low thermal expansion metal having a high thermal expansion metal plate with the required through holes in the thickness direction, which is a thermally conductive composite material whose thermal expansion coefficient and thermal conductivity can be arbitrarily changed, and which has excellent bonding properties with mating materials and surface properties. The plates are integrated, and high thermal expansion metal foils are pressed onto both sides of the core material in which the high thermal expansion metal is exposed on the surface of the low thermal expansion metal plate through the through hole, and the thickness ratio of these metal plates and the through hole area ratio are appropriately selected. This makes the coefficient of thermal expansion and thermal conductivity variable, making heat reception uniform and improving the heat diffusion effect.Thermal conductive composite has no surface micropores and has excellent adhesion to thin films such as plating and brazing materials. Regarding materials.

背景技術 半導体パッケージの集積回路チップ(以下チップ)、と
りわけ、大型コンピューター用のLSIやULSIは、
高集積度化、演算速度の高速化の方向に進んでおり、作
動中における消費電力の増加に伴う発熱量が非常に大き
くなっている。
Background Art Integrated circuit chips (hereinafter referred to as chips) in semiconductor packages, especially LSIs and ULSIs for large computers,
The trend is toward higher integration and faster calculation speeds, and the amount of heat generated during operation is increasing due to increased power consumption.

すなわち、チップは大容量化して、発熱量が大きくなっ
ており、基板材料の熱膨張係数がチップ材料であるシリ
コンやガリウムヒ素等と大きな差があると、チップが剥
離あるいは割れを生ずる問題がある。
In other words, chips have become larger in capacity and generate more heat, and if the coefficient of thermal expansion of the substrate material is significantly different from that of the chip material, such as silicon or gallium arsenide, there is a problem that the chip may peel off or crack. .

これに伴ない、半導体パッケージの設計も、熱放散性を
考慮したものとなり、チップを搭載する基板にも放熱性
が要求されるようになり、基板材料の熱伝導率が大きい
ことが求められている。
Along with this, the design of semiconductor packages has also begun to take heat dissipation into consideration, and the substrate on which the chip is mounted is also required to have heat dissipation, and the substrate material is required to have high thermal conductivity. There is.

従って、基板には、チップと熱膨張係数が近く、かつ熱
伝導率が大きいことが要求されている。従来の半導体パ
ンケージとしては、種々の構成が提案されているが、例
えば、第9図a、bに示す構成のものが知られている。
Therefore, the substrate is required to have a coefficient of thermal expansion close to that of the chip and a high thermal conductivity. Various configurations have been proposed for conventional semiconductor pancages, and for example, configurations shown in FIGS. 9a and 9b are known.

第9図aの場合は、チップ(1)の熱膨張係数に近いM
o材(2)と、パッケージ基板を構成するアルミナ材(
3)の熱膨張係数に近いコバール合金材(4)をろう付
は積層し、Mo(2)材にチップを搭載し、コバール合
金材(4)を介してパッケージ基板に接合し、さらに放
熱フィン(5)を付設した構成がある。
In the case of Figure 9a, M is close to the thermal expansion coefficient of chip (1).
o material (2) and alumina material (
Kovar alloy material (4) with a thermal expansion coefficient close to that of 3) is laminated by brazing, a chip is mounted on the Mo(2) material, it is bonded to the package substrate via the Kovar alloy material (4), and a heat dissipation fin is added. There is a configuration with (5) added.

かかる構成において、アルミナ材(3)とコバール合金
材(4)とは熱膨張係数が近いため、剥離や割れを生ず
る危険は少ないが、放熱性を支配する材料が熱伝導率の
低いコバール合金材(4)であるため、放熱フィン(5
)を付設しても、充分な放熱性が得られない問題があっ
た。
In this configuration, the alumina material (3) and the Kovar alloy material (4) have similar coefficients of thermal expansion, so there is little risk of peeling or cracking, but the material that dominates heat dissipation is the Kovar alloy material with low thermal conductivity. (4), so the radiation fin (5
), there was a problem that sufficient heat dissipation could not be obtained.

そこで、チップの熱膨張係数との整合性を有し、熱伝導
率が大きいという、相反する要求を満足する材料として
、クラツド板やCu−MoあるいはCu−W合金等の放
熱基板用複合材料が提案されている。
Therefore, as a material that satisfies the conflicting demands of having consistency with the coefficient of thermal expansion of the chip and having high thermal conductivity, composite materials for heat dissipation substrates such as clad plates and Cu-Mo or Cu-W alloys have been developed. Proposed.

放熱基板用クラツド板としては、銅板とインバー合金板
を積層した材料が使用されている。
As the clad plate for the heat dissipation board, a material made by laminating a copper plate and an invar alloy plate is used.

すなわち、前記クラツド板は、銅は熱伝導性が良好であ
るが熱膨張係数が大きいため、これを抑制するためにイ
ンバー合金を積層圧接することにより、板の長手方向の
熱膨張に関して半導体素子との整合性を得るものである
。また、銅板の両面にインバー合金板を積層圧接したサ
ンドインチ構造を取ることにより、温度上昇によるそり
を防ぐ構造となっている。
In other words, since copper has good thermal conductivity but a large coefficient of thermal expansion, the clad plate has an invar alloy layered and pressure welded to suppress this, so that thermal expansion in the longitudinal direction of the plate is similar to that of semiconductor elements. This is to obtain consistency. Furthermore, by adopting a sandwich structure in which invar alloy plates are laminated and pressure-welded on both sides of a copper plate, the structure prevents warping due to temperature rise.

このクラツド板は、熱膨張係数に関してはチップとほぼ
同一にすることができるが、板厚方向への熱伝導度は、
第9図aの構成と同様に、インバー合金板を介在するた
め、必ずしも十分でない。
This clad plate can be made to have almost the same coefficient of thermal expansion as the chip, but the thermal conductivity in the thickness direction is
Similar to the structure shown in FIG. 9a, since an invar alloy plate is interposed, this is not necessarily sufficient.

また、半導体素子の熱膨張率に近い熱膨張率を有するN
i−Fe製のパンチングメタルを、Cu等の半導体素子
支持面に埋め込んだ半導体素子用支持体も提案(特公昭
58−46073号公報)されている。
In addition, N has a coefficient of thermal expansion close to that of semiconductor elements.
A semiconductor element support body in which a punched metal made of i-Fe is embedded in a semiconductor element support surface made of Cu or the like has also been proposed (Japanese Patent Publication No. 58-46073).

これは、片面にパンチングメタルを埋め込んだ構成のた
め、バイメタル効果により、そりなどが発生する問題が
あった。
This has a structure in which punching metal is embedded in one side, so there is a problem that warping occurs due to the bimetal effect.

半導体素子の熱膨張率に近い熱膨張率を有するNi−F
e製の格子を、Cu等の半導体素子支持内に埋め込まれ
るように積層した半導体素子用放熱支持体も提案(U、
S、P 3,399,332号)されている。
Ni-F has a coefficient of thermal expansion close to that of semiconductor elements
We have also proposed a heat dissipation support for semiconductor devices in which a grid made of e is laminated so as to be embedded in a semiconductor device support made of Cu etc. (U,
S, P 3,399,332).

これは、製造時にガスやゴミが吸蔵され加熱時にフクレ
を生じることが懸念され、また、Cu等の支持体の厚み
の中央部に、熱膨張調整用のNi−Fe製の格子がある
ため、表面の熱膨張係数を格子程度にするためには、C
uの厚みを薄くする必要があり、厚み方向には熱伝達が
良いが面平行方向はがなり悪くなる。
This is because there is a concern that gas and dust may be occluded during manufacturing and cause blistering during heating, and also because there is a Ni-Fe lattice for thermal expansion adjustment in the center of the thickness of the support such as Cu. In order to make the thermal expansion coefficient of the surface comparable to that of a lattice, C
It is necessary to reduce the thickness of u, and heat transfer is good in the thickness direction, but delamination is poor in the plane-parallel direction.

さらに、複数の貫通孔を有する熱源と熱膨張係数が同等
の一対のCo−Ni−FeやNi−Fe板の間にCuや
AIを挟み貫通孔に充填させた熱伝導金属板が提案(特
公昭63−3741号公報)されている。
Furthermore, a heat conductive metal plate was proposed in which Cu or AI was sandwiched between a pair of Co-Ni-Fe or Ni-Fe plates with the same coefficient of thermal expansion as a heat source having multiple through holes, and the through holes were filled in. -3741)).

しかし、上記熱伝導金属板を加工すると、剥がれが生じ
ることが懸念され、また、ろう付は可能にするため表面
にNiメッキなどを被着すると、メッキ層と銅が反応し
てメッキ層のむらが生じたり、メッキ層と材料の界面に
ガスやゴミが吸蔵され加熱時にフクレを生じることが懸
念される。
However, when processing the above-mentioned heat conductive metal plate, there is a concern that it may peel off, and if Ni plating is applied to the surface to enable brazing, the plated layer and copper may react and cause unevenness of the plated layer. There is a concern that gas and dust may be occluded at the interface between the plating layer and the material, causing blisters when heated.

また、上記熱伝導金属板において、発熱体の熱は局部的
に見れば、Cuを下地にした場合とCo−Ni−Feや
Ni−Fe板を下地にした場合とは異なり、Co−Ni
−FeやNi−Fe上の熱は貯まりやすく均一に受熱し
ない問題がある。
In addition, in the above-mentioned heat conductive metal plate, the heat of the heating element is different from the case where the base is Cu and the case where the base is Co-Ni-Fe or Ni-Fe plate when viewed locally.
There is a problem that heat on -Fe and Ni-Fe tends to accumulate and is not uniformly received.

一方、Cu−Mo、 Cu−W合金基板は、チップの熱
膨張係数とほぼ等しいMo、W粉を焼結することによっ
て、気孔率の大きい焼結体を作製し、その後、溶融した
銅を含浸させて製造(特開昭59−141247号公報
)するか、あるいはMo、Wの粉末と銅の粉末を焼結(
特開昭62−294147号公報)することによって得
られたMoあるいはWとCuの複合体である。
On the other hand, Cu-Mo and Cu-W alloy substrates are produced by sintering Mo and W powders, which have approximately the same coefficient of thermal expansion as the chip, to create a sintered body with a high porosity, and then impregnating it with molten copper. (Japanese Unexamined Patent Publication No. 59-141247), or by sintering Mo, W powder and copper powder (
It is a composite of Mo or W and Cu obtained by the method (Japanese Patent Application Laid-Open No. 62-294147).

かかる複合体基板(6)は、パッケージへの装着に際し
、第9図すに示す如く、チップ(1)の搭載面とは反対
側に、パッケージを構成するアルミナ材(3)と接合す
るためのフランジ部(7)を付設し、回部で放熱する構
成からなる。
When this composite substrate (6) is attached to a package, as shown in FIG. It has a structure in which a flange part (7) is attached and heat is radiated by a turning part.

前記複合体は熱膨張係数、熱伝導度とも実用上満足すべ
き条件にかなっているが、Mo、W等が高密度であるた
め重く、所定の寸法を得るには機械的成形加工しなけれ
ばならず、加工費が高く、歩留りが悪くなっていた。
Although the above-mentioned composite has a thermal expansion coefficient and thermal conductivity that meet practically satisfactory conditions, it is heavy due to the high density of Mo, W, etc., and requires mechanical molding to obtain the specified dimensions. This resulted in high processing costs and low yields.

また、上述した放熱基板のほかにリードフレームも被着
相手材との熱膨張係数の整合、熱伝導度の向上を同時に
図る必要がある。
In addition to the above-mentioned heat dissipation substrate, the lead frame also needs to match the coefficient of thermal expansion with the material to be adhered and improve the thermal conductivity at the same time.

第10図に示す如き、樹脂封止の半導体パッケージにお
いては、リードフレームがチップの外部への電気的接続
の経路となるだけでなく、チップで発生する熱の放散経
路として重要な役割を果している。
In a resin-sealed semiconductor package as shown in Figure 10, the lead frame not only serves as a route for electrical connections to the outside of the chip, but also plays an important role as a dissipation route for the heat generated in the chip. .

すなわち、半導体パッケージにおいて、チップ(84)
はリードフレーム(8o)の中央部に形成されるアイラ
ンド(81)に載置され、ろう材や接着材、はんだ等に
て固着されるとともに、ステッチ(82Xインナ一リー
ド部)とボンディングワイヤ(85)を介して電気的に
接続され、さらに周囲を樹脂(86)にて封止されてい
る。
That is, in a semiconductor package, a chip (84)
is placed on the island (81) formed in the center of the lead frame (8o) and fixed with brazing material, adhesive, solder, etc., and the stitching (82X inner lead part) and bonding wire (85 ), and the periphery is further sealed with resin (86).

チップ(84)から発生する熱は、アイランド(81)
、樹脂(86)、ステッチ(82)という経路にてリー
ドフレーム(8o)のリード部(83)に達し、外部に
放散されることになる。
The heat generated from the chip (84) is transferred to the island (81)
, the resin (86), and the stitches (82) to reach the lead portion (83) of the lead frame (8o) and be dissipated to the outside.

従って、リードフレーム(8o)には、チップから発生
する熱を半導体パッケージの外部に放散するために熱伝
導率の良い材料が望まれる。
Therefore, the lead frame (8o) is desired to be made of a material with good thermal conductivity in order to dissipate the heat generated from the chip to the outside of the semiconductor package.

一方、チップ(84)とアイランド(81)との接着界
面の剥離や、樹脂(86)にみられるクラック等は、チ
ップ(84)や封止樹脂(86)とリードフレーム(8
o)との熱膨張係数の差を要因として発生しており、こ
れを防止するためには、前記チップ(84)及び樹脂(
86)とリードフレーム(8o)との熱膨張係数の整合
性が不可欠となる。
On the other hand, peeling of the adhesive interface between the chip (84) and the island (81) and cracks observed in the resin (86) may occur between the chip (84), the sealing resin (86), and the lead frame (86).
This occurs due to the difference in thermal expansion coefficient between the chip (84) and the resin (o).
It is essential that the thermal expansion coefficients of the lead frame (86) and the lead frame (8o) match.

上述したようにプラスチックス半導体パッケージにおけ
るリードフレームには、従来がら、熱の放散性の観点か
ら熱伝導率の良い銅合金からなるノードフレームが多用
されている。
As described above, node frames made of a copper alloy with good thermal conductivity have been frequently used as lead frames in plastic semiconductor packages from the viewpoint of heat dissipation.

ところが、高信頼性を要求される用途には、銅合金は、
機械的強度が低く、チップとの軌鰯帯標数の整合性が悪
く、チップとアイランドとの接着界面の剥離等が懸念さ
れるため、チップとの熱膨張係数の整合性から42%N
i−Fe合金等の低熱膨張係数を有するNi−Fe系合
金を採用した半導体パッケージも提案されている。
However, for applications that require high reliability, copper alloys are
Due to the low mechanical strength, poor consistency of the curved band characteristic with the chip, and the possibility of peeling of the adhesive interface between the chip and the island, 42%N was selected due to the consistency of the coefficient of thermal expansion with the chip.
Semiconductor packages employing Ni-Fe alloys having a low coefficient of thermal expansion, such as i-Fe alloys, have also been proposed.

しかし、Ni−Fe系合金は熱伝導率が悪いため、現在
の要求を満すだけの熱の放散性が得られていない。また
、チップと封止樹脂との熱膨張差は非常に大きく、リー
ドフレームとチップとの熱膨張係数の整合性がよい場合
でも、リードフレームと樹脂との間の整合性が悪く、封
止樹脂に発生するクラックを完全に防止することは困難
であった。
However, since Ni--Fe alloys have poor thermal conductivity, they do not have sufficient heat dissipation properties to meet current requirements. In addition, the difference in thermal expansion between the chip and the encapsulating resin is very large. It has been difficult to completely prevent cracks from occurring.

さらに、セラミックス半導体パッケージでは、ガラス封
着するために、リードフレームには封着位置にAIを設
けたNi−Fe系合金が多用されている。しかし、Ni
−Fe系合金は上述の如く、熱放散性が悪く、セラミッ
クスとの熱膨張係数の整合性に問題があった。
Furthermore, in ceramic semiconductor packages, a Ni--Fe alloy with an AI provided at the sealing position is often used in the lead frame for glass sealing. However, Ni
As mentioned above, the -Fe alloy has poor heat dissipation properties and has a problem in matching the coefficient of thermal expansion with ceramics.

発明の目的 この発明は、上述した半導体パッケージにおける熱の放
散性の問題の例で明らかにした如く、チップや封止樹脂
等の接着相手材の熱膨張係数との整合性にすぐれ、かつ
熱伝導性が良好というように、用途や目的に応じて熱膨
張係数と熱伝導率を任意に選定できる複合材料の提供を
目的としている。
Purpose of the Invention As clarified in the above-mentioned example of the heat dissipation problem in semiconductor packages, the present invention provides excellent thermal expansion coefficient matching with the thermal expansion coefficient of the bonding material such as a chip or sealing resin, and a heat conductive material. The objective is to provide a composite material whose thermal expansion coefficient and thermal conductivity can be arbitrarily selected depending on the use and purpose, such as good properties.

この発明は、例えば、半導体チップ搭載に際し、熱膨張
係数、熱伝導率を可変となし、受熱の均一化、熱拡散効
果の向上を図り、表面微細孔がなくメッキやろう材など
薄膜の被着性にすぐれた熱伝導複合材料、さらに実装に
際しての加工性や製造性にすぐれ、安価に提供できる半
導体パッケージ用放熱基板として用いることができる複
合材料の提供を目的としている。
For example, when mounting a semiconductor chip, this invention makes the thermal expansion coefficient and thermal conductivity variable, uniformizes heat reception, improves the heat diffusion effect, and eliminates surface micropores, allowing thin films such as plating and brazing filler metal to adhere. The purpose of the present invention is to provide a thermally conductive composite material with excellent properties, as well as a composite material that can be used as a heat dissipation substrate for semiconductor packages, which has excellent processability and manufacturability during mounting, and can be provided at low cost.

発明の概要 この発明は、相手材に応じた熱膨張係数の整合性と放熱
性が確保できかつ製造性にすぐれた金属材料を目的に種
々検討した結果、高熱膨張金属板に厚み方向に、多数の
貫通孔を有する低熱膨張金属板を圧接一体化し、前記貫
通孔から高熱膨張金属を低熱膨張金属板表面に露出させ
た芯材の両面に高熱膨張金属箔を圧接した5層構造の複
合材料とすることにより、芯材の金属板の厚さ比や金属
板の露出面積比を適宜選定して、熱膨張係数、熱伝導率
を任意に変化させ得ること、表面の高熱膨張金属箔層に
より受熱の均一化、熱拡散効果の向上を図り、表面微細
孔がなくメッキやろう材など薄膜の被着性にすぐれるこ
と、および芯材となる高熱膨張金属板と厚み方向に多数
の貫通孔を有する低熱膨張金属板及び最外層の高熱膨張
金属箔とを圧接圧延することにより容易に目的とする複
合材料が製造できることを知見したものである。
Summary of the Invention As a result of various studies aimed at creating a metal material that can ensure consistency in thermal expansion coefficient and heat dissipation depending on the mating material and has excellent manufacturability, the present invention has been developed by applying a large number of metal materials in the thickness direction to a high thermal expansion metal plate. A composite material with a five-layer structure, in which a low thermal expansion metal plate having a through hole is integrally welded together, and a high thermal expansion metal foil is pressed on both sides of a core material in which a high thermal expansion metal is exposed from the through hole on the surface of the low thermal expansion metal plate. By doing so, the thermal expansion coefficient and thermal conductivity can be changed arbitrarily by appropriately selecting the thickness ratio of the metal plate of the core material and the exposed area ratio of the metal plate, and the heat reception by the high thermal expansion metal foil layer on the surface is possible. In order to make the heat more uniform and improve the heat diffusion effect, the surface has no micropores and has excellent adhesion for thin films such as plating and brazing filler metal.It also has a high thermal expansion metal plate that serves as the core material and a large number of through holes in the thickness direction. The inventors have discovered that the desired composite material can be easily produced by pressure-rolling a low thermal expansion metal plate and a high thermal expansion metal foil as the outermost layer.

すなわち、この発明は、 高熱膨張金属板の両面に、厚み方向に多数の貫通孔を有
する低熱膨張金属板が一体化されて、前記貫通孔から高
熱膨張金属が低熱膨張金属板表面に露出した構成の芯材
と、該芯材の両面に圧接した芯材の高熱膨張金属と同種
または異種の高熱膨張金属箔層とからなることを特徴と
する熱伝導複合材料である。
That is, the present invention has a configuration in which a low thermal expansion metal plate having a large number of through holes in the thickness direction is integrated on both sides of a high thermal expansion metal plate, and the high thermal expansion metal is exposed on the surface of the low thermal expansion metal plate from the through holes. This is a thermally conductive composite material comprising a core material and high thermal expansion metal foil layers of the same type or different type as the high thermal expansion metal of the core material, which are pressed against both sides of the core material.

また、この発明は、上記構成において、芯材の金属板の
厚さ比およびlまたは低熱膨張金属板表面に露出した高
熱膨張金属と低熱膨張金属との表面積比を選定し、熱膨
張係数およびlまたは熱伝導率を所要値に変化させるこ
とを特徴とする熱伝導複合材料である。
Furthermore, in the above configuration, the thickness ratio and l of the metal plate of the core material or the surface area ratio of the high thermal expansion metal and the low thermal expansion metal exposed on the surface of the low thermal expansion metal plate are selected, and the thermal expansion coefficient and l Alternatively, it is a thermally conductive composite material characterized by changing thermal conductivity to a required value.

さらに、前記構成において、 高熱膨張金属板が、Cu、 Cu合金、Al、Al合金
、鋼のうちいずれか、 低熱膨張金属板が、Mo、30〜50wt%Niを含有
するNi−Fe系合金、25〜35wt%Niと4〜2
0wt%Coを含有するNi−Co−Fe系合金、Wの
うちいずれか、高熱膨張金属箔がCu、 Cu合金、A
l、Al合金、Ni、 Ni合金のうちいずれかからな
り、芯材を構成する高熱膨張金属板の厚みt1、低熱膨
張金属板の厚みt2、及び高熱膨張金属箔層の厚みt3
が、t1=:tt2〜3t2、t3≦1/10 t2を
満足することを特徴とする熱伝導複合材料である。
Furthermore, in the above configuration, the high thermal expansion metal plate is any one of Cu, Cu alloy, Al, Al alloy, and steel, and the low thermal expansion metal plate is Mo, a Ni-Fe alloy containing 30 to 50 wt% Ni, 25-35wt%Ni and 4-2
Ni-Co-Fe alloy containing 0 wt% Co, any of W, high thermal expansion metal foil is Cu, Cu alloy, A
Thickness t1 of the high thermal expansion metal plate that is made of one of Al alloy, Ni, and Ni alloy and constitutes the core material, thickness t2 of the low thermal expansion metal plate, and thickness t3 of the high thermal expansion metal foil layer.
is a thermally conductive composite material that satisfies t1=:tt2-3t2, t3≦1/10 t2.

さらに、前記構成において、 熱伝導複合材料の少なくとも一主面の所要位置に、Cu
、 A1、Ni、 Snのうちいずれかからなる金属メ
ッキを被着したことを特徴とする熱伝導複合材料である
Furthermore, in the above configuration, Cu is provided at a predetermined position on at least one main surface of the thermally conductive composite material
, A1, Ni, and Sn.

例えば、Cu、 A1等の高熱膨張金属板の両生面に、
厚み方向に多数の貫通孔を設けたNi−Fe系合金、N
i−Co−Fe系合金等の低熱膨張金属板を一体化して
、前記貫通孔から高熱膨張金属を低熱膨張金属板表面に
露出させるとともに、最外層にCu、AI、 Niなと
の高熱膨張金属箔を圧接して複合材料となし、プレス成
形、積層、メッキやろう材の被着等の加工を施すことに
より、セラミックスパッケージ、メタルパッケージなど
のチップ搭載用放熱基板、リードフレーム等、種々用途
の熱伝導複合材料が得られる。
For example, on the amphibian side of a high thermal expansion metal plate such as Cu or A1,
Ni-Fe alloy with many through holes in the thickness direction, N
A low thermal expansion metal plate such as an i-Co-Fe alloy is integrated, and the high thermal expansion metal is exposed on the surface of the low thermal expansion metal plate through the through hole, and the outermost layer is made of a high thermal expansion metal such as Cu, AI, or Ni. By press-welding foils to make composite materials and performing processes such as press molding, lamination, plating, and adhesion of brazing materials, they can be used for various purposes such as heat dissipation substrates for mounting chips such as ceramic packages and metal packages, and lead frames. A thermally conductive composite material is obtained.

発明の構成 この発明は、高熱膨張金属板に厚み方向に多数の貫通孔
を有する低熱膨張金属板を一体化し、前記貫通孔から高
熱膨張金属を低熱膨張金属板表面に露出させた芯材の両
面に高熱膨張金属箔を圧接した5層構造を特長とし、主
に芯材金属板の厚さ比の選定により熱膨張係数を任意に
変化させることができ、芯材の高熱膨張金属に高熱伝導
性金属を用い、露出した高熱膨張金属の低熱膨張金属板
表面での面積比を適宜選定することにより熱伝導率を任
意に変化させ得るもので、高熱膨張金属板と低熱膨張金
属板の材質選定、組合せ、並びに前記厚さ比と露出面積
比の選定により、種々の用途、目的に応じた熱膨張係数
及び熱伝導率を設定でき、多種の複合材料を提供できる
Composition of the Invention This invention integrates a high thermal expansion metal plate with a low thermal expansion metal plate having a large number of through holes in the thickness direction, and exposes the high thermal expansion metal on the surface of the low thermal expansion metal plate from the through holes. It features a five-layer structure in which a high thermal expansion metal foil is pressure-bonded to the core metal plate, and the coefficient of thermal expansion can be changed arbitrarily by selecting the thickness ratio of the core metal plate, and the high thermal expansion metal of the core material has high thermal conductivity. By using metal, the thermal conductivity can be arbitrarily changed by appropriately selecting the area ratio of the exposed high thermal expansion metal to the surface of the low thermal expansion metal plate, and the material selection of the high thermal expansion metal plate and the low thermal expansion metal plate, By selecting the combination and the thickness ratio and exposed area ratio, the coefficient of thermal expansion and thermal conductivity can be set according to various uses and purposes, and a wide variety of composite materials can be provided.

また、最外層の高熱膨張金属箔層により受熱の均一化、
熱拡散効果の向上を図り、相手材との接合性にすぐれ、
表面性状がすぐれ微細孔がなくメッキやろう材など薄膜
の被着性にすぐれた種々の用途の複合材料を提供できる
In addition, the outermost high thermal expansion metal foil layer ensures uniform heat reception.
Improved heat diffusion effect, excellent bonding with mating materials,
Composite materials with excellent surface properties, no micropores, and excellent adhesion of thin films such as plating and brazing materials can be provided for various uses.

この発明による熱伝導複合材料は、 高熱膨張金属板の両面の全面に低熱膨張金属板を積層化
するに際し、低熱膨張金属板の全面あるいは部分的に厚
み方向の貫通孔を所要間隔、パターンで配置し、例えば
貫通孔の孔寸法、形状、配置パターン等を種々変えたり
、圧延時の変形を考慮して厚み方向に貫通あるいは貫通
しない切り目を設けるなど、芯材の金属板の厚さ比およ
び/または低熱膨張金属板表面に露出した高熱膨張金属
と低熱膨張金属との表面積比を選定するなどの手段を選
定組み合せることにより、複合材料の全体あるいは部分
的に、用途、目的に応じた熱膨張係数及び熱伝導率を設
定でき、例えば、所要の金属、セラミックス、Si等の
半導体、プラスチックス等の相手材の熱膨張係数との整
合性を図り、がっ所要の熱伝導性を有する複合材料が得
られる。
In the thermally conductive composite material according to the present invention, when a low thermal expansion metal plate is laminated on the entire surface of both sides of a high thermal expansion metal plate, through holes are arranged in the thickness direction on the entire surface or part of the low thermal expansion metal plate at required intervals and in a pattern. However, the thickness ratio and / Alternatively, by selecting and combining means such as selecting the surface area ratio of the high thermal expansion metal and the low thermal expansion metal exposed on the surface of the low thermal expansion metal plate, the thermal expansion of the entire or partial composite material can be adjusted according to the use and purpose. Composite materials whose coefficients and thermal conductivities can be set to match the thermal expansion coefficients of mating materials such as metals, ceramics, semiconductors such as Si, and plastics, and which have the required thermal conductivity. is obtained.

例えば、チップと整合する熱膨張係数と、封止樹脂と整
合する熱膨張係数とが異なる場合、チップを配設する部
分の低熱膨張金属板表面における高熱膨張金属板の面積
占積率や低熱膨張金属板の厚さ等の条件と、裏面の直接
封止樹脂に接触する表面との条件を前述の如く変えるこ
とにより、各主面の熱的特性を要求する値に近似させる
ことできる。
For example, if the coefficient of thermal expansion that matches the chip and the coefficient of thermal expansion that matches the sealing resin are different, the area occupancy factor of the high thermal expansion metal plate on the surface of the low thermal expansion metal plate where the chip is placed, or the low thermal expansion By changing the conditions such as the thickness of the metal plate and the conditions of the surface directly in contact with the sealing resin on the back side as described above, the thermal characteristics of each main surface can be approximated to the required values.

さらに、用途や相手材料に応じて、最外層の高熱膨張金
属箔層の材質を選定することにより、相手材との接合性
、被着する薄膜の強度などを任意に選定できる。
Furthermore, by selecting the material of the outermost high thermal expansion metal foil layer according to the application and the mating material, the bondability with the mating material, the strength of the thin film to be adhered, etc. can be arbitrarily selected.

また、高熱膨張金属板の両面に低熱膨張金属板を積層し
た芯材の構成において、高熱膨張金属同志の積層板とし
て、低熱膨張金属板の貫通孔から表面に露出させる高熱
膨張金属を異材質とするなど、種々の構成を取ることが
できる。
In addition, in the structure of the core material in which low thermal expansion metal plates are laminated on both sides of a high thermal expansion metal plate, as a laminate of high thermal expansion metals, the high thermal expansion metal exposed to the surface from the through hole of the low thermal expansion metal plate is made of a different material. Various configurations can be taken, such as.

芯材の高熱膨張金属板と低熱膨張金属板の熱膨張係数差
は、必ずしも大きくとる必要はなく、相互の熱膨張係数
が異なれば、用途に応じていがなる金属板をも組み合せ
ることができる。
The difference in thermal expansion coefficient between the high thermal expansion metal plate and the low thermal expansion metal plate of the core material does not necessarily have to be large; as long as the thermal expansion coefficients are different, different metal plates can be combined depending on the application. .

この発明による複合材料の熱膨張係数は、芯材の高熱膨
張金属板と低熱膨張金属板の体積比、すなわち、積層板
の厚み比により、高熱膨張金属板の熱膨張係数と低熱膨
張金属板との間の任意の値を選択することが可能である
The coefficient of thermal expansion of the composite material according to the present invention is determined by the volume ratio of the high thermal expansion metal plate and the low thermal expansion metal plate of the core material, that is, the thickness ratio of the laminate. It is possible to choose any value between.

例えば、既存のチップが熱歪の影響を受けないための熱
膨張係数αは、30℃〜200℃における平均熱膨張係
数が、3〜8 x 10’/’Cであることが必要であ
り、より好ましくは、4〜6xlO’/”Cである。
For example, in order for existing chips to be unaffected by thermal strain, the average coefficient of thermal expansion α at 30°C to 200°C needs to be 3 to 8 x 10'/'C, More preferably, it is 4 to 6xlO'/''C.

前記チップ搭載用放熱基板の場合、30℃〜200℃に
おける平均熱膨張係数が10xlO’/℃以下のNi−
Fe系合金、Ni−Co−Fe系合金等の低熱膨張金属
板と、30℃〜200°Cにおける平均熱膨張係数が1
0xlO’/”Cを越えるCu、 Cu合金等の高熱膨
張金属板を組み合せて用いることができ、特に、高熱膨
張金属板の20℃における熱伝導率が140W/m−に
以上であることが望ましい。
In the case of the heat dissipation substrate for chip mounting, Ni-
Low thermal expansion metal plates such as Fe-based alloys and Ni-Co-Fe-based alloys, and average thermal expansion coefficients of 1 at 30°C to 200°C.
High thermal expansion metal plates such as Cu and Cu alloys exceeding 0xlO'/''C can be used in combination, and it is particularly desirable that the thermal conductivity of the high thermal expansion metal plates at 20°C is 140 W/m- or more. .

また、低熱膨張金属板表面における高熱膨張金属板の面
積比率を20〜80%の範囲で適宜選定することが望ま
しい。該面積比率の変更は、例えば、貫通孔の直径、寸
法や配置のピッチ等を変更するなどの手段が適宜選定で
きる。
Further, it is desirable to appropriately select the area ratio of the high thermal expansion metal plate on the surface of the low thermal expansion metal plate within a range of 20 to 80%. The area ratio can be changed by appropriately selecting means such as changing the diameter, size, arrangement pitch, etc. of the through holes.

芯材の高熱膨張金属板は、圧接や鍛造等にて低熱膨張金
属板の貫通孔内に工大充填されることから、Cu、 C
u合金、AI、 A1合金、鋼等の展延伸性に富む材料
を用いることが好ましい。
Since the high thermal expansion metal plate of the core material is filled into the through hole of the low thermal expansion metal plate by pressure welding, forging, etc., Cu, C
It is preferable to use materials with high malleability such as u-alloy, AI, A1-alloy, and steel.

また、低熱膨張金属板には、展延性のあるMo、30〜
50wt%Niを含有するNi−Fe系合金、25〜3
5wt%Ni、4〜20wt%Coを含有するNi−C
o−Fe系合金、Wなどを用いることができる。
In addition, the low thermal expansion metal plate includes malleable Mo, 30~
Ni-Fe alloy containing 50 wt% Ni, 25-3
Ni-C containing 5 wt% Ni, 4-20 wt% Co
An o-Fe alloy, W, etc. can be used.

芯材両面の最外層の高熱膨張金属箔には、Cu、Cu合
金、Al、Al合金、Ni、 Ni合金などの材料が選
定でき、用途やさらに被着する薄膜層材質を考慮して、
芯材の高熱膨張金属板と同材質あるいは異材質を適宜選
定するとよい。
Materials such as Cu, Cu alloy, Al, Al alloy, Ni, and Ni alloy can be selected for the high thermal expansion metal foil that is the outermost layer on both sides of the core material.
It is preferable to appropriately select the same material as the high thermal expansion metal plate of the core material or a different material.

この発明による熱伝導複合材料は、上述する5層構造を
特徴とするが、さらに、用途などに応じて、ろう付は性
や耐食性を向上させるため、あるいはAu、 Agメッ
キの被着性を向上させるため、Cu、 Ah Ni、 
Snなどをメッキ、蒸着、イオンブレーティング、CV
D(chemical vapor depositi
on)等の公知のコー、ティング技術によって被着する
他、はんだAgろう材、セラミックス、ガラス層などを
被覆、あるいは所要位置に被着することができる。
The thermally conductive composite material according to the present invention is characterized by the above-mentioned five-layer structure, but depending on the application, brazing may be used to improve properties and corrosion resistance, or to improve the adhesion of Au or Ag plating. In order to achieve this, Cu, Ah Ni,
Plating, vapor deposition, ion blating, CV etc. with Sn etc.
D (chemical vapor deposit)
In addition to coating by known coating techniques such as on), solder Ag brazing material, ceramics, glass layers, etc. can be coated or deposited at desired positions.

製造方法には、例えば、芯材は、低熱膨張金属板の所要
位置に厚み方向の貫通孔を多数せん孔装置した後、酸洗
したり、ブラッシングなどで被着面を清浄化し、該低熱
膨張金属板と高熱膨張金属板とを冷間または温間圧接し
、さらに必要に応じて拡散熱処理を施して密着性を向上
させる等、公知の圧接、圧延あるいは鍛造技術が採用で
き、さらにこの芯材の両面に高熱膨張金属箔を冷間また
は温間圧接し、その後必要に応じて熱処理を施して得る
ため、工業的規模における量産に際しても安定した特性
を有する複合材料を提供できる。
The manufacturing method includes, for example, forming a core material by punching a large number of through holes in the thickness direction at desired positions of a low thermal expansion metal plate, and then cleaning the adhered surface by pickling or brushing. Known pressure welding, rolling or forging techniques can be used, such as cold or warm pressure welding of the plate and high thermal expansion metal plate, and if necessary, diffusion heat treatment to improve adhesion. Since the composite material is obtained by cold or warm pressure welding high thermal expansion metal foils on both sides and then subjecting it to heat treatment if necessary, it is possible to provide a composite material with stable properties even when mass-produced on an industrial scale.

また、上述の5層の素材をそれぞれ清浄化した後、5層
の素材を同時に冷間または温間圧接し、さらに熱処理す
ることができ、圧接時には、5層の材質の組合せ、低熱
膨張金属板の板厚み方向の貫通孔あるいは切り目などの
寸法や配置パターン等に応じて、冷間または温間の選定
、さらに圧接ロール径、ロール段数及び圧下率を選定す
る必要がある。例えば、冷間圧接でも、圧接直前に芯材
の高熱膨張金属を加熱して行うなど、5層の材質の組合
せ、厚みなどの諸条件に応じて、冷間または温間、さら
には、不活性、非酸化、減圧などの種々雰囲気を適宜選
定することもできる。
In addition, after cleaning each of the five layers of materials mentioned above, the five layers of materials can be cold or warm pressure welded at the same time and further heat treated. It is necessary to select cold or warm, as well as the diameter of the press roll, the number of roll stages, and the rolling reduction rate, depending on the dimensions and arrangement pattern of through holes or cuts in the thickness direction of the plate. For example, even in cold pressure welding, the high thermal expansion metal of the core material is heated immediately before welding, and depending on the combination of materials of the five layers, thickness, and other conditions, cold or warm welding, or even inert Various atmospheres such as , non-oxidizing, and reduced pressure can also be selected as appropriate.

この発明の熱伝導複合材料を工業規模にて量産するには
、上記の如く、圧接ロールを用いて冷間、温間による圧
接圧延を実施することが最も効果的であるが、特に最終
製品の厚さが比較的厚く、1mm程度以上の個片状で得
る場合には、所定の材料をダイス内に積層して各材料の
再結晶温度以下にて圧力を加える温圧法、または、各材
料の融点温度以下にて圧力を加える熱圧法にて、圧接一
体化する方法も採用できる。
In order to mass-produce the thermally conductive composite material of the present invention on an industrial scale, it is most effective to carry out cold and warm pressure rolling using pressure rolls, as described above. If the thickness is relatively thick and it is obtained in the form of individual pieces of about 1 mm or more, the specified materials are laminated in a die and pressure is applied below the recrystallization temperature of each material, or the hot-pressure method is used. It is also possible to adopt a method of pressure welding and integration using a thermopressure method in which pressure is applied below the melting point temperature.

さらに、上述の芯材両面に、Cu、 Niなとの2〜5
2の厚いメッキを施したのち、公知の均質化の熱処理し
、さらに圧延し、拡散焼鈍することにより、最外層に高
熱膨張金属箔層を有する5層構造の熱伝導複合材料を製
造できる。
Furthermore, on both sides of the core material mentioned above, 2 to 5 layers of Cu, Ni etc.
After applying thick plating in Step 2, a heat-conductive composite material having a five-layer structure having a high thermal expansion metal foil layer as the outermost layer can be manufactured by performing a known homogenization heat treatment, further rolling, and diffusion annealing.

また、この発明の複合材料における低熱膨張金属板の表
面に露出する高熱膨張金属の形状や配列形態は、前述の
如く目的に応じあるいは製造方法により各種形態を取り
得る。
Furthermore, the shape and arrangement of the high thermal expansion metal exposed on the surface of the low thermal expansion metal plate in the composite material of the present invention can take various forms depending on the purpose or manufacturing method as described above.

例えば、材料幅方向の機械的強度を均一にするため、同
一寸法形状の孔パターンが繰り返されないように配置し
たり、圧接、圧延後の芯材の貫通孔が板厚み方向と一致
しないよう傾斜させたり、孔寸法が表裏で異なるように
テーパー状としかつ隣接孔が孔寸法の大小の組合せとな
るように配置することが望ましい。
For example, in order to make the mechanical strength uniform in the width direction of the material, hole patterns with the same size and shape are arranged so that they are not repeated, or the through holes in the core material after pressure welding and rolling are tilted so that they do not coincide with the thickness direction of the material. It is desirable that the holes be tapered so that the hole sizes are different on the front and back sides, and that adjacent holes be arranged so that they have a combination of large and small hole sizes.

また、貫通孔間隔が狭いほうが製品のばらつきを低減す
る上で有利であり、通常3mm以下、好ましくは1mm
以下であり、さらに好ましくは0.5mm以下である。
In addition, narrower through-hole intervals are advantageous in reducing product variations, and are usually 3 mm or less, preferably 1 mm.
It is not more than 0.5 mm, more preferably not more than 0.5 mm.

また、低熱膨張金属板の板厚み方向の貫通孔は、プレス
打ち抜き等の機械加工のほか、エツチング等の化学的加
工も採用でき、貫通孔形状も横断面が円、楕円、多角形
状等、縦断面がストレート、テーパー等種々形状が採用
でき、テーパー状の場合、貫通孔内への圧入を容易にし
かつ接合強度を高めることができる。
In addition, in addition to mechanical processing such as press punching, chemical processing such as etching can be used to form through holes in the thickness direction of low thermal expansion metal plates. Various shapes such as a straight or tapered surface can be adopted, and when the surface is tapered, it can be easily press-fitted into the through hole and the bonding strength can be increased.

さらに、低熱膨張金属板の板厚み方向の貫通孔は、圧接
、圧延後に高熱膨張金属板が充填される所要の貫通孔に
なればよく、例えば、圧延前の低熱膨張金属板に、板厚
みの所要方向に貫通するかあるいは貫通直前の切り目を
入れたり、該金属板の両面から切り目方向や種々の切り
目の形状を変えて入れたりして、上述の貫通孔配置とな
るよう種々選定でき、切り目の形状も、−+<  など
種々の形状が採用でき、また、板厚みの所要方向に例え
ば、三角錐の如き楔状(1)の切り目を入れることもで
きる。
Further, the through holes in the thickness direction of the low thermal expansion metal plate may be the required through holes filled with the high thermal expansion metal plate after pressure welding and rolling. Various selections can be made to achieve the above-mentioned through-hole arrangement by penetrating in the desired direction or by making a cut immediately before penetration, or by changing the direction of the cut or the shape of the various cuts from both sides of the metal plate. Various shapes such as -+< can be adopted, and wedge-shaped cuts (1) such as triangular pyramids can also be made in the desired direction of the thickness of the plate.

この発明の複合材料は、上述した構成により、固有の熱
膨張係数及び熱伝導率を有するが、さらに異なる熱膨張
係数及び熱伝導率を有するこの発明の複合材料を厚み方
向に積層し、任意の熱膨張係数及び熱伝導率を設定する
ことができる。また、前述の芯材を複数積層して、最外
層に高熱膨張金属箔層を有する複合材料とすることもで
きる。
The composite material of this invention has a unique coefficient of thermal expansion and thermal conductivity due to the above-mentioned configuration, but furthermore, the composite material of this invention having different coefficients of thermal expansion and thermal conductivity is laminated in the thickness direction, and an arbitrary Thermal expansion coefficient and thermal conductivity can be set. Furthermore, a composite material having a high thermal expansion metal foil layer as the outermost layer can be obtained by laminating a plurality of the core materials described above.

この発明において、最外層の高熱膨張金属箔層は、受熱
の均一化、熱拡散効果、相手材との接合性、薄膜の被着
性の向上を図るものであり、かかる効果を得るには、2
11m以上の厚みが必要であるが、1100pを越える
と熱膨張係数の整合性が得難くなるため、2〜1100
pとする。
In this invention, the high thermal expansion metal foil layer as the outermost layer is intended to improve uniformity of heat reception, thermal diffusion effect, bondability with the mating material, and adhesion of the thin film. 2
A thickness of 11 m or more is required, but if it exceeds 1100p, it becomes difficult to obtain consistency in the coefficient of thermal expansion, so
Let it be p.

また、芯材の厚みは、使用用途により異なるが、少なく
とも0.1mmは必要であり、30mmを越えると圧延
による製造が困難となる。
Further, the thickness of the core material varies depending on the intended use, but it is required to be at least 0.1 mm, and if it exceeds 30 mm, it becomes difficult to manufacture by rolling.

また、芯材の高熱膨張金属と低熱膨張金属との厚さ比は
、第1図に示す如く、芯材の高熱膨張金属厚みをt1、
低熱膨張金属厚みをt2、最外層の高熱膨張金属箔層厚
みをt3とすると、 t1=it2〜3t2、t3≦1/10 t2  が好
ましい。
In addition, the thickness ratio of the high thermal expansion metal and the low thermal expansion metal of the core material is as shown in Fig. 1.
When the low thermal expansion metal thickness is t2 and the high thermal expansion metal foil layer thickness of the outermost layer is t3, it is preferable that t1=it2 to 3t2, t3≦1/10 t2.

この発明による熱伝導複合材料は、後述する実施例で明
らかにする如く、平板に切り出してろう付けして用いた
り、所要形状に打ち抜きして複数を積層したりあるいは
他の熱伝導材と積層したり、またキャップ状にプレス成
形したり、所要形状に折り曲げて弾性を有する熱伝導複
合材料とするなど、種々の加工が可能で、さらに、前述
した金属メッキ、あるいはAgろう材、セラミックス、
ガラス層などを加工前後に被覆、被着できる。
As will be made clear in the Examples described below, the thermally conductive composite material according to the present invention can be used by cutting it into a flat plate and brazing it, punching it into a desired shape and laminating a plurality of them, or laminating them with other thermally conductive materials. It can be processed in various ways, such as press molding into a cap shape, or bending into a desired shape to make an elastic thermally conductive composite material.
Glass layers etc. can be coated and applied before and after processing.

図面に基づ〈発明の開示 第1図a、bはこの発明による熱伝導複合材料を示す斜
視説明図である。
Based on the Drawings (Disclosure of the Invention) Figures 1a and 1b are perspective explanatory views showing a thermally conductive composite material according to the present invention.

第2図a、第3図a1第4図a、第6図はこの発明の熱
伝導複合材料を用いた半導体パッケージの実施例を示す
説明図である。第2図b、第3図b、第4図すはこの発
明の熱伝導複合材料の説明図である。
FIGS. 2a, 3a, 4a and 6 are explanatory diagrams showing examples of semiconductor packages using the thermally conductive composite material of the present invention. FIG. 2b, FIG. 3b, and FIG. 4 are explanatory views of the thermally conductive composite material of the present invention.

第4図Cは第4図aの詳細を示す部分拡大図、第4図d
、 eはこの発明の他の実施例からなる熱伝導複合材料
の説明図である。第5図はこの発明の熱伝導複合材料を
用いたハイパワーモジュールの一部を示す説明図である
Figure 4C is a partially enlarged view showing details of Figure 4a, Figure 4d
, e are explanatory diagrams of a thermally conductive composite material according to another embodiment of the present invention. FIG. 5 is an explanatory diagram showing a part of a high power module using the thermally conductive composite material of the present invention.

第7図a、b、第8図はこの発明による複合材料の製造
方法の概念を示す斜視説明図である。
FIGS. 7a, 7b, and 8 are perspective explanatory views showing the concept of the method for manufacturing a composite material according to the present invention.

以下の説明において、芯材の高熱膨張金属板として銅板
を、低熱膨張金属板としてコバール(Fe−Co−Ni
合金)板を用いた例を説明する。
In the following description, a copper plate is used as the high thermal expansion metal plate of the core material, and Kovar (Fe-Co-Ni) is used as the low thermal expansion metal plate of the core material.
An example using a (alloy) plate will be explained.

第1図a、bに示す熱伝導複合材料(10)は、いずれ
も銅板(11)の両面に厚み方向に多数の貫通孔(13
)を有するコバール板(12)が圧接された芯材(14
)と、芯材(14)の両面に圧接された高熱膨張金属箔
層(16)とからなる。
The thermally conductive composite material (10) shown in FIGS. 1a and 1b has a large number of through holes (13
) A core material (14) to which a Kovar plate (12) having a
) and a high thermal expansion metal foil layer (16) pressure-welded to both sides of the core material (14).

芯材(14ンの両面には、貫通孔(13)を通してコバ
ール板(12)表面に露出する銅露出面(15)が形成
され、第1図aの場合は、板厚み方向に同一寸法の貫通
孔(13)が形成されて長楕円状の銅露出面(15)が
配列されており、第1図すの場合は、孔寸法が表裏で異
なるようにテーパー状としかつ隣接孔が孔寸法の大小の
組合せとなるように配置しである。
Copper exposed surfaces (15) are formed on both sides of the core material (14) through the through holes (13) and exposed to the surface of the Kovar plate (12). Through holes (13) are formed and oblong copper exposed surfaces (15) are arranged. In the case of Figure 1, the holes are tapered so that the hole dimensions are different on the front and back sides, and the adjacent holes have the same hole size. They are arranged so that they are a combination of sizes.

これらのいずれの構成においても、芯材(14)におけ
る銅板(11)の両面に圧接されるコバール板(12)
の各々の厚み及び銅露出面(15)の比率や分散状態等
を選定することにより、各主面の熱的特性を要求される
特性に近似させることできる。
In any of these configurations, the Kovar plate (12) is pressed against both sides of the copper plate (11) in the core material (14).
By selecting the thickness of each main surface, the ratio of the exposed copper surface (15), the dispersion state, etc., the thermal characteristics of each main surface can be approximated to the required characteristics.

さらに、芯材(14)の両面に圧接した最外層の高熱膨
張金属箔層(16)に、用途やさらに被着する薄膜層材
質を考慮してCu、 Cu合金、Al、Al合金、Ni
、 Ni合金箔などを選定しているため、受熱の均一化
、熱拡散効果、相手材との接合性、薄膜の被着性の向上
効果が得られる。
Furthermore, the outermost high thermal expansion metal foil layer (16) pressed against both sides of the core material (14) is coated with Cu, Cu alloy, Al, Al alloy, Ni, taking into account the application and the material of the thin film layer to be applied.
, Ni alloy foil, etc. are selected, so that uniform heat reception, thermal diffusion effects, bondability with the mating material, and improvement of thin film adhesion can be achieved.

問屋1 第2図a、bに示す熱伝導複合材料(20)は、セラミ
ックスパッケージ用の放熱基板に用いた例であり、パッ
ケージに応じた寸法の矩形板に切断され、図示の如く所
要表面部にAgろう(32)が被着しである。
Wholesaler 1 The thermally conductive composite material (20) shown in Figures 2a and 2b is an example used as a heat dissipation substrate for a ceramic package.It is cut into rectangular plates with dimensions according to the package, and the required surface area is cut as shown in the figure. Ag solder (32) is deposited on the surface.

熱伝導複合材料(20)は、例えば、第1図a、bに示
す熱伝導複合材料(10)において、芯材(14)はチ
ップ(31)と熱的整合が得られるよう、銅板(11)
とコバール板(12)の厚さ比、コバール板(12)と
銅露出面(15)の比率が適宜選定され、金属箔層(1
6)にCu箔を選定し、さらにNiメッキしたもの、あ
るいは金属箔層(16)にNi箔を選定した構成からな
り、Agろう(32)との被着性を良好にして、セラミ
ックス(30)との接合性を高めている。
The heat conductive composite material (20) is, for example, in the heat conductive composite material (10) shown in FIGS. 1a and 1b, the core material (14) is made of a copper plate (11 )
The thickness ratio of the metal foil layer (12) and the ratio of the Kovar plate (12) to the copper exposed surface (15) are appropriately selected.
It consists of a structure in which Cu foil is selected for 6) and further plated with Ni, or Ni foil is selected for the metal foil layer (16), which has good adhesion to the Ag solder (32), and is plated with Ni. ).

すなわち、熱伝導複合材料(20)の表面がCu箔の場
合は、Agろう(32)が溶融する際に該Cu箔と反応
し、この反応面の形成により、熱伝導の低下を招くため
、通常2〜10pm厚程度のNiメッキが必要となる。
That is, when the surface of the heat conductive composite material (20) is Cu foil, the Ag solder (32) reacts with the Cu foil when melting, and the formation of this reaction surface causes a decrease in heat conduction. Usually, Ni plating with a thickness of about 2 to 10 pm is required.

特に、Niメッキの被着性を良好にするためには、熱伝
導複合材料(20)の表面(Cu)にNiメッキを被着
したのち、Ar、 N2等の不活性雰囲気またはN2等
の還元性雰囲気の中で750℃〜950℃、2分〜1時
間の均質化処理(再結晶化焼鈍)を施すことが望ましい
In particular, in order to improve the adhesion of Ni plating, after depositing Ni plating on the surface (Cu) of the thermally conductive composite material (20), use an inert atmosphere such as Ar or N2 or a reducing atmosphere such as N2. It is desirable to perform homogenization treatment (recrystallization annealing) at 750° C. to 950° C. for 2 minutes to 1 hour in a neutral atmosphere.

第2図の構成においては、熱伝導複合材料(20)の一
方面の所要位置にのみAgろう(32)を被着した構成
を示したが、用途に応じて、熱伝導複合材料(20)の
一方面全面、または両面にAgろうを被着してもよく、
いずれの構成においても熱伝導複合材料(20)の表面
には、Agろう被着前にNiメッキを施しておくことが
望ましいへ Niメッキは前述の如く、AgろうとCuとの反応を防
ぐ効果だけでなく、Agろうの流れ性を良好にし、パッ
ケージの気密性を向上させることができる。
In the configuration shown in Fig. 2, the Ag solder (32) is applied only to the required position on one side of the thermally conductive composite material (20), but depending on the application, the thermally conductive composite material (20) Ag solder may be applied to one or both sides of the
In either configuration, it is desirable to apply Ni plating to the surface of the thermally conductive composite material (20) before applying Ag solder.As mentioned above, Ni plating only has the effect of preventing the reaction between Ag solder and Cu. Instead, it is possible to improve the flowability of the Ag solder and improve the airtightness of the package.

また、第2図に示す如く、予め熱伝導複合材料(20)
にAgろうを被着しておく場合は、パッケージとの接合
性、作業性等を考慮すると、Agろうの厚さは30〜1
20叫程度が望ましい。なお、図中のチップ(31)は
Au−8iろうにて着設しである。
In addition, as shown in Fig. 2, the heat conductive composite material (20)
When applying Ag solder to the surface, the thickness of the Ag solder should be 30 to 1 mm, considering bondability with the package, workability, etc.
Approximately 20 screams are desirable. Note that the chip (31) in the figure is attached using Au-8i solder.

問屋ヱ 第3図a、bに示す熱伝導複合材料(21)は、セラミ
ックスパッケージ用の放熱基板に用いた例であり、第2
図a、bの熱伝導複合材料(20)と同等であるが、さ
らに、同様構成の熱伝導複合材料(22)を中央部にろ
う付けにて積層した構成からなり、間部にチップ(31
)をAu−8iろう付けする。
The thermally conductive composite material (21) shown in Figures 3a and 3b is an example used for a heat dissipation substrate for a ceramic package.
It is the same as the heat conductive composite material (20) in Figures a and b, but it also has a structure in which a heat conductive composite material (22) with a similar structure is laminated by brazing in the center, and a chip (31
) is brazed with Au-8i.

この場合、主体となる熱伝導複合材料(21)は、特に
、セラミックス(30)の熱的特性と近似させ、積層し
た熱伝導複合材料(22)はチップ(31)の熱的特性
とより近似させるよう、芯材(14)の材質や構成、金
属箔層(16)の材質を考慮するとよい。
In this case, the main heat conductive composite material (21) is made to approximate the thermal properties of the ceramic (30), and the laminated heat conductive composite material (22) is made to closely approximate the thermal properties of the chip (31). It is preferable to consider the material and structure of the core material (14) and the material of the metal foil layer (16) so as to achieve this.

第3図に示す構成において、一対の熱伝導複合材料(2
1)(22)をAgろうにて一体にする場合は、第2図
に示す構成にて説明した如く、各熱伝導複合材料の少な
くともAgろうを被着面に、Niメッキを施しておくこ
とが望まれる。
In the configuration shown in FIG. 3, a pair of thermally conductive composite materials (2
1) When integrating (22) with Ag solder, Ni plating should be applied to at least the surface to which the Ag solder of each thermally conductive composite material is applied, as explained in the configuration shown in Figure 2. is desired.

しかし、チップを載置する面にまでAgろうが被着する
ことは、チップ載置面に凹凸ができ、チップの位置精度
が低下する等の理由から好ましくなく、チップを載置す
る側の熱伝導複合材料(22)の外周側面は、あえて、
Agろうの流れ性を良好にするNiメッキを施すことな
く、Agろうの流れを低くすることか望ましい。
However, it is undesirable for Ag solder to adhere to the surface on which the chip is placed, as it creates unevenness on the surface where the chip is placed and reduces the accuracy of chip positioning. The outer peripheral side of the conductive composite material (22) is intentionally
It is desirable to reduce the flow of Ag solder without applying Ni plating, which improves the flowability of Ag solder.

また、図示の如く熱伝導複合材料を積層してセラミック
スパッケージに配置する場合、予め一対の熱伝導複合材
料(21)(22)をAgろうにて一体化したのち、再
度一方の熱伝導複合材料(21)とセラミックス(30
)とをAgろうにて一体化する方法が採用できるが、チ
ップ(31)の位置精度を確保するための他の方法とし
て、予め一方の熱伝導複合材料(21)の−主面にAg
ろうを被着し、そのAgろう被着面に他方の熱伝導複合
材料(22)を機械的な圧着手段等にて仮止めしておき
、前記熱伝導複合材料(21)とセラミックス(30)
との接合時に同時にAgろう付けを完了する方法が採用
できる。
In addition, when the heat conductive composite materials are laminated and arranged in a ceramic package as shown in the figure, the pair of heat conductive composite materials (21) and (22) are integrated in advance with Ag solder, and then one of the heat conductive composite materials is (21) and ceramics (30
) with Ag solder, but as another method to ensure the positional accuracy of the chip (31), it is possible to use Ag brazing on the -main surface of one of the heat conductive composite materials (21)
A solder is applied, and the other thermally conductive composite material (22) is temporarily fixed to the surface to which the Ag solder is applied using mechanical pressure bonding means, etc., and the thermally conductive composite material (21) and the ceramic (30) are bonded together.
It is possible to adopt a method in which Ag brazing is completed at the same time as joining with.

憔屋J 第4図a、bに示す熱伝導複合材料(23)は、セラミ
ックスパッケージ用の放熱基板に用いた例で、上述した
第2図a、bの熱伝導複合材料(20)と同等であり、
パッケージに応じた寸法でキャップ状にプレス成形して
あり、周縁部でセラミックス(30)とろう付けし、凸
部にチップ(31)をAu−8iろう付けする。
Kakeya J The thermally conductive composite material (23) shown in Figures 4a and b is an example used for a heat dissipation substrate for a ceramic package, and is equivalent to the thermally conductive composite material (20) shown in Figures 2a and b described above. and
It is press-molded into a cap shape with dimensions according to the package, and the peripheral edge is brazed with ceramics (30), and the chip (31) is brazed with Au-8i on the convex part.

この構成においては、プレス成形にて容易に製造でき、
熱伝導複合材料(23)が本来有する熱的な特性による
効果だけでなく、キャップ状の円筒部(231X第4図
(C)参照)の形成により、セラミックスパッケージ、
及びチップと該熱伝導複合材料(23)との熱膨張差に
よる影響を一層緩和することができる。
This configuration can be easily manufactured by press molding,
In addition to the effect of the inherent thermal properties of the thermally conductive composite material (23), the formation of the cap-shaped cylindrical part (see 231
Also, the influence of the difference in thermal expansion between the chip and the thermally conductive composite material (23) can be further alleviated.

この構成を採用するにあたっては、プレス成形が可能な
範囲で熱伝導複合材料(23)の厚さを選定することが
必要である。特に、要求される熱的特性を満足させるた
めに、熱伝導複合材料(23)の厚さを厚くすると第4
図(e)に示す如く、折り曲げ部(232)のRが大き
くなり、必然的にセラミックスパッケージの穴径が大き
くなってしまうため、セラミックスパッケージの内径開
放端部に切欠き部(301)を設けることが望ましい。
When adopting this configuration, it is necessary to select the thickness of the thermally conductive composite material (23) within a range that allows press molding. In particular, in order to satisfy the required thermal properties, if the thickness of the thermally conductive composite material (23) is increased, the fourth
As shown in Figure (e), since the radius of the bent portion (232) increases and the hole diameter of the ceramic package inevitably increases, a notch (301) is provided at the inner diameter open end of the ceramic package. This is desirable.

また、プレス成形性等を考慮して、熱伝導複合材料(2
3)の厚さを薄くすると、チップ接合時の応力により変
形し、チップの適正配置が困難となるだけでなく、要求
される放熱効果、特に面平行方向の放熱効果が得られな
いことが懸念される。
In addition, in consideration of press formability etc., thermally conductive composite material (2
If the thickness of 3) is made thinner, there is a concern that not only will the chip be deformed due to stress during chip bonding, making it difficult to properly place the chip, but also that the required heat dissipation effect, especially in the plane-parallel direction, will not be achieved. be done.

このような場合は第4図(d)に示す如く、キャップ状
に成形された熱伝導複合材料(23)にCu、 Cu合
金、AI、 A1合金等の高熱伝導材料からなり、中央
部に凸状突起(401)を有する、補強材(40)を接
合−体化することが望ましい。
In such a case, as shown in Fig. 4(d), a heat conductive composite material (23) formed into a cap shape is made of a high heat conductive material such as Cu, Cu alloy, AI, or A1 alloy, and a convex part is formed in the center. It is desirable to bond the reinforcing material (40) with the shaped protrusions (401).

この補強材(40)として、最適形状、寸法を選定すれ
ば、従来例の第9図(a)に示す如き放熱フィン(5)
を不要とすることができる。
If the optimal shape and dimensions are selected for this reinforcing material (40), a conventional heat dissipating fin (5) as shown in FIG. 9(a) can be obtained.
can be made unnecessary.

また、この補強材(40)が薄く、熱伝導複合材料(2
3)とのバイメタル効果によるソリの発生が懸念される
場合は、補強材(40)の一方面、すなわち熱伝導複合
材料(23)の被着面と反対側主面にNi−Fe系等の
低熱膨張合金を接合することが望ましい。
Moreover, this reinforcing material (40) is thin and the heat conductive composite material (2
3), if there is a concern that warpage may occur due to the bimetallic effect, apply a Ni-Fe based material to one side of the reinforcing material (40), that is, the main surface opposite to the surface to which the thermally conductive composite material (23) is adhered. It is desirable to join low thermal expansion alloys.

また、チップ接合時の変形を防ぐとともにチップとの熱
膨張差を考慮し、第4図(e)に示す如く、熱伝導複合
材料(23)のチップ載置面に予め所定の厚さを有する
他の熱伝導複合材料や、Mo、 Cu−M。
In addition, in order to prevent deformation during chip bonding and to take into account the difference in thermal expansion with the chip, the chip mounting surface of the thermally conductive composite material (23) has a predetermined thickness as shown in FIG. 4(e). Other thermally conductive composite materials, Mo, Cu-M.

合金、Cu−W合金等の補強板材(42)を接合してお
くことも好ましい構成である。
It is also a preferable configuration to bond a reinforcing plate material (42) such as alloy or Cu-W alloy.

以上に示す如く、本発明者はキャップ状にプレス成形さ
れた熱伝導複合材料(23)を効果的に使用する構成を
種々提案したが、通常、0.2〜0.3mm程度の熱伝
導複合材料であれば、要求されるキャッブ形状にプレス
加工でき、しかも良好なる熱的特性をも得られることを
確認した。
As shown above, the present inventor has proposed various configurations that effectively use the thermally conductive composite material (23) press-formed into a cap shape, but usually the thermally conductive composite material (23) with a thickness of about 0.2 to 0.3 mm is used. It was confirmed that the material could be press-formed into the required cap shape and also provide good thermal properties.

以上に示したいずれの構成においても、第3図の構成と
同様に、チップ載置面にAgろうが被着することは望ま
しくなく、キャップ状の円筒部やチップ載置面には、A
gろうの流れ性を良好にするNiメッキを施こすことな
く、Cu等の高熱膨張金属箔面がそのまま表れている構
成が望ましい。
In any of the configurations shown above, it is undesirable for Ag solder to adhere to the chip mounting surface, as in the configuration shown in FIG.
It is desirable to have a structure in which the surface of a high thermal expansion metal foil such as Cu is exposed as it is, without applying Ni plating to improve the flowability of solder.

構成4 第5図に示す熱伝導複合材料(24)は、ハイパワーモ
ジュールに用いた例で、板を折り曲げてコ字型にしてあ
りかつ所要面にはんだ層が被着してあり、一端にCuリ
ード(33)が接続され、他の板状熱伝導複合材料(2
5)とでチップ(31)を挟むようにろう付けし、全体
が樹脂モールドされる。
Configuration 4 The thermally conductive composite material (24) shown in Figure 5 is an example used in a high-power module, and is made by bending a plate into a U-shape, with a solder layer adhered to the required surface, and one end of the thermally conductive composite material (24). The Cu lead (33) is connected to the other plate-shaped thermally conductive composite material (2).
5) are brazed so that the chip (31) is sandwiched between them, and the whole is resin molded.

この構成において、一対の熱伝導複合材料(24)(2
5)は、大電流を流すためのリードであるとともに、チ
ップ(31)から発生する熱を放散する機能を有し、特
に、熱伝導複合材料(24)は外部からの振動などの影
響を軽減するために、コ字型にして弾性体としての機能
を有する。
In this configuration, a pair of thermally conductive composite materials (24) (2
5) is a lead for passing a large current, and also has the function of dissipating the heat generated from the chip (31). In particular, the heat conductive composite material (24) reduces the effects of external vibrations, etc. In order to do this, it is made into a U-shape and has the function of an elastic body.

熱伝導複合材料(24X25)は、第1図a、bに示す
熱伝導複合材料(10)において、芯材(14)はチッ
プ(31)および樹脂との熱的整合が得られるよう、銅
板(11)とコバール板(12)の厚さ比、コバール板
(12)と銅露出面(15)の比率が適宜選定され、金
属箔層(16)にCu箔を選定し、さらにNiメッキし
たもの、あるいは金属箔層(16)にNi箔を選定した
構成からなり、はんだとの被着性を良好にするとともに
チップ(31)との接合性を高めている。
The thermally conductive composite material (24x25) is the thermally conductive composite material (10) shown in Figures 1a and 1b, in which the core material (14) is made of a copper plate ( The thickness ratio of 11) and the Kovar plate (12) and the ratio of the Kovar plate (12) to the exposed copper surface (15) are selected appropriately, and Cu foil is selected for the metal foil layer (16), which is further plated with Ni. Alternatively, the metal foil layer (16) is made of Ni foil, which improves adhesion with solder and improves bondability with the chip (31).

すなわち、第5図に示す如く、チップ(31)と熱伝導
複合材料(24X25)とがはんだによって一体化され
る場合、該熱伝導複合材料(24)(25)の全表面が
Cuにて形成されているため、はんだの流れがよく良好
な接合が得られる。
That is, as shown in FIG. 5, when the chip (31) and the thermally conductive composite material (24x25) are integrated by solder, the entire surface of the thermally conductive composite material (24) (25) is formed of Cu. Because of this, the solder flows well and a good bond can be obtained.

特に、この発明の熱伝導複合材料と他の部材とを、はん
だ等の低融点の接合剤にて一体にする場合は、第2図、
第3図、第4図に示した構成の如くAgのろう材ζCu
との反応を懸念する必要がなく、あえて、Cu表面にN
iメッキを施す必要はない。
In particular, when the thermally conductive composite material of the present invention and other members are integrated with a low melting point bonding agent such as solder, FIG.
As shown in Figures 3 and 4, Ag brazing material ζCu
There is no need to worry about the reaction with the Cu surface.
There is no need to apply i-plating.

また、第5図の構成においては、熱伝導複合材料の所定
位置にのみはんだ層を形成した場合を示したが、用途に
応じて予め熱伝導複合材料の一方主面、または両面の全
体にはんだ層を形成する構成も採用可能である。
Furthermore, in the configuration shown in Fig. 5, the solder layer is formed only at a predetermined position of the thermally conductive composite material, but depending on the application, the solder layer may be pre-soldered on one principal surface or the entirety of both surfaces of the thermally conductive composite material. A configuration in which layers are formed can also be adopted.

構成5 第6図に示す熱伝導複合材料(26)は、メタルパッケ
ージ用の放熱基板に用いた例で、チップ(34)を収納
できるように舟形に成形してあり、中央四部にチップ(
34)をろう付は載置し、周縁部に金属キャップ(37
)を載置し封着する際に、リードフレーム(35)を挾
みガラス(36)封着しである。
Configuration 5 The thermally conductive composite material (26) shown in Fig. 6 is an example used as a heat dissipation board for a metal package, and is formed into a boat shape to accommodate a chip (34), with the chip (34) in the four central parts.
34) for brazing, and place a metal cap (37) on the periphery.
) is placed and sealed, the lead frame (35) is sandwiched and the glass (36) is sealed.

熱伝導複合材料(26)は、第1図a、bに示す熱伝導
複合材料(10)において、芯材(14)はチップ(3
4)と熱的整合が得られるよう、銅板(11)とコバー
ル板(12)の厚さ比、コバール板(12)と銅露出面
(15)の比率が適宜選定され、金属箔層(16)にA
I箔を選定した構成からなり、ガラス(36)封着性に
すぐれ、Agろうあるいははんだ等との被着性を良好に
している。
The heat conductive composite material (26) is the heat conductive composite material (10) shown in FIGS.
The thickness ratio of the copper plate (11) to the Kovar plate (12) and the ratio of the Kovar plate (12) to the exposed copper surface (15) are appropriately selected to obtain thermal matching with the metal foil layer (16). ) to A
It has a structure in which I-foil is selected, and has excellent sealing properties to glass (36) and good adhesion to Ag wax or solder.

なお、放熱基板の金属箔層(16)にAI箔を選定して
いるため、チップ(34)は絶縁層を介して着設され、
また、封着後の耐食性を向上させるために、金属箔層(
16)外面にアルミナなどのセラミックスコーティング
、あるいはアルマイト処理が施しである。
In addition, since AI foil is selected for the metal foil layer (16) of the heat dissipation board, the chip (34) is attached via the insulating layer.
In addition, in order to improve corrosion resistance after sealing, a metal foil layer (
16) The outer surface is coated with ceramics such as alumina or anodized.

また、前述の構成1で用いた金属箔層(16)にCu箔
を選定した放熱基板に、所要封着部にAIを成膜した構
成であってもガラス封着性にすぐれ、Agろうあるいは
はんだ等との被着性を良好にできる。
Furthermore, even in a configuration in which a heat dissipation substrate in which Cu foil is selected as the metal foil layer (16) used in configuration 1 described above, and an AI film is formed on the required sealing area, the glass sealing property is excellent, and Ag wax or Good adhesion with solder etc.

製造方法 第1図a、bの構成からなる複合材料(10)の製造方
法を説明すると、第7図aに示す如く、一対のコバール
板(12)(12)は、予めプレスによる打ち抜き加工
を行い、例えば、小さな孔を多数個穿孔して網目状とな
し、さらに、焼鈍後、表面処理を施してコイルに巻き取
っである。
Manufacturing method To explain the manufacturing method of the composite material (10) having the configurations shown in FIG. 1a and b, as shown in FIG. For example, a large number of small holes are punched to form a mesh shape, and after annealing, a surface treatment is performed and the material is wound into a coil.

所要寸法、厚みの銅板(11)コイルを巻き戻し、上方
及び下方より巻き戻した前記コバール板(12)を重ね
て、冷間または温間で大径の圧延ロール(50)により
圧延接合する。さらに、必要に応じて、接合後、密着性
を向上させるために拡散焼≦4する。
A copper plate (11) coil of required dimensions and thickness is unwound, and the unwound Kovar plates (12) are stacked from above and below and rolled and bonded using a large-diameter rolling roll (50) in a cold or warm state. Furthermore, if necessary, after bonding, diffusion baking is performed to improve adhesion.

圧接の結果、第1図に示すように、コバール板(12)
の多数個の貫通孔(13)内に銅が侵入し、コバール板
(12)の所要位置に銅露出面(15)が部分的に配a
形成された芯材(14)が得られる。さらに、拡散焼鈍
し、表面処理を施してコイルに巻き取る。
As a result of pressure welding, as shown in Figure 1, Kovar plate (12)
Copper enters into the numerous through holes (13) of the Kovar plate (12), and the exposed copper surface (15) is partially disposed at the required position of the Kovar plate (12).
A formed core material (14) is obtained. Furthermore, it is diffusion annealed, subjected to surface treatment, and wound into a coil.

次に、第7図すに示す如く、芯材(14)コイルを巻き
戻し、上方及び下方より巻き戻しなCu、 A1等σ金
属箔(16X16)を重ねて、冷間または温間で圧延ロ
ール(51)により圧接接合する。
Next, as shown in Figure 7, the core material (14) coil is unwound, unwound Cu, A1, etc. σ metal foil (16x16) is overlaid from above and below, and rolled on a cold or warm rolling roll. Pressure welding is performed by (51).

次に、必要に応じて、この複合材料を拡散焼鈍し、さら
に、所要厚みとなるまで圧延する。
Next, if necessary, this composite material is diffusion annealed and further rolled to a required thickness.

また、第8図に示す如く、焼鈍後、表面処理を施してコ
イルに巻き取った所要寸法、厚みの銅板(11)コイル
を巻き戻し、予めプレスによる打ち抜き加工を行い、焼
鈍後、表面処理を施してコイルに巻き取ったコバール板
(12X12)を上方及び下方よりそれぞれ巻き戻して
銅板(11)に重ね、さらに各コバール板(12)(1
2)の上方より、表面処理を施してコイルに巻き取った
金属箔(16X16)を巻き戻して重ねて、所要段数の
圧延ロール(52)により圧接、圧延して一体に接合す
るとよい。
In addition, as shown in Fig. 8, after annealing, a copper plate (11) of the required dimensions and thickness was wound into a coil after surface treatment. The Kovar plate (12 x 12) that has been applied and wound into a coil is unwound from above and below and stacked on the copper plate (11), and then each Kovar plate (12) (1
From above 2), the metal foil (16×16) that has been surface-treated and wound into a coil is preferably unwound and stacked, and then joined together by pressing and rolling with the required number of rolling rolls (52).

上述の如くこの発明の熱伝導複合材料は、圧延加工及び
圧接により所定の寸法の板状で得られるため、所定の厚
みに仕上げるのに機械的加工等の複雑な加工方法を用い
る必要はなく、安価に製造でき、また、切削加工性にす
ぐれ、パッケージ基板やチップに応じて容易に加工でき
る利点がある。
As mentioned above, the heat conductive composite material of the present invention can be obtained in the form of a plate of predetermined dimensions by rolling and pressure welding, so there is no need to use complicated processing methods such as mechanical processing to finish it to a predetermined thickness. It has the advantage that it can be manufactured at low cost, has excellent cutting workability, and can be easily processed depending on the package substrate or chip.

実施例 実施例1 板厚0.5 mm、板幅30mmの一対のコバール板(
29Ni−16Co−Fe合金)に、各々孔径1.Om
m、孔間隔1.5mmテ多数の穿孔を施し、さらに、9
00”Cテ焼鈍後、ワイヤーブラッシングした。
Examples Example 1 A pair of Kovar plates with a thickness of 0.5 mm and a width of 30 mm (
29Ni-16Co-Fe alloy), each with a pore size of 1. Om
m, a large number of holes were made with a hole spacing of 1.5 mm, and further, 9
After annealing at 00''C, wire brushing was performed.

コバール板の30〜200°Cにおける平均熱膨張係数
1;!: 5.2xlO−6/’Cテあった。
The average coefficient of thermal expansion of Kovar plate at 30-200°C is 1;! : 5.2xlO-6/'Cte.

また、板厚1.0 mm、板幅30mmのCu板に、同
様に焼鈍、ワイヤーブラッシングを施した。Cu板の3
0〜200°Cにおける平均熱膨張係数Lt 17.2
X10−610Cであった。
Further, a Cu plate having a thickness of 1.0 mm and a width of 30 mm was similarly annealed and wire brushed. Cu plate 3
Average thermal expansion coefficient Lt at 0-200°C 17.2
It was X10-610C.

前記コバール板とCu板を、第7図aに示す冷間圧接機
により圧接し、板厚0.85−の芯材を得た。
The Kovar plate and the Cu plate were pressure-welded using a cold pressure welding machine shown in FIG. 7a to obtain a core material with a plate thickness of 0.85 mm.

すなわち、冷間圧接時にコバール板の貫通孔中に銅が侵
入し、コバール板表面の所要位置に銅板表面が部分的に
露出した第1図に示す芯材が得られた。
That is, copper entered the through holes of the Kovar plate during cold welding, and the core material shown in FIG. 1 was obtained in which the surface of the copper plate was partially exposed at a predetermined position on the surface of the Kovar plate.

この芯材を800℃で5分間、拡散焼鈍して接合一体化
した。
This core material was diffusion annealed at 800° C. for 5 minutes to be joined and integrated.

得られた芯材の主面におけるCu露出面は圧延方向に長
い楕円形となり、孔間隔は圧延方向に1.0mmであり
、コバール板に対するCu露出面の比率は35%であっ
た。
The Cu exposed surface on the main surface of the obtained core material had an elliptical shape elongated in the rolling direction, the hole interval was 1.0 mm in the rolling direction, and the ratio of the Cu exposed surface to the Kovar plate was 35%.

得られた芯材の厚み方向の熱伝導率は 230w/m−K、及び各主面における熱膨張係数は8
xlO’/”Cであった。
The thermal conductivity in the thickness direction of the obtained core material was 230 w/m-K, and the coefficient of thermal expansion on each principal surface was 8.
xlO'/"C.

板厚0.85 mmの芯材の両面に、0.05mmJ’
*みのCu箔を、2段の冷間圧接機により圧接し、板厚
0.370の熱伝導複合材料を得た。
0.05mmJ' on both sides of the core material with a thickness of 0.85mm
*Cu foil was pressure-welded using a two-stage cold pressure welding machine to obtain a thermally conductive composite material with a plate thickness of 0.370.

この熱伝導複合材料において芯材を構成するCu板の厚
さ(tl)は0.166mm、コバール板の厚さ(t2
)はそれぞれ0.095mm、表面のCu箔の厚さ(t
3)はそれぞれ0.007mmであった(第1図a参照
)。
The thickness (tl) of the Cu plate constituting the core material in this thermally conductive composite material is 0.166 mm, and the thickness (t2) of the Kovar plate
) is 0.095 mm, respectively, and the thickness of the surface Cu foil (t
3) were each 0.007 mm (see Figure 1a).

板厚0.37mmの熱伝導複合材料を所要寸法に切断し
て、これを第3図aに示す如く、2枚積層した放熱基板
となした。
A thermally conductive composite material having a plate thickness of 0.37 mm was cut into required dimensions, and two sheets were laminated to form a heat dissipation board as shown in FIG. 3a.

上記放熱基板を用いて、セラミックスパッケージを作製
したところ、良好な熱放散性が得られ、熱的整合性も優
れていることを確認できた。
When a ceramic package was manufactured using the above heat dissipation substrate, it was confirmed that good heat dissipation properties were obtained and the thermal consistency was also excellent.

さらに、板厚0.37mmの熱伝導複合材料を焼鈍後、
冷間圧延にて板厚0.15mmに加工した。得られた熱
伝導複合材料において、芯材を構成するCuNのW ”
s (+、)l’r n nAQ、、、、、、  zバ
ールオガの可気/+、)I寸それぞれ0.038mm、
表面のCu箔の厚さ(t3)はそれぞれ0.003mm
であった。
Furthermore, after annealing the heat conductive composite material with a plate thickness of 0.37 mm,
It was cold rolled to a plate thickness of 0.15 mm. In the obtained thermally conductive composite material, the CuN W ” constituting the core material
s (+,) l'r n nAQ,,,,,, z Barrel oga's easiness/+,) I dimension each 0.038 mm,
The thickness (t3) of the Cu foil on the surface is 0.003 mm.
Met.

その後、公知の方法にてリードフレームに加工し、半導
体パッケージを作製したところ、チップとアイランドと
の接着界面の剥離や封止樹脂のクラック等が発生するこ
となく、また、従来の銅合金を用いたリードフレームに
近似する良好な熱放散性が得られた。
After that, when we processed the lead frame into a lead frame using a known method and produced a semiconductor package, we found that there was no peeling of the adhesive interface between the chip and the island, no cracking of the sealing resin, etc., and no conventional copper alloy was used. Good heat dissipation properties similar to those of conventional lead frames were obtained.

実施例2 実施例1と同一素材を用いて、芯材の銅板とコバール板
との圧接前に、銅板を加熱してがら圧接する以外は、実
施例1と同等の製造方法、条件で、板厚0.37mmの
熱伝導複合材料を製造した。
Example 2 The same material as in Example 1 was used, and the manufacturing method and conditions were the same as in Example 1, except that the copper plate of the core material and the Kovar plate were pressed together while being heated. A thermally conductive composite material with a thickness of 0.37 mm was produced.

この熱伝導複合材料において、芯材を構成するCu板の
厚さ(tl)は0.158mm、コバール板の厚さ(t
2〕はそれぞれ0.100mm、表面のCu箔の厚さ(
t3)はそれぞれ0.006mmであった。
In this thermally conductive composite material, the thickness (tl) of the Cu plate constituting the core material is 0.158 mm, and the thickness (tl) of the Kovar plate constituting the core material is 0.158 mm.
2] are each 0.100 mm, and the thickness of the surface Cu foil (
t3) were each 0.006 mm.

板厚0.37 mmの熱伝導複合材料を焼鈍後、板厚0
.25 mmに冷間圧延した。得られた熱伝導複合材料
において、芯材を構成するCu板の厚さ(tl)は0.
106mm、コバール板の厚さ(t2)はそれぞれ0.
068mm、表面のCu箔の厚さ(t3)はそれぞれ0
.004mmであった。この熱伝導複合材料を第4図a
に示す如く、キャンプ状にプレス成形して放熱基板とな
したところ、種々の深絞りが可能で、プレス成形性にす
ぐれていることが確認できた。
After annealing a heat conductive composite material with a thickness of 0.37 mm, the thickness of the composite material is 0.
.. It was cold rolled to 25 mm. In the obtained thermally conductive composite material, the thickness (tl) of the Cu plate constituting the core material was 0.
106 mm, and the thickness (t2) of the Kovar plate is 0.
068 mm, and the thickness (t3) of the Cu foil on the surface is 0.
.. It was 0.004 mm. This thermally conductive composite material is shown in Figure 4a.
As shown in Figure 2, when a heat dissipating substrate was made by press forming into a camp shape, it was confirmed that various deep drawings were possible and the press formability was excellent.

また、上記放熱基板を用いて、セラミックスパンケージ
を作製したところ、良好な熱放散性が得られ、熱的整合
性もすぐれていることが確認できた。
Furthermore, when a ceramic span cage was manufactured using the above-mentioned heat dissipation substrate, it was confirmed that good heat dissipation properties were obtained and the thermal consistency was also excellent.

実施例3 板厚0.5 n血、板幅30mrnの一対のコバール板
(29Ni−16Co−Fe合金)に、各4幅1.0m
m、0.5mmの楔状の多数の切り目を両面に施し、さ
らに、900℃で焼鈍後、ワイヤーブラッシングした。
Example 3 A pair of Kovar plates (29Ni-16Co-Fe alloy) with a plate thickness of 0.5 nm and a plate width of 30 mrn, each having a width of 1.0 m.
A large number of wedge-shaped cuts of 0.5 mm and 0.5 mm were made on both sides, and after annealing at 900° C., wire brushing was performed.

また、板厚1.0 mm、板幅30mmのCu板に、同
様に焼鈍、ワイヤーブラッシングを施した。
Further, a Cu plate having a thickness of 1.0 mm and a width of 30 mm was similarly annealed and wire brushed.

前記Cu板の両面にコバール板を重ね、さらに、表面を
清浄化した0、05mm厚みのAl箔を各コバール板上
面より重、ね、多段ロールを備えた温間圧接機により圧
接し、第1図すに示す如き板厚0.4皿の熱伝導複合材
料を得た。この熱伝導複合材料において、芯材を構成す
るCu板の厚さ(tl)は0.105mm、コバール板
の厚さ(L2)はそれぞれ0.178mm、表面のAI
箔の厚さ(t3)はそれぞれ0.006mmであった。
Kovar plates were stacked on both sides of the Cu plate, and then a 0.05 mm thick Al foil whose surface had been cleaned was pressed onto the upper surface of each Kovar plate using a warm pressure welding machine equipped with multiple rolls. A heat conductive composite material having a plate thickness of 0.4 plate as shown in the figure was obtained. In this thermally conductive composite material, the thickness (tl) of the Cu plate constituting the core material is 0.105 mm, the thickness (L2) of the Kovar plate is 0.178 mm, and the surface AI
The thickness (t3) of each foil was 0.006 mm.

得られた芯材の厚み方向の熱伝導率は 230w/m−K、及び各主面における熱膨張係数は8
xlO−6/℃であった。
The thermal conductivity in the thickness direction of the obtained core material was 230 w/m-K, and the coefficient of thermal expansion on each principal surface was 8.
It was xlO-6/°C.

この複合材料を冷間圧延にて板厚0.25mmに加工し
、その後公知の方法にて放熱基板に加工した。得られた
熱伝導複合材料において、芯材を構成するCu板の厚さ
(tl)は0.110mm、コバール板の厚さ(t2)
はそれぞれ0.067mm、表面のAI箔の厚さ(t3
)はそれぞれ0.003mmであった。半導体メタルパ
ッケージを作製したところ、良好な熱放散性が得られ、
かつすぐれたガラス封着性が得られた。
This composite material was processed into a plate thickness of 0.25 mm by cold rolling, and then processed into a heat dissipation board by a known method. In the obtained thermally conductive composite material, the thickness (tl) of the Cu plate constituting the core material is 0.110 mm, and the thickness (t2) of the Kovar plate.
are 0.067 mm, respectively, and the thickness of the AI foil on the surface (t3
) were each 0.003 mm. When we fabricated a semiconductor metal package, we were able to obtain good heat dissipation.
Moreover, excellent glass sealing properties were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、bはこの発明による熱伝導複合材料を示す斜
視説明図である。 第2図a、第3図a、第4図a、第6図はこの発明の熱
伝導複合材料を用いた半導体パッケージの実施例を示す
説明図である。第2図b、第3図b、第4図すはこの発
明の熱伝導複合材料の説明図である。 第4図Cは第4図aの詳細を示す部分拡大図、第4図d
、 eはこの発明の他の実施例からなる熱伝導複合材料
の説明図である。 第5図はこの発明の熱伝導複合材料を用いたハイパワー
モジュールの一部を示す説明図である。 第7図a、b、第8図はこの発明による複合材料の製造
方法の概念を示す斜視説明図である。 第9図a、bは従来の放熱基板を示すパッケージの縦断
説明図である。 第10図は半導体パッケージの概略図である。 1.31,32,34・・・チップ、2・・・MO材、
3・・・アルミナ材、4・・・コバール材、5・・・放
熱フィン、6・・・複合体基板、7・・・フランジ部、
8o・・・リードフレーム、81・・・アイランド、8
2・・・ステッチ、83・・・リード部、84・・・チ
ップ、8へ・・・ボンディングワイヤ、8a・・・樹脂
、10.20,21,22,23,24,25・・・熱
伝導複合材料、11・・・銅板、12・・・コバール板
、13・・・貫通孔、14・・・芯材、15・・・銅露
出面、16・・・金属箔層、231・・・円筒部、23
2・・・折り曲げ部、30・・セラミックス、301・
・・切欠き部、33・・・Cuリード、36・・・ガラ
ス、37・・・金属ギャップ、40・・・補強材、40
1・・・凸状突起、41・・・補強板材、50.51.
52・・・圧延ロール。
FIGS. 1a and 1b are perspective explanatory views showing a thermally conductive composite material according to the present invention. FIG. 2a, FIG. 3a, FIG. 4a, and FIG. 6 are explanatory diagrams showing examples of semiconductor packages using the thermally conductive composite material of the present invention. FIG. 2b, FIG. 3b, and FIG. 4 are explanatory views of the thermally conductive composite material of the present invention. Figure 4C is a partially enlarged view showing details of Figure 4a, Figure 4d
, e are explanatory diagrams of a thermally conductive composite material according to another embodiment of the present invention. FIG. 5 is an explanatory diagram showing a part of a high power module using the thermally conductive composite material of the present invention. FIGS. 7a, 7b, and 8 are perspective explanatory views showing the concept of the method for manufacturing a composite material according to the present invention. FIGS. 9a and 9b are longitudinal cross-sectional views of a package showing a conventional heat dissipation board. FIG. 10 is a schematic diagram of a semiconductor package. 1.31,32,34...chip, 2...MO material,
3... Alumina material, 4... Kovar material, 5... Radiation fin, 6... Composite board, 7... Flange part,
8o...Lead frame, 81...Island, 8
2... Stitch, 83... Lead portion, 84... Chip, To 8... Bonding wire, 8a... Resin, 10. 20, 21, 22, 23, 24, 25... Heat Conductive composite material, 11... Copper plate, 12... Kovar plate, 13... Through hole, 14... Core material, 15... Copper exposed surface, 16... Metal foil layer, 231...・Cylindrical part, 23
2...Bending portion, 30...Ceramics, 301...
... Notch, 33... Cu lead, 36... Glass, 37... Metal gap, 40... Reinforcement material, 40
1... Convex projection, 41... Reinforcement plate material, 50.51.
52...Reduction roll.

Claims (1)

【特許請求の範囲】 1 高熱膨張金属板の両面に、厚み方向に多数の貫通孔を有
する低熱膨張金属板が一体化されて、前記貫通孔から高
熱膨張金属が低熱膨張金属板表面に露出した構成の芯材
と、該芯材の両面に圧接した芯材の高熱膨張金属と同種
または異種の高熱膨張金属箔層とからなることを特徴と
する熱伝導複合材料。 2 芯材の金属板の厚さ比および/または低熱膨張金属板表
面に露出した高熱膨張金属と低熱膨張金属との表面積比
を選定し、熱膨張係数および/または熱伝導率を所要値
に変化させることを特徴とする請求項1記載の熱伝導複
合材料。 3 高熱膨張金属板が、Cu、Cu合金、Al、Al合金、
鋼のうちいずれか、 低熱膨張金属板が、Mo、30〜50wt%Niを含有
するNi−Fe系合金、25〜35wt%Niと4〜2
0wt%Coを含有するNi−Co−Fe系合金、Wの
うちいずれか、高熱膨張金属箔層がCu、Cu合金、A
l、Al合金、Ni、Ni合金のうちいずれかからなり
、芯材を構成する高熱膨張金属板の厚みt_1、低熱膨
張金属板の厚みt_2、及び高熱膨張金属箔の厚みt_
3が、t_1=1t_2〜3t_2、t_3≦1/10
t_2を満足することを特徴とする請求項1または請求
項2記載の熱伝導複合材料。 4 熱伝導複合材料の少なくとも一主面の所要位置に、Cu
、Al、Ni、Snのうちいずれかからなる金属メッキ
を被着したことを特徴とする請求項1または請求項2ま
たは請求項3記載の熱伝導複合材料。
[Claims] 1. A low thermal expansion metal plate having a large number of through holes in the thickness direction is integrated on both sides of a high thermal expansion metal plate, and the high thermal expansion metal is exposed on the surface of the low thermal expansion metal plate from the through holes. 1. A thermally conductive composite material comprising: a core material; and a high thermal expansion metal foil layer of the same or different type as the high thermal expansion metal of the core material, which is pressed against both sides of the core material. 2 Select the thickness ratio of the metal plate of the core material and/or the surface area ratio of the high thermal expansion metal and the low thermal expansion metal exposed on the surface of the low thermal expansion metal plate, and change the thermal expansion coefficient and/or thermal conductivity to the required value. The thermally conductive composite material according to claim 1, wherein the thermally conductive composite material is 3 The high thermal expansion metal plate is Cu, Cu alloy, Al, Al alloy,
Any of the steels, the low thermal expansion metal plate contains Mo, a Ni-Fe alloy containing 30 to 50 wt% Ni, 25 to 35 wt% Ni and 4 to 2
Ni-Co-Fe alloy containing 0 wt% Co, any of W, the high thermal expansion metal foil layer is Cu, Cu alloy, A
Thickness t_1 of the high thermal expansion metal plate that is made of any one of Al alloy, Ni, and Ni alloy and constitutes the core material, thickness t_2 of the low thermal expansion metal plate, and thickness t_ of the high thermal expansion metal foil.
3 is t_1=1t_2~3t_2, t_3≦1/10
The thermally conductive composite material according to claim 1 or 2, characterized in that it satisfies t_2. 4. Cu at a required position on at least one main surface of the thermally conductive composite material.
4. The thermally conductive composite material according to claim 1, wherein the thermally conductive composite material is coated with a metal plating consisting of any one of , Al, Ni, and Sn.
JP2040550A 1989-12-12 1990-02-20 Thermal conductive composite material Expired - Lifetime JPH0780272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2040550A JPH0780272B2 (en) 1989-12-12 1990-02-20 Thermal conductive composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-323283 1989-12-12
JP32328389 1989-12-12
JP2040550A JPH0780272B2 (en) 1989-12-12 1990-02-20 Thermal conductive composite material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5041835A Division JP2602161B2 (en) 1993-02-05 1993-02-05 High heat dissipation integrated circuit package

Publications (2)

Publication Number Publication Date
JPH03227621A true JPH03227621A (en) 1991-10-08
JPH0780272B2 JPH0780272B2 (en) 1995-08-30

Family

ID=26380026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040550A Expired - Lifetime JPH0780272B2 (en) 1989-12-12 1990-02-20 Thermal conductive composite material

Country Status (1)

Country Link
JP (1) JPH0780272B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629436A (en) * 1992-07-13 1994-02-04 Hitachi Metals Ltd Material for lead frame
US7097914B2 (en) 2001-08-28 2006-08-29 Kabushiki Kaisha Toyota Jidoshokki Composite structural material, and method of producing the same
WO2013136360A1 (en) * 2012-03-13 2013-09-19 新神戸電機株式会社 Method for manufacturing lead alloy sheet for expanded grid, and method for manufacturing expanded grid for lead battery using lead alloy sheet
CN105603343A (en) * 2015-12-21 2016-05-25 北海光利彩色印刷有限公司 Breathable copper air-conditioning foil and preparation method thereof
JP2017183566A (en) * 2016-03-31 2017-10-05 日立金属株式会社 Stress relaxation structure and thermoelectric conversion module
JPWO2016163558A1 (en) * 2015-04-10 2018-01-25 京セラ株式会社 heater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053037A (en) * 1983-09-01 1985-03-26 Sumitomo Electric Ind Ltd Multilayer compound metal strip mounting semiconductor element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053037A (en) * 1983-09-01 1985-03-26 Sumitomo Electric Ind Ltd Multilayer compound metal strip mounting semiconductor element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629436A (en) * 1992-07-13 1994-02-04 Hitachi Metals Ltd Material for lead frame
US7097914B2 (en) 2001-08-28 2006-08-29 Kabushiki Kaisha Toyota Jidoshokki Composite structural material, and method of producing the same
WO2013136360A1 (en) * 2012-03-13 2013-09-19 新神戸電機株式会社 Method for manufacturing lead alloy sheet for expanded grid, and method for manufacturing expanded grid for lead battery using lead alloy sheet
JPWO2016163558A1 (en) * 2015-04-10 2018-01-25 京セラ株式会社 heater
CN105603343A (en) * 2015-12-21 2016-05-25 北海光利彩色印刷有限公司 Breathable copper air-conditioning foil and preparation method thereof
JP2017183566A (en) * 2016-03-31 2017-10-05 日立金属株式会社 Stress relaxation structure and thermoelectric conversion module

Also Published As

Publication number Publication date
JPH0780272B2 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
US5106433A (en) Heat-conductive composite material
US6032362A (en) Method for producing a heat spreader and semiconductor device with a heat spreader
JPH0313331A (en) Composite material variable in coefficient of thermal expansion and heat conductivity
US20090151982A1 (en) Metal-ceramic composite substrate and method of its manufacture
JPH0837257A (en) Laminated body and manufacture thereof
US5300809A (en) Heat-conductive composite material
JP2003152144A (en) Composite material and method for its manufacture
JPH09312361A (en) Composite material for electronic component and its manufacture
JP2860037B2 (en) Method of manufacturing heat dissipation board for semiconductor device
JP3462308B2 (en) Manufacturing method of heat conductive composite material
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
EP0392109A2 (en) Heat-conductive composite material
JPH03227621A (en) Thermally conductive composing material
JP2602161B2 (en) High heat dissipation integrated circuit package
JPH05109947A (en) Heat conducting material and its manufacture
JP3192911B2 (en) Ceramic circuit board
JP3670381B2 (en) Thermally conductive composite material and manufacturing method thereof
KR940010910B1 (en) Semiconductor package
JPH0924500A (en) Production of thermally conductive composite material
JP3037485B2 (en) Thermal conductive material and method of manufacturing the same
JPH03218031A (en) Semiconductor integrated circuit device and preform bonding material used in the same
JP4146736B2 (en) Manufacturing method of semiconductor device
JPH04230063A (en) Multilayer heat sink
JPH0575008A (en) Thermally conductive material and manufacture thereof
JPS6027151A (en) Composite metallic filament for mounting semiconductor element

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 15