WO2013136360A1 - Method for manufacturing lead alloy sheet for expanded grid, and method for manufacturing expanded grid for lead battery using lead alloy sheet - Google Patents
Method for manufacturing lead alloy sheet for expanded grid, and method for manufacturing expanded grid for lead battery using lead alloy sheet Download PDFInfo
- Publication number
- WO2013136360A1 WO2013136360A1 PCT/JP2012/001715 JP2012001715W WO2013136360A1 WO 2013136360 A1 WO2013136360 A1 WO 2013136360A1 JP 2012001715 W JP2012001715 W JP 2012001715W WO 2013136360 A1 WO2013136360 A1 WO 2013136360A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lead alloy
- base material
- alloy foil
- rolling
- material sheet
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
- H01M4/73—Grids for lead-acid accumulators, e.g. frame plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
- H01M4/74—Meshes or woven material; Expanded metal
- H01M4/745—Expanded metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for producing a lead alloy sheet used as a material for an expanded lattice for a lead storage battery electrode plate, and a method for producing an expanded lattice using a lead alloy sheet produced by the production method.
- a current collector made of an expanded lattice filled with an active material paste is widely used as an electrode plate for a lead storage battery.
- the expanded lattice is manufactured by subjecting a lead alloy sheet to an expanding process.
- Expanded grids used as current collectors for lead-acid battery plates are required to have high adhesion to the active material paste (the property of being bonded to the active material paste) in order to retain the active material without dropping off. The Therefore, when the expanded lattice is formed of a lead alloy having relatively low adhesion to the active material paste, it is preferable to provide a thin layer made of a lead alloy having high adhesion to the active material paste on the surface. .
- a thin layer of a lead alloy having an alloy composition different from that of the base material sheet is integrated on the surface of the lead alloy base material sheet constituting the main body of the expanded lattice.
- a composite lead alloy sheet having the above structure is used.
- An expanded lattice in which a thin layer with high adhesiveness to the active material paste is integrated on the surface is a cooling layer of a base material sheet made of a lead alloy and a lead alloy foil having an alloy composition different from that of the base material sheet.
- the lead alloy sheet having a composite structure in which the lead alloy foil is integrated on the surface of the base material sheet is manufactured by rolling between the base material sheets, and then the lead alloy sheet is expanded.
- each portion of the lead alloy sheet in which the slits are formed is expanded in the width direction. Widen the slits into a mesh.
- the lead alloy foil 3 guided and fed by the guide roller 2 is superposed on the surface of the base material sheet 1 which is continuously cast and transferred.
- the superposed base material sheet 1 and the lead alloy foil 3 are passed between a pair of guide rollers 4 and 4 ′ which are disposed to face each other, between the pair of caulking rollers 5 and the pressing roller 6.
- a large number of conical protrusions 5 a are formed on the outer periphery of the caulking roller 5.
- the lead alloy foil 3 is formed when the protrusion 5 a provided on the caulking roller 5 penetrates the lead alloy foil 3. Part of the lead bites into the base material sheet, so that the lead alloy foil 3 is caulked and joined to the base material sheet 1.
- the base material sheet 1 and the lead alloy foil 3 thus bonded to each other are supplied to the multi-stage rolling mill 7 and rolled.
- the multi-stage rolling mill 7 has a structure in which a plurality of rolling stages each having a pair of rolling rolls 8 and 8 'arranged to face each other with a predetermined gap are arranged in a column. A pair of rolling rolls 8 and 8 'provided in a series of rolling stages are provided such that the gap between them becomes smaller in steps.
- the laminate of the base material sheet and the lead alloy foil supplied to the rolling mill 7 is reduced in thickness every time it is rolled at each rolling stage, and finally has a composite structure lead alloy having a predetermined thickness.
- the sheet 9 is processed.
- a lead alloy foil 3 containing at least one of Sn, Sb and Ag is laminated on a base material sheet 1 of a Pb—Ca-based lead alloy.
- the rolling rate when rolling with the rolling rolls 8 and 8 'of the first rolling stage is set to a large value.
- the bonding between the base material sheet 1 and the lead alloy foil 3 is ensured, and then the rolling in the subsequent rolling stage is performed.
- the thickness of the base material sheet 1 before rolling is a
- the thickness of the lead alloy foil 3 before rolling is t
- the base material sheet after being rolled by the first rolling rolls 8 and 8 ' is a
- the thickness of the laminate of 1 and the lead alloy foil 3 is b
- the condition of (a + t) /b ⁇ 1.3 is established, and the base material sheet 1 and the lead alloy foil 3 and the first rolling stage are rolled.
- the length of the part in contact with the peripheral surfaces of the rolls 8 and 8 ' is set to 10 mm or more.
- the object of the present invention is to increase the rolling rate in the first rolling in a multi-stage rolling mill without leaving traces of numerous holes penetrating the lead alloy foil over the entire length of the produced lead alloy sheet.
- the object is to provide a method for producing a lead alloy sheet for an expanded lattice by reliably integrating a lead alloy foil into a base material sheet.
- Another object of the present invention is to provide a method for producing an expanded lattice for a lead storage battery using the lead alloy sheet produced by the above method.
- the present invention is directed to a method for producing a lead alloy sheet for an expanded lattice by integrating a band-shaped lead alloy foil having a different alloy composition from the surface of a belt-shaped base material sheet made of a lead alloy. .
- one surface of the strip-shaped lead alloy foil in the thickness direction is formed on the surface of the strip-shaped base material sheet, and the width direction of the lead alloy foil is matched with the width direction of the base material sheet.
- the rolling process of laminating the base material sheet and the lead alloy foil in a stacked state and rolling the laminate of the base material sheet and the lead alloy foil between a pair of rolling rolls is performed at a plurality of rolling stages. Thus, a rolling process is performed in which the thickness of the laminate of the base material sheet and the lead alloy foil is gradually reduced.
- a plurality of through holes penetrating the lead alloy foil in the thickness direction are interspersed only at the tip region set near the tip of the strip-shaped lead alloy foil, and the tip region of the lead alloy foil is The sheet is fed between a pair of rolling rolls that perform the rolling process in the first stage of the rolling process in a state of being superimposed on the base material sheet.
- burrs protruding from one surface of the lead alloy foil on the peripheral edge portion of the open end directed to the base material sheet side of each through hole provided in the tip region of the lead alloy foil.
- a plurality of through-holes penetrating the lead alloy foil in the thickness direction are scattered in the tip end region set near the tip of the lead alloy foil, and the tip end region of the lead alloy foil is Since the laminated body of the base material sheet and the lead alloy foil is passed between a pair of rolling rolls that perform rolling at the first rolling stage of the rolling process in a state of being superimposed on the surface of the base material sheet, the first rolling is performed.
- the trace of the through hole provided in the tip region of the lead alloy foil remains only in the tip portion of the manufactured lead alloy sheet, and the trace of the through hole extends over the entire longitudinal region of the lead alloy sheet. Therefore, by removing the portion where the trace of the through hole remains, an expanded lattice having no trace of the through hole can be obtained.
- a fray is formed at the peripheral edge of the opening end of each through hole provided in the tip end region of the lead alloy foil that faces the base material sheet side, and one surface of the lead alloy foil from which the burr protrudes is formed on the base material sheet.
- the apparent thickness of the laminate of the base material sheet and the lead alloy foil is increased at the portion where the burrs are formed, and the laminate of the base material sheet and the lead alloy foil is formed.
- the rolling rate of the lead alloy foil can be increased at the portion where the burrs are formed when the first rolling is performed.
- the bond strength between the base material sheet obtained by the first rolling and the lead alloy foil can be increased, the peeling of the lead alloy foil can be surely prevented, and the laminate of both can be more reliably rolled. it can. Since the burrs can be easily crushed during the first rolling, it is possible to prevent the rolling roll from being overwhelmed, and the overall rolling rate of the laminate of the base material sheet and the lead alloy foil is increased. As in the case of the conventional technique, it is possible to prevent the life of the rolling roll from being shortened.
- a lead alloy foil having a different alloy composition from the base material sheet is stacked on a strip-shaped base material sheet made of a lead alloy, and these laminates are used for the first rolling stage of the multi-high rolling mill. It is the perspective view which showed the state just before starting the process of rolling through between rolls.
- the state after rolling a laminated body of a strip-shaped base material sheet made of a lead alloy and a lead alloy foil through the rolling rollers of the first rolling stage of the multi-high rolling mill is schematically shown. It is sectional drawing shown.
- (A) And (B) is sectional drawing which showed the example from which the shape of the through-hole scattered in the front-end
- the surface of a strip-shaped base material sheet made of a lead alloy has one of the thickness directions of the strip-shaped lead alloy foil having a different alloy composition from the base material sheet.
- the base material sheet and the lead alloy foil are laminated with the surfaces overlapped with the width direction of the lead alloy foil aligned with the width direction of the base material sheet.
- a lead alloy sheet for an expanding lattice is manufactured by integrating a lead alloy foil on the surface of the base material sheet by performing a rolling process that gradually reduces.
- a Pb—Ca—Sn alloy As the Pb—Ca—Sn alloy, it is preferable to use an alloy containing 0.03 to 0.1% by mass of Ca and 0.8 to 1.8% by mass of Sn.
- the thickness of the base material sheet is preferably about 10 to 20 mm.
- the lead alloy foil integrated with the surface of the base material sheet in order to improve the adhesion between the expanded lattice and the active material is made of a lead alloy containing at least one selected from the group consisting of Sn, Sb and Ag. Preferably it is.
- the Sn content is preferably 1 to 10% by mass
- the Sb content is preferably 1 to 10% by mass.
- the Ag content is preferably 0.05 to 1% by mass.
- the thickness of the lead alloy foil is about 0.05 to 0.3 mm.
- the laminate formed by superimposing the base material sheet and the lead alloy foil is supplied to a multi-stage rolling mill having a plurality of rolling stages having a pair of rolling rolls, and is performed at each rolling stage.
- a lead alloy foil having a different alloy composition from that of the base material sheet is integrated on the surface of the base material sheet.
- Manufacture lead alloy sheets for lattices. The final thickness of the manufactured lead alloy sheet is appropriately determined according to the design of the lead storage battery, but is usually about 0.5 to 1.5 mm.
- FIG. 1 shows an embodiment of the present invention in which a lead alloy foil is stacked on a strip-shaped base material sheet made of a lead alloy, and these laminates are passed between rolling rollers of the first rolling stage of a multi-stage rolling mill. The state immediately before starting the rolling process is shown.
- reference numeral 1 denotes a base material sheet made of a lead alloy. This base material sheet is made by a method in which a molten Pb—Ca-based lead alloy is caused to flow out from a nozzle having a slit of a predetermined dimension formed at the tip. It is continuously cast and fed in the longitudinal direction.
- 3 is a strip-shaped lead alloy foil made of a lead alloy having an alloy composition different from that of the lead alloy constituting the base material sheet.
- This lead alloy foil 3 is unwound from a roll (not shown), and its width direction is made to coincide with the width direction of the strip-shaped base material sheet 1 and is positioned at a predetermined position with respect to the width direction of the base material sheet 1. In this state, it is fed in the same direction as the base material sheet 1 that is continuously cast and fed, and is superposed on the base material sheet 1.
- W1 and W2 indicate two regions of the base material sheet on which the expansion processing is performed after the lead alloy sheet is formed, and Wo indicates a central region where the expansion processing is not performed.
- We1 and We2 indicate regions near one end and the other end in the width direction where the base material sheet 1 is not expanded.
- two lead alloy foils 3 and 3 arranged in parallel in regions W1 and W2 of the surface of the base material sheet 1 which are subjected to the expansion process in the subsequent expansion process are respectively arranged in the width direction. Are aligned with the width direction of the base material sheet 1 and are positioned so as to be accurately positioned on the areas W1 and W2 of the base material sheet 1 where the expanding process is performed.
- a laminated body of the base material sheet 1 and the lead alloy foils 3 and 3 is configured. And this laminated body is rolled by passing the gap
- a constant length dimension S is provided in the longitudinal direction of each of the lead alloy foils 3 and 3 stacked on the belt-shaped base material sheet 1 near each tip.
- the front end regions 3A and 3A are set, and a plurality of through holes 3a penetrating in the thickness direction are scattered only in the front end region of each of the lead alloy foils 3 and 3.
- the lead alloy foils 3, 3 are positioned in the width direction of the base material sheet 1 as described above, and the tip regions 3 A, 3 A of the lead alloy foils 3, 3 are overlapped on the surface of the base material sheet 1.
- a laminated body of the base material sheet 1 and the lead alloy foils 3 and 3 is formed, and this laminated body is supplied between the rolling rolls 8 and 8 'of the first rolling stage and rolled cold.
- a plurality of through holes 3a penetrating the lead alloy foil in the thickness direction are scattered in the tip region 3A set near the tip of the lead alloy foil 3, and the tip of the lead alloy foil 3
- the base material sheet 1 and the tip end region 3A of the lead alloy foil 3 can be mechanically reliably bonded.
- the tip of the laminate of the base material sheet 1 and the lead alloy foil 3 is the gap between the rolling rolls of the first rolling stage. Since the lead alloy foils 3 and 3 can be prevented from peeling off from the base material sheet 1 and warping when passing, the laminate can be reliably supplied between the rolling rolls of the second rolling stage. it can. Accordingly, even in the second and subsequent rolling stages, the laminate of the base material sheet 1 and the lead alloy foils 3 and 3 can be reliably rolled, and the lead alloy foil is firmly integrated with the surface of the base material sheet. The obtained lead alloy sheet can be obtained.
- the laminated body of the base material sheet 1 and the lead alloy foils 3 and 3 rolled by the rolling rolls 8 and 8 'of the first rolling stage is further rolled by the rolling rolls of the second and subsequent rolling stages.
- the laminate of the base material sheet 1 and the lead alloy foils 3 and 3 is more firmly integrated while gradually reducing the thickness in the process of being rolled by a plurality of rolling rolls, and rolling by a rolling roll at the final stage, It is processed into an expanded lattice lead alloy sheet having a final thickness.
- the trace of the through hole 3a remains at the tip of the produced lead lattice sheet for the expanded lattice, but the trace of the through hole 3a remains only at the tip of the lead alloy sheet. There are no traces of through-holes in the most part of the obtained lead alloy sheet, so cut and remove the part where the traces of through-holes near the tip of the manufactured lead alloy sheet remain Thus, the trace of the through hole can be prevented from remaining in the expanded lattice manufactured in a later step.
- the work to remove the traces of the through holes remaining from the expanded lead alloy sheet may be performed before the expansion process, and after the expansion process, the traces of the through holes of the expanded grid remain. You may carry out by excising the part which exists.
- the length dimension S (the dimension measured in the longitudinal direction of the lead alloy foil 3) S of the lead alloy foil 3 in which the plurality of through holes 3a are scattered the longer the base sheet 1 and the lead.
- the bonding of the alloy foil 3 can be ensured, it is preferable not to make the length dimension S of the tip region 3A of the lead alloy foil 3 longer than necessary in order to reduce wasted material.
- the length dimension S measured in the longitudinal direction of the lead alloy foil 3 from the tip of the lead alloy foil 3 in the tip region 3A of the lead alloy foil 3 interspersed with the plurality of through holes 3a is set to 30 mm.
- the lead alloy foil can be reliably prevented from peeling from the base material sheet when passing through the first rolling stage. Accordingly, the length S of the tip region 3A of the lead alloy foil is preferably set to a length that is 30 mm or more and is not too long.
- the through hole 3a can be a circular hole having a diameter of 1 mm or more.
- the plurality of through holes 3a are preferably interspersed in the tip end region of the lead alloy foil 3 at a density at which one or more through holes exist per 1 cm 2 .
- the base material sheet 1 is formed when the leading end of the lead alloy foil 3 is overlapped on the surface of the base material sheet 1 and both are fed between the rolling rollers of the first rolling stage and rolled. It is possible to make it easier for the lead alloy to enter into the through hole 3a.
- FIG. 3A and 3B show examples in which the cross-sectional shape of the through hole provided in the tip region of the lead alloy foil 3 is different.
- FIG. 3 (A) an example is shown in which the through hole 3a is formed by shear punching into a clean shape free of burrs.
- FIG. 3B shows one surface of the lead alloy foil 2 on the peripheral edge of the end portion of the through hole 3a located on the one surface of the lead alloy foil 2 (the surface superimposed on the surface of the base material sheet) 3s.
- This is an example in which the burrs 3b protruding from 3s are formed.
- rolling is performed in a state where one surface 3 s of the lead alloy foil 3 from which the burrs 3 b protrude is overlapped on the surface of the base material sheet 1.
- the burrs 3b can be formed by piercing a lead-shaped alloy foil 2 with a pointed conical tool.
- the burrs 3b projecting from one surface of the lead alloy foil are formed on the peripheral edge of the open end of the through hole 3a provided in the tip region 3A of the lead alloy foil 3 facing the base material sheet 1 side.
- the laminate of the base material sheet 1 and the lead alloy foil 3 is formed at the portion where the burrs 3b are formed.
- the apparent thickness can be increased. Therefore, when the first rolling is performed on the laminate of the base material sheet 1 and the lead alloy foil 3, the rolling rate of the lead alloy foil is increased at the portion where the burrs 3b are formed, and is obtained by the first rolling.
- the bond strength between the base material sheet and the lead alloy foil can be increased, and the laminate of both can be rolled more reliably.
- the rolling rate is increased only in the portion of the burrs formed at the peripheral edge of the opening end of the through hole of the lead alloy foil, and the portion of the burrs 3 can be easily crushed during rolling. It is possible to prevent a large burden from being applied to the rolling roll of the first rolling stage. Therefore, the life of the rolling roll is shortened as in the case of the method shown in Patent Document 2 in which the overall rolling rate of the laminate of the base material sheet 1 and the lead alloy foil 3 is increased. Can be prevented.
- the protrusion height from the one surface 3s of the lead alloy foil 3 of the burrs 3b provided at the peripheral portion of the through hole 3a provided in the tip region 3A of the lead alloy foil 3 is set to 0.05 mm or more.
- the protrusion height of the burrs 3b is set in this way, the effect obtained by providing the burrs 3b appears remarkably.
- the lead alloy foil of the expanded grid lead alloy sheet manufactured as described above is used.
- a large number of slits extending in the longitudinal direction of the lead alloy sheet are formed in a zigzag shape by making a large number of cuts in the region where 3 and 3 are integrated, and the lead alloy sheet formed with the slit is formed in the width direction.
- the expanding process is performed.
- an expanded lattice for a lead storage battery is manufactured by expanding each slit into a mesh shape.
- Expanded meshes are formed in the regions W1 and W2 on both sides of the central region Wo in the width direction of the lead alloy sheet.
- a long expanded grid is punched out to form a large number of current collectors for the electrode plates.
- a constant width region region corresponding to Wo in FIG. 1 in the center in the width direction of the expanded lattice that is not subjected to the expansion process is formed by punching the expanded lattice to form a large number of current collectors. Molded to the shape of the ear. After punching out the expanded lattice to form a current collector, the current collector is filled with a paste-like active material to produce an electrode plate.
- a current collector is formed by punching out a long expanded lattice, and then the active material paste is filled into the current collector to manufacture an electrode plate.
- a paste-like active material is formed in the long expanded lattice. It is possible to take a method of manufacturing a large number of electrode plates by punching out the portions constituting each electrode plate after filling. Thus, when taking a method of punching each electrode plate after filling a long expanded lattice with an active material, punching out a constant width region in the center of the width direction of the expanded lattice, the ear of each current collector The step of forming may be performed before the step of filling the active material.
- Various methods are known as a method for producing an electrode plate for a lead storage battery using a long expanded grid, but the long expanded grid obtained by the method of the present invention can be obtained by any method. The present invention can also be applied when manufacturing.
- the base material sheet 1 made of a lead alloy a material made of a lead alloy having an alloy composition of Pb-0.07 mass% Ca-1.2 mass% Sn was used.
- the thickness of the base material sheet 1 before rolling is 11 mm.
- the lead alloy foil 3 was made of a lead alloy having an alloy composition of Pb-5.0 mass% Sn-5.0 mass% Sb.
- the thickness of the lead alloy foil 3 was 0.2 mm.
- the final thickness of the lead alloy sheet was set to 1.1 mm by superimposing the lead alloy foils 3 and 3 on the base material sheet by the method described based on FIG. In any rolling process of the rolling process, as the pair of rolling rolls 8 and 8 ', rolls having the same diameter of 155 mm were used.
- the region where the lead alloy foils 3 and 3 of the obtained lead alloy sheet were integrated was subjected to an expansion process to produce a long expanded lattice. After this long expanded lattice was filled with the paste-like active material, the portions constituting each electrode plate were punched out to produce a large number of current collectors for the electrode plates.
- Example 1 A region having a length of 30 mm from the tip of the lead alloy foil 3 was defined as a tip region 3A, and through-holes 3a having a substantially circular outline in cross section were dotted in the tip region 3A.
- the through holes 3a had a diameter of 2 mm and were scattered at a density of 2 per 1 cm 2 .
- the through hole 3a was provided by shear punching.
- the through hole 3a provided in the present embodiment is as shown in FIG. 3A, and no burrs are provided at the peripheral edge of the end portion.
- Example 2 As described based on FIG. 3B, the burrs 3 b that protrude outward (from the base material sheet side) from the one surface 3 s of the lead alloy foil 3 were formed on the periphery of the through hole 3 a.
- the length S of the tip end region 3A interspersed with the through holes 3a was 30 mm.
- the through-hole 3a was tapered so that the diameter decreased toward the one surface 3s side of the lead alloy foil 3, and the maximum diameter was 2 mm.
- the through holes 3a were scattered at a density of 2 per 1 cm 2 .
- the through hole 3a was formed by piercing a conical protrusion in the tip end partial region 3A.
- the burrs 3b formed on the peripheral edge of the through hole 3a protrude from the one surface 3s of the lead alloy foil 3 with a height of 0.5 to 1.5 mm.
- the value calculated by the formula (a + t) / b described with reference to FIG. 5 before and after passing the laminate of the base material sheet 1 and the lead alloy foil through the gap between the rolling rolls of the first rolling stage of the multi-high rolling mill. was 1.14. Also in this example, ten rolling stages including the first rolling stage were provided, and rolling was performed to reduce the thickness of the laminated body stepwise.
- a lead alloy foil 3 not provided with a through hole 3a in the tip region 3A was placed on the surface of the base material sheet 1 and both were rolled.
- the value calculated by the formula (a + t) / b was 1.6.
- six-stage rolling rolls including the first rolling roll were provided, and rolling was performed to reduce the thickness step by step.
- the rolling rate at the time of rolling with the first rolling roll is increased, and the value calculated by the formula (a + t) / b is made larger than that in Example 1 and Example 2, so that the rolling as a whole is performed.
- the number of stages is smaller than that in the first and second embodiments.
- Example 1 the lead alloy sheet 4 in which the lead alloy foil 2 is reliably integrated with the base material sheet 1 can be manufactured, and the characteristic as an expanded lattice is also achieved. There was no difference.
- Example 1 and Example 2 of the present invention before and after passing the base material sheet and the lead alloy foil between the first rolling rolls, the value calculated by the formula (a + t) / b is set small. Nevertheless, the lead alloy foil 2 could be reliably integrated with the base material sheet 1 by rolling. From this, according to the present invention, it was clarified that the load applied to the first pair of rolling rolls can be reduced, so that the rolling roll can be prevented from being damaged and the life thereof can be extended.
- Example 2 when the burrs 3b are formed on the peripheral edge of the end portion on the base material sheet side of the through holes 3a scattered in the tip region of the lead alloy foil 3, the portion where the burrs 3b exist As the apparent thickness of the lead alloy foil 3 is increased, the rolling rate of the lead alloy foil 2 is increased in the portion where the burrs 3a are present when the lead alloy foil 3 is rolled by the first rolling roll. 1 can be easily integrated. Therefore, the integration of the lead alloy foil and the base material sheet in the initial stage of rolling can be made more reliable, and the lead alloy foil that has passed through the rolling roller of the first rolling stage peels from the base material sheet, It is possible to reliably prevent a situation in which rolling at the second and subsequent rolling stages is not performed well.
- burrs are locally provided and thin, they can be easily crushed without particularly increasing the load applied to the rolling roll of the first rolling stage. Therefore, even if burrs are provided on the peripheral edge of the opening end of the through hole provided in the tip region of the lead alloy foil, the burden on the first stage rolling roll does not increase, and the life of each roll is shortened. There is no.
- the value calculated by the formula (a + t) / b is 1.2.
- the lead alloy foil for the expanded lattice is securely integrated with the base material sheet by rolling without causing the problems of the prior art that the burden on the rolling mill becomes excessive. Since it can be manufactured, the applicability in the field of lead-acid batteries using an expanded grid as a current collector is great.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
With the present invention, in the manufacture of a lead alloy sheet for an expanded grid wherein a lead alloy foil having an alloy composition different from a base material sheet comprising a lead alloy is overlaid on the base material sheet and a process is performed multiple times whereby these are rolled by passing through a gap between a pair of mill rolls, thereby integrating a lead alloy sheet with the base material sheet, multiple through-holes that penetrate the lead alloy foil in the thickness direction are dispersed in a front-end region that is set near the front end of the lead alloy foil, and with the front-end region of the lead alloy foil in which the through-holes have been dispersed overlaid on the front-end part of the base material sheet, the base material sheet and the lead alloy foil are supplied between mill rolls for performing the initial rolling. Thus, the base material sheet and the lead alloy foil can be integrated reliably without setting a particularly large reduction ratio in the initially performed rolling process.
Description
本発明は、鉛蓄電池極板用のエキスパンド格子の素材として用いる鉛合金シートを製造する方法及びその製造方法により製造された鉛合金シートを用いてエキスパンド格子を製造する方法に関する。
The present invention relates to a method for producing a lead alloy sheet used as a material for an expanded lattice for a lead storage battery electrode plate, and a method for producing an expanded lattice using a lead alloy sheet produced by the production method.
鉛蓄電池用の極板として、エキスパンド格子からなる集電体に活物質ペーストを充填したものが広く用いられている。エキスパンド格子は、鉛合金シートにエキスパンド加工を施すことにより製造される。鉛蓄電池用極板の集電体として用いるエキスパンド格子は、活物質を脱落させることなく保持するために、活物質ペーストとの密着性(活物質ペーストと結合する性質)が高いことが必要とされる。そのため、エキスパンド格子を活物質ペーストとの密着性が比較的低い鉛合金により形成する場合には、その表面に活物質ペーストとの密着性が高い鉛合金からなる薄層を設けておくことが好ましい。このような構造のエキスパンド格子を得るための素材としては、エキスパンド格子の本体を構成する鉛合金の母材シートの表面に、該母材シートとは合金組成が異なる鉛合金の薄層を一体化した構造を有する複合構造の鉛合金シートが用いられる。
As an electrode plate for a lead storage battery, a current collector made of an expanded lattice filled with an active material paste is widely used. The expanded lattice is manufactured by subjecting a lead alloy sheet to an expanding process. Expanded grids used as current collectors for lead-acid battery plates are required to have high adhesion to the active material paste (the property of being bonded to the active material paste) in order to retain the active material without dropping off. The Therefore, when the expanded lattice is formed of a lead alloy having relatively low adhesion to the active material paste, it is preferable to provide a thin layer made of a lead alloy having high adhesion to the active material paste on the surface. . As a material for obtaining an expanded lattice having such a structure, a thin layer of a lead alloy having an alloy composition different from that of the base material sheet is integrated on the surface of the lead alloy base material sheet constituting the main body of the expanded lattice. A composite lead alloy sheet having the above structure is used.
活物質ペーストとの密着性が高い薄層が表面に一体化されたエキスパンド格子は、鉛合金からなる母材シートと、該母材シートとは合金組成が異なる鉛合金箔との積層体を冷間で圧延することにより、母材シートの表面に鉛合金箔が一体化された複合構造の鉛合金シートを製造した後、この鉛合金シートにエキスパンド加工を施すことにより製造される。エキスパンド加工においては、帯状の鉛合金シートに、該シートの長手方向に長い多数のスリットを千鳥状に形成した後、鉛合金シートのスリットが形成された部分を幅方向に展開することにより、各スリットを広げて網目状にする。
An expanded lattice in which a thin layer with high adhesiveness to the active material paste is integrated on the surface is a cooling layer of a base material sheet made of a lead alloy and a lead alloy foil having an alloy composition different from that of the base material sheet. The lead alloy sheet having a composite structure in which the lead alloy foil is integrated on the surface of the base material sheet is manufactured by rolling between the base material sheets, and then the lead alloy sheet is expanded. In the expanding process, in the strip-shaped lead alloy sheet, after forming a large number of slits long in the longitudinal direction of the sheet in a zigzag shape, each portion of the lead alloy sheet in which the slits are formed is expanded in the width direction. Widen the slits into a mesh.
母材シートと鉛合金箔との積層体を冷間で圧延して複合構造の鉛合金シートを製造する際には、母材シートと鉛合金箔とを確実に一体化するための工夫をする必要がある。母材シートと鉛合金箔との積層体の圧延は、多段圧延機を用いて、積層体の厚みを段階的に減少させることにより行われるが、母材シートと鉛合金箔との一体化を確実に行うためには、当該積層体を初段の圧延ローラの間に通して最初の圧延過程を行う際に、母材シートと鉛合金箔とを確実に一体化することが重要である。最初の圧延過程で母材シートと鉛合金箔との一体化がうまく行かないと、積層体の先端が圧延ロール間の間隙を通り抜けた際に鉛合金箔が母材シートから剥離して反り返り、後段の圧延ロール間の間隙に積層体を通すことができなくなるため、積層体の圧延に失敗する。このような問題が起らないようにするため、特許文献1や特許文献2に示されたエキスパンド格子用鉛合金シートの製造方法が提案されている。
When manufacturing a composite lead alloy sheet by cold rolling the laminate of the base material sheet and the lead alloy foil, devise to ensure the integration of the base material sheet and the lead alloy foil. There is a need. Rolling of the laminate of the base material sheet and the lead alloy foil is performed by gradually reducing the thickness of the laminate using a multi-stage rolling mill, but the base material sheet and the lead alloy foil are integrated. In order to perform reliably, it is important to reliably integrate the base material sheet and the lead alloy foil when the first rolling process is performed by passing the laminate between the first-stage rolling rollers. If the integration of the base material sheet and the lead alloy foil is not successful in the first rolling process, the lead alloy foil peels off from the base material sheet and warps when the tip of the laminate passes through the gap between the rolling rolls, Since it becomes impossible to let a laminated body pass through the gap | interval between a subsequent rolling roll, rolling of a laminated body fails. In order to prevent such a problem from occurring, a method for manufacturing a lead alloy sheet for an expandable lattice shown in Patent Literature 1 and Patent Literature 2 has been proposed.
特許文献1に示された方法では、図4に示すように、連続鋳造されて移送されてくる母材シート1の表面に、ガイドローラ2によりガイドされて送給された鉛合金箔3を重ね、重ね合わされた母材シート1と鉛合金箔3とを、相対して配置された一対のガイドローラ4,4′の間を通した後、一対のかしめローラ一5と押えローラ6との間を通して、多段圧延機7に供給する。
In the method shown in Patent Document 1, as shown in FIG. 4, the lead alloy foil 3 guided and fed by the guide roller 2 is superposed on the surface of the base material sheet 1 which is continuously cast and transferred. After the superposed base material sheet 1 and the lead alloy foil 3 are passed between a pair of guide rollers 4 and 4 ′ which are disposed to face each other, between the pair of caulking rollers 5 and the pressing roller 6. To supply to the multi-high mill 7.
かしめローラ5の外周には多数の円錐状の突起5aが形成されている。重ね合わされた母材シート1及び鉛合金箔3をかしめローラ5と押えローラ6との間に供給すると、かしめローラ5に設けられた突起5aが鉛合金箔3を貫通した際に鉛合金箔3の一部が母材シートに食い込むため、鉛合金箔3が母材シート1にかしめられて結合される。
A large number of conical protrusions 5 a are formed on the outer periphery of the caulking roller 5. When the superposed base material sheet 1 and the lead alloy foil 3 are supplied between the caulking roller 5 and the pressing roller 6, the lead alloy foil 3 is formed when the protrusion 5 a provided on the caulking roller 5 penetrates the lead alloy foil 3. Part of the lead bites into the base material sheet, so that the lead alloy foil 3 is caulked and joined to the base material sheet 1.
このようにして互いに結合された母材シート1及び鉛合金箔3を多段圧延機7に供給して圧延する。多段圧延機7は、所定の間隙を介して対向配置された一対の圧延ロール8,8′を備えた圧延ステージを複数個縦列に並べて配置した構造を有している。一連の圧延ステージに設けられた一対の圧延ロール8,8′は、相互間の間隙が段階的に小さくなるように設けられている。圧延機7に供給された母材シートと鉛合金箔との積層体は、各圧延ステージで圧延される毎にその厚みが減少させられて、最終的に所定の厚みを有する複合構造の鉛合金シート9に加工される。
The base material sheet 1 and the lead alloy foil 3 thus bonded to each other are supplied to the multi-stage rolling mill 7 and rolled. The multi-stage rolling mill 7 has a structure in which a plurality of rolling stages each having a pair of rolling rolls 8 and 8 'arranged to face each other with a predetermined gap are arranged in a column. A pair of rolling rolls 8 and 8 'provided in a series of rolling stages are provided such that the gap between them becomes smaller in steps. The laminate of the base material sheet and the lead alloy foil supplied to the rolling mill 7 is reduced in thickness every time it is rolled at each rolling stage, and finally has a composite structure lead alloy having a predetermined thickness. The sheet 9 is processed.
特許文献2に示された方法では、図5に示したように、Pb-Ca系鉛合金の母材シート1に、Sn,Sb及びAgのうちの少なくとも1つを含む鉛合金箔3を重ねて、母材シート1と鉛合金箔3との積層体を多段圧延機で圧延する際に、最初の圧延ステージの圧延ロール8,8′で圧延する際の圧延率を大きな値とすることにより、最初の圧延ステージで母材シート1と鉛合金箔3との結合を確実にしてから以後の圧延ステージでの圧延を行うようにしている。特許文献2に示された方法では、圧延前の母材シート1の厚みをa,圧延前の鉛合金箔3の厚みをt、最初の圧延ロール8,8′により圧延した後の母材シート1と鉛合金箔3との積層体の厚みをbとしたときに、(a+t)/b≧1.3の条件を成立させ、母材シート1及び鉛合金箔3と最初の圧延ステージの圧延ロール8,8′の周面とが接触する部分の長さを10mm以上に設定している。
In the method disclosed in Patent Document 2, as shown in FIG. 5, a lead alloy foil 3 containing at least one of Sn, Sb and Ag is laminated on a base material sheet 1 of a Pb—Ca-based lead alloy. When rolling the laminated body of the base material sheet 1 and the lead alloy foil 3 with a multi-stage rolling mill, the rolling rate when rolling with the rolling rolls 8 and 8 'of the first rolling stage is set to a large value. In the first rolling stage, the bonding between the base material sheet 1 and the lead alloy foil 3 is ensured, and then the rolling in the subsequent rolling stage is performed. In the method disclosed in Patent Document 2, the thickness of the base material sheet 1 before rolling is a, the thickness of the lead alloy foil 3 before rolling is t, and the base material sheet after being rolled by the first rolling rolls 8 and 8 '. When the thickness of the laminate of 1 and the lead alloy foil 3 is b, the condition of (a + t) /b≧1.3 is established, and the base material sheet 1 and the lead alloy foil 3 and the first rolling stage are rolled. The length of the part in contact with the peripheral surfaces of the rolls 8 and 8 'is set to 10 mm or more.
特許文献1に示された方法によった場合には、かしめローラ5の外周に設けられた多数の突起5aが鉛合金箔3を貫通した際に形成された多数の穴の痕跡が製造された鉛合金シートの表面の全長に亘って残る。当該痕跡の部分の合金組成は、鉛合金箔2の合金組成ではなく、母材シート1の合金組成となっているため、母材シートの表面に該母材シートとは異なる合金組成を有する薄層を形成した意義が減じられてしまう。
In the case of the method disclosed in Patent Document 1, the traces of a large number of holes formed when a large number of protrusions 5a provided on the outer periphery of the caulking roller 5 penetrate the lead alloy foil 3 were produced. It remains over the entire length of the surface of the lead alloy sheet. Since the alloy composition of the trace portion is not the alloy composition of the lead alloy foil 2 but the alloy composition of the base material sheet 1, the surface of the base material sheet has a thin alloy composition different from that of the base material sheet. The significance of forming the layer is diminished.
特許文献2に示された方法によった場合には、多段圧延機で段階的に行われる一連の圧延過程のうち、最初の圧延ステージで行われる圧延の圧延率が大きいため、最初の圧延ステージの圧延ロールに常に大きな荷重がかかる。そのため、最初の圧延ステージの圧延ロールの寿命が短くなり、圧延機のメンテナンスが面倒になるのを避けられない。
In the case of the method shown in Patent Document 2, the rolling ratio of the rolling performed in the first rolling stage is large among the series of rolling processes performed in stages in the multi-high rolling mill. A large load is always applied to the rolling roll. Therefore, it is inevitable that the service life of the rolling mill in the first rolling stage is shortened and the maintenance of the rolling mill becomes troublesome.
本発明の目的は、製造された鉛合金シートの全長に亘って鉛合金箔を貫通した多数の穴の痕跡を残すことなく、かつ多段圧延機で最初に行う圧延での圧延率を大きくすることなく、母材シートに鉛合金箔を確実に一体化して、エキスパンド格子用鉛合金シートを製造する方法を提供することにある。
The object of the present invention is to increase the rolling rate in the first rolling in a multi-stage rolling mill without leaving traces of numerous holes penetrating the lead alloy foil over the entire length of the produced lead alloy sheet. The object is to provide a method for producing a lead alloy sheet for an expanded lattice by reliably integrating a lead alloy foil into a base material sheet.
本発明の他の目的は、上記の方法により製造された鉛合金シートを用いて鉛蓄電池用エキスパンド格子を製造する方法を提供することにある。
Another object of the present invention is to provide a method for producing an expanded lattice for a lead storage battery using the lead alloy sheet produced by the above method.
本発明は、鉛合金からなる帯状の母材シートの表面に、該母材シートとは合金組成が異なる帯状の鉛合金箔を一体化してエキスパンド格子用鉛合金シートを製造する方法を対象とする。本発明が対象とする製造方法では、帯状の母材シートの表面に、帯状の鉛合金箔の厚み方向の一方の面を、該鉛合金箔の幅方向を母材シートの幅方向に一致させた状態で重ねて母材シートと鉛合金箔とを積層し、母材シートと鉛合金箔との積層体を一対の圧延ロールの間に通して圧延する圧延過程を複数の圧延ステージで行うことにより、母材シートと鉛合金箔との積層体の厚みを段階的に減じていく圧延工程を行う。
The present invention is directed to a method for producing a lead alloy sheet for an expanded lattice by integrating a band-shaped lead alloy foil having a different alloy composition from the surface of a belt-shaped base material sheet made of a lead alloy. . In the manufacturing method targeted by the present invention, one surface of the strip-shaped lead alloy foil in the thickness direction is formed on the surface of the strip-shaped base material sheet, and the width direction of the lead alloy foil is matched with the width direction of the base material sheet. The rolling process of laminating the base material sheet and the lead alloy foil in a stacked state and rolling the laminate of the base material sheet and the lead alloy foil between a pair of rolling rolls is performed at a plurality of rolling stages. Thus, a rolling process is performed in which the thickness of the laminate of the base material sheet and the lead alloy foil is gradually reduced.
本発明においては、帯状の鉛合金箔の先端寄りに設定した先端部領域にのみ該鉛合金箔を厚み方向に貫通した複数の貫通穴を点在させておき、鉛合金箔の先端部領域を母材シートに重ねた状態で圧延工程の最初のステージで圧延過程を行う一対の圧延ロールの間に供給する。
In the present invention, a plurality of through holes penetrating the lead alloy foil in the thickness direction are interspersed only at the tip region set near the tip of the strip-shaped lead alloy foil, and the tip region of the lead alloy foil is The sheet is fed between a pair of rolling rolls that perform the rolling process in the first stage of the rolling process in a state of being superimposed on the base material sheet.
鉛合金箔の先端部領域に設ける各貫通穴の母材シート側に向けられる開口端の周縁部には、鉛合金箔の一方の面から突出したカエリを形成しておくことが好ましい。母材シートの表面に鉛合金箔を重ねる際には、このカエリが突出した鉛合金箔の一方の面を母材シートの表面に重ねる。
It is preferable to form burrs protruding from one surface of the lead alloy foil on the peripheral edge portion of the open end directed to the base material sheet side of each through hole provided in the tip region of the lead alloy foil. When the lead alloy foil is stacked on the surface of the base material sheet, one surface of the lead alloy foil from which the burrs protrude is stacked on the surface of the base material sheet.
本発明によれば、鉛合金箔の先端寄りに設定した先端部領域に該鉛合金箔を厚み方向に貫通した複数の貫通穴を点在させておいて、この鉛合金箔の先端部領域を母材シートの表面に重ねた状態で、母材シートと鉛合金箔との積層体を圧延工程の最初の圧延ステージで圧延を行う一対の圧延ロール間に通すようにしたので、最初の圧延を行う際に母材シートを構成する鉛合金の一部を鉛合金箔の貫通穴内に食い込ませて、母材シートと鉛合金箔の先端部領域とを確実に結合することができ、積層体が最初の圧延ステージの圧延ローラを通過した際に、鉛合金箔が母材シートから剥離して反り返るのを防ぐことができる。従って、2番目以降の圧延ステージで圧延を行う際に、母材シートと鉛合金箔との積層体を圧延ロール間の間隙に確実に供給して圧延を行わせることができ、母材シートの表面に鉛合金箔が確実に一体化されたエキスパンド格子用鉛合金シートを得ることができる。
According to the present invention, a plurality of through-holes penetrating the lead alloy foil in the thickness direction are scattered in the tip end region set near the tip of the lead alloy foil, and the tip end region of the lead alloy foil is Since the laminated body of the base material sheet and the lead alloy foil is passed between a pair of rolling rolls that perform rolling at the first rolling stage of the rolling process in a state of being superimposed on the surface of the base material sheet, the first rolling is performed. When performing, a part of the lead alloy constituting the base material sheet is bitten into the through hole of the lead alloy foil, so that the base material sheet and the tip end region of the lead alloy foil can be securely bonded, When passing through the rolling roller of the first rolling stage, it is possible to prevent the lead alloy foil from peeling off and warping from the base material sheet. Therefore, when rolling is performed in the second and subsequent rolling stages, the laminate of the base material sheet and the lead alloy foil can be reliably supplied to the gap between the rolling rolls to perform the rolling. It is possible to obtain an expanded lattice lead alloy sheet in which the lead alloy foil is reliably integrated on the surface.
また鉛合金箔の先端部領域に設けられた貫通穴の痕跡が残るのは製造された鉛合金シートの先端部のみであり、該鉛合金シートの長手方向の全領域に亘って貫通穴の痕跡が残ることはないので、該貫通穴の痕跡が残っている部分を除去することにより、貫通穴の痕跡を有しないエキスパンド格子を得ることができる。
In addition, the trace of the through hole provided in the tip region of the lead alloy foil remains only in the tip portion of the manufactured lead alloy sheet, and the trace of the through hole extends over the entire longitudinal region of the lead alloy sheet. Therefore, by removing the portion where the trace of the through hole remains, an expanded lattice having no trace of the through hole can be obtained.
更に、鉛合金箔の先端部領域に設ける各貫通穴の母材シート側に向けられる開口端の周縁部にカエリを形成して、このカエリが突出した鉛合金箔の一方の面を母材シートの表面に重ねるようにした場合には、カエリが形成された部分で母材シートと鉛合金箔の積層体の見かけの厚さを厚くして、母材シートと鉛合金箔との積層体に対して最初の圧延を施す際にカエリが形成された部分で鉛合金箔の圧延率を大きくすることができる。従って、最初の圧延により得られる母材シートと鉛合金箔との結合強度を高めることができ、鉛合金箔の剥離を確実に防いで、両者の積層体の圧延をより確実に行わせることができる。カエリは最初の圧延の際に容易に潰すことができるため、圧延ロールに大きな負担がかかるのを防ぐことができ、母材シートと鉛合金箔との積層体の全体の圧延率を大きくしていた従来技術によった場合のように、圧延ロールの寿命が短くなるのを防ぐことができる。
Further, a fray is formed at the peripheral edge of the opening end of each through hole provided in the tip end region of the lead alloy foil that faces the base material sheet side, and one surface of the lead alloy foil from which the burr protrudes is formed on the base material sheet. When it is made to overlap with the surface of the metal, the apparent thickness of the laminate of the base material sheet and the lead alloy foil is increased at the portion where the burrs are formed, and the laminate of the base material sheet and the lead alloy foil is formed. On the other hand, the rolling rate of the lead alloy foil can be increased at the portion where the burrs are formed when the first rolling is performed. Therefore, the bond strength between the base material sheet obtained by the first rolling and the lead alloy foil can be increased, the peeling of the lead alloy foil can be surely prevented, and the laminate of both can be more reliably rolled. it can. Since the burrs can be easily crushed during the first rolling, it is possible to prevent the rolling roll from being overwhelmed, and the overall rolling rate of the laminate of the base material sheet and the lead alloy foil is increased. As in the case of the conventional technique, it is possible to prevent the life of the rolling roll from being shortened.
以下図1ないし図3を参照して、本発明の一実施形態について説明する。
本発明に係るエキスパンド格子用鉛合金シートの製造方法においては、鉛合金からなる帯状の母材シートの表面に、該母材シートとは合金組成が異なる帯状の鉛合金箔の厚み方向の一方の面を、該鉛合金箔の幅方向を前記母材シートの幅方向に一致させた状態で重ねて母材シートと鉛合金箔とを積層する。これら母材シートと鉛合金箔との積層体を一対の圧延ロールの間に通して圧延する圧延過程を複数の圧延ステージで繰り返し行うことにより、母材シートと鉛合金箔との積層体の厚みを段階的に減じていく圧延工程を行って、母材シートの表面に鉛合金箔を一体化したエキスパンド格子用鉛合金シートを製造する。 An embodiment of the present invention will be described below with reference to FIGS.
In the method for producing a lead alloy sheet for an expanded lattice according to the present invention, the surface of a strip-shaped base material sheet made of a lead alloy has one of the thickness directions of the strip-shaped lead alloy foil having a different alloy composition from the base material sheet. The base material sheet and the lead alloy foil are laminated with the surfaces overlapped with the width direction of the lead alloy foil aligned with the width direction of the base material sheet. By repeatedly performing the rolling process of rolling the laminate of the base material sheet and the lead alloy foil between a pair of rolling rolls at a plurality of rolling stages, the thickness of the laminate of the base material sheet and the lead alloy foil A lead alloy sheet for an expanding lattice is manufactured by integrating a lead alloy foil on the surface of the base material sheet by performing a rolling process that gradually reduces.
本発明に係るエキスパンド格子用鉛合金シートの製造方法においては、鉛合金からなる帯状の母材シートの表面に、該母材シートとは合金組成が異なる帯状の鉛合金箔の厚み方向の一方の面を、該鉛合金箔の幅方向を前記母材シートの幅方向に一致させた状態で重ねて母材シートと鉛合金箔とを積層する。これら母材シートと鉛合金箔との積層体を一対の圧延ロールの間に通して圧延する圧延過程を複数の圧延ステージで繰り返し行うことにより、母材シートと鉛合金箔との積層体の厚みを段階的に減じていく圧延工程を行って、母材シートの表面に鉛合金箔を一体化したエキスパンド格子用鉛合金シートを製造する。 An embodiment of the present invention will be described below with reference to FIGS.
In the method for producing a lead alloy sheet for an expanded lattice according to the present invention, the surface of a strip-shaped base material sheet made of a lead alloy has one of the thickness directions of the strip-shaped lead alloy foil having a different alloy composition from the base material sheet. The base material sheet and the lead alloy foil are laminated with the surfaces overlapped with the width direction of the lead alloy foil aligned with the width direction of the base material sheet. By repeatedly performing the rolling process of rolling the laminate of the base material sheet and the lead alloy foil between a pair of rolling rolls at a plurality of rolling stages, the thickness of the laminate of the base material sheet and the lead alloy foil A lead alloy sheet for an expanding lattice is manufactured by integrating a lead alloy foil on the surface of the base material sheet by performing a rolling process that gradually reduces.
本発明に係る製造方法によりエキスパンド格子用鉛合金シートを製造するに当たっては、母材シートとして、Pb-Ca-Sn合金からなるものを用いるのが好ましい。Pb-Ca-Sn合金としては、0.03~0.1質量%のCaと、0.8~1.8質量%のSnとを含むものを用いるのか好ましい。また母材シートの厚さは10~20mm程度であることが好ましい。
In producing a lead alloy sheet for an expanded lattice by the production method according to the present invention, it is preferable to use a Pb—Ca—Sn alloy as the base material sheet. As the Pb—Ca—Sn alloy, it is preferable to use an alloy containing 0.03 to 0.1% by mass of Ca and 0.8 to 1.8% by mass of Sn. The thickness of the base material sheet is preferably about 10 to 20 mm.
エキスパンド格子と活物質との密着性を向上させるために母材シートの表面に一体化する鉛合金箔は、Sn,Sb及びAgからなる群から選択された少なくとも1種を含む鉛合金からなっていることが好ましい。ここで、Snの含有量は1~10質量%であることが好ましく、Sbの含有量は1~10質量%であることが好ましい。またAgの含有量は0.05~1質量%であることが好ましい。鉛合金箔の厚みは、0.05~0.3mm程度とする。
The lead alloy foil integrated with the surface of the base material sheet in order to improve the adhesion between the expanded lattice and the active material is made of a lead alloy containing at least one selected from the group consisting of Sn, Sb and Ag. Preferably it is. Here, the Sn content is preferably 1 to 10% by mass, and the Sb content is preferably 1 to 10% by mass. The Ag content is preferably 0.05 to 1% by mass. The thickness of the lead alloy foil is about 0.05 to 0.3 mm.
本実施形態においては、上記の母材シートと鉛合金箔とを重ねて構成した積層体を、一対の圧延ロールを有する圧延ステージを複数備えた多段圧延機に供給して、各圧延ステージで行う冷間圧延により積層体の厚みを段階的に減少させていくことにより、母材シートの表面に該母材シートとは合金組成が異なる鉛合金箔が一体化された、所定の厚さのエキスパンド格子用鉛合金シートを製造する。製造される鉛合金シートの最終的な厚みは、鉛蓄電池の設計に応じて適宜に決定されるが、通常は0.5~1.5mm程度である。
In the present embodiment, the laminate formed by superimposing the base material sheet and the lead alloy foil is supplied to a multi-stage rolling mill having a plurality of rolling stages having a pair of rolling rolls, and is performed at each rolling stage. By expanding the thickness of the laminated body by cold rolling step by step, a lead alloy foil having a different alloy composition from that of the base material sheet is integrated on the surface of the base material sheet. Manufacture lead alloy sheets for lattices. The final thickness of the manufactured lead alloy sheet is appropriately determined according to the design of the lead storage battery, but is usually about 0.5 to 1.5 mm.
上記のようにして製造されたエキスパンド格子用鉛合金シートを用いて鉛蓄電池用のエキスパンド格子を製造する際には、先ずエキスパンド格子用鉛合金シートの鉛合金箔が一体化された領域に、該鉛合金シートの長手方向に伸び、かつ該鉛合金シートを厚み方向に貫通した多数のスリットを千鳥状に形成し、該スリットが形成された鉛合金シートを幅方向に展開させるエキスパンド加工を行う。これにより各スリットを広げて網目を形成し、多数の網目が縦横に並ぶ構造を有する鉛蓄電池用エキスパンド格子を製造する。
When producing an expanded lattice for a lead storage battery using the lead alloy sheet for an expanded lattice produced as described above, first, in the region where the lead alloy foil of the lead alloy sheet for the expanded lattice is integrated, An expanding process is performed in which a large number of slits extending in the longitudinal direction of the lead alloy sheet and penetrating the lead alloy sheet in the thickness direction are formed in a staggered manner, and the lead alloy sheet in which the slits are formed is expanded in the width direction. As a result, each slit is expanded to form a mesh, and an expanded grid for a lead storage battery having a structure in which a large number of meshes are arranged vertically and horizontally is manufactured.
図1は、本発明の一実施形態において、鉛合金からなる帯状の母材シートの上に鉛合金箔を重ねて、これらの積層体を多段圧延機の最初の圧延ステージの圧延ローラの間を通して圧延する過程を開始する直前の状態を示している。同図において、1は鉛合金からなる母材シートで、この母材シートは、溶融したPb-Ca系の鉛合金を、所定寸法のスリットが先端に形成されたノズルから流出させるなどの方法により連続鋳造されて、その長手方向に送給される。
FIG. 1 shows an embodiment of the present invention in which a lead alloy foil is stacked on a strip-shaped base material sheet made of a lead alloy, and these laminates are passed between rolling rollers of the first rolling stage of a multi-stage rolling mill. The state immediately before starting the rolling process is shown. In the figure, reference numeral 1 denotes a base material sheet made of a lead alloy. This base material sheet is made by a method in which a molten Pb—Ca-based lead alloy is caused to flow out from a nozzle having a slit of a predetermined dimension formed at the tip. It is continuously cast and fed in the longitudinal direction.
また3は、母材シートを構成する鉛合金とは異なる合金組成を有する鉛合金からなる帯状の鉛合金箔である。この鉛合金箔3は、図示しないロールから巻き戻されて、その幅方向を帯状の母材シート1の幅方向に一致させ、かつ母材シート1の幅方向に対して所定の位置に位置決めされた状態で、連続鋳造されて送給されてくる母材シート1と同方向に送給されて母材シート1上に重ねられる。
Also, 3 is a strip-shaped lead alloy foil made of a lead alloy having an alloy composition different from that of the lead alloy constituting the base material sheet. This lead alloy foil 3 is unwound from a roll (not shown), and its width direction is made to coincide with the width direction of the strip-shaped base material sheet 1 and is positioned at a predetermined position with respect to the width direction of the base material sheet 1. In this state, it is fed in the same direction as the base material sheet 1 that is continuously cast and fed, and is superposed on the base material sheet 1.
図示の例では、母材シート1に鉛合金箔3を一体化してエキスパンド格子用鉛合金シートを形成した後に、その幅方向の中央部の一定幅の領域と、幅方向の両端寄りの一定幅の領域とを除く一定幅の2つの領域にエキスパンド加工を施す。図1において、W1及びW2は、鉛合金シートを形成した後にエキスパンド加工が施される母材シートの2つの領域を示しており、Woはエキスパンド加工が施されない中央領域を示している。またWe1及びWe2はそれぞれ、母材シート1のエキスパンド加工が施されない幅方向の一端寄り及び他端寄りの領域を示している。
In the illustrated example, after the lead alloy foil 3 is integrated with the base material sheet 1 to form a lead alloy sheet for an expanded lattice, a constant width region at the center in the width direction and a constant width near both ends in the width direction. Expanding is applied to two regions having a constant width excluding the region. In FIG. 1, W1 and W2 indicate two regions of the base material sheet on which the expansion processing is performed after the lead alloy sheet is formed, and Wo indicates a central region where the expansion processing is not performed. In addition, We1 and We2 indicate regions near one end and the other end in the width direction where the base material sheet 1 is not expanded.
図示の例では、母材シート1の表面のうち、後のエキスパンド工程でエキスパンド加工が施される領域W1及びW2に、平行に配置した2枚の鉛合金箔3,3を、それぞれの幅方向を母材シート1の幅方向に一致させ、かつそれぞれを母材シート1のエキスパンド加工が施される領域W1,W2の上に正確に位置させるように位置決めして、母材シート1の表面に重ねることにより、母材シート1と鉛合金箔3,3との積層体を構成するようにしている。そして、この積層体を、多段圧延機の最初の圧延ステージの一対の圧延ロール8,8′の間の間隙を通すことにより圧延して、母材シート1の表面に鉛合金箔3,3を結合する。
In the illustrated example, two lead alloy foils 3 and 3 arranged in parallel in regions W1 and W2 of the surface of the base material sheet 1 which are subjected to the expansion process in the subsequent expansion process are respectively arranged in the width direction. Are aligned with the width direction of the base material sheet 1 and are positioned so as to be accurately positioned on the areas W1 and W2 of the base material sheet 1 where the expanding process is performed. By laminating, a laminated body of the base material sheet 1 and the lead alloy foils 3 and 3 is configured. And this laminated body is rolled by passing the gap | interval between a pair of rolling rolls 8 and 8 'of the first rolling stage of a multi-high rolling mill, and lead alloy foils 3 and 3 are formed on the surface of the base material sheet 1. Join.
本発明においては、図1に示されているように、帯状の母材シート1の上に重ねる鉛合金箔3,3のそれぞれの先端寄りに、それぞれの長手方向に一定の長さ寸法Sを有する先端部領域3A、3Aを設定して、鉛合金箔3,3のそれぞれの先端部領域のみに、それぞれを厚み方向に貫通した複数個の貫通穴3aを点在させておく。そして、鉛合金箔3,3を、前述のように母材シート1の幅方向に位置決めした状態で、鉛合金箔3,3の先端領域3A,3Aを母材シート1の表面に重ねることにより母材シート1と鉛合金箔3,3との積層体を構成し、この積層体を最初の圧延ステージの圧延ロール8,8′の間に供給して冷間で圧延する。
In the present invention, as shown in FIG. 1, a constant length dimension S is provided in the longitudinal direction of each of the lead alloy foils 3 and 3 stacked on the belt-shaped base material sheet 1 near each tip. The front end regions 3A and 3A are set, and a plurality of through holes 3a penetrating in the thickness direction are scattered only in the front end region of each of the lead alloy foils 3 and 3. Then, the lead alloy foils 3, 3 are positioned in the width direction of the base material sheet 1 as described above, and the tip regions 3 A, 3 A of the lead alloy foils 3, 3 are overlapped on the surface of the base material sheet 1. A laminated body of the base material sheet 1 and the lead alloy foils 3 and 3 is formed, and this laminated body is supplied between the rolling rolls 8 and 8 'of the first rolling stage and rolled cold.
上記のように、鉛合金箔3の先端寄りに設定した先端部領域3Aに該鉛合金箔を厚み方向に貫通した複数の貫通穴3aを点在させておいて、この鉛合金箔の先端部領域を母材シート1の表面に重ねることにより母材シート1と鉛合金箔3との積層体を構成し、この積層体を圧延工程の最初の圧延を行う一対の圧延ロール8,8′間に供給するようにすると、図2に示されているように、最初の圧延を行う際に母材シート1を構成する鉛合金の一部1aを鉛合金箔3の貫通穴3a内に食い込ませて、母材シート1と鉛合金箔3の先端部領域3Aとを機械的に確実に結合することができる。鉛合金箔3の先端部領域3Aを母材シート1に確実に結合しておけば、母材シート1と鉛合金箔3との積層体の先端が最初の圧延ステージの圧延ロールの間の間隙を通過する際に、鉛合金箔3,3が母材シート1から剥離して反り返るのを防ぐことができるため、積層体を2番目の圧延ステージの圧延ロールの間に確実に供給することができる。従って、2番目以降の圧延ステージでも、母材シート1と鉛合金箔3,3との積層体の圧延を確実に行わせることができ、母材シートの表面に鉛合金箔が強固に一体化された鉛合金シートを得ることができる。
As described above, a plurality of through holes 3a penetrating the lead alloy foil in the thickness direction are scattered in the tip region 3A set near the tip of the lead alloy foil 3, and the tip of the lead alloy foil 3 A laminated body of the base material sheet 1 and the lead alloy foil 3 is formed by overlapping the region on the surface of the base material sheet 1, and this laminated body is formed between a pair of rolling rolls 8 and 8 'that perform the first rolling in the rolling process. 2, as shown in FIG. 2, when the first rolling is performed, a part 1 a of the lead alloy constituting the base material sheet 1 is bitten into the through hole 3 a of the lead alloy foil 3. Thus, the base material sheet 1 and the tip end region 3A of the lead alloy foil 3 can be mechanically reliably bonded. If the tip region 3A of the lead alloy foil 3 is securely bonded to the base material sheet 1, the tip of the laminate of the base material sheet 1 and the lead alloy foil 3 is the gap between the rolling rolls of the first rolling stage. Since the lead alloy foils 3 and 3 can be prevented from peeling off from the base material sheet 1 and warping when passing, the laminate can be reliably supplied between the rolling rolls of the second rolling stage. it can. Accordingly, even in the second and subsequent rolling stages, the laminate of the base material sheet 1 and the lead alloy foils 3 and 3 can be reliably rolled, and the lead alloy foil is firmly integrated with the surface of the base material sheet. The obtained lead alloy sheet can be obtained.
最初の圧延ステージの圧延ロール8,8′により圧延された母材シート1と鉛合金箔3,3との積層体は、2番目以降の圧延ステージの圧延ロールにより更に圧延される。母材シート1と鉛合金箔3,3との積層体は、複数の圧延ロールにより圧延される過程で段階的に厚みを減じながら更に強固に一体化され、最終ステージの圧延ロールによる圧延により、最終的な厚みを有するエキスパンド格子用鉛合金シートに加工される。
The laminated body of the base material sheet 1 and the lead alloy foils 3 and 3 rolled by the rolling rolls 8 and 8 'of the first rolling stage is further rolled by the rolling rolls of the second and subsequent rolling stages. The laminate of the base material sheet 1 and the lead alloy foils 3 and 3 is more firmly integrated while gradually reducing the thickness in the process of being rolled by a plurality of rolling rolls, and rolling by a rolling roll at the final stage, It is processed into an expanded lattice lead alloy sheet having a final thickness.
本発明の方法によった場合、製造されたエキスパンド格子用鉛合金シートの先端部には、貫通穴3aの痕跡が残るが、貫通穴3aの痕跡が残る部分は鉛合金シートの先端部のみであり、得られた鉛合金シートの大部分の領域には貫通穴の痕跡が残らないので、製造された鉛合金シートの先端寄りの貫通穴の痕跡が残っている部分を切断して除去することにより、後の工程で製造されるエキスパンド格子には貫通穴の痕跡が残らないようにすることができる。エキスパンド格子用鉛合金シートから貫通穴の痕跡が残っている部分を除去する作業は、エキスパンド加工を行う前に行ってもよく、エキスパンド加工を行った後に、エキスパンド格子の貫通穴の痕跡が残っている部分を切除することにより行ってもよい。
According to the method of the present invention, the trace of the through hole 3a remains at the tip of the produced lead lattice sheet for the expanded lattice, but the trace of the through hole 3a remains only at the tip of the lead alloy sheet. There are no traces of through-holes in the most part of the obtained lead alloy sheet, so cut and remove the part where the traces of through-holes near the tip of the manufactured lead alloy sheet remain Thus, the trace of the through hole can be prevented from remaining in the expanded lattice manufactured in a later step. The work to remove the traces of the through holes remaining from the expanded lead alloy sheet may be performed before the expansion process, and after the expansion process, the traces of the through holes of the expanded grid remain. You may carry out by excising the part which exists.
複数の貫通穴3aを点在させる鉛合金箔3の先端部領域3Aの長さ寸法(鉛合金箔3の長手方向に測った寸法)Sを長く設定すればするほど、母材シート1と鉛合金箔3の結合を確実にすることができるが、無駄になる材料を少なくするため、鉛合金箔3の先端部領域3Aの長さ寸法Sは必要以上に長くしないようにするのが好ましい。実験の結果から、複数の貫通穴3aを点在させる鉛合金箔3の先端部領域3Aの、鉛合金箔3の先端から該鉛合金箔の長手方向に測った長さ寸法Sを、30mmに設定すれば最初の圧延ステージを通過した際に鉛合金箔が母材シートから剥離するのを確実に防ぐことができることが明らかになっている。従って、鉛合金箔の先端部領域3Aの長さSは、30mm以上で、しかも必要以上に長すぎない長さに設定することが好ましい。
The longer the length dimension S (the dimension measured in the longitudinal direction of the lead alloy foil 3) S of the lead alloy foil 3 in which the plurality of through holes 3a are scattered, the longer the base sheet 1 and the lead. Although the bonding of the alloy foil 3 can be ensured, it is preferable not to make the length dimension S of the tip region 3A of the lead alloy foil 3 longer than necessary in order to reduce wasted material. As a result of the experiment, the length dimension S measured in the longitudinal direction of the lead alloy foil 3 from the tip of the lead alloy foil 3 in the tip region 3A of the lead alloy foil 3 interspersed with the plurality of through holes 3a is set to 30 mm. It has been clarified that, if set, the lead alloy foil can be reliably prevented from peeling from the base material sheet when passing through the first rolling stage. Accordingly, the length S of the tip region 3A of the lead alloy foil is preferably set to a length that is 30 mm or more and is not too long.
貫通穴3aは1mm以上の直径を有する円形の穴とすることができる。複数の貫通穴3aは、1cm2当たりに1個以上の貫通穴が存在する密度で鉛合金箔3の先端部領域に点在させておくことが好ましい。貫通穴3aの内径を大きくすると、鉛合金箔3の先端を母材シート1の表面に重ねて両者を最初の圧延ステージの圧延ローラ間に供給して圧延した際に、母材シート1を構成する鉛合金が貫通穴3a内に侵入するのを容易にすることができる。
The through hole 3a can be a circular hole having a diameter of 1 mm or more. The plurality of through holes 3a are preferably interspersed in the tip end region of the lead alloy foil 3 at a density at which one or more through holes exist per 1 cm 2 . When the inner diameter of the through-hole 3a is increased, the base material sheet 1 is formed when the leading end of the lead alloy foil 3 is overlapped on the surface of the base material sheet 1 and both are fed between the rolling rollers of the first rolling stage and rolled. It is possible to make it easier for the lead alloy to enter into the through hole 3a.
図3(A)及び(B)は、鉛合金箔3の先端領域に設ける貫通穴の断面形状の異なる例を示している。図3(A)に示された例では、貫通穴3aをせん断打ち抜きにより、カエリが存在しないきれいな形に形成した例を示している。
3A and 3B show examples in which the cross-sectional shape of the through hole provided in the tip region of the lead alloy foil 3 is different. In the example shown in FIG. 3 (A), an example is shown in which the through hole 3a is formed by shear punching into a clean shape free of burrs.
図3(B)は、鉛合金箔2の一方の面(母材シートの表面に重ねられる面)3s側に位置する貫通穴3aの端部の周縁部に、鉛合金箔2の一方の面3sから突出したカエリ3bを形成した例である。この場合は、カエリ3bが突出した鉛合金箔3の一方の面3sを母材シート1の表面に重ねた状態で、圧延を実施する。カエリ3bは、鉛合金箔2に先が尖った円錐状の工具を突刺すことにより形成することができる。
FIG. 3B shows one surface of the lead alloy foil 2 on the peripheral edge of the end portion of the through hole 3a located on the one surface of the lead alloy foil 2 (the surface superimposed on the surface of the base material sheet) 3s. This is an example in which the burrs 3b protruding from 3s are formed. In this case, rolling is performed in a state where one surface 3 s of the lead alloy foil 3 from which the burrs 3 b protrude is overlapped on the surface of the base material sheet 1. The burrs 3b can be formed by piercing a lead-shaped alloy foil 2 with a pointed conical tool.
上記のように、鉛合金箔3の先端部領域3Aに設ける貫通穴3aの、母材シート1側に向けられる開口端の周縁部に鉛合金箔の一方の面から突出したカエリ3bを形成して、このカエリ3bが突出した鉛合金箔の一方の面3sを母材シート1の表面に重ねるようにすると、カエリ3bが形成された部分で母材シート1と鉛合金箔3の積層体の見かけの厚さを厚くすることができる。従って、母材シート1と鉛合金箔3との積層体に対して最初の圧延を施す際にカエリ3bが形成された部分で鉛合金箔の圧延率を大きくして、最初の圧延により得られる母材シートと鉛合金箔との結合強度を高めることができ、両者の積層体の圧延をより確実に行わせることができる。
As described above, the burrs 3b projecting from one surface of the lead alloy foil are formed on the peripheral edge of the open end of the through hole 3a provided in the tip region 3A of the lead alloy foil 3 facing the base material sheet 1 side. When one surface 3s of the lead alloy foil from which the burrs 3b protrude is overlaid on the surface of the base material sheet 1, the laminate of the base material sheet 1 and the lead alloy foil 3 is formed at the portion where the burrs 3b are formed. The apparent thickness can be increased. Therefore, when the first rolling is performed on the laminate of the base material sheet 1 and the lead alloy foil 3, the rolling rate of the lead alloy foil is increased at the portion where the burrs 3b are formed, and is obtained by the first rolling. The bond strength between the base material sheet and the lead alloy foil can be increased, and the laminate of both can be rolled more reliably.
この場合、圧延率が大きくなるのは、鉛合金箔の貫通穴の開口端の周縁部に形成されたカエリの部分のみであり、カエリ3の部分は圧延の際に容易に潰すことができるため、最初の圧延ステージの圧延ロールに大きな負担がかかるのを防ぐことができる。従って、母材シート1と鉛合金箔3との積層体の全体の圧延率を大きくしていた特許文献2に示された方法によった場合のように、圧延ロールの寿命が短くなるのを防ぐことができる。
In this case, the rolling rate is increased only in the portion of the burrs formed at the peripheral edge of the opening end of the through hole of the lead alloy foil, and the portion of the burrs 3 can be easily crushed during rolling. It is possible to prevent a large burden from being applied to the rolling roll of the first rolling stage. Therefore, the life of the rolling roll is shortened as in the case of the method shown in Patent Document 2 in which the overall rolling rate of the laminate of the base material sheet 1 and the lead alloy foil 3 is increased. Can be prevented.
鉛合金箔3の先端部領域3Aに設ける貫通穴3aの周縁部に設けるカエリ3bの鉛合金箔3の一方の面3sからの突出高さは、0.05mm以上に設定することが好ましい。カエリ3bの突出高さをこのように設定すると、カエリ3bを設けたことによる効果が顕著に現われる。
It is preferable that the protrusion height from the one surface 3s of the lead alloy foil 3 of the burrs 3b provided at the peripheral portion of the through hole 3a provided in the tip region 3A of the lead alloy foil 3 is set to 0.05 mm or more. When the protrusion height of the burrs 3b is set in this way, the effect obtained by providing the burrs 3b appears remarkably.
上記実施形態の製造方法により製造された鉛合金シートを用いて鉛蓄電池用のエキスパンド格子を製造するエキスパンド格子の製造方法では、上記のようにして製造されたエキスパンド格子用鉛合金シートの鉛合金箔3,3が一体化された領域に多数の切り込みを入れることにより、該鉛合金シートの長手方向に伸びる多数のスリットを千鳥状に形成し、該スリットが形成された鉛合金シートを幅方向に展開させるエキスパンド加工を行う。鉛合金シートを幅方向に展開する過程で、各スリットを広げて網目形状にすることにより、鉛蓄電池用のエキスパンド格子を製造する。
In the expanded grating manufacturing method for manufacturing an expanded grid for a lead storage battery using the lead alloy sheet manufactured by the manufacturing method of the above embodiment, the lead alloy foil of the expanded grid lead alloy sheet manufactured as described above is used. A large number of slits extending in the longitudinal direction of the lead alloy sheet are formed in a zigzag shape by making a large number of cuts in the region where 3 and 3 are integrated, and the lead alloy sheet formed with the slit is formed in the width direction. The expanding process is performed. In the process of developing the lead alloy sheet in the width direction, an expanded lattice for a lead storage battery is manufactured by expanding each slit into a mesh shape.
鉛合金シートの幅方向の中央領域Woの両側の領域W1及びW2にそれぞれエキスパンド格子の網目が形成される。後の工程で、長尺のエキスパンド格子が打ち抜かれることにより、多数の極板用の集電体が形成される。エキスパンド加工が施されないエキスパンド格子の幅方向の中央部の一定幅の領域(図1のWoに相当する領域)は、エキスパンド格子を打ち抜いて多数枚の集電体を形成する際に集電体の耳部の形状に成形される。エキスパンド格子を打ち抜いて集電体を形成した後、該集電体にペースト状活物質を充填して極板を製造する。
Expanded meshes are formed in the regions W1 and W2 on both sides of the central region Wo in the width direction of the lead alloy sheet. In a later step, a long expanded grid is punched out to form a large number of current collectors for the electrode plates. A constant width region (region corresponding to Wo in FIG. 1) in the center in the width direction of the expanded lattice that is not subjected to the expansion process is formed by punching the expanded lattice to form a large number of current collectors. Molded to the shape of the ear. After punching out the expanded lattice to form a current collector, the current collector is filled with a paste-like active material to produce an electrode plate.
上記の説明では、長尺のエキスパンド格子を打ち抜いて集電体を形成した後に該集電体に活物質ペーストを充填して極板を製造するとしたが、長尺のエキスパンド格子にペースト状活物質を充填した後に各極板を構成する部分を打ち抜くことにより、多数枚の極板を製造する方法をとることもできる。このように、長尺のエキスパンド格子に活物質を充填してから各極板を打ち抜く方法をとる場合、エキスパンド格子の幅方向の中央部の一定幅の領域を打ち抜いて各集電体の耳部を形成する工程を、活物質を充填する工程の前に行うこともある。長尺のエキスパンド格子を用いて鉛蓄電池用極板を製造する方法としては種々の方法が知られているが、本発明の方法により得られた長尺のエキスパンド格子は、何れの方法で極板を製造する場合にも適用することができる。
In the above description, a current collector is formed by punching out a long expanded lattice, and then the active material paste is filled into the current collector to manufacture an electrode plate. However, a paste-like active material is formed in the long expanded lattice. It is possible to take a method of manufacturing a large number of electrode plates by punching out the portions constituting each electrode plate after filling. Thus, when taking a method of punching each electrode plate after filling a long expanded lattice with an active material, punching out a constant width region in the center of the width direction of the expanded lattice, the ear of each current collector The step of forming may be performed before the step of filling the active material. Various methods are known as a method for producing an electrode plate for a lead storage battery using a long expanded grid, but the long expanded grid obtained by the method of the present invention can be obtained by any method. The present invention can also be applied when manufacturing.
本発明の実施例を以下に説明する。本実施例では、鉛合金からなる母材シート1として、Pb-0.07質量%Ca-1.2質量%Snの合金組成を有する鉛合金からなるものを用いた。母材シート1の圧延前の厚みは11mmである。また鉛合金箔3としては、Pb-5.0質量%Sn-5.0質量%Sbの合金組成を有する鉛合金からなるものを用いた。鉛合金箔3の厚みは0.2mmとした。図1に基づいて説明した方法により母材シートに鉛合金箔3,3を重ねて、複数段階の圧延過程を行うことにより、鉛合金シートの最終的な厚みを1.1mmとした。なお圧延工程のいずれの圧延過程においても、一対の圧延ロール8,8′としては、直径が155mmの同径のロールを用いた。
Examples of the present invention will be described below. In this example, as the base material sheet 1 made of a lead alloy, a material made of a lead alloy having an alloy composition of Pb-0.07 mass% Ca-1.2 mass% Sn was used. The thickness of the base material sheet 1 before rolling is 11 mm. The lead alloy foil 3 was made of a lead alloy having an alloy composition of Pb-5.0 mass% Sn-5.0 mass% Sb. The thickness of the lead alloy foil 3 was 0.2 mm. The final thickness of the lead alloy sheet was set to 1.1 mm by superimposing the lead alloy foils 3 and 3 on the base material sheet by the method described based on FIG. In any rolling process of the rolling process, as the pair of rolling rolls 8 and 8 ', rolls having the same diameter of 155 mm were used.
厚みが1.1mmの鉛合金シートを製造した後、得られた鉛合金シートの鉛合金箔3,3が一体化された領域にエキスパンド加工を施して長尺のエキスパンド格子を製造した。この長尺のエキスパンド格子にペースト状活物質を充填した後、各極板を構成する部分を打ち抜いて多数枚の極板用の集電体を製作した。
After producing a lead alloy sheet having a thickness of 1.1 mm, the region where the lead alloy foils 3 and 3 of the obtained lead alloy sheet were integrated was subjected to an expansion process to produce a long expanded lattice. After this long expanded lattice was filled with the paste-like active material, the portions constituting each electrode plate were punched out to produce a large number of current collectors for the electrode plates.
以下、本発明の特徴部分を中心にして、本発明の実施例を従来例と対比する形で具体的に説明する。
[実施例1]
鉛合金箔3の先端から30mmの長さを有する領域を先端部領域3Aとして、この先端部領域3Aに横断面の輪郭形状がほぼ円形を呈する貫通穴3aを点在させた。貫通穴3aはその直径を2mmとし、1cm2当り2個の密度で点在させた。貫通穴3aは剪断打ち抜き加工により設けた。本実施例で設けた貫通穴3aは図3(A)に示す通りであり、その端部の周縁部にはカエリが設けられていない。母材シート1と鉛合金箔との積層体を多段圧延機の最初の圧延ステージの圧延ロール間の間隙に通す前後において、図5に基づいて説明した数式(a+t)/bで計算される値は、1.17であった。最終的に得られる鉛合金シートの厚みを所望の厚み(1.1mm)とするために、その後の圧延の段数と圧延のために各圧延ロールにかける圧力とを適宜設定する。本実施例では、最初の圧延ステージを含めて10の圧延ステージを設けて、積層体の厚みを段階的に減じる圧延を実施した。 Hereinafter, the embodiment of the present invention will be specifically described in comparison with the conventional example, focusing on the features of the present invention.
[Example 1]
A region having a length of 30 mm from the tip of thelead alloy foil 3 was defined as a tip region 3A, and through-holes 3a having a substantially circular outline in cross section were dotted in the tip region 3A. The through holes 3a had a diameter of 2 mm and were scattered at a density of 2 per 1 cm 2 . The through hole 3a was provided by shear punching. The through hole 3a provided in the present embodiment is as shown in FIG. 3A, and no burrs are provided at the peripheral edge of the end portion. The value calculated by the formula (a + t) / b described with reference to FIG. 5 before and after passing the laminate of the base material sheet 1 and the lead alloy foil through the gap between the rolling rolls of the first rolling stage of the multi-high rolling mill. Was 1.17. In order to set the thickness of the finally obtained lead alloy sheet to a desired thickness (1.1 mm), the number of subsequent rolling stages and the pressure applied to each rolling roll for rolling are appropriately set. In this example, ten rolling stages including the first rolling stage were provided, and rolling was performed to reduce the thickness of the laminated body stepwise.
[実施例1]
鉛合金箔3の先端から30mmの長さを有する領域を先端部領域3Aとして、この先端部領域3Aに横断面の輪郭形状がほぼ円形を呈する貫通穴3aを点在させた。貫通穴3aはその直径を2mmとし、1cm2当り2個の密度で点在させた。貫通穴3aは剪断打ち抜き加工により設けた。本実施例で設けた貫通穴3aは図3(A)に示す通りであり、その端部の周縁部にはカエリが設けられていない。母材シート1と鉛合金箔との積層体を多段圧延機の最初の圧延ステージの圧延ロール間の間隙に通す前後において、図5に基づいて説明した数式(a+t)/bで計算される値は、1.17であった。最終的に得られる鉛合金シートの厚みを所望の厚み(1.1mm)とするために、その後の圧延の段数と圧延のために各圧延ロールにかける圧力とを適宜設定する。本実施例では、最初の圧延ステージを含めて10の圧延ステージを設けて、積層体の厚みを段階的に減じる圧延を実施した。 Hereinafter, the embodiment of the present invention will be specifically described in comparison with the conventional example, focusing on the features of the present invention.
[Example 1]
A region having a length of 30 mm from the tip of the
[実施例2]
図3(B)に基づいて説明したように、貫通穴3aの周縁に、鉛合金箔3の一方の面3sから外側(母材シート側)に突出したカエリ3bを形成した。貫通穴3aを点在させる先端部領域3Aの長さSは30mmとした。貫通穴3aは、鉛合金箔3の一方の面3s側に向って径が小さくなるようにテーパを付けた形状とし、その最大径を2mmとした。貫通穴3aは、1cm2当り2個の密度で点在させた。この貫通穴3aは、先端部分領域3Aに円錐形状の突起を突き刺すことにより形成した。貫通穴3aの周縁部に形成されたカエリ3bは、鉛合金箔3の一方の面3sから0.5~1.5mmの高さを持って突出している。
母材シート1と鉛合金箔との積層体を多段圧延機の最初の圧延ステージの圧延ロール間の間隙に通す前後において、図5に基づいて説明した数式(a+t)/bで計算される値は、1.14であった。本実施例においても、最初の圧延ステージを含めて10の圧延ステージを設けて、積層体の厚みを段階的に減じる圧延を実施した。 [Example 2]
As described based on FIG. 3B, theburrs 3 b that protrude outward (from the base material sheet side) from the one surface 3 s of the lead alloy foil 3 were formed on the periphery of the through hole 3 a. The length S of the tip end region 3A interspersed with the through holes 3a was 30 mm. The through-hole 3a was tapered so that the diameter decreased toward the one surface 3s side of the lead alloy foil 3, and the maximum diameter was 2 mm. The through holes 3a were scattered at a density of 2 per 1 cm 2 . The through hole 3a was formed by piercing a conical protrusion in the tip end partial region 3A. The burrs 3b formed on the peripheral edge of the through hole 3a protrude from the one surface 3s of the lead alloy foil 3 with a height of 0.5 to 1.5 mm.
The value calculated by the formula (a + t) / b described with reference to FIG. 5 before and after passing the laminate of thebase material sheet 1 and the lead alloy foil through the gap between the rolling rolls of the first rolling stage of the multi-high rolling mill. Was 1.14. Also in this example, ten rolling stages including the first rolling stage were provided, and rolling was performed to reduce the thickness of the laminated body stepwise.
図3(B)に基づいて説明したように、貫通穴3aの周縁に、鉛合金箔3の一方の面3sから外側(母材シート側)に突出したカエリ3bを形成した。貫通穴3aを点在させる先端部領域3Aの長さSは30mmとした。貫通穴3aは、鉛合金箔3の一方の面3s側に向って径が小さくなるようにテーパを付けた形状とし、その最大径を2mmとした。貫通穴3aは、1cm2当り2個の密度で点在させた。この貫通穴3aは、先端部分領域3Aに円錐形状の突起を突き刺すことにより形成した。貫通穴3aの周縁部に形成されたカエリ3bは、鉛合金箔3の一方の面3sから0.5~1.5mmの高さを持って突出している。
母材シート1と鉛合金箔との積層体を多段圧延機の最初の圧延ステージの圧延ロール間の間隙に通す前後において、図5に基づいて説明した数式(a+t)/bで計算される値は、1.14であった。本実施例においても、最初の圧延ステージを含めて10の圧延ステージを設けて、積層体の厚みを段階的に減じる圧延を実施した。 [Example 2]
As described based on FIG. 3B, the
The value calculated by the formula (a + t) / b described with reference to FIG. 5 before and after passing the laminate of the
[従来例]
先端部領域3Aに貫通穴3aを設けない鉛合金箔3を母材シート1の表面に重ねて、両者を圧延した。母材シートと鉛合金箔の積層体を最初のロール間隙に通す前後において、前記数式(a+t)/bで計算される値は、1.6であった。本例では、最初の圧延ロールを含めて6段の圧延ロールを設けて、段階的に厚みを減じる圧延を実施した。本例では、最初の圧延ロールで圧延する際の圧延率を大きくして、数式(a+t)/bで計算される値を実施例1及び実施例2より大きくしているので、全体としての圧延の段数を実施例1及び実施例2より少なくしている。 [Conventional example]
Alead alloy foil 3 not provided with a through hole 3a in the tip region 3A was placed on the surface of the base material sheet 1 and both were rolled. Before and after passing the laminate of the base material sheet and the lead alloy foil through the first roll gap, the value calculated by the formula (a + t) / b was 1.6. In this example, six-stage rolling rolls including the first rolling roll were provided, and rolling was performed to reduce the thickness step by step. In this example, the rolling rate at the time of rolling with the first rolling roll is increased, and the value calculated by the formula (a + t) / b is made larger than that in Example 1 and Example 2, so that the rolling as a whole is performed. The number of stages is smaller than that in the first and second embodiments.
先端部領域3Aに貫通穴3aを設けない鉛合金箔3を母材シート1の表面に重ねて、両者を圧延した。母材シートと鉛合金箔の積層体を最初のロール間隙に通す前後において、前記数式(a+t)/bで計算される値は、1.6であった。本例では、最初の圧延ロールを含めて6段の圧延ロールを設けて、段階的に厚みを減じる圧延を実施した。本例では、最初の圧延ロールで圧延する際の圧延率を大きくして、数式(a+t)/bで計算される値を実施例1及び実施例2より大きくしているので、全体としての圧延の段数を実施例1及び実施例2より少なくしている。 [Conventional example]
A
上述した実施例1、実施例2及び従来例のいずれにおいても、母材シート1に鉛合金箔2を確実に一体化した鉛合金シート4を製造することができ、エキスパンド格子としての特性にも差異はなかった。
しかしながら、本発明の実施例1及び実施例2においては、母材シートと鉛合金箔とを最初の圧延ロール間に通す前後において、数式(a+t)/bで計算される値を小さく設定しているにも拘らず、圧延により母材シート1に鉛合金箔2を確実に一体化することができた。このことから、本発明によれば、初段の一対の圧延ロールにかかる荷重が少なくて済むので、圧延ロールの損傷を抑制してその長寿命化を図ることができることが明らかになった。 In any of the above-described Example 1, Example 2, and the conventional example, thelead alloy sheet 4 in which the lead alloy foil 2 is reliably integrated with the base material sheet 1 can be manufactured, and the characteristic as an expanded lattice is also achieved. There was no difference.
However, in Example 1 and Example 2 of the present invention, before and after passing the base material sheet and the lead alloy foil between the first rolling rolls, the value calculated by the formula (a + t) / b is set small. Nevertheless, thelead alloy foil 2 could be reliably integrated with the base material sheet 1 by rolling. From this, according to the present invention, it was clarified that the load applied to the first pair of rolling rolls can be reduced, so that the rolling roll can be prevented from being damaged and the life thereof can be extended.
しかしながら、本発明の実施例1及び実施例2においては、母材シートと鉛合金箔とを最初の圧延ロール間に通す前後において、数式(a+t)/bで計算される値を小さく設定しているにも拘らず、圧延により母材シート1に鉛合金箔2を確実に一体化することができた。このことから、本発明によれば、初段の一対の圧延ロールにかかる荷重が少なくて済むので、圧延ロールの損傷を抑制してその長寿命化を図ることができることが明らかになった。 In any of the above-described Example 1, Example 2, and the conventional example, the
However, in Example 1 and Example 2 of the present invention, before and after passing the base material sheet and the lead alloy foil between the first rolling rolls, the value calculated by the formula (a + t) / b is set small. Nevertheless, the
特に実施例2のように、鉛合金箔3の先端部領域に点在させる貫通穴3aの母材シート側の端部の周縁部にカエリ3bを形成しておくと、カエリ3bが存在する部分で鉛合金箔3の見掛けの厚みが厚くなって、最初の圧延ロールで圧延される際にカエリ3aが存在する部分で鉛合金箔2の圧延率が大きくなるので、鉛合金箔を母材シート1と一体化しやすくすることができる。そのため、鉛合金箔と母材シートとの圧延の初期段階での一体化をより確実にすることができ、最初の圧延ステージの圧延ローラを通過した鉛合金箔が母材シートから剥離して、2番目以降の圧延ステージでの圧延がうまく行われない状態が生じるのを確実に防ぐことができる。カエリは局部的に設けられている上に厚みが薄いため、最初の圧延ステージの圧延ロールにかける荷重を特に大きくしなくても、容易に潰すことができる。従って、鉛合金箔の先端部領域に設ける貫通穴の開口端の周縁部にカエリを設けておいても、初段の圧延ロールにかかる負担が増大することはなく、各ロールの寿命が短くなることはない。
In particular, as in Example 2, when the burrs 3b are formed on the peripheral edge of the end portion on the base material sheet side of the through holes 3a scattered in the tip region of the lead alloy foil 3, the portion where the burrs 3b exist As the apparent thickness of the lead alloy foil 3 is increased, the rolling rate of the lead alloy foil 2 is increased in the portion where the burrs 3a are present when the lead alloy foil 3 is rolled by the first rolling roll. 1 can be easily integrated. Therefore, the integration of the lead alloy foil and the base material sheet in the initial stage of rolling can be made more reliable, and the lead alloy foil that has passed through the rolling roller of the first rolling stage peels from the base material sheet, It is possible to reliably prevent a situation in which rolling at the second and subsequent rolling stages is not performed well. Since the burrs are locally provided and thin, they can be easily crushed without particularly increasing the load applied to the rolling roll of the first rolling stage. Therefore, even if burrs are provided on the peripheral edge of the opening end of the through hole provided in the tip region of the lead alloy foil, the burden on the first stage rolling roll does not increase, and the life of each roll is shortened. There is no.
[参考例]
従来例において、数式(a+t)/bで計算される値を1.2とした。母材シート1に鉛合金箔3を重ねて両者を最初の圧延ステージの圧延ロールの間に通したところ、鉛合金箔3は、一対の圧延ロールの内の上側のロールの周面に巻きつくように反り返ってしまい、鉛合金箔を母材シートに一体化するきっかけを作ることができなかった。 [Reference example]
In the conventional example, the value calculated by the formula (a + t) / b is 1.2. When thelead alloy foil 3 is overlapped on the base material sheet 1 and the both are passed between the rolling rolls of the first rolling stage, the lead alloy foil 3 is wound around the peripheral surface of the upper roll of the pair of rolling rolls. As a result, the lead alloy foil could not be integrated into the base material sheet.
従来例において、数式(a+t)/bで計算される値を1.2とした。母材シート1に鉛合金箔3を重ねて両者を最初の圧延ステージの圧延ロールの間に通したところ、鉛合金箔3は、一対の圧延ロールの内の上側のロールの周面に巻きつくように反り返ってしまい、鉛合金箔を母材シートに一体化するきっかけを作ることができなかった。 [Reference example]
In the conventional example, the value calculated by the formula (a + t) / b is 1.2. When the
本発明によれば、鉛合金箔を貫通した多数の穴の痕跡が、製造された鉛合金シートの全長に亘って残ったり、多段圧延機で最初に行う圧延での圧延率を大きくする必要があるために圧延機にかかる負担が過大になるといった、従来技術が有していた問題を生じさせることなく、圧延により母材シートに鉛合金箔を確実に一体化してエキスパンド格子用鉛合金シートを製造することができるので、エキスパンド格子を集電体として用いる鉛蓄電池の分野での利用可能性が大である。
According to the present invention, traces of a large number of holes penetrating the lead alloy foil remain over the entire length of the manufactured lead alloy sheet, or it is necessary to increase the rolling rate in the first rolling performed in a multi-stage rolling mill. Therefore, the lead alloy foil for the expanded lattice is securely integrated with the base material sheet by rolling without causing the problems of the prior art that the burden on the rolling mill becomes excessive. Since it can be manufactured, the applicability in the field of lead-acid batteries using an expanded grid as a current collector is great.
1 鉛合金母材シート
3 鉛合金箔
3a 貫通穴
3b カエリ
5 かしめロール
5a 突起
8,8’ 一対の圧延ロール
9 エキスパンド格子用鉛合金シート DESCRIPTION OFSYMBOLS 1 Lead alloy base material sheet | seat 3 Lead alloy foil 3a Through- hole 3b Frog 5 Caulking roll 5a Protrusion 8,8 'A pair of rolling roll 9 Lead alloy sheet for expanded lattices
3 鉛合金箔
3a 貫通穴
3b カエリ
5 かしめロール
5a 突起
8,8’ 一対の圧延ロール
9 エキスパンド格子用鉛合金シート DESCRIPTION OF
Claims (6)
- 鉛合金からなる帯状の母材シートの表面に、該母材シートとは合金組成が異なる帯状の鉛合金箔の厚み方向の一方の面を、該鉛合金箔の幅方向を前記母材シートの幅方向に一致させた状態で重ねて前記母材シートと鉛合金箔とを積層し、前記母材シートと鉛合金箔との積層体を一対の圧延ロールの間に通して圧延する圧延過程を複数の圧延ステージで行うことにより、前記母材シートと鉛合金箔との積層体の厚みを段階的に減じていく圧延工程を行って、前記母材シートに前記鉛合金箔を一体化したエキスパンド格子用鉛合金シートを製造するエキスパンド格子用鉛合金シートの製造方法であって、
前記帯状の鉛合金箔の先端寄りに設定した先端部領域にのみ該鉛合金箔を厚み方向に貫通した複数の貫通穴を点在させておき、
前記鉛合金箔の前記先端部領域を前記母材シートに重ねた状態で前記圧延工程の最初の圧延過程を行う一対の圧延ロールの間に供給すること、
を特徴とするエキスパンド格子用鉛合金シートの製造方法。 On the surface of the strip-shaped base material sheet made of a lead alloy, one surface in the thickness direction of the strip-shaped lead alloy foil having an alloy composition different from that of the base material sheet is set, and the width direction of the lead alloy foil is set on the surface of the base material sheet. A rolling process in which the base material sheet and the lead alloy foil are laminated in a state of being aligned in the width direction, and the laminate of the base material sheet and the lead alloy foil is rolled between a pair of rolling rolls. An expand in which the lead alloy foil is integrated with the base material sheet by performing a rolling process in which the thickness of the laminate of the base material sheet and the lead alloy foil is reduced stepwise by performing at a plurality of rolling stages. A method for producing an expanded lattice lead alloy sheet for producing a lattice lead alloy sheet,
A plurality of through holes penetrating the lead alloy foil in the thickness direction only in the tip region set near the tip of the strip-shaped lead alloy foil,
Supplying between a pair of rolling rolls that perform the first rolling process of the rolling process in a state where the tip region of the lead alloy foil is overlaid on the base material sheet;
A method for producing a lead alloy sheet for an expandable grid. - 前記鉛合金箔の先端から長手方向の後方側に測った前記鉛合金箔の先端部領域の長さ寸法を30mm以上に設定することを特徴とする請求項1に記載のエキスパンド格子用鉛合金シートの製造方法。 The lead alloy sheet for an expandable lattice according to claim 1, wherein the length dimension of the tip end region of the lead alloy foil measured from the tip end of the lead alloy foil to the rear side in the longitudinal direction is set to 30 mm or more. Manufacturing method.
- 前記貫通穴は1mm以上の直径を有し、前記複数の貫通穴が、1cm2当たりに1個以上の密度で前記鉛合金箔の先端部領域に点在していることを特徴とする請求項1又は2に記載のエキスパンド格子用鉛合金シートの製造方法。 The through hole has a diameter of 1 mm or more, and the plurality of through holes are scattered at a tip region of the lead alloy foil at a density of 1 or more per 1 cm 2. A method for producing a lead alloy sheet for an expanded lattice as described in 1 or 2.
- 前記鉛合金箔に設けられた前記貫通穴の母材シート側に向けられる開口端の周縁部に、前記鉛合金箔の前記一方の面から突出したカエリが形成されていることを特徴とする請求項1ないし3の何れかに記載のエキスパンド格子用鉛合金シートの製造方法。 The burrs protruding from the one surface of the lead alloy foil are formed on the peripheral edge of the open end of the through-hole provided in the lead alloy foil toward the base material sheet side. Item 4. A method for producing a lead alloy sheet for an expanded lattice according to any one of Items 1 to 3.
- 前記カエリの前記鉛合金箔の一方の面からの突出高さが0.05mm以上である請求項4に記載のエキスパンド格子用鉛合金シートの製造方法。 The method for producing a lead alloy sheet for an expandable lattice according to claim 4, wherein a protrusion height of the burrs from one surface of the lead alloy foil is 0.05 mm or more.
- 請求項1ないし5の何れかに記載された製造方法により製造されたエキスパンド格子用鉛合金シートの前記鉛合金箔が一体化された領域に、該鉛合金シートを厚み方向に貫通し、かつ該鉛合金シートの長手方向に伸びる多数のスリットを千鳥状に形成し、前記スリットが形成された前記鉛合金シートを幅方向に展開させるエキスパンド加工を行うことにより網目を形成して鉛蓄電池用のエキスパンド格子を製造することを特徴とする鉛蓄電池用エキスパンド格子の製造方法。 An area where the lead alloy foil of the lead alloy sheet for an expanded lattice manufactured by the manufacturing method according to any one of claims 1 to 5 is integrated, penetrates the lead alloy sheet in the thickness direction, and Expanding a lead alloy battery by forming a plurality of slits extending in the longitudinal direction of the lead alloy sheet in a zigzag manner and performing an expanding process to expand the lead alloy sheet in which the slits are formed in the width direction. The manufacturing method of the expanded grating | lattice for lead acid batteries characterized by manufacturing a grating | lattice.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/001715 WO2013136360A1 (en) | 2012-03-13 | 2012-03-13 | Method for manufacturing lead alloy sheet for expanded grid, and method for manufacturing expanded grid for lead battery using lead alloy sheet |
JP2012543353A JP5201376B1 (en) | 2012-03-13 | 2012-03-13 | Method for producing lead alloy sheet for expanded lattice and method for producing expanded lattice for lead-acid battery using the lead alloy sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/001715 WO2013136360A1 (en) | 2012-03-13 | 2012-03-13 | Method for manufacturing lead alloy sheet for expanded grid, and method for manufacturing expanded grid for lead battery using lead alloy sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013136360A1 true WO2013136360A1 (en) | 2013-09-19 |
Family
ID=48712993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/001715 WO2013136360A1 (en) | 2012-03-13 | 2012-03-13 | Method for manufacturing lead alloy sheet for expanded grid, and method for manufacturing expanded grid for lead battery using lead alloy sheet |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5201376B1 (en) |
WO (1) | WO2013136360A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0313331A (en) * | 1989-06-10 | 1991-01-22 | Sumitomo Special Metals Co Ltd | Composite material variable in coefficient of thermal expansion and heat conductivity |
JPH03227621A (en) * | 1989-12-12 | 1991-10-08 | Sumitomo Special Metals Co Ltd | Thermally conductive composing material |
WO1997030483A1 (en) * | 1996-02-15 | 1997-08-21 | Toyo Kohan Co., Ltd. | Cladding material |
JP2000306588A (en) * | 1999-04-16 | 2000-11-02 | Japan Storage Battery Co Ltd | Manufacture of expanded sheet of lead-acid battery electrode plate and its device |
JP2004152578A (en) * | 2002-10-30 | 2004-05-27 | Matsushita Electric Ind Co Ltd | Lead storage battery and manufacturing method therefor |
-
2012
- 2012-03-13 JP JP2012543353A patent/JP5201376B1/en active Active
- 2012-03-13 WO PCT/JP2012/001715 patent/WO2013136360A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0313331A (en) * | 1989-06-10 | 1991-01-22 | Sumitomo Special Metals Co Ltd | Composite material variable in coefficient of thermal expansion and heat conductivity |
JPH03227621A (en) * | 1989-12-12 | 1991-10-08 | Sumitomo Special Metals Co Ltd | Thermally conductive composing material |
WO1997030483A1 (en) * | 1996-02-15 | 1997-08-21 | Toyo Kohan Co., Ltd. | Cladding material |
JP2000306588A (en) * | 1999-04-16 | 2000-11-02 | Japan Storage Battery Co Ltd | Manufacture of expanded sheet of lead-acid battery electrode plate and its device |
JP2004152578A (en) * | 2002-10-30 | 2004-05-27 | Matsushita Electric Ind Co Ltd | Lead storage battery and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013136360A1 (en) | 2015-07-30 |
JP5201376B1 (en) | 2013-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2122725B1 (en) | Negative grid for battery | |
HUE027818T2 (en) | Reformed battery grids | |
WO2018219515A1 (en) | Connector and method for producing a connector | |
JP4206400B2 (en) | Resistance welding method for laminated aluminum foil | |
US20190193186A1 (en) | Method for Manufacturing Laminated Metal Foil | |
JPWO2013031889A1 (en) | Method for manufacturing battery electrode | |
JP5201376B1 (en) | Method for producing lead alloy sheet for expanded lattice and method for producing expanded lattice for lead-acid battery using the lead alloy sheet | |
US10601025B2 (en) | Single punch method of making battery plates for lead-acid batteries | |
JP5055921B2 (en) | Negative electrode for lithium ion secondary battery and method for producing the same | |
WO2014027539A1 (en) | Metal-plate hole-punching device | |
US6660429B2 (en) | Battery leads for use in a multi-layer cell and method of forming the same | |
WO2015043951A1 (en) | Method for producing bands and strips consisting of two metal materials | |
JP6351050B1 (en) | Perforated metal foil for power storage device current collector, manufacturing method thereof, electrode, and battery including the electrode | |
JP3691838B2 (en) | Expanded mesh sheet manufacturing equipment | |
JP5573419B2 (en) | Hydrogen storage alloy electrode, manufacturing method thereof, and battery equipped with hydrogen storage alloy electrode | |
CA2675646C (en) | Process for the manufacture of contact strips for electrolysers | |
JP4852869B2 (en) | Method for producing electrode plate current collector for lead acid battery | |
WO2014027540A1 (en) | Metal-plate hole-punching device | |
US6678926B2 (en) | Method and apparatus for manufacturing battery plates | |
JP2006294296A5 (en) | ||
EP2535964B1 (en) | Accumulator | |
JPH11260373A (en) | Manufacture of spreading mesh sheet and its manufacturing equipment | |
JP2004103462A (en) | Core material for electrode of secondary battery | |
JP2010231915A (en) | Lead-acid battery, electrode plate for lead-acid battery, and manufacturing method of collector for lead-acid battery | |
JP2001160501A (en) | Laminate and method of manufacturing electronic part by use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012543353 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12871570 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12871570 Country of ref document: EP Kind code of ref document: A1 |