JP4852869B2 - Method for producing electrode plate current collector for lead acid battery - Google Patents

Method for producing electrode plate current collector for lead acid battery Download PDF

Info

Publication number
JP4852869B2
JP4852869B2 JP2005109860A JP2005109860A JP4852869B2 JP 4852869 B2 JP4852869 B2 JP 4852869B2 JP 2005109860 A JP2005109860 A JP 2005109860A JP 2005109860 A JP2005109860 A JP 2005109860A JP 4852869 B2 JP4852869 B2 JP 4852869B2
Authority
JP
Japan
Prior art keywords
rolling
sheet
lead
rolled
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005109860A
Other languages
Japanese (ja)
Other versions
JP2006294296A5 (en
JP2006294296A (en
Inventor
義臣 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2005109860A priority Critical patent/JP4852869B2/en
Publication of JP2006294296A publication Critical patent/JP2006294296A/en
Publication of JP2006294296A5 publication Critical patent/JP2006294296A5/ja
Application granted granted Critical
Publication of JP4852869B2 publication Critical patent/JP4852869B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、鉛蓄電池の極板の格子状の集電体をエキスパンド方式により作製するために用いる鉛シートの製造方法であって、鉛又は鉛合金からなるスラブ鋳造体の鉛シートを多段の圧延ロールで段階的に圧延する鉛蓄電池用極板集電体の製造方法に関するものである。   The present invention relates to a method for producing a lead sheet used for producing a grid-like current collector of an electrode plate of a lead storage battery by an expanding method, and a multi-stage rolling of a lead sheet of a slab cast body made of lead or a lead alloy The present invention relates to a method for producing a current collector for a lead storage battery that is rolled in stages by a roll.

鉛蓄電池の極板は、鉛又は鉛合金からなる格子状の集電体のマス目に活物質を充填したものである。この集電体は、鉛又は鉛合金を鋳造によって直接格子状に形成する他に、鉛又は鉛合金からなる鉛シートをエキスパンド方式によって格子状に展開して作製する方法がある。また、このエキスパンド方式には、ダイスカッタの上下運動によって鉛シートの両端部から順に各マス目に展開するレシプロ方式や、円板カッタの回転によって鉛シートに形成した千鳥状のスリットを両側から引き広げることによりマス目に展開するロータリ方式等がある。そして、近年では、ライン上で連続的に製造することにより生産性を向上させることができるエキスパンド方式によって集電体を作製することが多くなっている。   The electrode plate of the lead-acid battery is obtained by filling an active material into the grid of a grid-shaped current collector made of lead or a lead alloy. In addition to directly forming lead or a lead alloy in a lattice shape by casting, this current collector is produced by developing a lead sheet made of lead or a lead alloy in a lattice shape by an expanding method. In addition, in this expanding method, a reciprocating method that spreads out from each end of the lead sheet in order by the vertical movement of the die cutter, and a staggered slit formed in the lead sheet by rotating the disc cutter is extended from both sides. For example, there is a rotary system that expands to the grid. In recent years, current collectors are often produced by an expanding method that can improve productivity by continuously producing on a line.

上記エキスパンド方式による集電体の作製に用いる鉛シートの製造には、圧延ロールによる連続圧延方式が用いられるのが通常である。一般的な金属シートの作製方法としては、連続鋳造によるものや、押し出し方式、圧延方式等が挙げられるが、特に圧延ロールによる連続圧延は、生産性が高いので、鉄鋼関係のみならず非鉄金属の分野でも多く利用されているからである。   A continuous rolling method using a rolling roll is usually used for producing a lead sheet used for producing the current collector by the above expanding method. As a general method for producing a metal sheet, there are a continuous casting method, an extrusion method, a rolling method, and the like. Especially, continuous rolling by a rolling roll has high productivity, so that not only steel-related but also non-ferrous metals are used. This is because it is used in many fields.

圧延ロールによる連続圧延方式によって鉛シートを製造する方法を図4に基づいて説明する。連続鋳造によって作製した鉛又は鉛合金のスラブ鋳造体の鋳造鉛シート1aは、多段に配置された一対の大径圧延ロール2、2の間を連続的に通すことにより、所定のシート厚の圧延鉛シート1bに圧延される。ここで、元のスラブ鋳造体の鋳造鉛シート1aは、集電体の材料となる所定のシート厚を有する圧延鉛シート1bに対して10倍以上のシート厚となるものを用いることにより生産性を高めるのが一般的である。   A method for producing a lead sheet by a continuous rolling method using a rolling roll will be described with reference to FIG. A cast lead sheet 1a of a slab cast body of lead or lead alloy produced by continuous casting is rolled with a predetermined sheet thickness by continuously passing between a pair of large-diameter rolling rolls 2 and 2 arranged in multiple stages. It is rolled into a lead sheet 1b. Here, the cast lead sheet 1a of the original slab cast body is productive by using a sheet thickness that is 10 times or more that of the rolled lead sheet 1b having a predetermined sheet thickness as a material of the current collector. It is common to increase.

また、従来は各段の大径圧延ロール2、2の圧下率を一定にして、圧延前後のスピード調整を容易にし、応力や発熱のバランスが崩れやすくなるのを防ぐようにしていた。各段の圧下率は、当該段の大径圧延ロール2、2による圧延直前の鉛シート1のシート厚をd1 とし、圧延直後の鉛シート1のシート厚をd2 とした場合に、(d1 −d2 )×100/d1 で示されるものである。しかも、これら各段の大径圧延ロール2、2は、圧延を行う鉛シート1のシート厚の20倍以上の直径を有する圧延ロールを使用し、30%程度の比較的大きな圧下率で圧延を行っていた。これは、直径が大きい大径圧延ロール2、2を使用して圧延を行った場合、厚さ方向に対してほぼ均等な歪みを与えて結晶組織を均一に潰すことができるので、図5に示すように、圧延鉛シート1bの結晶組織を厚さ方向の全体にわたって均等に微細化することができるからである。なお、図4では、図面を見やすくするために、大径圧延ロール2、2の直径に比べて鉛シート1の厚さを実際よりも拡大して示している。   Conventionally, the rolling reduction of the large-diameter rolling rolls 2 and 2 at each stage is made constant so that the speed adjustment before and after rolling can be easily performed and the balance between stress and heat generation is not easily lost. The rolling reduction ratio of each stage is (d1 − when the sheet thickness of the lead sheet 1 immediately before rolling by the large-diameter rolling rolls 2 and 2 of the stage is d1, and the sheet thickness of the lead sheet 1 immediately after rolling is d2. d2) × 100 / d1. In addition, the large-diameter rolling rolls 2 and 2 of each stage use rolling rolls having a diameter of 20 times or more the sheet thickness of the lead sheet 1 to be rolled, and are rolled at a relatively large reduction ratio of about 30%. I was going. This is because when rolling is performed using the large-diameter rolling rolls 2 and 2 having a large diameter, the crystal structure can be uniformly crushed by giving a substantially uniform strain in the thickness direction. As shown, the crystal structure of the rolled lead sheet 1b can be uniformly refined over the entire thickness direction. In FIG. 4, in order to make the drawing easier to see, the thickness of the lead sheet 1 is shown larger than the actual thickness compared to the diameters of the large-diameter rolling rolls 2 and 2.

ここで、鋳造方式によって直接作製した集電体は、結晶組織が大きいままであるため、部分的に大きな結晶粒界が生じやすくなる。従って、この集電体を正極板に使用した鉛蓄電池を作製して使用すると、この大きな結晶粒界に沿って局所的に深く腐食が進行するために、格子の桟の破断等が生じて劣化が生じやすくなる。しかしながら、上記のように結晶組織を均等に微細化した鉛シートを用いてエキスパンド方式により集電体を作製すると、結晶粒界も細分化されるために、局所的に大きな腐食が進行するようなことはなくなる。   Here, since the current collector produced directly by the casting method has a large crystal structure, a large grain boundary is likely to be generated partially. Therefore, when a lead-acid battery using this current collector for the positive electrode plate is produced and used, the corrosion progresses locally along this large grain boundary, resulting in the breakage of the grid bars and the like. Is likely to occur. However, when the current collector is produced by the expanding method using the lead sheet having the crystal structure uniformly refined as described above, the crystal grain boundaries are also subdivided, so that large corrosion progresses locally. Things will disappear.

また、直接シート厚の薄いスラブ鋳造体を作製して、これを圧延することなくエキスパンド方式により格子状に加工すると、結晶組織が大きく脆いために、スラブ鋳造体が展開加工等に耐えられず、格子の桟が破断するおそれが生じやすくなる。しかしながら、上記のように圧延工程によって結晶組織を均等に微細化した鉛シートを用いた場合には、この圧延による加工歪みによって強度が向上するため、エキスパンド方式による展開加工等にも充分に耐え得るようになる。   In addition, by directly producing a thin slab cast with a sheet thickness and processing it into a lattice shape by rolling without rolling, the slab cast cannot withstand expansion processing because the crystal structure is large and brittle. There is a risk that the lattice bars will break. However, when a lead sheet whose crystal structure is uniformly refined by the rolling process as described above is used, the strength is improved by the processing strain caused by the rolling, so that it can sufficiently withstand the expansion processing by the expanding method. It becomes like this.

ところが、このように結晶組織を均等に微細化した鉛シートを用いて作製した集電体は、全体的に細分化された結晶粒界での腐食が徐々に進行するので、この全体的な腐食量は多くなる。しかも、元のスラブ鋳造体の1/10以下のシート厚まで大きく圧延した鉛シートを用いるので、結晶組織が微細になりすぎ、時間の経過や高温下での時効が進行しすぎて早期に過時効に至り、かえって強度が低下することも多かった。従って、従来のエキスパンド方式による鉛蓄電池の極板集電体の製造方法では、この集電体の格子形状が変形することにより極板から活物質が脱落したり対極板との短絡を生じて寿命が短縮されるという問題が生じていた。即ち、この集電体は、細分化された結晶粒界が腐食により表面側から徐々に酸化されて体積の大きい二酸化鉛に変化するので、集電体そのものが膨張するだけでなく、桟の長さ方向にも引張応力が加わる。しかも、結晶組織の微細化により過時効による強度低下が進行するので、鉛蓄電池の使用に伴い集電体の腐食がある程度以上進むと、桟の伸び等に負けて格子形状を維持することができなくなり、マス目が広がって集電体自体も拡張したり反り等の変形を生じるようになる。従って、この集電体の格子のマス目に充填された活物質が剥がれて脱落したり、極板の拡張や湾曲によって対極板やこの対極板のストラップに接触して短絡を生じることになる。   However, current collectors made using a lead sheet with an evenly refined crystal structure in this way gradually corrode at the grain boundaries that are subdivided as a whole. The amount increases. Moreover, since a lead sheet that has been rolled to a thickness of 1/10 or less of the original slab cast is used, the crystal structure becomes too fine, and the aging at high temperatures and high temperatures has progressed too early. In many cases, aging was reached and the strength decreased. Therefore, in the conventional method of manufacturing an electrode plate current collector for a lead-acid battery using an expanded method, the lattice shape of the current collector is deformed, causing the active material to fall off the electrode plate or causing a short circuit with the counter electrode plate. There was a problem of shortening. That is, this current collector is gradually oxidized from the surface side due to corrosion and changed into lead dioxide having a large volume due to corrosion, so that the current collector itself does not only expand but also the length of the crosspiece. Tensile stress is also applied in the vertical direction. In addition, since the strength decreases due to overaging due to the refinement of the crystal structure, if the corrosion of the current collector progresses to some extent with the use of lead acid batteries, the lattice shape can be maintained against the elongation of the crosspieces. As a result, the grid expands, and the current collector itself expands or undergoes deformation such as warping. Therefore, the active material filled in the grids of the current collector lattice is peeled off and drops, or the electrode plate expands or curves to contact the counter electrode plate or the strap of the counter electrode plate to cause a short circuit.

本発明は、鉛シートの連続圧延の初期の段階で小圧下率の圧延を行って表層部の結晶組織のみをより微細化することにより、深層部の強度を高い状態で維持し格子形状の変形を防止して長寿命化が可能な鉛蓄電池用極板集電体の製造方法を提供しようとするものである。   In the present invention, by rolling the rolling sheet at a small reduction rate in the initial stage of continuous rolling of the lead sheet to refine only the crystal structure of the surface layer portion, the strength of the deep layer portion is maintained in a high state and the lattice shape is deformed. It is an object of the present invention to provide a method for manufacturing a current collector for a lead-acid battery capable of preventing the occurrence of a long life.

請求項1の発明は、鉛又は鉛合金からなるスラブ鋳造体の鉛シートを多段の圧延ロールで段階的に圧延して単一の圧延シートを得る第一の工程と、前記圧延シートを加工する第二の工程とを備える、鉛蓄電池用極板集電体の製造方法において、前記鉛シートは、カルシウム(Ca)の含有率が0.04質量%以上、0.09質量%以下、錫(Sn)の含有率が0.5質量%以上、2.4質量%以下であるとともに、前記圧延シートの表層部に当たる部分の結晶組織が前記圧延シートの深層部に当たる部分の結晶組織よりも微細であり、前記第一の工程は、小圧下率の圧延を繰り返すものであり、前記第一の工程を開始する際の鉛シート1のシート厚である圧下開始シート厚は、元の鋳造鉛シート1aのシート厚に対して80%以上であり、鉛圧延シートが元のスラブ鋳造体のシート厚に対して50%の厚さに圧延されるまでに、1組の圧延ロールによって3%以下の圧下率で圧延される圧延工程を4段階以上含むことを特徴とする。   The invention according to claim 1 is a first step of rolling a lead sheet of a slab cast body made of lead or a lead alloy stepwise with a multi-stage rolling roll to obtain a single rolled sheet, and processing the rolled sheet In the manufacturing method of the electrode plate current collector for a lead storage battery, comprising the second step, the lead sheet has a calcium (Ca) content of 0.04 mass% or more, 0.09 mass% or less, tin ( The content of Sn) is 0.5 mass% or more and 2.4 mass% or less, and the crystal structure of the portion corresponding to the surface layer portion of the rolled sheet is finer than the crystal structure of the portion corresponding to the deep layer portion of the rolled sheet. Yes, the first step repeats rolling at a small reduction rate, and the reduction start sheet thickness, which is the sheet thickness of the lead sheet 1 when starting the first step, is the original cast lead sheet 1a. 80% or more of the sheet thickness of lead It includes four or more rolling processes in which a rolled sheet is rolled at a rolling reduction of 3% or less by a set of rolling rolls until the rolled sheet is rolled to a thickness of 50% with respect to the sheet thickness of the original slab cast body. It is characterized by.

請求項2の鉛蓄電池用極板集電体の製造方法は、前記3%以下の圧下率で圧延される圧延工程で用いる1組の圧延ロールの直径φが、当該圧延の直前の鉛シートのシート厚dに対して0.5d≦φ≦5dの範囲内であることを特徴とする。   The method for producing a current collector for a lead-acid battery according to claim 2 is characterized in that the diameter φ of a set of rolling rolls used in a rolling process rolled at a rolling reduction of 3% or less is that of the lead sheet immediately before the rolling. The sheet thickness d is in the range of 0.5d ≦ φ ≦ 5d.

請求項1の発明によれば、深層部の結晶組織が表層部ほど微細化されていない圧延シートは、この深層部での過時効による強度低下が生じ難くなる。従って、この圧延シートをエキスパンド方式により格子状の集電体に加工して鉛蓄電池として使用すると、この集電体の表層部からの腐食が進行するが、深層部の強度が高い状態を維持するので、この腐食によって格子の桟等が長さ方向等に膨張しようとするのを阻止することができ、集電体の変形を防止することができるようになる。
さらに、スラブ鋳造体が連続圧延の初期の段階で2段階以上にわたって3%以下の小圧下率の圧延を受けるので、通常の30%前後の圧下率に比べて、圧延による歪みを表層部に集中させることが可能になり、その結果、表層部の結晶の潰れが深層部よりも大きくなって結晶組織が微細化する。しかも、事前にこの小圧下率による圧延を行うと、その後に従来通りの大圧下率の圧延を行っても、表層部と深層部の結晶組織が均一になることはなく、既に結晶の潰れが大きくなった表層部の結晶組織の微細化が深層部よりもさらに促進される。そして、深層部の結晶組織が表層部ほど微細化されていない鉛シートは、この深層部での過時効による強度低下が生じ難くなる。従って、この鉛シートをエキスパンド方式により格子状の集電体に加工して鉛蓄電池として使用すると、この集電体の表層部からの腐食が進行するが、深層部の強度が高い状態を維持するので、この腐食によって格子の桟等が長さ方向等に膨張しようとするのを阻止することができ、集電体の変形を防止することができるようになる。
According to the first aspect of the present invention, in a rolled sheet in which the crystal structure of the deep layer portion is not refined as much as the surface layer portion, strength reduction due to overaging in the deep layer portion hardly occurs. Therefore, when this rolled sheet is processed into a grid-like current collector by the expand method and used as a lead storage battery, corrosion from the surface layer portion of the current collector proceeds, but the strength of the deep layer portion is maintained high. Therefore, it is possible to prevent the grid bars or the like from expanding in the length direction or the like due to this corrosion, and it is possible to prevent the current collector from being deformed.
Furthermore, since the slab cast body undergoes rolling with a small reduction ratio of 3% or less over two or more stages in the initial stage of continuous rolling, the strain due to rolling is concentrated on the surface layer compared to a normal reduction ratio of around 30%. As a result, the crushing of crystals in the surface layer portion becomes larger than that in the deep layer portion, and the crystal structure becomes finer. Moreover, if rolling is performed in advance with this small reduction ratio, the crystal structure of the surface layer portion and the deep layer portion will not be uniform even if rolling is performed with the conventional large reduction ratio, and the crystals have already been crushed. The refinement of the crystal structure of the surface layer portion that has become larger is further promoted than in the deep layer portion. And the lead sheet | seat in which the crystal structure of a deep layer part is not refined | miniaturized like a surface layer part becomes difficult to produce the strength fall by the overaging in this deep layer part. Therefore, when this lead sheet is processed into a grid-like current collector by the expand method and used as a lead storage battery, corrosion from the surface layer portion of this current collector proceeds, but the strength of the deep layer portion is maintained high. Therefore, it is possible to prevent the grid bars or the like from expanding in the length direction or the like due to this corrosion, and it is possible to prevent the current collector from being deformed.

請求項2の発明によれば、鉛シートの圧延直前のシート厚に対して十分に小径の圧延ロールを用いて圧延を行うので、同じ圧延率であれば大径の圧延ロールに比べて局所的な圧下が行われることになり、深層部よりも表層部にのみさらに歪みを集中させることができ、この深層部と表層部の結晶組織の微細化の程度の違いを大きくすることができるようになる。   According to the invention of claim 2, since rolling is performed using a roll having a sufficiently small diameter with respect to the sheet thickness immediately before rolling of the lead sheet, if the rolling ratio is the same, the roll is locally compared with a roll having a large diameter. So that the strain can be further concentrated only on the surface layer portion rather than the deep layer portion, and the difference in the degree of refinement of the crystal structure of the deep layer portion and the surface layer portion can be increased. Become.

以下、本発明の最良の実施形態について図1〜図3を参照して説明する。   Hereinafter, the best embodiment of the present invention will be described with reference to FIGS.

本実施形態の鉛蓄電池用極板集電体の製造方法は、図1に示すように、連続鋳造によって作製した鉛又は鉛合金のスラブ鋳造体の鋳造鉛シート1aを、まず10段にわたって配置された一対の小径圧延ロール3、3の間を連続的に通し、次に多段に配置された一対の大径圧延ロール2、2の間を連続的に通すことにより、所定のシート厚を有する圧延鉛シート1bを得る。   As shown in FIG. 1, in the method of manufacturing a lead-acid battery electrode current collector of this embodiment, a cast lead sheet 1 a of a slab cast body of lead or lead alloy produced by continuous casting is first arranged over 10 stages. Rolling having a predetermined sheet thickness by continuously passing between a pair of small diameter rolling rolls 3 and 3 and then continuously passing between a pair of large diameter rolling rolls 2 and 2 arranged in multiple stages. The lead sheet 1b is obtained.

大径圧延ロール2、2は、従来例と同様の圧延ロールであり、直径が当該段の圧延の直前の鉛シート1のシート厚の20倍以上の大径の圧延ロールである。また、各段の大径圧延ロール2、2も、従来例と同様に、30%程度の比較的大きな圧下率に設定され、10段の小径圧延ロール3、3による圧下率も含めて、トータル圧下率が従来例と同じになるような段数が配置されている。なお、各段の大径圧延ロール2、2の圧下率も、従来例と同様に、圧延前後のスピード調整等のために、一定値に設定することが好ましい。また、図1では、図面を見やすくするために、これら大径圧延ロール2、2や小径圧延ロール3、3の直径に比べて鉛シート1の厚さを実際よりも拡大して示しているので、これら直径と厚さの比率を正確に表していない。   The large-diameter rolling rolls 2 and 2 are rolling rolls similar to the conventional example, and are large-diameter rolling rolls whose diameter is 20 times or more the sheet thickness of the lead sheet 1 immediately before rolling in the corresponding stage. Also, the large-diameter rolling rolls 2 and 2 in each stage are set to a comparatively large reduction ratio of about 30% as in the conventional example, and the total including the reduction ratio by the 10-stage small-diameter rolling rolls 3 and 3 is also included. The number of stages is set such that the rolling reduction is the same as in the conventional example. In addition, it is preferable to set the rolling reduction of the large diameter rolling rolls 2 and 2 at each stage to a constant value for speed adjustment before and after rolling, as in the conventional example. Further, in FIG. 1, in order to make the drawing easy to see, the thickness of the lead sheet 1 is shown larger than the actual diameter compared to the diameters of the large diameter rolling rolls 2, 2 and the small diameter rolling rolls 3, 3. The ratio of diameter to thickness is not accurately represented.

小径圧延ロール3、3は、直径φが当該段の圧延の直前の鉛シート1のシート厚dに対して0.5d≦φ≦5dの範囲内の小径の圧延ロールである。即ち、第1段目の小径圧延ロール3、3の直径φは、スラブ鋳造体の鋳造鉛シート1aのシート厚dに対して0.5d≦φ≦5dの範囲内となり、第2段目の小径圧延ロール3、3の直径φは、この第1段目の小径圧延ロール3、3で圧延された圧延鉛シート1bのシート厚dに対して0.5d≦φ≦5dの範囲内となる。そして、各段の小径圧延ロール3、3の直径φは、例えば全てが2dとなるように少しずつ径の異なるものを用いてもよい。ただし、本実施形態では、10段の小径圧延ロール3、3の直径φが全て共通となるようにして、圧延直前の鉛シート1のシート厚dに対する直径φの比率がこの範囲内で変化するようにしている。   The small-diameter rolling rolls 3 and 3 are small-diameter rolling rolls having a diameter φ in the range of 0.5d ≦ φ ≦ 5d with respect to the sheet thickness d of the lead sheet 1 immediately before rolling in the corresponding stage. That is, the diameter φ of the first stage small-diameter rolling rolls 3 and 3 is in the range of 0.5d ≦ φ ≦ 5d with respect to the sheet thickness d of the cast lead sheet 1a of the slab cast body, and the second stage The diameter φ of the small diameter rolling rolls 3 and 3 is in the range of 0.5d ≦ φ ≦ 5d with respect to the sheet thickness d of the rolled lead sheet 1b rolled by the first stage small diameter rolling rolls 3 and 3. . And the diameter (phi) of the small diameter rolling rolls 3 and 3 of each step | paragraph may use a little different diameter so that all may be set to 2d, for example. However, in this embodiment, the diameter φ of the ten stages of the small diameter rolling rolls 3 and 3 is made common, and the ratio of the diameter φ to the sheet thickness d of the lead sheet 1 immediately before rolling changes within this range. I am doing so.

上記10段の小径圧延ロール3、3は、各段の小径圧延ロール3、3による圧下率を3%以下の小圧下率としている。このときの各段の小径圧延ロール3、3による圧下率は、圧延前後のスピード調整等のために、3%以下の一定値とすることが好ましい。従って、例えば各段の小径圧延ロール3、3による圧下率を全て3%とした場合には、10段の圧延工程によるトータル圧下率は約26.3%(=1−(1−0.03)10)となる。なお、以降では、説明を簡単にするために、各段の圧下率を全て3%にすると、10段でのトータル圧下率は30%(=3%×10)になるものとする。   The 10-stage small-diameter rolling rolls 3 and 3 have a reduction ratio of 3% or less by the reduction ratio of the small-diameter rolling rolls 3 and 3 in each stage. At this time, the rolling reduction by the small-diameter rolling rolls 3 and 3 at each stage is preferably a constant value of 3% or less for speed adjustment before and after rolling. Therefore, for example, when the reduction ratios by the small-diameter rolling rolls 3 and 3 at each stage are all 3%, the total reduction ratio by the 10-stage rolling process is about 26.3% (= 1− (1−0.03). ) 10). In the following, for the sake of simplicity, it is assumed that the total rolling reduction at 10 stages is 30% (= 3% × 10) when the rolling reduction at each stage is 3%.

なお、本実施形態では、小径圧延ロール3、3による圧延工程を10段としたが、2段以上であれば、この段数には限定されない。ただし、小径圧延ロール3、3による2段以上の圧延が行われた後の圧延鉛シート1bのシート厚は、元のスラブ鋳造体の鋳造鉛シート1aのシート厚に対して50%未満となってはならない。従って、本実施形態では、元の鋳造鉛シート1a(シート厚は100%)の最初から小径圧延ロール3、3による圧延を開始するので、これらの小径圧延ロール3、3の圧下率を例えば全て3%とすると、段数は16段(トータル圧下率は48%)までに制限され、17段(トータル圧下率は51%)以上とすることはできない。ただし、実際のトータル圧下率はもう少し小さくなるので、この段数も実際よりは少なく制限されるように説明している。   In addition, in this embodiment, the rolling process by the small diameter rolling rolls 3 and 3 was 10 stages, but if it is 2 stages or more, it will not be limited to this stage number. However, the sheet thickness of the rolled lead sheet 1b after two or more stages of rolling by the small-diameter rolling rolls 3 and 3 is less than 50% with respect to the sheet thickness of the cast lead sheet 1a of the original slab casting. must not. Therefore, in this embodiment, since rolling by the small diameter rolling rolls 3 and 3 is started from the beginning of the original cast lead sheet 1a (sheet thickness is 100%), for example, all the reduction ratios of these small diameter rolling rolls 3 and 3 are set. If it is 3%, the number of stages is limited to 16 (total reduction ratio is 48%), and cannot be 17 stages (total reduction ratio is 51%) or more. However, since the actual total rolling reduction is a little smaller, it is explained that the number of stages is limited to be less than the actual number.

また、本実施形態では、小径圧延ロール3、3による圧延工程を元の鋳造鉛シート1a(シート厚は100%)の最初から開始したが、小径圧延ロール3、3による圧延が行われた後の圧延鉛シート1bのシート厚が元の鋳造鉛シート1aのシート厚に対して50%以上であれば、先に他の圧延ロールによる圧延を行ってもよい。例えば10段の小径圧延ロール3、3によるトータル圧下率が30%であるとすると、先に大径圧延ロール2、2による圧下率20%の圧延を行った後に、これら10段の小径圧延ロール3、3による圧延を行うようにしてもよい。ここまでのトータル圧下率が50%となるからである。なお、実際のトータル圧下率が50%以下であればよいので、先の大径圧延ロール2、2による圧下率は、もう少し大きくてもよい。   Moreover, in this embodiment, although the rolling process by the small diameter rolling rolls 3 and 3 was started from the beginning of the original cast lead sheet 1a (sheet thickness is 100%), after rolling by the small diameter rolling rolls 3 and 3 was performed. If the sheet thickness of the rolled lead sheet 1b is 50% or more with respect to the sheet thickness of the original cast lead sheet 1a, rolling with another rolling roll may be performed first. For example, assuming that the total rolling reduction by the 10-stage small-diameter rolling rolls 3 and 3 is 30%, after performing the rolling at the rolling reduction of 20% by the large-diameter rolling rolls 2 and 2 first, these 10-stage small-diameter rolling rolls. You may make it perform rolling by 3 and 3. This is because the total rolling reduction so far is 50%. In addition, since the actual total rolling reduction should just be 50% or less, the rolling reduction by the above large diameter rolling rolls 2 and 2 may be a little larger.

ここで、例えば各小径圧延ロール3、3による圧下率を3%とすると、10段の小径圧延ロール3、3のトータル圧下率は30%となり、この後に圧下率30%の大径圧延ロール2、2を2段配置すると、全圧延工程でのトータル圧下率は90%となり、元の鋳造鉛シート1aのシート厚の10%の厚さの圧延鉛シート1bを得ることができる。また、小径圧延ロール3、3による圧下率を小さくしたり段数を減少させた場合には、大径圧延ロール2、2の段数を増やしたり圧下率を調整すればよい。なお、小径圧延ロール3、3による圧下率と、大径圧延ロール2、2による圧下率は相違することになる。しかしながら、各小径圧延ロール3、3の圧下率を一定値とし、各大径圧延ロール2、2の圧下率も一定値としておけば、圧下率が相違するのはこれら圧延工程の間のみとなるので、スピード調整等も比較的容易となり、大きな障害となることはない。   Here, for example, if the reduction ratio by the small diameter rolling rolls 3 and 3 is 3%, the total reduction ratio of the 10-stage small diameter rolling rolls 3 and 3 is 30%, and then the large diameter rolling roll 2 having a reduction ratio of 30%. When 2 is arranged in two stages, the total rolling reduction in the entire rolling process is 90%, and a rolled lead sheet 1b having a thickness of 10% of the sheet thickness of the original cast lead sheet 1a can be obtained. Moreover, what is necessary is just to increase the number of steps of the large diameter rolling rolls 2 and 2 or to adjust a reduction rate, when reducing the reduction rate by the small diameter rolling rolls 3 and 3 or reducing the number of steps. In addition, the reduction rate by the small diameter rolling rolls 3 and 3 and the reduction rate by the large diameter rolling rolls 2 and 2 are different. However, if the reduction ratio of each small-diameter rolling roll 3, 3 is set to a constant value and the reduction ratio of each large-diameter rolling roll 2, 2 is also set to a constant value, the reduction ratio is different only during these rolling steps. Therefore, speed adjustment and the like are relatively easy and do not become a major obstacle.

上記実施形態の製造方法によれば、スラブ鋳造体の鋳造鉛シート1aが連続圧延の初期の段階で小径圧延ロール3、3による小圧下率の圧延を2段階以上にわたって受ける。このような小圧下率による圧延は、加工歪みが圧延鉛シート1bの表層部にのみ集中し、深層部に比べてこの表層部の結晶の潰れが大きくなって結晶組織も微細化する。また、小径圧延ロール3、3は、鉛シート1のシート厚に対して十分に小径の圧延ロールであるため、同じ圧下率であれば、大径の圧延ロールに比べて、鉛シート1を局所的に圧下するので、加工歪みをより一層表層部にのみ集中させることができる。しかも、このように事前に小圧下率による圧延を行われると、表層部の結晶だけが潰れて結晶組織が微細化されるので、その後、従来通りの大圧下率の圧延を行っても、この圧延による結晶組織の微細化は深層部よりも表層部の方が促進され、この表層部と深層部の結晶組織が均一になることはない。従って、これら小径圧延ロール3、3と大径圧延ロール2、2によって連続圧延された圧延鉛シート1bは、図2に示すように、厚さ方向に沿って結晶組織が不均一となり、表層部Sでは結晶組織が極めて微細化されるが、深層部Dの結晶組織は緩やかに微細化されることになる。   According to the manufacturing method of the above embodiment, the cast lead sheet 1a of the slab cast body undergoes rolling at a small reduction rate by the small diameter rolling rolls 3 and 3 in two or more stages at the initial stage of continuous rolling. In rolling by such a small rolling reduction, the processing strain concentrates only on the surface layer portion of the rolled lead sheet 1b, and the crushing of crystals in the surface layer portion becomes larger than that in the deep layer portion, and the crystal structure is also refined. Further, since the small diameter rolling rolls 3 and 3 are sufficiently small diameter rolling rolls with respect to the sheet thickness of the lead sheet 1, the lead sheet 1 is locally applied as compared with the large diameter rolling roll if the rolling reduction is the same. Therefore, the processing strain can be further concentrated only on the surface layer portion. In addition, when rolling at a small reduction rate in advance is performed in this way, only the crystals of the surface layer portion are crushed and the crystal structure is refined. The refinement of the crystal structure by rolling is promoted in the surface layer part rather than in the deep layer part, and the crystal structure of the surface layer part and the deep layer part is not made uniform. Therefore, the rolled lead sheet 1b continuously rolled by the small diameter rolling rolls 3 and 3 and the large diameter rolling rolls 2 and 2 has a nonuniform crystal structure along the thickness direction as shown in FIG. In S, the crystal structure is extremely refined, but the crystal structure of the deep layer portion D is gradually refined.

なお、小径圧延ロール3、3の小圧下率による圧延によって加工歪みが圧延鉛シート1bの表層部にのみ集中すると、この表面部のみが深層部とは無関係に幅方向、長さ方向に不釣り合いに延伸するおそれが生じる。また、既に大きな圧下率で圧延された圧延鉛シート1bに小径圧延ロール3、3で小圧下率の圧延を行っても、加工歪みを十分に表層部だけに集中させることができない。このため、小径圧延ロール3、3によるトータル圧下率は、連続圧延工程の初期の段階であって最大でも50%までに限定される。   If the processing strain is concentrated only on the surface layer portion of the rolled lead sheet 1b by rolling with the small rolling reduction of the small diameter rolling rolls 3 and 3, only this surface portion is unbalanced in the width direction and the length direction regardless of the deep layer portion. There is a risk of stretching. Further, even if the rolled lead sheet 1b that has already been rolled at a large rolling reduction is rolled at a small rolling reduction by the small diameter rolling rolls 3 and 3, the processing strain cannot be sufficiently concentrated only on the surface layer portion. For this reason, the total rolling reduction by the small diameter rolling rolls 3 and 3 is an initial stage of the continuous rolling process and is limited to 50% at the maximum.

上記のように加工歪みが不均一に与えられるため、表層部と深層部の結晶組織で微細化の程度が異なっているが、この圧延鉛シート1bは、従来品と同様にエキスパンド方式による展開加工等にも十分に耐えることができる。ところが、このように表層部に対して微細化の程度が緩やかである深層部は、表層部に比べて過時効による強度低下が生じ難くなるため、長期間にわたって高い強度を維持することができる。従って、集電体に加工して鉛蓄電池として使用することにより、この集電体の腐食が進行し格子の桟等が長さ方向等に膨張しようとしても、深層部の高い強度によってこの膨張が阻止されて、集電体の変形を防止することができるようになる。そして、この集電体の変形が防止されることにより、極板から活物質が脱落するのを防いだり、対極板との短絡が生じるのを防ぐため、電池の長寿命化ができる。   Since the processing strain is given nonuniformly as described above, the degree of refinement differs between the crystal structure of the surface layer portion and the deep layer portion, but this rolled lead sheet 1b is expanded by the expand method as in the conventional product. Etc. can be sufficiently tolerated. However, in this way, in the deep layer portion where the degree of miniaturization is moderate with respect to the surface layer portion, it is difficult for the strength to decrease due to overaging compared to the surface layer portion, so that high strength can be maintained over a long period of time. Therefore, by processing the current collector and using it as a lead storage battery, even if the corrosion of the current collector progresses and the grid bars etc. expand in the length direction etc., this expansion is caused by the high strength of the deep layer. This prevents the current collector from being deformed. By preventing the current collector from being deformed, the active material is prevented from falling off the electrode plate, and a short circuit with the counter electrode plate is prevented, thereby extending the life of the battery.

なお、上記実施形態では、小径圧延ロール3、3を大径圧延ロール2、2と同様に圧延方向に沿って多段に配置した場合を示したが、図3に示すように、極めて大きな径のロールの円周上に配置して、多段の圧延を高速で連続的に行うプラネタリーミル4として圧延を行うようにしてもよい。ただし、プラネタリーミル4は、通常は1パスのトータル圧下率を95〜99%等の極めて大きな値に設定して使用されるが、ここでは各小径圧延ロール3による圧下率が3%以下の小圧下率となるように設定する必要がある。   In the above embodiment, the case where the small-diameter rolling rolls 3 and 3 are arranged in multiple stages along the rolling direction in the same manner as the large-diameter rolling rolls 2 and 2 is shown. However, as shown in FIG. The rolling may be performed as a planetary mill 4 that is arranged on the circumference of a roll and continuously performs multi-stage rolling at a high speed. However, the planetary mill 4 is usually used by setting the total reduction ratio of one pass to an extremely large value such as 95 to 99%, but here, the reduction ratio by each small diameter rolling roll 3 is 3% or less. It is necessary to set so that the reduction ratio is small.

以下、実施例を従来例や参考例と比較しつつ詳細に説明する。   Hereinafter, examples will be described in detail while comparing with conventional examples and reference examples.

なお、これら従来例と実施例と参考例では、いずれも圧延前のスラブ鋳造体として、Pb−0.06質量%Ca−1.3質量%Sn合金からなる10mm厚の鋳造鉛シート1aを使用した。また、連続圧延によって所定シート厚に圧延した圧延鉛シート1bは、ロータリ方式によって格子状の集電体に加工し、展開時に破断が発生した割合を調べた。さらに、このようにして作製した集電体は、活物質を充填、熟成、乾燥して正極板とし、この正極板を、常法によって作製した負極板と微孔性のポリエチレンを主体としたセパレータと組み合わせてエレメントとすると共に、所定比重、所定量の希硫酸を注入し化成を行うことにより自動車用の鉛蓄電池(55D23形)を作製した。そして、これらの鉛蓄電池を使用して、高温での腐食(サイクル)試験(JIS軽負荷寿命試験)を行い、3000サイクル終了時における極板の最大の伸び量を調査した。   In all of these conventional examples, examples and reference examples, a cast lead sheet 1a having a thickness of 10 mm made of a Pb-0.06 mass% Ca-1.3 mass% Sn alloy is used as a slab cast before rolling. did. In addition, the rolled lead sheet 1b rolled to a predetermined sheet thickness by continuous rolling was processed into a grid-like current collector by a rotary method, and the ratio at which breakage occurred during development was examined. Furthermore, the current collector produced in this way was filled with active material, aged and dried to form a positive electrode plate, and this positive electrode plate was a separator mainly composed of a negative electrode plate produced by a conventional method and microporous polyethylene. The lead acid battery (55D23 type) for automobiles was manufactured by injecting a predetermined specific gravity and a predetermined amount of dilute sulfuric acid and performing chemical conversion. Then, using these lead storage batteries, a corrosion (cycle) test at a high temperature (JIS light load life test) was performed, and the maximum elongation of the electrode plate at the end of 3000 cycles was investigated.

〔比較例1〕
大径圧延ロール2、2のみを用いて各段の圧下率を30%とした連続圧延による圧延鉛シート1bの製造方法を従来例1とし、この最初の段の圧下率30%の圧延工程を、小径圧延ロール3、3を用いた1〜10%の圧下率による複数段の圧延工程(トータル圧下率はいずれも30%)に変更した製造方法を実施例1〜3と参考例1〜2としたときの展開時の破断率と腐食試験後の極板伸びの調査結果を表1に示す。
[Comparative Example 1]
The manufacturing method of the rolled lead sheet 1b by continuous rolling using only the large-diameter rolling rolls 2 and 2 and the rolling reduction of each stage as 30% is assumed to be a conventional example 1, and the rolling process with a rolling reduction of 30% in the first stage is performed. Examples 1 to 3 and Reference Examples 1 to 2 were changed to a multi-stage rolling process with a rolling reduction of 1 to 10% using the small diameter rolling rolls 3 and 3 (the total rolling reduction was 30% for all). Table 1 shows the results of the investigation of the breaking rate at the time of development and the electrode plate elongation after the corrosion test.

この表1によれば、圧下率が1〜3%の実施例1〜3の場合には、腐食試験後の極板伸びが、従来例1を100としたときに対して、63〜68の小さな割合となり、この極板の伸びを十分に防止できることが確認できた。しかしながら、圧下率が5〜10%の参考例1〜2の場合には、腐食試験後の極板伸びが90〜97の割合となり、従来例と大差なかった。この結果、小圧下率は、3%以下の圧下率にする必要があることが分かった。   According to Table 1, in the case of Examples 1 to 3 where the rolling reduction is 1 to 3%, the plate elongation after the corrosion test is 63 to 68 compared to the conventional example 1 of 100. It became a small ratio, and it was confirmed that the elongation of the electrode plate can be sufficiently prevented. However, in Reference Examples 1 and 2 with a rolling reduction of 5 to 10%, the electrode plate elongation after the corrosion test was 90 to 97, which was not significantly different from the conventional example. As a result, it was found that the small rolling reduction needs to be 3% or less.

なお、展開時の破断率については、実施例1〜3だけでなく、参考例1〜2の場合にも、従来例1を100としたときに対して、100〜102の割合となり、従来と大差なく十分に展開加工に耐えうることが確認できた。また、「圧下開始シート厚」の項は、「圧下率×段数」の項で示した小圧下率の圧延を繰り返す工程を開始する際の鉛シート1のシート厚が、元の鋳造鉛シート1aのシート厚に対して何%の割合であるかを示すものであり、表1では、この割合が全て100%であることから、この鋳造鉛シート1aに対して最初の段から小圧下を開始していることを表している。   In addition, about the fracture | rupture rate at the time of expansion | deployment, in the case of not only Examples 1-3 but Reference Examples 1-2, it becomes a ratio of 100-102 with respect to the case where the prior art example 1 is set to 100. It was confirmed that it could withstand the unfolding process without much difference. In addition, the term “thickness of starting sheet” indicates that the sheet thickness of the lead sheet 1 at the time of starting the process of repeating rolling at a small reduction rate shown in the section of “reducing rate × number of steps” is the original cast lead sheet 1a. The percentage of the sheet thickness is shown in Table 1. In Table 1, since all the percentages are 100%, a small reduction is started from the first stage for this cast lead sheet 1a. It represents that.

〔比較例2〕
上記実施例3では、連続圧延の最初の段から3%×10段の小圧下率の圧延工程を開始した場合を示したが、元の鋳造鉛シート1aをまず90〜40%まで、大径圧延ロール2、2によりできるだけ大きな圧下率と少ない段数で圧延した後に、この3%×10段の小圧下率による圧延工程を開始した製造方法を実施例4〜5と参考例3〜6とし、これらの展開時の破断率と腐食試験後の極板伸びの調査結果を表2に示す。なお、この表2では、展開時の破断率と腐食試験後の極板伸びの基準となる従来例1と上記実施例3も再度示している。
[Comparative Example 2]
In Example 3 above, a case where a rolling process with a small reduction ratio of 3% × 10 stages was started from the first stage of continuous rolling was shown, but the original cast lead sheet 1a was first increased to 90 to 40% with a large diameter. After rolling with the rolling rolls 2 and 2 as much as possible and a small number of stages, the manufacturing method which started the rolling process by this 3% x 10 stage small rolling reduction was made into Examples 4-5 and Reference Examples 3-6, Table 2 shows the results of investigation of the breaking rate at the time of development and the electrode plate elongation after the corrosion test. Table 2 also shows the conventional example 1 and the above-described example 3 that serve as a basis for the breaking rate during deployment and the electrode plate elongation after the corrosion test.

この表2によれば、圧下開始シート厚が100〜80%の実施例3〜5の場合には、腐食試験後の極板伸びが、従来例1を100としたときに対して、65〜83の小さな割合となり、この極板の伸びを十分に防止できることが確認できた。しかしながら、圧下開始シート厚が70〜40%の参考例3〜6の場合には、腐食試験後の極板伸びが130〜160の割合となり、従来例よりも悪化していた。この結果、圧下開始シート厚は、80%以上にする必要があることが分かった。即ち、実施例3〜5や参考例3〜6では、小圧下率3%が10段でトータル圧下率が30%となるので、この小圧下率の圧延工程の後の圧延鉛シート1bは、元の鋳造鉛シート1aに対して50%(=80%−30%)以上のシート厚であることが必要となる。また、実施例3〜5の腐食試験後の極板伸びは、圧下開始シート厚が100%に近いほど小さい割合となるので、この小圧下率の圧延工程は、連続圧延におけるできるだけ初期の段階、できれば最初の段から行うことが好ましいことも分かった。   According to Table 2, in the case of Examples 3 to 5 where the rolling start sheet thickness is 100 to 80%, the electrode plate elongation after the corrosion test is 65 to It was confirmed that it was possible to sufficiently prevent the elongation of the electrode plate. However, in Reference Examples 3 to 6 in which the rolling start sheet thickness was 70 to 40%, the electrode plate elongation after the corrosion test was 130 to 160, which was worse than the conventional example. As a result, it was found that the reduction start sheet thickness needs to be 80% or more. That is, in Examples 3 to 5 and Reference Examples 3 to 6, since the small reduction ratio 3% is 10 stages and the total reduction ratio is 30%, the rolled lead sheet 1b after the rolling process of this small reduction ratio is: The sheet thickness needs to be 50% (= 80% -30%) or more with respect to the original cast lead sheet 1a. Moreover, since the electrode plate elongation after the corrosion test of Examples 3 to 5 becomes a smaller ratio as the rolling start sheet thickness is closer to 100%, the rolling process of this small rolling reduction is as early as possible in continuous rolling, It was also found that it is preferable to carry out from the first stage if possible.

なお、展開時の破断率については、実施例3〜5だけでなく、参考例3〜6の場合にも、従来例1を100としたときに対して、98〜102の割合となり、従来と大差なく十分に展開加工に耐えうることが確認できた。   In addition, about the fracture | rupture rate at the time of expansion | deployment, in the case of not only Examples 3-5 but Reference Examples 3-6, it becomes a ratio of 98-102 with respect to the case where Conventional Example 1 is set to 100. It was confirmed that it could withstand the unfolding process without much difference.

〔比較例3〕
連続圧延の最初の段から小径圧延ロール3、3による2%の小圧下率の圧延工程を1〜32段にわたって実行した製造方法を参考例7〜9と実施例6〜11とし、これらについて展開時の破断率と腐食試験後の極板伸びの調査結果を表3に示す。なお、これらの小圧下率による圧延工程の後には、大径圧延ロール2、2によりできるだけ大きな圧下率と少ない段数で圧延を行い、所定シート厚の圧延鉛シート1bを得た。また、この表3では、展開時の破断率と腐食試験後の極板伸びの基準となる従来例1も再度示している。
[Comparative Example 3]
A manufacturing method in which a rolling process with a small reduction rate of 2% by the small-diameter rolling rolls 3 and 3 from the first stage of continuous rolling is performed over 1 to 32 stages is referred to as Reference Examples 7 to 9 and Examples 6 to 11, and these are developed. Table 3 shows the investigation results of the breaking rate at the time and the electrode plate elongation after the corrosion test. In addition, after the rolling process by these small reduction ratios, rolling was performed with the large diameter rolling rolls 2 and 2 with a maximum reduction ratio and as few stages as possible to obtain a rolled lead sheet 1b having a predetermined sheet thickness. Table 3 also shows the conventional example 1 as a reference for the breaking rate at the time of deployment and the electrode plate elongation after the corrosion test.

この表3の参考例7は、小圧下率の圧延工程の段数が1段のみであり圧下率も2%にすぎないため、従来例1と差のない結果しか得られなかった。これに対して、小圧下率の圧延工程の段数が4〜24段、即ちトータル圧下率が8〜48%となる実施例6〜11の場合に、腐食試験後の極板伸びが、従来例1を100としたときに対して、65〜85の小さな割合となり、この極板の伸びを十分に防止できることが確認できた。しかしながら、小圧下率の圧延工程の段数が28〜32段、即ちトータル圧下率が56〜64%となる参考例8〜9の場合には、腐食試験後の極板伸びが95〜109の割合となり、従来例と大差ないか悪化していた。この結果、小圧下率の圧延工程の段数は1段では不足し、トータル圧下率も50%以下とする必要があることが分かった。   In Reference Example 7 in Table 3, the number of steps in the rolling process with a small reduction rate was only one and the reduction rate was only 2%, so that only a result that was not different from Conventional Example 1 was obtained. On the other hand, in the case of Examples 6 to 11 in which the number of steps in the rolling process with a small reduction ratio is 4 to 24, that is, the total reduction ratio is 8 to 48%, the electrode plate elongation after the corrosion test is the conventional example. When 1 was set to 100, it was a small ratio of 65 to 85, and it was confirmed that elongation of this electrode plate could be sufficiently prevented. However, in the case of Reference Examples 8 to 9 in which the number of steps in the rolling process with a small reduction ratio is 28 to 32, that is, the total reduction ratio is 56 to 64%, the electrode plate elongation after the corrosion test is a ratio of 95 to 109. Thus, it was not much different from the conventional example or worsened. As a result, it was found that the number of stages in the rolling process with a small reduction ratio is insufficient with one stage, and the total reduction ratio needs to be 50% or less.

なお、展開時の破断率については、実施例6〜11だけでなく、参考例7〜9の場合にも、従来例1と大差がなく、十分に展開加工に耐えうることが確認できた。   In addition, about the fracture | rupture rate at the time of expansion | deployment, not only in Examples 6-11, but in the case of Reference Examples 7-9, it was confirmed that there was no big difference with the prior art example 1, and it can fully endure the expansion | deployment process.

〔比較例4〕
圧延ロールの直径と圧延直前の鉛シート1のシート厚との比率が30〜15の大径圧延ロール2、2のみを用いて各段の圧下率を30%とした連続圧延による鉛シート1の製造方法を従来例2〜3とし、この圧下率30%の圧延工程の最初の段を、直径とシート厚の比率が10〜0.2の小径圧延ロール3、3を用いた圧下率3%×10段の圧延工程(トータル圧下率はいずれも30%)に変更した製造方法を参考例10〜11と実施例12〜15としたときの展開時の破断率と腐食試験後の極板伸びの調査結果を表4に示す。
[Comparative Example 4]
The ratio of the diameter of the rolling roll to the sheet thickness of the lead sheet 1 immediately before rolling is 30 to 15, and only the large-diameter rolling rolls 2 and 2 are used. The production method is conventional examples 2 to 3, and the first stage of the rolling process with a rolling reduction ratio of 30% is a rolling reduction ratio of 3% using small diameter rolling rolls 3 and 3 having a diameter to sheet thickness ratio of 10 to 0.2. X 10-stage rolling process (total rolling reduction is 30% for all) The production method changed to Reference Examples 10 to 11 and Examples 12 to 15 and the breaking rate at the time of development and the electrode plate elongation after the corrosion test Table 4 shows the results of the survey.

この表4によれば、直径とシート厚の比率が5〜0.5となる実施例12〜15の場合には、腐食試験後の極板伸びが、従来例2を100としたときに対して、62〜70の小さな割合となり、この極板の伸びを十分に防止できることが確認できた。しかしながら、直径とシート厚の比率が10となる参考例10の場合や、この直径とシート厚の比率が0.2となる参考例11の場合には、腐食試験後の極板伸びが97〜98の割合となり、従来例と大差なかった。この結果、小径圧延ロール3、3の直径は、圧延直前の鉛シート1のシート厚との比率が0.5〜5の範囲内とする必要があることが分かった。   According to Table 4, in the case of Examples 12 to 15 in which the ratio of the diameter to the sheet thickness is 5 to 0.5, the electrode plate elongation after the corrosion test is 100 times that of the conventional example 2. Thus, a small ratio of 62 to 70 was confirmed, and it was confirmed that the elongation of the electrode plate could be sufficiently prevented. However, in the case of Reference Example 10 in which the ratio of the diameter to the sheet thickness is 10 or in Reference Example 11 in which the ratio of the diameter to the sheet thickness is 0.2, the electrode plate elongation after the corrosion test is 97 to 97%. The ratio was 98, which was not significantly different from the conventional example. As a result, it was found that the diameters of the small-diameter rolling rolls 3 and 3 need to be within a range of 0.5 to 5 with respect to the sheet thickness of the lead sheet 1 immediately before rolling.

なお、展開時の破断率については、実施例12〜15だけでなく、参考例10〜11の場合や従来例3の場合にも、従来例2を100としたときに対して、95〜101の割合となり、従来と大差なく十分に展開加工に耐えうることが確認できた。   In addition, about the fracture | rupture rate at the time of expansion | deployment, in the case of not only Examples 12-15 but the case of Reference Examples 10-11 or the prior art example 3, when the prior art example 2 is set to 100, it is 95-101. Thus, it was confirmed that it could withstand the unfolding process without much difference from the conventional one.

〔比較例5〕
本実施例では、Pb−0.06質量%Ca−1.3質量%Sn合金からなるスラブ鋳造体を用いたが、カルシウム(Ca)の含有率は、0.04質量%以上、0.09質量%以下の範囲、錫(Sn)の含有率は0.5質量%以上、2.4質量%以下の範囲のスラブ鋳造体を用いた場合についても、上記と同様の効果が得られた。
[Comparative Example 5]
In this example, a slab casting made of a Pb-0.06 mass% Ca-1.3 mass% Sn alloy was used, but the calcium (Ca) content was 0.04 mass% or more, 0.09 mass%. The same effects as described above were obtained even when a slab cast body having a mass% or less range and a tin (Sn) content of 0.5 mass% or more and 2.4 mass% or less was used.

また、このスラブ鋳造体の鋳造鉛シート1aのシート厚についても、4mm以上、15mm以下の範囲であれば、本発明の効果が確認できた。   Moreover, if the thickness of the cast lead sheet 1a of this slab cast body is also in the range of 4 mm or more and 15 mm or less, the effect of the present invention was confirmed.

さらに、図3に示したプラネタリーミル4を使用した場合でも、本発明の効果が確認できた。   Furthermore, even when the planetary mill 4 shown in FIG. 3 was used, the effect of the present invention could be confirmed.

本発明の一実施形態を示すものであって、小径圧延ロールと大径圧延ロールを用いた連続圧延方式による鉛シートの圧延工程を示す側面図である。1 is a side view showing a rolling process of a lead sheet by a continuous rolling method using a small diameter rolling roll and a large diameter rolling roll according to an embodiment of the present invention. 本発明の一実施形態を示すものであって、連続圧延された鉛シートの部分拡大断面正面図である。1 is a partial enlarged cross-sectional front view of a continuously rolled lead sheet according to an embodiment of the present invention. 本発明の一実施形態を示すものであって、プラネタリーミルと大径圧延ロールを用いた連続圧延方式による鉛シートの圧延工程を示す側面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view showing a rolling process of a lead sheet by a continuous rolling method using a planetary mill and a large diameter rolling roll, showing an embodiment of the present invention. 従来例を示すものであって、大径圧延ロールのみを用いた連続圧延方式による鉛シートの圧延工程を示す側面図である。It is a side view which shows a prior art example and shows the rolling process of the lead sheet by the continuous rolling system using only a large diameter rolling roll. 従来例を示すものであって、連続圧延された鉛シートの部分拡大断面正面図である。It is a partial expanded sectional front view of the lead sheet which showed the prior art example and was rolled continuously.

1 鉛シート
2 大径圧延ロール
3 小径圧延ロール
4 プラネタリーミル
1 Lead Sheet 2 Large Diameter Roll 3 Small Diameter Roll 4 Planetary Mill

Claims (2)

鉛又は鉛合金からなるスラブ鋳造体の鉛シートを多段の圧延ロールで段階的に圧延して単一の圧延シートを得る第一の工程と、前記圧延シートを加工する第二の工程とを備える、鉛蓄電池用極板集電体の製造方法において、前記鉛シートは、カルシウム(Ca)の含有率が0.04質量%以上、0.09質量%以下、錫(Sn)の含有率が0.5質量%以上、2.4質量%以下であるとともに、前記圧延シートの表層部に当たる部分の結晶組織が前記圧延シートの深層部に当たる部分の結晶組織よりも微細であり、前記第一の工程は、小圧下率の圧延を繰り返すものであり、前記第一の工程を開始する際の鉛シート1のシート厚である圧下開始シート厚は、元の鋳造鉛シート1aのシート厚に対して80%以上であり、鉛圧延シートが元のスラブ鋳造体のシート厚に対して50%の厚さに圧延されるまでに、1組の圧延ロールによって3%以下の圧下率で圧延される圧延工程を4段階以上含むことを特徴とする鉛蓄電池用極板集電体の製造方法。A first step of obtaining a single rolled sheet by rolling a lead sheet of a slab cast body made of lead or a lead alloy stepwise with a multi-stage rolling roll, and a second step of processing the rolled sheet In the method for producing a lead-acid battery current collector, the lead sheet has a calcium (Ca) content of 0.04% by mass or more and 0.09% by mass or less, and a tin (Sn) content of 0. The crystal structure of the portion corresponding to the surface layer portion of the rolled sheet is finer than the crystal structure of the portion corresponding to the deep layer portion of the rolled sheet, and the first step Is to repeat rolling at a small rolling reduction, and the rolling start sheet thickness, which is the sheet thickness of the lead sheet 1 when starting the first step, is 80% of the sheet thickness of the original cast lead sheet 1a. %, The lead rolled sheet is Lead comprising at least four stages of rolling processes that are rolled at a rolling reduction of 3% or less by a set of rolling rolls until being rolled to a thickness of 50% with respect to the sheet thickness of the cast body A method for producing an electrode plate current collector for a storage battery. 前記3%以下の圧下率で圧延される圧延工程で用いる1組の圧延ロールの直径φが、当該圧延の直前の鉛シートのシート厚dに対してThe diameter φ of a set of rolling rolls used in a rolling process that is rolled at a rolling reduction of 3% or less is based on the sheet thickness d of the lead sheet immediately before the rolling.
0.5d≦φ≦5d  0.5d ≦ φ ≦ 5d
の範囲内であることを特徴とする、請求項1に記載の鉛蓄電池用極板集電体の製造方法。2. The method for producing an electrode plate current collector for a lead storage battery according to claim 1, wherein the current collector is within the above range.
JP2005109860A 2005-04-06 2005-04-06 Method for producing electrode plate current collector for lead acid battery Expired - Fee Related JP4852869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005109860A JP4852869B2 (en) 2005-04-06 2005-04-06 Method for producing electrode plate current collector for lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005109860A JP4852869B2 (en) 2005-04-06 2005-04-06 Method for producing electrode plate current collector for lead acid battery

Publications (3)

Publication Number Publication Date
JP2006294296A JP2006294296A (en) 2006-10-26
JP2006294296A5 JP2006294296A5 (en) 2008-05-22
JP4852869B2 true JP4852869B2 (en) 2012-01-11

Family

ID=37414652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005109860A Expired - Fee Related JP4852869B2 (en) 2005-04-06 2005-04-06 Method for producing electrode plate current collector for lead acid battery

Country Status (1)

Country Link
JP (1) JP4852869B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5207708B2 (en) * 2007-11-05 2013-06-12 古河電池株式会社 Method for producing lead-based alloy substrate for lead battery
JP5322423B2 (en) * 2007-11-05 2013-10-23 古河電池株式会社 Method for producing lead-based alloy substrate for lead battery
US10084209B2 (en) 2013-10-15 2018-09-25 Gs Yuasa International Ltd. Valve regulated lead-acid battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115524A (en) * 1995-10-19 1997-05-02 Toyota Motor Corp Plate grid for lead-acid battery and manufacture thereof
JP4066496B2 (en) * 1998-03-13 2008-03-26 松下電器産業株式会社 Manufacturing method of electrode plate for lead acid battery and lead acid battery using the electrode plate
JP2004031041A (en) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd Grid for lead-acid battery
JP2004311110A (en) * 2003-04-03 2004-11-04 Japan Storage Battery Co Ltd Method for manufacturing storage battery grid and storage battery
JP4929558B2 (en) * 2003-08-08 2012-05-09 株式会社Gsユアサ Method for manufacturing lead-acid battery grid

Also Published As

Publication number Publication date
JP2006294296A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
EP2124274B1 (en) Reformed battery grids
JP4852869B2 (en) Method for producing electrode plate current collector for lead acid battery
JP4611733B2 (en) Method for producing lead or lead alloy electrode plate grid for lead acid battery and lead acid battery
JP2006294296A5 (en)
US20030183312A1 (en) Expanded grid
JP4929558B2 (en) Method for manufacturing lead-acid battery grid
KR20030014247A (en) Perforated current collectors for storage batteries and electrochemical cells, having improved resistance to corrosion
JP3182856B2 (en) Manufacturing method of electrode plate for lead-acid battery
JP4288730B2 (en) Lead storage battery manufacturing method and lead storage battery grid manufacturing apparatus
JP5137371B2 (en) Rolled lead alloy sheet for expanded positive grid and lead-acid battery
JP5313633B2 (en) Manufacturing method of lead acid battery substrate
JP2004311110A (en) Method for manufacturing storage battery grid and storage battery
JPH0146995B2 (en)
JP4092816B2 (en) Lattice body for lead acid battery and method for manufacturing the same
JP4686810B2 (en) Lead acid battery
JP4876328B2 (en) Battery grid manufacturing equipment for storage batteries
JP4579514B2 (en) Manufacturing method of grid substrate for lead acid battery
JP4894105B2 (en) Lead acid battery
JPH1154126A (en) Lattice for lead-acid battery
JP4069674B2 (en) Manufacturing method of expanded grid for lead-acid battery
JP2004186013A (en) Electrode collector, its manufacturing method and sealed lead-acid battery
JP2005056621A (en) Manufacturing method of lattice for lead acid storage battery, and lead acid storage battery
JPH10321236A (en) Lead-acid battery
JP2002100365A (en) Rolling lead alloy sheet for storage battery and lead storage battery using it
JP2004311296A (en) Manufacturing method of lattice for storage battery, and storage battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees