JP4069674B2 - Manufacturing method of expanded grid for lead-acid battery - Google Patents

Manufacturing method of expanded grid for lead-acid battery Download PDF

Info

Publication number
JP4069674B2
JP4069674B2 JP2002145834A JP2002145834A JP4069674B2 JP 4069674 B2 JP4069674 B2 JP 4069674B2 JP 2002145834 A JP2002145834 A JP 2002145834A JP 2002145834 A JP2002145834 A JP 2002145834A JP 4069674 B2 JP4069674 B2 JP 4069674B2
Authority
JP
Japan
Prior art keywords
lead
blade
alloy sheet
expanded
lead alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002145834A
Other languages
Japanese (ja)
Other versions
JP2003338287A (en
Inventor
正義 結城
利弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002145834A priority Critical patent/JP4069674B2/en
Publication of JP2003338287A publication Critical patent/JP2003338287A/en
Application granted granted Critical
Publication of JP4069674B2 publication Critical patent/JP4069674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は鉛蓄電池用エキスパンド格子体の製造法に関するものである。
【0002】
【従来の技術】
鉛蓄電池の格子体は生産性を向上させるため、溶融鉛合金を鋳型に流し込んで格子体とする鋳造方式から鉛あるいは鉛合金を圧延などで薄型シートに加工し、このシートにエキスパンド加工を施すエキスパンド加工方式が広く用いられるようになってきている。
【0003】
このエキスパンド加工としてレシプロ運動するダイスカッターを用いて鉛合金シートの幅方向の中央部に非展開部9を残し両側端にスリットを形成すると同時に、スリットで囲まれた線条部を展開伸張することにより格子網目を形成するいわゆるレシプロエキスパンド方法がある。
【0004】
このダイスカッター1は図4に示すように、その先端が略V字形状の加工刃A1〜An(但しnは自然数とする)が列状に配置されている。加工刃A1〜Anの各側面2は隣接する側面2a,側面2b,側面2c…から順次階段状に形成しており、この段差寸法が線条部の幅寸法に相当する。
【0005】
ここでダイスカッター1の鉛合金シート入材側の側端に配置された加工刃A(以降、第1刃という)は図4に示したように鉛合金シート3の側端に形成されるスリット4に対応する。このスリット4より外側の線条部5は図5に示すようにスリットを展開伸張した時に格子の辺に対応するため、台形状に形成される。そして第2刃以降は菱形の網目6を形成するために網目6の辺7,7aに対応して先端をV字形に形成する。
【0006】
従来は第2刃以降のダイス刃の刃先角度(α)についてはいずれも同一とし、第2刃以降のダイス刃形状を同一とすることが常識とされていた。ところが、このようなダイスカッターでエキスパンド加工を行った場合、エキスパンド網目の一部が変形して部分的に変形部8ができることによってエキスパンド網目の展開寸法がばらつき、結果として極板寸法がばらついて極板群組立工程での不具合を発生させる原因となっていた。特に、極板高さがばらついて規定値よりも低くなった場合には、極板耳部を集合溶接するストラップ製造過程において、ストラップ中に包含される耳長さが規定値よりも少なくなり、結果として耳部の溶接強度が低下するといった問題がある。
【0007】
さらに近年、蓄電池の軽量化を目的として鉛合金シートを薄肉化する傾向にある。さらに耐食性向上を目的に鉛合金中の錫濃度を1.0質量%以上とする場合がある。このような1.0質量%以上の錫を含む圧延鉛シートはシート素材自体の耐食性には優れるものの、伸び量が低下することによって変形部8にクラックが発生しやすくなる。錫量が1.0質量%未満の場合には前記したような変形によってはクラックは発生しないものの、錫量が1.0質量%を越えて高くなると変形によってクラックが発生する。このようなクラックが発生したエキスパンド格子体を正極として用いた場合に、この変形した部分から腐食が進行し、蓄電池寿命を低下させてしまうという課題があった。
【0008】
【発明が解決しようとする課題】
本発明は、前記したレシプロエキスパンド方式による蓄電池用格子体の製造法において、エキスパンド網目の部分的な変形による格子寸法のばらつきを抑制するとともに、部分的な変形とこれによってもたらされる格子体のクラックの発生を抑制することによって、寿命特性に優れたエキスパンド格子体を得ることを目的とする。
【0009】
前記した課題を解決するために、本発明の請求項1記載に係る発明は、複数の加工刃を列状に配置したダイスカッターを鉛合金シートの片面から他方の面へ繰返し押し入れてこの鉛合金シート上に千鳥状のスリットを形成するとともに、前記スリットで囲まれた線条部を前記加工刃の先端によって展開伸張するいわゆるレシプロエキスパンドによる鉛蓄電池用格子体の製造法であって、前記ダイスカッターは前記鉛蓄電池合金シートの側端に位置するスリットを形成するための第1刃と前記側端に位置するスリットから順次鉛合金シートの内側方向にスリットを形成するために配置された第2刃ないし第N刃(但しNは3以上の自然数とする)を備え、前記第1刃を除く任意のk番目の第k刃(但し2≦k≦N−1とする)の刃先角度αと任意のk番目より1番多い(k+1)番目の刃先角度αk+1においてα<αk+1としたことを特徴とするものである。
【0010】
さらに本発明の請求項2記載に係る発明は、請求項1で用いる鉛合金シートを少なくとも1.0質量%以上の錫を含む鉛−カルシウム−錫合金で構成することを示すものである。
【0011】
【発明の実施の形態】
本発明の目的は、各請求項に記載した構成を実施の形態とすることによって達成できるのであるが、以下には実施の形態を図を用いて具体的かつ詳細に説明する。
【0012】
図1は本発明に用いるレシプロエキスパンド加工に用いるダイスカッター10を示す正面図である。ダイスカッター10は直列に配置された加工刃B1ないしB18で構成される。図1はダイスカッター10が18個の加工刃Bで構成された例を示しているが、加工刃の数は所望する格子寸法と網目寸法に応じて適宜決定するものである。
【0013】
鉛合金シートの入材側の第1刃であるB1は台形状を有している点で、従来構成と変わるものではない。本発明においては第2刃であるB2以降の加工刃の刃先角度を入材側から出材側にいくにしたがって順次大きく構成する。すなわち、第1刃を除く任意のk番目の第k刃(但し2≦k≦N−1とする)の刃先角度αkと任意のk番目より1番多い(k+1)番目の刃先角度αk+1において、αk<αk+1とすることを特徴条件とするものである。
【0014】
このような構成のダイスカッター10を用いて鉛合金シートをレシプロエキスパンド加工することにより、図5に示したように従来発生していたエキスパンド網目の局部的な変形部8を発生させることなく、展開状態を図2に示したような均一な状態とすることによって、網目展開寸法のばらつきを抑制し、極板の寸法精度を向上することができる。
【0015】
ここで鉛合金シートとして耐食性向上を目的として錫含有量を1.0質量%以上に設定した鉛−カルシウム−錫合金シートを用いることができる。錫含有量が1.0質量%以上とした鉛−カルシウム−錫合金を用い、従来のダイスカッターによってレシプロエキスパンド加工を行った場合に、変形部8にクラックが発生し、このようなクラックが発生したエキスパンド格子体を正極に用いた場合、クラックが優先的に腐食を受けて、電池寿命が極端に短くなるという課題があった。本発明においてはクラックの発生要因となるエキスパンド網目の変形自体を抑制することができるので、蓄電池の短寿命を抑制することができる。但し、錫含有量が2.2質量%以上では鉛合金シートの伸び量は低下し、エキスパンド加工には適切ではない。
【0016】
【実施例】
本発明と比較例による鉛蓄電池用エキスパンド格子体製造法によって正極用のエキスパンド格子体と、これを用いた正極板および鉛蓄電池を作製した。
【0017】
(実施例1)
前記の本発明の実施の形態にしたがって正極用のエキスパンド格子体と、従来例によってエキスパンド格子体を製造した。なお鉛合金シートとして組成がPb−0.06質量%Ca−1.40%質量Snで、厚み0.9mm、エキスパンド加工直前の引張強度は70N/mm2のもの、さらに組成がPb−0.06質量%Ca−0.60%質量Snで厚み0.9mm、エキスパンド加工直前の引張強度が37N/mm2のものを用いた。
【0018】
本発明例において、鉛合金シートの入材側から第2刃の刃先角度α2を86°とし、以降出材側に順次2°ずつ刃先角度を増加させ、最終の第18刃の刃先角度α18を118°とした。
【0019】
比較例においても本発明例と同様、18個の加工刃で構成されるダイスカッターを用いるものの、鉛合金シートの入材側からの第2刃から最終の第18刃までその刃先角度βを全て102°で一定とした。
【0020】
これら本発明例および比較例のダイスカッターを用いてエキスパンド加工してそれぞれ10000枚分の格子体を製造し、これら格子体のエキスパンド加工幅を120mmに設定した時のこの加工幅の標準偏差をばらつきとして測定し、その結果を表1に示す。
【0021】
【表1】

Figure 0004069674
【0022】
表1に示したように、本発明の構成によれば、鉛合金シートの組成によらず、エキスパンド加工幅のばらつきを抑制できることがわかる。また、本発明例によれば比較例で発生していたような変形部8も発生していなかった。このような寸法ばらつきの抑制により、寸法精度に優れた極板を得ることができ、極板群製造工程における生産性を低下させることがない。
【0023】
(実施例2)
前記の実施例1で作製した本発明例と従来例のエキスパンド網目に活物質ペーストを充填し、切断加工して単一極板とした後、熟成乾燥を行い、未化成の正極板とした。なお、鉛合金シート組成として実施例1のPb−0.06質量%Ca−1.40質量%SnおよびPb−0.06質量%Ca−0.60%質量Snに加えて、Pb−0.06質量%Ca−0.80質量%Sn、Pb−0.06質量%Ca−1.00質量%SnおよびPb−0.06質量%Ca−1.20質量%Snのものを用い、それぞれ本発明例および比較例により正極板を作製した。
【0024】
これらの正極板7枚と定法による負極板7枚とを組合せて極板群を構成し、この極板群を用いて80D26形の自動車用鉛蓄電池(以下、電池という)を作製し、これらの電池について寿命試験を行った。寿命試験としてはJIS−D5301で規定されている軽負荷試験を75℃気相雰囲気で行った。その結果を図3に示す。
【0025】
図3に示した結果から本発明例によれば寿命サイクルが従来例より向上していることがわかる。これらの寿命試験終了後の電池について分解して調査し、正極格子体の状態について観察した。
【0026】
その結果、比較例の製造法によるものはエキスパンド網目部で腐食断線が顕著に発生していた。特にその傾向は鉛合金シート中の錫濃度に影響され、錫濃度が1.0質量%を越えて高くしたものに一層顕著に腐食断線が発生していた。一方、本発明例によるものは錫濃度が1.0質量%を越えた領域でも安定した寿命特性を有していた。
【0027】
【発明の効果】
このように本発明のエキスパンド格子体の製造法によれば、エキスパンド展開寸法のばらつきを低減させて寸法精度の高い極板を供給することが可能となる。さらにエキスパンド網目部の部分的な変形と、これによる腐食を抑制することによって、この格子体を正極に用いた時の寿命特性を改善できることから、工業上、極めて有用である。
【図面の簡単な説明】
【図1】 本発明のエキスパンド格子体製造法に用いるダイスカッターとエキスパンド網目を示す説明図
【図2】 本発明の製造法によるエキスパンド網目の部分拡大正面図
【図3】 本発明例および比較例の製造法による格子体を用いた鉛蓄電池の寿命サイクル数を示す図
【図4】 従来のダイスカッターを用いてエキスパンド網目を形成する状態を示した説明図
【図5】 従来のエキスパンド網目の部分拡大正面図
【符号の説明】
1〜An,B1〜B18 加工刃
1,10 ダイスカッター
2,2a,2b,2c 側面
3 鉛合金シート
4 スリット
5 線条部
6 網目
7,7a 辺
8 変形部
9 非展開部 [0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an expanded lattice for a lead storage battery.
[0002]
[Prior art]
In order to improve productivity, lead storage battery grids are expanded by casting molten lead alloy into a mold and casting lead or lead alloy into a thin sheet by rolling, etc., and then expanding the sheet. Processing methods are becoming widely used.
[0003]
As a expanding process, a reciprocating die cutter is used to leave a non-expanded portion 9 in the center in the width direction of the lead alloy sheet , and to form slits on both side ends , and at the same time, expand and stretch the linear portions surrounded by the slits. There is a so-called reciprocating expanding method for forming a lattice network.
[0004]
The die cutter 1, as shown in FIG. 4, the tip (the where n is a natural number) machining blade A 1 to A n of the substantially V-shape is arranged in a row. Each side 2 of the processing blade A 1 to A n are adjacent sides 2a, side 2b, forms sequentially stepwise from the side 2c ..., the step size corresponds to the width of the linear portions.
[0005]
Wherein the die cutter 1 of lead alloy sheet Irizai side of the machining blade A 1 disposed at both side ends (hereinafter, referred to as a first blade) is formed on both side ends of the lead alloy sheet 3 as shown in FIG. 4 Corresponds to the slit 4 to be made. As shown in FIG. 5, the linear portion 5 outside the slit 4 is formed in a trapezoidal shape so as to correspond to the side of the lattice when the slit is expanded and stretched. In order to form the diamond-shaped mesh 6 after the second blade, the tip is formed in a V shape corresponding to the sides 7 and 7a of the mesh 6.
[0006]
Conventionally, it has been common knowledge that the edge angles (α) of the die blades after the second blade are the same, and the die blade shapes after the second blade are the same. However, when the expansion process is performed with such a die cutter, a part of the expanded mesh is deformed and a deformed portion 8 is partially formed, so that the expanded dimension of the expanded mesh varies, resulting in variations in the electrode plate dimensions. This was a cause of problems in the plate assembly process. In particular, when the pole plate height varies and is lower than the specified value, in the strap manufacturing process of collective welding of the electrode plate ears, the ear length included in the strap is less than the specified value, As a result, there exists a problem that the welding strength of an ear | edge part falls.
[0007]
Furthermore, in recent years, the lead alloy sheet tends to be thinned for the purpose of reducing the weight of the storage battery. Furthermore, the tin concentration in the lead alloy may be 1.0% by mass or more for the purpose of improving the corrosion resistance. Although such a rolled lead sheet containing 1.0 mass% or more of tin is excellent in the corrosion resistance of the sheet material itself, cracks are likely to occur in the deformed portion 8 due to a decrease in elongation. When the tin content is less than 1.0% by mass, cracks do not occur due to the deformation as described above. However, when the tin content exceeds 1.0% by mass, cracks occur due to the deformation. When the expanded lattice body in which such cracks are generated is used as a positive electrode, there is a problem in that corrosion proceeds from the deformed portion and the life of the storage battery is reduced.
[0008]
[Problems to be solved by the invention]
The present invention provides a method for manufacturing a grid for a storage battery using the reciprocating expand method described above, and suppresses variations in grid dimensions due to partial deformation of the expanded mesh, and also prevents partial deformation and cracks in the grid caused by the deformation. An object of the present invention is to obtain an expanded lattice body having excellent life characteristics by suppressing the generation.
[0009]
In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention is the lead alloy obtained by repeatedly pushing a die cutter having a plurality of processing blades arranged in a row from one side of the lead alloy sheet to the other side. A method for producing a grid for a lead storage battery using a so-called reciprocating expand in which a staggered slit is formed on a sheet, and a linear portion surrounded by the slit is expanded and extended by a tip of the processing blade, the die cutter the is arranged to form a slit in the inner direction of the sequential lead alloy sheet from a slit located in the first blade and the both side edges to form a slit located on both side ends of the lead-acid battery alloys sheet with 2 blades to N-th blade (where N is a natural number of 3 or more), the cutting edge angle α of any k-th k blade except for said first blade (where a 2 ≦ k ≦ N-1) And it is characterized in any flies more than k th (k + 1) -th alpha k in edge angle alpha k + 1 <it was alpha k + 1 and.
[0010]
The invention according to claim 2 of the present invention shows that the lead alloy sheet used in claim 1 is composed of a lead-calcium-tin alloy containing at least 1.0% by mass or more of tin.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The object of the present invention can be achieved by employing the configuration described in each claim as an embodiment. Hereinafter, the embodiment will be described specifically and in detail with reference to the drawings.
[0012]
FIG. 1 is a front view showing a die cutter 10 used for reciprocating expanding used in the present invention. The die cutter 10 is composed of processing blades B 1 to B 18 arranged in series. FIG. 1 shows an example in which the die cutter 10 is composed of 18 processing blades B, but the number of processing blades is appropriately determined according to the desired lattice size and mesh size.
[0013]
B 1 that is the first blade on the input side of the lead alloy sheet has a trapezoidal shape, and is not different from the conventional configuration. In the present invention sequentially increased constituting toward the exit material side cutting edge angle of the B 2 subsequent processing blade is a second blade from Irizai side. That is, the blade edge angle α k of any k-th k-th blade (except 2 ≦ k ≦ N−1) excluding the first blade and the (k + 1) -th blade edge angle α k that is the most larger than the arbitrary k-th blade. In +1 , α kk + 1 is set as a feature condition.
[0014]
By reciprocating and expanding the lead alloy sheet using the die cutter 10 having such a configuration, as shown in FIG. 5, it is possible to develop without generating the locally deformed portion 8 of the expanded mesh that has conventionally occurred. By making the state uniform as shown in FIG. 2, it is possible to suppress variation in the mesh development dimension and improve the dimensional accuracy of the electrode plate.
[0015]
Here, as the lead alloy sheet, a lead-calcium-tin alloy sheet having a tin content set to 1.0 mass% or more for the purpose of improving corrosion resistance can be used. When a lead-calcium-tin alloy with a tin content of 1.0 mass% or more is used and a reciprocating expansion process is performed with a conventional die cutter, a crack is generated in the deformed portion 8 and such a crack is generated. When the expanded lattice body was used for the positive electrode, there was a problem that the crack was preferentially corroded and the battery life was extremely shortened. In the present invention, since the deformation of the expanded mesh itself that causes cracks can be suppressed, the short life of the storage battery can be suppressed. However, if the tin content is 2.2% by mass or more, the elongation amount of the lead alloy sheet is lowered and is not suitable for the expanding process.
[0016]
【Example】
An expanded grid for a positive electrode, a positive electrode plate and a lead-acid battery using the same were manufactured by the method for manufacturing an expanded grid for a lead storage battery according to the present invention and a comparative example.
[0017]
Example 1
According to the above-described embodiment of the present invention, an expanded lattice for positive electrode and an expanded lattice by a conventional example were manufactured. As a lead alloy sheet, the composition is Pb-0.06 mass% Ca-1.40% mass Sn, the thickness is 0.9 mm, the tensile strength just before the expanding process is 70 N / mm 2 , and the composition is Pb-0. A material having a mass of 0.9 mm and a tensile strength of 37 N / mm 2 immediately before the expansion process was used.
[0018]
In the present invention example, the blade edge angle α 2 of the second blade is set to 86 ° from the input side of the lead alloy sheet, and thereafter the blade edge angle is gradually increased by 2 ° toward the output material side, and the blade edge angle α of the final 18th blade is increased. 18 was 118 °.
[0019]
In the comparative example, as in the present invention example, a die cutter composed of 18 machining blades is used, but all the blade edge angles β from the second blade from the lead alloy sheet input side to the final 18th blade are all included. Constant at 102 °.
[0020]
Using these dice cutters according to the present invention and comparative examples, expand processing is performed to produce 10000 sheets of grids, and the standard deviation of the processing width varies when the expanded width of these grids is set to 120 mm. The results are shown in Table 1.
[0021]
[Table 1]
Figure 0004069674
[0022]
As shown in Table 1, according to the configuration of the present invention, it can be seen that the variation in the expanded width can be suppressed regardless of the composition of the lead alloy sheet. Further, according to the example of the present invention, the deformed portion 8 as occurred in the comparative example was not generated. By suppressing such dimensional variations, an electrode plate with excellent dimensional accuracy can be obtained, and productivity in the electrode plate group manufacturing process is not reduced.
[0023]
(Example 2)
The active material paste was filled in the expanded mesh of the present invention example and the conventional example prepared in Example 1 and cut into a single electrode plate, followed by aging and drying to obtain an unformed positive electrode plate. In addition to Pb-0.06 mass% Ca-1.40 mass% Sn and Pb-0.06 mass% Ca-0.60 mass% Sn of Example 1 as a lead alloy sheet composition, Pb-0. Using 06 mass% Ca-0.80 mass% Sn, Pb-0.06 mass% Ca-1.00 mass% Sn, and Pb-0.06 mass% Ca-1.20 mass% Sn, respectively. A positive electrode plate was prepared according to the invention example and the comparative example.
[0024]
An electrode plate group is configured by combining these seven positive electrode plates and seven negative electrode plates by a regular method, and an 80D26 type lead acid battery for automobiles (hereinafter referred to as a battery) is produced using these electrode plate groups. The battery was subjected to a life test. As a life test, a light load test defined in JIS-D5301 was performed in a gas phase atmosphere at 75 ° C. The result is shown in FIG.
[0025]
From the results shown in FIG. 3, it can be seen that according to the example of the present invention, the life cycle is improved over the conventional example. The batteries after the end of the life test were disassembled and investigated, and the state of the positive electrode grid was observed.
[0026]
As a result, in the case of the production method of the comparative example, corrosion breakage occurred remarkably in the expanded mesh part. In particular, the tendency was influenced by the tin concentration in the lead alloy sheet, and corrosion breakage occurred more significantly in the case where the tin concentration was higher than 1.0 mass%. On the other hand, the sample according to the present invention had stable life characteristics even in the region where the tin concentration exceeded 1.0 mass%.
[0027]
【The invention's effect】
Thus, according to the method for manufacturing an expanded lattice body of the present invention, it is possible to supply an electrode plate with high dimensional accuracy by reducing the variation in expanded dimensions. Further, by suppressing the partial deformation of the expanded mesh portion and the corrosion caused thereby, the life characteristics when this lattice body is used for the positive electrode can be improved, and thus it is extremely useful industrially.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a die cutter and an expanded mesh used in the expanded grid manufacturing method of the present invention. FIG. 2 is a partially enlarged front view of the expanded mesh produced by the manufacturing method of the present invention. Fig. 4 is a diagram showing the life cycle number of a lead-acid battery using a grid according to the manufacturing method of Fig. 4. Fig. 4 is an explanatory diagram showing a state in which an expanded mesh is formed using a conventional die cutter. Fig. 5 is a portion of a conventional expanded mesh. Enlarged front view [Explanation of symbols]
A 1 ~A n, B 1 ~B 18 processing blade 1, 10 die cutter 2, 2a, 2b, 2c side 3 lead alloy sheet 4 slit 5 linear portions 6 mesh 7,7a sides 8 deformable portion
9 Non-deployment part

Claims (2)

複数の加工刃を列状に配置したダイスカッターを鉛合金シートの片面から他方の面へ繰返し押し入れてこの鉛合金シート上に千鳥状のスリットを形成するとともに、前記スリットで囲まれた線条部を前記加工刃の先端によって展開伸張するいわゆるレシプロエキスパンドによる鉛蓄電池用格子体の製造法であって、前記ダイスカッターは前記鉛合金シートの側端に位置するスリットを形成するための第1刃と、前記側端に位置するスリットから順次鉛合金シートの内側方向にスリットを形成するために配置された第2刃ないし第N刃(但しNは3以上の自然数とする)を備え、前記第1刃を除く任意のk番目の第k刃(但し2≦k≦N−1とする)の刃先角度αと任意のk番目より1番多い(k+1)番目の刃先角度αk+1においてα<αk+1としたことを特徴とする鉛蓄電池用エキスパンド格子体の製造法。A die cutter having a plurality of processing blades arranged in a row is repeatedly pushed from one side of the lead alloy sheet to the other side to form a staggered slit on the lead alloy sheet, and the linear portion surrounded by the slit the to a method of manufacturing a grid for a lead storage battery according to the so-called reciprocating expand to deploy stretched by the tip of the machining blade, the die cutter first cutting edge for forming a slit located on both side ends of the lead alloy sheet When the a second blade to N-th blade arranged to form a slit in the inner direction of the sequential lead alloy sheet from a slit located at both side ends (where N is a natural number of 3 or more), the in any of the k-th k-th blade (where 2 ≦ k ≦ a N-1) included angle alpha k and flies more than any of the k-th (k + 1) th edge angle alpha k + 1, except for the first blade k <α k + 1 and to the preparation of expanded grid for a lead-acid battery, characterized in that the. 前記鉛合金シートは少なくとも1.0質量%以上の錫を含む鉛−カルシウム−錫合金で構成したものであることを特徴とする請求項1に記載の鉛蓄電池用エキスパンド格子体の製造法。2. The method for producing an expanded lattice for a lead-acid battery according to claim 1, wherein the lead alloy sheet is composed of a lead-calcium-tin alloy containing at least 1.0% by mass or more of tin.
JP2002145834A 2002-05-21 2002-05-21 Manufacturing method of expanded grid for lead-acid battery Expired - Lifetime JP4069674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002145834A JP4069674B2 (en) 2002-05-21 2002-05-21 Manufacturing method of expanded grid for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002145834A JP4069674B2 (en) 2002-05-21 2002-05-21 Manufacturing method of expanded grid for lead-acid battery

Publications (2)

Publication Number Publication Date
JP2003338287A JP2003338287A (en) 2003-11-28
JP4069674B2 true JP4069674B2 (en) 2008-04-02

Family

ID=29704994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145834A Expired - Lifetime JP4069674B2 (en) 2002-05-21 2002-05-21 Manufacturing method of expanded grid for lead-acid battery

Country Status (1)

Country Link
JP (1) JP4069674B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7478877B1 (en) 2023-03-29 2024-05-07 古河電池株式会社 Flooded lead-acid battery

Also Published As

Publication number Publication date
JP2003338287A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
JP2010520607A (en) Battery negative grid
JP4288730B2 (en) Lead storage battery manufacturing method and lead storage battery grid manufacturing apparatus
JP4069674B2 (en) Manufacturing method of expanded grid for lead-acid battery
JP4062817B2 (en) Lead acid battery and manufacturing method thereof
JP4385441B2 (en) Lead acid battery
JP4239303B2 (en) Lead acid battery
JP4092816B2 (en) Lattice body for lead acid battery and method for manufacturing the same
JP4686810B2 (en) Lead acid battery
JP5092331B2 (en) Expanded grid for lead acid battery and lead acid battery
JP3398513B2 (en) Manufacturing type of expanded grid for lead-acid battery
JP4899239B2 (en) Method for producing expanded mesh sheet and method for producing lead-acid battery grid
JP4876328B2 (en) Battery grid manufacturing equipment for storage batteries
JP2004063313A (en) Manufacturing method of expanded meshes of net for battery current collector
JP4834912B2 (en) Manufacturing method of storage battery grid and manufacturing method of lead storage battery using storage battery grid manufactured by the manufacturing method
JP4380184B2 (en) Storage battery grid and lead storage battery using the same
JP4006888B2 (en) Manufacturing method of lead acid battery
JP4385557B2 (en) Expanded grid for battery and lead-acid battery using the same
JP4904632B2 (en) Lead acid battery
JP2006294296A5 (en)
JP4203634B2 (en) Manufacturing method of lead acid battery
JP4461697B2 (en) Cathode grid of lead-acid battery and lead-acid battery using the same
JP2004146179A (en) Lead acid storage battery
JPH11339812A (en) Lead-acid battery
JP2002100365A (en) Rolling lead alloy sheet for storage battery and lead storage battery using it
JPH1083820A (en) Manufacture of expanded grating for lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R151 Written notification of patent or utility model registration

Ref document number: 4069674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term