JP7478877B1 - Flooded lead-acid battery - Google Patents

Flooded lead-acid battery Download PDF

Info

Publication number
JP7478877B1
JP7478877B1 JP2023054154A JP2023054154A JP7478877B1 JP 7478877 B1 JP7478877 B1 JP 7478877B1 JP 2023054154 A JP2023054154 A JP 2023054154A JP 2023054154 A JP2023054154 A JP 2023054154A JP 7478877 B1 JP7478877 B1 JP 7478877B1
Authority
JP
Japan
Prior art keywords
negative electrode
plate
positive electrode
negative
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023054154A
Other languages
Japanese (ja)
Other versions
JP2024142131A (en
Inventor
和也 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2023054154A priority Critical patent/JP7478877B1/en
Priority to PCT/JP2023/039704 priority patent/WO2024202177A1/en
Application granted granted Critical
Publication of JP7478877B1 publication Critical patent/JP7478877B1/en
Publication of JP2024142131A publication Critical patent/JP2024142131A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】セパレータの諸設計や積層体を構成する極板の枚数を規定値から変更することなく、正極板にグロースが生じて湾曲した場合のセパレータの破損を防止する。【解決手段】負極板20の幅方向の一端部20aを固定した自重撓み試験における撓み量h[mm]、負極板20の固定されていない部分の幅方向の寸法L[mm]、負極板20の固定されていない部分の質量W[g]が、0.0009≦h/(L×W)≦0.0048を満たす。【選択図】図4[Problem] To prevent damage to a separator when growth occurs in a positive electrode plate and the plate curves, without changing the separator designs or the number of plates constituting a laminate from the specified values. [Solution] In a self-weight deflection test in which one end 20a in the width direction of a negative electrode plate 20 is fixed, the deflection amount h [mm], the dimension L [mm] in the width direction of the unfixed part of the negative electrode plate 20, and the mass W [g] of the unfixed part of the negative electrode plate 20 satisfy 0.0009≦h/(L×W)≦0.0048. [Selected Figure] Figure 4

Description

本発明は、液式鉛蓄電池に関する。 The present invention relates to a flooded lead-acid battery.

一般的な鉛蓄電池である液式鉛蓄電池は、セル室を有する電槽と、セル室に収納された極板群と、セル室に注入された電解液と、を備えている。極板群は、交互に配置された複数枚の正極板および負極板と、正極板と負極板との間に配置されたセパレータと、を備える積層体を有する。 A flooded lead-acid battery, which is a typical lead-acid battery, comprises a battery case with a cell chamber, a group of electrodes housed in the cell chamber, and an electrolyte injected into the cell chamber. The group of electrodes has a laminate that includes multiple positive and negative plates arranged alternately, and separators arranged between the positive and negative plates.

正極板は、格子状部を含む正極集電板と、格子状部に保持された正極合剤(正極活物質を含む合剤)と、を有し、格子状部の両板面に正極合剤からなる層が形成されている。負極板は、格子状部を含む負極集電板と、格子状部に保持された負極合剤(負極活物質を含む合剤)と、を有し、格子状部の両板面に負極合剤からなる層が形成されている。
正極板は、格子状部を含む正極集電板と、格子状部の電槽の上下方向の上側に突出する正極耳部と、格子状部に保持された正極合剤(正極活物質を含む合剤)と、を有し、負極板は、格子状部を含む負極集電板と、格子状部の電槽の上下方向の上側に突出する負極耳部と、格子状部に保持された負極合剤と、を有する。
The positive electrode plate has a positive electrode current collector including a lattice portion, a positive electrode mixture (a mixture including a positive electrode active material) held by the lattice portion, and a layer of the positive electrode mixture is formed on both plate surfaces of the lattice portion. The negative electrode plate has a negative electrode current collector including a lattice portion, and a negative electrode mixture (a mixture including a negative electrode active material) held by the lattice portion, and a layer of the negative electrode mixture is formed on both plate surfaces of the lattice portion.
The positive electrode plate has a positive electrode current collector including a lattice portion, a positive electrode ear protruding upward from the lattice portion in the vertical direction of the battery case, and a positive electrode mixture (a mixture containing a positive electrode active material) held by the lattice portion, and the negative electrode plate has a negative electrode current collector including a lattice portion, a negative electrode ear protruding upward from the lattice portion in the vertical direction of the battery case, and a negative electrode mixture held by the lattice portion.

正極耳部は、格子状部の幅方向(電槽の上下方向と積層体の積層方向の両方に垂直な方向に沿わせる方向)の中心から一方にずれた位置に配置され、負極耳部は、格子状部の幅方向の中心から他方にずれた位置に配置されている。極板群は、さらに、複数枚の正極板および負極板の耳部をそれぞれ連結する正極ストラップおよび負極ストラップを有する。電解液としては希硫酸が使用されている。このような液式鉛蓄電池は自動車用バッテリーなどとして広く使用されている。 The positive electrode ear is positioned in a position offset to one side from the center in the width direction of the grid portion (a direction perpendicular to both the up-and-down direction of the battery case and the stacking direction of the laminate), and the negative electrode ear is positioned in a position offset to the other side from the center in the width direction of the grid portion. The electrode plate group further has a positive electrode strap and a negative electrode strap that respectively connect the ears of the multiple positive and negative electrode plates. Dilute sulfuric acid is used as the electrolyte. Such flooded lead-acid batteries are widely used as automobile batteries, etc.

自動車用の鉛蓄電池では、多くの場合、正極集電板として、鉛合金製の圧延板を、エキスパンド法や打ち抜き法で加工したもの(エキスパンド加工品、打ち抜き加工品)を用いている。その理由は、この方法では集電板が連続的に生産できることから、鋳造法と比較して生産性とコスト面で優れるためである。
しかし、正極集電板が鉛合金製の圧延板からなるエキスパンド加工品および打ち抜き加工品の場合、正極板に、腐食による格子状部の伸び(いわゆる「グロース」)が生じることが知られている。グロースは温度が高い程進行することが知られている。グロースが生じると、正極板が湾曲して、セパレータに応力が掛かり、セパレータを破損させる可能性がある。特に、正極板の幅方向においてストラップで連結されていない側の角部は大きく湾曲しやすい。
In many cases, the positive electrode current collector plate used in lead-acid batteries for automobiles is a rolled plate made of a lead alloy that has been processed by the expanding or punching method (expanded product, punched product). This is because this method allows the current collector plate to be produced continuously, and is therefore superior in terms of productivity and cost compared to the casting method.
However, in the case of expanded and punched products in which the positive current collector plate is made of a rolled plate of a lead alloy, it is known that the positive plate undergoes expansion of the lattice-shaped portion due to corrosion (so-called "growth"). It is known that the higher the temperature, the more the growth progresses. When growth occurs, the positive plate bends, which puts stress on the separator, which may damage the separator. In particular, the corners of the positive plate on the side that is not connected by the strap in the width direction are likely to bend significantly.

そして、セパレータが破損すると、正極板が負極板と接触して、短絡が生じる可能性が高くなる。短絡が生じると、鉛蓄電池の容量が急激に低下して、早期寿命の要因となる。
上記理由による早期寿命を防止するために、セパレータの正極板側の面にリブを設けて、セパレータの破損を防止することが提案されている(例えば、特許文献1を参照)。特許文献1には、セパレータを平均分子量が150万~220万のポリエチレン製とし、ベースシートの厚さを0.10mm以上0.22mm以下、リブの高さを0.4mm以上にすることが記載されている。
If the separator is damaged, the positive and negative plates may come into contact with each other, causing a short circuit, which may lead to a rapid decrease in the capacity of the lead-acid battery and shorten its lifespan.
In order to prevent the early end of life due to the above reasons, it has been proposed to provide a rib on the surface of the separator facing the positive electrode plate to prevent the separator from being damaged (see, for example, Patent Document 1). Patent Document 1 describes that the separator is made of polyethylene with an average molecular weight of 1.5 million to 2.2 million, the thickness of the base sheet is 0.10 mm or more and 0.22 mm or less, and the height of the rib is 0.4 mm or more.

一方、自動車用鉛蓄電池では、決められたサイズの電槽内に極板群を収納する必要があるため、積層体の厚さには上限がある。また、鉛蓄電池の性能向上のためには、積層体を構成する極板の枚数を増やすことで電極反応面積を増やし、合剤の電解液の保持量や電極反応の効率を上げることが求められる。 On the other hand, in lead-acid batteries for automobiles, the plate group must be stored in a battery case of a fixed size, so there is an upper limit to the thickness of the laminate. Also, to improve the performance of lead-acid batteries, it is necessary to increase the number of plates that make up the laminate to increase the electrode reaction area, thereby increasing the amount of electrolyte held by the mixture and the efficiency of the electrode reaction.

特開2004-259522号公報JP 2004-259522 A

セパレータの厚さを薄くすれば、積層体を構成する極板の枚数を増やすことができるが、前述のように、正極板にグロースが生じて湾曲した場合には、セパレータが破損し易くなる。反対に、セパレータの厚さを厚くしたり高いリブを設けたりして、リブを含めたセパレータ全体を厚くすれば、セパレータは破損しにくくなるが、積層体を構成する極板の枚数を減少させることは、上述のように、電池性能の点では好ましくない。
本発明の課題は、セパレータの諸設計や積層体を構成する極板の枚数を規定値から変更することなく、正極板にグロースが生じて湾曲した場合のセパレータの破損を抑制することである。
If the thickness of the separator is reduced, the number of plates constituting the stack can be increased, but as mentioned above, if the positive plate is curved due to growth, the separator becomes more susceptible to damage. On the other hand, if the separator is made thicker or has high ribs to make the entire separator, including the ribs, thicker, the separator becomes less susceptible to damage, but as mentioned above, reducing the number of plates constituting the stack is not preferable in terms of battery performance.
An object of the present invention is to suppress damage to the separator when growth occurs in the positive electrode plate and the positive electrode plate is curved, without changing the various separator designs or the number of electrode plates constituting the laminate from the specified values.

本発明者等は、正極板にグロースが生じて湾曲した場合のセパレータの破損を抑制するための技術思想として、セパレータの諸設計や積層体を構成する極板の枚数ではなく、負極板の剛性に着目して、本発明を完成させた。 The inventors of the present invention completed this invention by focusing on the rigidity of the negative plate, rather than the various separator designs or the number of plates that make up the stack, as a technical concept for preventing separator damage when growth occurs in the positive plate and it curves.

前述した課題を解決するための本発明の第一態様は、以下の構成(1)~(3)を有する液式鉛蓄電池である。
(1)セル室を有する電槽と、前記セル室に収納された極板群と、前記セル室に注入された電解液と、を備える。前記極板群は、交互に配置された複数枚の正極板および負極板と、前記正極板と前記負極板との間に配置された合成樹脂製のセパレータと、を備える積層体を有する。前記正極板は、格子状部を含む正極集電板と、前記格子状部の前記電槽の上下方向の上側に突出する正極耳部と、前記格子状部に保持された正極合剤(正極活物質を含む合剤)と、を有する。前記負極板は、格子状部を含む負極集電板と、前記格子状部の前記電槽の上下方向の上側に突出する負極耳部と、前記格子状部に保持された負極合剤(負極活物質を含む合剤)と、を有する。前記正極耳部は、前記格子状部の幅方向(前記電槽の上下方向と前記積層体の積層方向の両方に垂直な方向に沿わせる方向)の中心から一方にずれた位置に配置され、前記負極耳部は、前記格子状部の幅方向の中心から他方にずれた位置に配置されている。前記極板群は、さらに、複数枚の前記正極板および前記負極板の耳部をそれぞれ連結する正極ストラップおよび負極ストラップを有する。
A first aspect of the present invention for solving the above-mentioned problems is a flooded lead-acid battery having the following configurations (1) to (3).
(1) A battery case having a cell chamber, a plate group housed in the cell chamber, and an electrolyte injected into the cell chamber. The plate group has a laminate including a plurality of alternatingly arranged positive and negative plates, and a synthetic resin separator arranged between the positive and negative plates. The positive plate has a positive current collector including a lattice portion, a positive ear protruding from the lattice portion in the upper direction of the battery case, and a positive mixture (a mixture containing a positive active material) held by the lattice portion. The negative plate has a negative current collector including a lattice portion, a negative ear protruding from the lattice portion in the upper direction of the battery case, and a negative mixture (a mixture containing a negative active material) held by the lattice portion. The positive electrode lug is disposed at a position offset to one side from the center of the width direction of the lattice portion (a direction perpendicular to both the up-down direction of the battery case and the stacking direction of the stack), and the negative electrode lug is disposed at a position offset to the other side from the center of the width direction of the lattice portion. The electrode plate group further has a positive electrode strap and a negative electrode strap that connect the lugs of the positive electrode plates and the negative electrode plates, respectively.

(2)前記正極集電板は、鉛合金製の圧延板からなるエキスパンド加工品または打ち抜き加工品である。
(3)前記負極板の幅方向の一端部を固定した自重撓み試験における撓み量h[mm]、前記負極板の固定されていない部分の幅方向の寸法L[mm]、前記負極板の固定されていない部分の質量W[g]が、0.0009≦h/(L×W)≦0.0048を満たす。
(2) The positive electrode current collector plate is an expanded or punched product made of a rolled plate made of a lead alloy.
(3) The amount of deflection h [mm] in a self-weight deflection test in which one end of the negative plate in the width direction is fixed, the dimension L [mm] in the width direction of the unfixed portion of the negative plate, and the mass W [g] of the unfixed portion of the negative plate satisfy 0.0009≦h/(L×W)≦0.0048.

本発明の液式鉛蓄電池によれば、セパレータの諸設計や積層体を構成する極板の枚数を規定値から変更することなく、正極板にグロースが生じて変形した場合のセパレータ破損が抑制できる。 The flooded lead-acid battery of the present invention can suppress separator damage caused by growth and deformation of the positive electrode plate without changing the separator design or the number of plates that make up the stack from the specified values.

実施形態の液式鉛蓄電池を説明する図であって、電槽から蓋を外した状態を示している。FIG. 2 is a diagram illustrating the flooded lead-acid battery of the embodiment, showing a state in which the lid is removed from the battery case. 実施形態の液式鉛蓄電池の部分断面図である。FIG. 2 is a partial cross-sectional view of the flooded lead-acid battery according to the embodiment. 実施形態の液式鉛蓄電池を構成する負極集電板を示す正面図である。FIG. 2 is a front view showing a negative electrode current collector plate constituting the flooded lead-acid battery of the embodiment. 自重撓み試験について説明する図である。FIG. 1 is a diagram illustrating a self-weight deflection test.

以下、本発明の実施形態について説明するが、本発明は以下に示す実施形態に限定されない。以下に示す実施形態では、本発明を実施するために技術的に好ましい限定がなされているが、この限定は本発明の必須要件ではない。 The following describes embodiments of the present invention, but the present invention is not limited to the embodiments described below. In the embodiments described below, technically preferable limitations are imposed for implementing the present invention, but these limitations are not essential requirements for the present invention.

[電池全体の構成]
実施形態の液式鉛蓄電池は、図1に示すように、モノブロックタイプの電槽1と、六個の極板群3とを有する。電槽1の形状は直方体であり、電槽1は、底面をなす長方形の一対の長辺上に形成された一対の第一の壁11と、一対の短辺上に形成された一対の第二の壁12を有する。電槽1の内部は、第二の壁12と平行な五枚の隔壁13により、六個のセル室4に区画されている。
六個のセル室4には、それぞれ一つの極板群3が配置され、各セル室4内に電解液が注入されている。電解液は、比重が1.28以上1.30以下(20℃換算)の希硫酸である。なお、図1に示すように、セル室4の配列方向をX方向、これに垂直な方向をY方向とする。
[Overall battery configuration]
As shown in Fig. 1, the flooded lead-acid battery of the embodiment has a monoblock-type battery case 1 and six electrode plate groups 3. The shape of the battery case 1 is a rectangular parallelepiped, and the battery case 1 has a pair of first walls 11 formed on a pair of long sides of a rectangle forming a bottom surface, and a pair of second walls 12 formed on a pair of short sides. The interior of the battery case 1 is divided into six cell chambers 4 by five partition walls 13 parallel to the second walls 12.
One electrode group 3 is disposed in each of the six cell chambers 4, and an electrolyte is poured into each cell chamber 4. The electrolyte is dilute sulfuric acid with a specific gravity of 1.28 to 1.30 (calculated at 20°C). As shown in Fig. 1, the direction in which the cell chambers 4 are arranged is the X direction, and the direction perpendicular to this is the Y direction.

図2に示すように、各極板群3は積層体6を有する。積層体6は、交互に配置された複数枚の正極板10および負極板20と、正極板10と負極板20との間に配置されたセパレータ30とで構成されている。積層体6を構成する正極板10の枚数は、負極板20の枚数と同じでもよいし、負極板20の枚数より多くても良い。この例では、正極板10と負極板20で同じ枚数になっている。 As shown in FIG. 2, each electrode plate group 3 has a laminate 6. The laminate 6 is composed of a plurality of alternatingly arranged positive electrode plates 10 and negative electrode plates 20, and a separator 30 arranged between the positive electrode plates 10 and the negative electrode plates 20. The number of positive electrode plates 10 constituting the laminate 6 may be the same as the number of negative electrode plates 20, or may be greater than the number of negative electrode plates 20. In this example, the number of positive electrode plates 10 and negative electrode plates 20 is the same.

正極板10は、正極集電板と正極合剤(正極活物質を含む合剤)で構成され、正極集電板は、長方形の格子状部と格子状部をなす長方形の一辺から突出する耳部とを有し、格子状部に正極合剤が保持されている。図2においては、正極合剤が保持された状態の格子状部を符号101で、正極板10の耳部を符号120でそれぞれ示している。正極板10の耳部120は、格子状部の幅方向(図2の紙面に垂直な方向)の中心から一方にずれた位置に配置されている。正極板10については後に詳述する。 The positive electrode plate 10 is composed of a positive electrode current collector and a positive electrode mixture (a mixture containing a positive electrode active material). The positive electrode current collector has a rectangular lattice portion and an ear protruding from one side of the rectangle that forms the lattice portion, and the positive electrode mixture is held in the lattice portion. In FIG. 2, the lattice portion holding the positive electrode mixture is indicated by the reference numeral 101, and the ear of the positive electrode plate 10 is indicated by the reference numeral 120. The ear 120 of the positive electrode plate 10 is disposed at a position shifted to one side from the center of the width direction of the lattice portion (the direction perpendicular to the paper surface of FIG. 2). The positive electrode plate 10 will be described in detail later.

負極板20は、負極集電板と負極合剤(負極活物質を含む合剤)で構成され、負極集電板は、長方形の格子状部と格子状部をなす長方形の一辺から突出する耳部とを有し、格子状部に負極合剤が保持されている。図2においては、負極合剤が保持された状態の格子状部を符号201で、負極板20の耳部を符号220でそれぞれ示している。負極板20の耳部220は、格子状部の幅方向(図2の紙面に垂直な方向)の中心から他方にずれた位置に配置されている。負極板20については後に詳述する。 The negative electrode plate 20 is composed of a negative electrode current collector and a negative electrode mixture (a mixture containing a negative electrode active material). The negative electrode current collector has a rectangular lattice portion and an ear protruding from one side of the rectangle that forms the lattice portion, and the negative electrode mixture is held in the lattice portion. In FIG. 2, the lattice portion holding the negative electrode mixture is indicated by the reference numeral 201, and the ear of the negative electrode plate 20 is indicated by the reference numeral 220. The ear 220 of the negative electrode plate 20 is disposed at a position shifted from the center of the width direction of the lattice portion (the direction perpendicular to the paper surface of FIG. 2) to the other side. The negative electrode plate 20 will be described in detail later.

セパレータ30は、多孔質ポリエチレン製で、平板状のベースと、ベースの正極側の表面から襞状に突出するリブとを備えたリブ付きセパレータである。ベースの厚さは0.15mm~0.25mmで、リブの突出高さは0.4mm~0.6mmで、リブの幅は0.1mm~0.4mmで、リブの設置間隔は2mm~10mmである。 The separator 30 is made of porous polyethylene and is a ribbed separator with a flat base and ribs that protrude in a pleated manner from the surface of the base on the positive electrode side. The thickness of the base is 0.15 mm to 0.25 mm, the protruding height of the ribs is 0.4 mm to 0.6 mm, the width of the ribs is 0.1 mm to 0.4 mm, and the spacing between the ribs is 2 mm to 10 mm.

各極板群3は、さらに、正極ストラップ71および負極ストラップ72と、正極ストラップ71および負極ストラップ72からそれぞれ立ち上がる正極中間極柱71aおよび負極中間極柱72aを有する。正極ストラップ71および負極ストラップ72は、積層体6を構成する複数枚の正極板10の耳部120および負極板20の耳部220をそれぞれ、正極板10および負極板20の幅方向(セル室に入った時にY方向となる方向)の異なる位置で連結している。
セル配列方向の両端のセル室に配置される極板群3は、外部端子となる正極端子極柱8および負極端子極柱9をそれぞれ有する。正極端子極柱8および負極端子極柱9は、正極ストラップ71および負極ストラップ72に、それぞれ小片部71b,72bを介して形成されている。
Each electrode plate group 3 further has a positive electrode strap 71, a negative electrode strap 72, and a positive electrode intermediate electrode column 71a and a negative electrode intermediate electrode column 72a that respectively rise from the positive electrode strap 71 and the negative electrode strap 72. The positive electrode strap 71 and the negative electrode strap 72 connect the lugs 120 of the multiple positive electrode plates 10 and the lugs 220 of the multiple negative electrode plates 20 that constitute the stack 6 at different positions in the width direction of the positive electrode plates 10 and the negative electrode plates 20 (the direction that becomes the Y direction when inserted into the cell chamber).
The electrode plate groups 3 arranged in the cell chambers at both ends in the cell arrangement direction each have a positive electrode terminal pole 8 and a negative electrode terminal pole 9 which serve as external terminals. The positive electrode terminal pole 8 and the negative electrode terminal pole 9 are formed on a positive electrode strap 71 and a negative electrode strap 72 via small pieces 71b and 72b, respectively.

各極板群3は、積層体6の積層方向をX方向に沿わせ、且つ、正極板10および負極板20の板面をセル室4の上下方向に沿わせて、セル室4内に収容されている。
隣接するセル室4の正極中間極柱71aおよび負極中間極柱72aが抵抗溶接されて、隣接するセル間が電気的に直列に接続されている。また、図示されていない蓋を電槽1に固定することで、全てのセル室4の上方が塞がれている。正極端子極柱8および負極端子極柱9は蓋を貫通して、外部に露出している。
Each electrode plate group 3 is housed in the cell chamber 4 with the stacking direction of the laminate 6 aligned along the X direction and with the plate surfaces of the positive electrode plates 10 and the negative electrode plates 20 aligned along the up-down direction of the cell chamber 4 .
The positive intermediate pole 71a and the negative intermediate pole 72a of adjacent cell chambers 4 are resistance-welded to electrically connect adjacent cells in series. In addition, the tops of all cell chambers 4 are closed by fixing a lid (not shown) to the battery case 1. The positive terminal pole 8 and the negative terminal pole 9 penetrate the lid and are exposed to the outside.

[正極板および負極板について]
〔正極板および負極板の製造方法〕
正極合剤および負極合剤は、それぞれの格子状部の開口部内に充填されているとともに、格子状部の両板面にも層状に存在する。正極合剤および負極合剤は各集電板の格子状部に対して、例えば、以下のようにして形成される。
先ず、鉛粉に必要な添加剤(ポリプロピレン繊維、ポリエチレン繊維、導電性カーボン等)を添加し、乾式混合にて混ぜ合わせた後、水を添加して練り合わせて水練り物を得、この水練り物に硫酸を添加して練り合わせて正極用ペースト、負極用ペーストを作製する。この時、負極の添加剤として良く用いられるリグニンなどの有機防縮剤は水溶性のため、水と同時に添加してもよい。次に、得られた正極用ペースト、負極用ペーストを、各格子状部の開口部内に充填した後、予熱、熟成、乾燥工程を行って、化成前の正極板、化成前の負極板を得る。さらに、これらを用いて液式鉛蓄電池を組み立てた後に化成を行うことで、各格子状部に正極合剤、負極合剤が形成される。
[Regarding positive and negative electrodes]
[Method of manufacturing positive and negative electrode plates]
The positive electrode mixture and the negative electrode mixture are filled in the openings of each lattice part and are also present in layers on both plate surfaces of the lattice part. The positive electrode mixture and the negative electrode mixture are formed on the lattice part of each current collector plate, for example, as follows.
First, necessary additives (polypropylene fiber, polyethylene fiber, conductive carbon, etc.) are added to the lead powder, mixed by dry mixing, and then water is added and kneaded to obtain a water paste. Sulfuric acid is added to the water paste and kneaded to prepare a positive electrode paste and a negative electrode paste. At this time, organic shrink-proofing agents such as lignin, which are often used as additives for negative electrodes, are water-soluble and may be added at the same time as water. Next, the obtained positive electrode paste and negative electrode paste are filled into the openings of each lattice-shaped part, and then preheating, aging, and drying processes are performed to obtain a positive electrode plate and a negative electrode plate before chemical formation. Furthermore, a flooded lead-acid battery is assembled using these, and then chemical formation is performed to form a positive electrode mixture and a negative electrode mixture in each lattice-shaped part.

〔正極集電板〕
正極板10を構成する正極集電板は、鉛合金製の圧延板からなるエキスパンド加工品または打ち抜き加工品である。正極集電板の厚さは0.7mm以上1.1mm以下である。また、正極集電板の格子状部をなす長方形は横方向の辺が縦方向の辺より長い。
〔負極集電板〕
負極板20を構成する負極集電板は、鉛合金(Pb-Ca-Sn系合金等)を用い連続鋳造法で形成されたものである。なお、負極板20を構成する負極集電板は、鉛合金製の圧延板からなるエキスパンド加工品あるいは打ち抜き加工品であってもよい。
[Positive current collector plate]
The positive current collector constituting the positive plate 10 is an expanded or punched product made of a rolled plate made of a lead alloy. The thickness of the positive current collector is 0.7 mm or more and 1.1 mm or less. The horizontal side of the rectangle forming the lattice part of the positive current collector is longer than the vertical side.
[Negative electrode current collector]
The negative electrode current collector constituting the negative electrode plate 20 is formed by a continuous casting method using a lead alloy (such as a Pb-Ca-Sn alloy). The negative electrode current collector constituting the negative electrode plate 20 may be an expanded product or a punched product made of a rolled plate made of a lead alloy.

図3に示すように、負極集電板21は、長方形の格子状部210と耳部220とで構成されている。
図3に示すように、実施形態の負極集電板21において、格子状部210は、長方形の四辺をなす枠骨と、枠骨に接続されて枠骨より内側に存在する複数本の中骨と、を有する。また、枠骨をなす長方形は横方向の辺が縦方向の辺より長い。
枠骨は、格子状部210の上側に位置し横方向に延びる上枠骨211と、格子状部210の下側に位置し横方向に延びる下枠骨212と、格子状部210の左側に位置し縦方向に延びる左枠骨213と、格子状部210の右側に位置し縦方向に延びる右枠骨214と、を有する。
As shown in FIG. 3 , the negative electrode current collector 21 is composed of a rectangular lattice portion 210 and tab portions 220 .
3, in the negative electrode current collector 21 of the embodiment, the lattice portion 210 has a frame rib forming the four sides of a rectangle, and a plurality of middle ribs connected to the frame ribs and located inside the frame ribs. In addition, the horizontal sides of the rectangle forming the frame rib are longer than the vertical sides.
The frame bones include an upper frame bone 211 located on the upper side of the lattice portion 210 and extending horizontally, a lower frame bone 212 located on the lower side of the lattice portion 210 and extending horizontally, a left frame bone 213 located on the left side of the lattice portion 210 and extending vertically, and a right frame bone 214 located on the right side of the lattice portion 210 and extending vertically.

耳部102は、上枠骨211の長手方向中心から右枠骨214側にずれた位置から上側に突出する。複数本の中骨は、上枠骨211と下枠骨212とを接続する16本の縦中骨216と、左枠骨213と右枠骨214とを接続する10本の横中骨217と、で構成されている。縦中骨216は、左枠骨213および右枠骨214と平行に延びている。横中骨217は、上枠骨211および下枠骨212と平行に延びている。上枠骨211、左枠骨213、および右枠骨214の断面積は、縦中骨216、および横中骨217の断面積より大きい。
負極集電板21の厚さは0.7mm以上1.1mm以下であることが好ましい。
The ear portion 102 protrudes upward from a position shifted toward the right frame bone 214 from the longitudinal center of the upper frame bone 211. The multiple middle bones are composed of 16 vertical middle bones 216 connecting the upper frame bone 211 and the lower frame bone 212, and 10 horizontal middle bones 217 connecting the left frame bone 213 and the right frame bone 214. The vertical middle bones 216 extend parallel to the left frame bone 213 and the right frame bone 214. The horizontal middle bones 217 extend parallel to the upper frame bone 211 and the lower frame bone 212. The cross-sectional areas of the upper frame bone 211, the left frame bone 213, and the right frame bone 214 are larger than the cross-sectional areas of the vertical middle bones 216 and the horizontal middle bones 217.
The thickness of the negative electrode current collector 21 is preferably 0.7 mm or more and 1.1 mm or less.

〔負極板〕
負極板20の幅方向(電槽の上下方向と積層体の積層方向の両方に垂直な方向に沿わせる方向、図1の紙面に垂直な方向)の寸法をL0[mm]とする。
図4に示す方法で自重撓み試験を行って、負極板20の撓み量h[mm]を測定する。つまり、架台81の上に置いた支持台82の上に、負極板20の幅方向の一端部(耳部220から遠い側)20aを置き、その上に重し83を置いて固定し、自重による撓み量hを測定する。
測定された撓み量hと、負極板20の重し83が置かれていない部分(固定されていない部分)の幅方向の寸法L[mm]と、負極板20の重し83が置かれていない部分の質量W[g]が、0.0009≦h/(L×W)≦0.0048…(1)を満たしている。
(1)式の「h/(L×W)」は、撓み量hを負極板の質量Wと寸法Lで除算した値であるため、この指標は負極板の質量と寸法Lには依存しない。
[Negative electrode plate]
The dimension of the negative electrode plate 20 in the width direction (the direction perpendicular to both the up-down direction of the battery case and the stacking direction of the stack, the direction perpendicular to the paper surface of FIG. 1) is L0 [mm].
4, a self-weight deflection test is performed to measure the amount of deflection h [mm] of the negative electrode plate 20. That is, one end 20a in the width direction of the negative electrode plate 20 (the side farther from the ear portion 220) is placed on a support stand 82 placed on a stand 81, and a weight 83 is placed and fixed on top of it, and the amount of deflection h due to the weight is measured.
The measured deflection amount h, the widthwise dimension L [mm] of the portion of the negative electrode plate 20 where the weight 83 is not placed (the portion that is not fixed), and the mass W [g] of the portion of the negative electrode plate 20 where the weight 83 is not placed satisfy 0.0009≦h/(L×W)≦0.0048...(1).
Since "h/(L x W)" in equation (1) is the amount of deflection h divided by the mass W and dimension L of the negative electrode plate, this index does not depend on the mass and dimension L of the negative electrode plate.

<負極板が(1)式を満たすようにするための方法>
負極板の機械的強度は、負極集電板の格子状部の機械的強度、負極合剤同士の結着力、および格子状部と負極合剤との密着性に依存する。
<Method for making the negative electrode plate satisfy formula (1)>
The mechanical strength of the negative electrode plate depends on the mechanical strength of the lattice part of the negative electrode current collector, the binding strength between the negative electrode mixtures, and the adhesion between the lattice part and the negative electrode mixture.

≪方法1:負極集電板の格子状部の機械的強度≫
負極集電板の格子状部の機械的強度は、主に格子デザイン(中骨が単純な縦横格子か、縦中骨が垂直でなく傾斜しているか等)、例えば、外枠の有無や、中骨を「梁」や「リブ」と捉えて、延伸方向、断面形状、および本数を調節して配置することで制御可能である。
また、負極集電板の格子状部の機械的強度は、負極集電板を形成する鉛合金の組成(CaやSnの含有率)、鋳造後の合金の時効方法、負極集電板1枚あたりの質量(鉛量)、厚さおよび外形寸法によっても制御できる。
<Method 1: Mechanical strength of the grid part of the negative electrode current collector>
The mechanical strength of the lattice part of the negative electrode current collector can be controlled mainly by the lattice design (whether the ribs are a simple vertical and horizontal lattice, or whether the vertical ribs are inclined rather than vertical, etc.), for example, by the presence or absence of an outer frame, and by regarding the ribs as "beams" or "ribs" and adjusting and arranging them in the extension direction, cross-sectional shape, and number.
In addition, the mechanical strength of the lattice-shaped portion of the negative current collector can also be controlled by the composition of the lead alloy forming the negative current collector (the content of Ca and Sn), the aging method of the alloy after casting, and the mass (amount of lead) per negative current collector, thickness, and outer dimensions.

≪方法2:負極合剤同士の結着力≫
負極合剤同士の結着力は、負極合剤に含まれる添加剤の種類および含有率によって変化する。負極用ペーストを作製する際に、ポリプロピレン繊維やポリエチレン繊維を添加剤として入れることにより、負極合剤同士の結着力を上げて、負極板の機械的強度を上げることができる。一方、負極用ペーストを作製する際に、導電性カーボンを添加剤として入れると、ペースト中の粒子のまとまりが悪くなって、負極合剤同士の結着力が低下するため、負極板の機械的強度が下がる。
また、負極合剤そのものの密度、負極合剤の充填量および格子状部の板面に形成される層の厚さ、負極合剤の組成や結晶粒の状態(四塩基性硫酸鉛の含有率や結晶成長度等)を変化させることによっても、負極板の機械的強度は制御可能である。
<Method 2: Adhesion between negative electrode mixtures>
The binding strength between the negative electrode mixtures varies depending on the type and content of the additives contained in the negative electrode mixture. When preparing the negative electrode paste, adding polypropylene fibers or polyethylene fibers as an additive can increase the binding strength between the negative electrode mixtures and increase the mechanical strength of the negative electrode plate. On the other hand, when preparing the negative electrode paste, adding conductive carbon as an additive can reduce the cohesion of the particles in the paste, thereby reducing the binding strength between the negative electrode mixtures and decreasing the mechanical strength of the negative electrode plate.
The mechanical strength of the negative electrode plate can also be controlled by changing the density of the negative electrode mixture itself, the filling amount of the negative electrode mixture, the thickness of the layer formed on the plate surface of the lattice-shaped portion, the composition of the negative electrode mixture, and the state of the crystal grains (the content of tetrabasic lead sulfate, the degree of crystal growth, etc.).

≪方法3:格子状部と負極合剤との密着性≫
格子状部と負極合剤との密着性は、例えば、負極集電板の製造時に使用する負極用ペーストの含水率を変化させることや、製造工程において、ペーストを充填した後の予熱工程および熟成工程の温湿度と時間を変化させることにより制御できる。また、熟成、乾燥工程後の負極板を、手または機械で折り曲げることにより、負極合剤層にクラックを生じさせること等でも制御できる。
さらに、化成時の電流値によって、鉛粒子の粒子サイズを変えることで、負極合剤と格子状部との密着性を制御できる。また、負極集電板の製造時の鋳造工程で、鋳型面の粗さ、梨地仕上げ、化学エッチング、サンドブラストなどの物理加工条件を変えることで、格子状部の表面の粗さを変化させることによっても制御できる。
<Method 3: Adhesion between the lattice portion and the negative electrode mixture>
The adhesion between the lattice portion and the negative electrode mixture can be controlled, for example, by changing the moisture content of the negative electrode paste used in manufacturing the negative electrode current collector plate, or by changing the temperature, humidity, and time of the preheating step and the aging step after filling the paste in the manufacturing process. It can also be controlled by bending the negative electrode plate after the aging and drying steps by hand or machine to cause cracks in the negative electrode mixture layer.
Furthermore, the adhesion between the negative electrode mixture and the grid-shaped portion can be controlled by changing the particle size of the lead particles through the current value during formation. Also, the surface roughness of the grid-shaped portion can be controlled by changing the physical processing conditions such as the roughness of the mold surface, matte finish, chemical etching, and sandblasting during the casting process in the production of the negative electrode current collector.

なお、負極集電板が鉛合金製の圧延板からなるエキスパンド加工品および打ち抜き加工品である場合に、密着性を制御する方法として、上述のクラックを生じさせる方法を採用する際には、密着性が低下し過ぎると不良品となってしまう恐れがある。よって、その場合には、負極用ペーストの含水率やペーストを充填した後の予熱工程および熟成工程の温湿度と時間を調整して、密着性が低下し過ぎないように注意する必要がある。
方法2と方法3は、負極集電板の格子状部に対する負極合剤の形成工程で負極板の機械的強度の制御を行う方法であるため、負極集電板の機械的強度を制御する方法1よりも負極板の機械的強度の制御がしやすい方法である。
In addition, when the negative electrode current collector plate is an expanded product or a punched product made of a rolled plate made of a lead alloy, if the above-mentioned method of generating cracks is adopted as a method of controlling adhesion, there is a risk that the product will become defective if the adhesion is too low. Therefore, in such a case, it is necessary to adjust the moisture content of the negative electrode paste and the temperature and humidity and time of the preheating process and the aging process after filling the paste so that the adhesion does not decrease too much.
Methods 2 and 3 are methods for controlling the mechanical strength of the negative electrode plate in the process of forming a negative electrode mixture on the lattice-shaped portion of the negative electrode current collector plate, and therefore are methods that make it easier to control the mechanical strength of the negative electrode plate than method 1, which controls the mechanical strength of the negative electrode current collector plate.

[作用、効果]
上記実施形態の液式鉛蓄電池の負極板20が(1)式を満たすこと(負極板20の機械的強度に関する指標「h/(L×W)」が0.0009以上0.0048以下であること)により、負極板20は正極板10の湾曲に追従して適度に変形し、正極板の湾曲による応力がセパレータ30に付与されにくくすることができる。これに伴い、正極板10のグロースに起因するセパレータの破損が防止されることにより、セパレータの破損に起因する短絡を抑制することができる。
[Action, effect]
By the negative plate 20 of the flooded lead-acid battery of the above embodiment satisfying formula (1) (the index "h/(L×W)" relating to the mechanical strength of the negative plate 20 being 0.0009 or more and 0.0048 or less), the negative plate 20 can appropriately deform following the curvature of the positive plate 10, and stress due to the curvature of the positive plate can be made less likely to be applied to the separator 30. Accordingly, damage to the separator due to growth of the positive plate 10 is prevented, and short circuits due to the damage to the separator can be suppressed.

また、負極板20が正極板10の湾曲を許容可能に撓むことにより、セパレータの破損が抑制されるようになる。よって、厚さ方向の寸法が小さいセパレータを用いることが可能になるため、厚さ方向の寸法が大きいセパレータを用いた場合よりも、積層体6を構成する極板の枚数を増やすことが可能になる。これに伴い、液式鉛蓄電池の電池反応面積を増やし、負極合剤の電解液の保持量や電極反応の効率を上げることができる。
つまり、負極板の剛性を、液式鉛蓄電池の使用状態における正極板の湾曲を許容可能な値に設定して、使用状態でセパレータが破損しないようにすることにより、厚さ方向の寸法が小さいセパレータを用いることが可能になって、積層体6を構成する極板の枚数を増やすことが可能になる。
In addition, the negative electrode plate 20 bends to be able to tolerate the curvature of the positive electrode plate 10, thereby suppressing damage to the separator. This allows the use of a separator with a small dimension in the thickness direction, making it possible to increase the number of electrode plates constituting the laminate 6 compared to the case where a separator with a large dimension in the thickness direction is used. As a result, the battery reaction area of the flooded lead-acid battery can be increased, and the amount of electrolyte held by the negative electrode mixture and the efficiency of the electrode reaction can be improved.
In other words, by setting the rigidity of the negative plate to a value that allows for the bending of the positive plate when the flooded lead-acid battery is in use, and preventing the separator from being damaged when in use, it becomes possible to use a separator with a small dimension in the thickness direction, and therefore it becomes possible to increase the number of plates that make up the stack 6.

よって、本実施形態の液式鉛蓄電池によれば、特に、グロースが発生しやすい高温地域での使用が見込まれる自動車向けの鉛蓄電池や薄い正極集電体を備える鉛蓄電池として、寿命性能の向上が期待できる。
これに対して、指標「h/(L×W)」が0.0009未満である点のみが上記実施形態の液式鉛蓄電池と異なる液式鉛蓄電池は、上記条件で使用した際に、負極板20が正極板10の湾曲に追従して変形しにくく、正極板の湾曲による応力がセパレータ30に付与され易い。その結果、セパレータの破損が防止されにくく、セパレータの破損に起因する短絡を抑制することが期待できない。
Therefore, according to the flooded lead-acid battery of this embodiment, improved life performance can be expected, particularly as a lead-acid battery for automobiles that are expected to be used in high-temperature regions where growth is likely to occur, or as a lead-acid battery equipped with a thin positive electrode current collector.
In contrast, in a flooded lead-acid battery that differs from the flooded lead-acid battery of the above embodiment only in that the index "h/(L×W)" is less than 0.0009, when used under the above conditions, the negative plate 20 is less likely to deform in accordance with the curvature of the positive plate 10, and stress due to the curvature of the positive plate is more likely to be applied to the separator 30. As a result, it is difficult to prevent damage to the separator, and it cannot be expected to suppress short circuits caused by separator damage.

また、指標「h/(L×W)」が0.0048を超えている点のみが上記実施形態の液式鉛蓄電池と異なる液式鉛蓄電池は、上記条件で使用した際に、負極板20の正極板10の湾曲に追従する変形量が大き過ぎるため、負極合剤同士の結着力や負極集電板と負極合剤との密着性が不十分になる。その結果、負極板の導電性が不十分になって、電位分布が悪化し、大電流を伴う放電特性が悪化する恐れがある。 In addition, when a flooded lead-acid battery differs from the flooded lead-acid battery of the above embodiment only in that the index "h/(L×W)" exceeds 0.0048, the amount of deformation of the negative plate 20 following the curvature of the positive plate 10 is too large when used under the above conditions, resulting in insufficient adhesion between the negative electrode mixture and between the negative electrode current collector and the negative electrode mixture. As a result, the conductivity of the negative plate becomes insufficient, which may lead to poor potential distribution and poor discharge characteristics with large currents.

[試験電池の作製]
実施形態の液式鉛蓄電池と同じ構造の液式鉛蓄電池として、以下に示す構成のサンプルNo.1~No.24の液式鉛蓄電池を二個ずつ作製した。
サンプルNo.1~No.12の液式鉛蓄電池は、B24サイズ、公称電圧12Vの液式鉛蓄電池であり、負極板の構成を変えた以外は全て同じ構成とした。
サンプルNo.13~No.24の液式鉛蓄電池は、D23サイズ、公称電圧12Vの液式鉛蓄電池であり、負極板の構成を変えた以外は全て同じ構成とした。
[Preparation of test battery]
As flooded lead-acid batteries having the same structure as the flooded lead-acid battery of the embodiment, two flooded lead-acid batteries of Samples No. 1 to No. 24 having the configurations shown below were fabricated.
The flooded lead-acid batteries of Samples No. 1 to No. 12 were B24 size flooded lead-acid batteries with a nominal voltage of 12 V, and all had the same configuration except for the configuration of the negative electrode plate.
The flooded lead-acid batteries of samples No. 13 to No. 24 were flooded lead-acid batteries with a D23 size and a nominal voltage of 12 V, and all had the same configuration except for the configuration of the negative electrode plate.

〔No.1~No.12〕
<化成前の正極板の製造>
スラブ鋳造工程、圧延工程、打ち抜き工程をこの順に行って正極集電板を製造した。
先ず、以下の方法でスラブ鋳造工程を行った。
Caが0.06質量%、Snが1.6質量%、Alが0.02質量%、残部が鉛と不可避的不純物からなる鉛合金のブロックを用意し、加熱により溶融して溶湯を得た。この溶湯を相対する2つの金属ロール間に流し込み、金属ロールによって溶湯を冷却することで、鉛合金スラブを得た。
[No.1 to No.12]
<Production of positive electrode plate before chemical formation>
A positive electrode current collector plate was manufactured by carrying out a slab casting step, a rolling step, and a punching step in this order.
First, a slab casting process was carried out in the following manner.
A block of lead alloy containing 0.06% by mass Ca, 1.6% by mass Sn, 0.02% by mass Al, and the remainder being lead and unavoidable impurities was prepared and melted by heating to obtain a molten metal. The molten metal was poured between two opposing metal rolls and cooled by the metal rolls to obtain a lead alloy slab.

次に、得られた鉛合金スラブを、上下一対の圧延ロール間に通すことで、圧下率90%で圧延工程を行い、幅320mm×厚さ1.0mmの圧延シートを得た。
次に、得られた圧延シートをプレス成型機にかけて、厚さ方向に打ち抜くことにより、格子状部の上枠骨から上側に耳部が延びている形状の正極集電板を得た。格子状部の寸法は、耳部が伸びている方向の寸法(高さ)が110mm、これに垂直な方向の寸法(幅)が105mm、厚さが1.0mmである。耳部の寸法は幅が10mmで、高さが15mmである。耳部は格子状部の幅方向中心と端部との間から延びている。
得られた正極集電板の格子状部に、通常の方法で作製した正極用ペーストを充填し、通常の方法で熟成と乾燥を行って、化成前の正極板(正極充填板)を得た。
Next, the obtained lead alloy slab was passed between a pair of upper and lower rolling rolls to carry out a rolling process at a rolling reduction of 90%, thereby obtaining a rolled sheet having a width of 320 mm and a thickness of 1.0 mm.
Next, the obtained rolled sheet was put into a press molding machine and punched in the thickness direction to obtain a positive electrode current collector plate having ears extending upward from the upper frame of the lattice-shaped portion. The dimensions of the lattice-shaped portion are 110 mm in the direction in which the ears extend (height), 105 mm in the direction perpendicular thereto (width), and 1.0 mm in thickness. The dimensions of the ears are 10 mm in width and 15 mm in height. The ears extend from between the center and end of the lattice-shaped portion in the width direction.
A positive electrode paste prepared by a normal method was filled into the grid-like portion of the obtained positive electrode current collector plate, and the plate was aged and dried by a normal method to obtain a positive electrode plate (positive electrode filled plate) before chemical formation.

<化成前の負極板の製造>
Caが0.09質量%、Snが0.4質量%、Alが0.02質量%、残部が鉛と不可避的不純物からなる鉛合金を用いて、連続鋳造方式により、格子状部の上枠骨から上側に耳部が延びている形状の負極集電板を得た。格子状部の寸法は、耳部が伸びている方向の寸法(高さ)が100mm、これに垂直な方向の寸法(幅)が100mm、厚さが0.8mmである。耳部の寸法は幅が10mmで、高さが15mmである。耳部は格子状部の幅方向中心と端部との間から延びている。
また、得られた負極集電板の格子状部の中骨は、上枠骨に対して略垂直な縦中骨16本と、縦中骨に対して略垂直な横中骨7本で構成されている。
<Production of negative electrode plate before chemical conversion>
A negative electrode current collector having an ear extending upward from the upper frame of the lattice-shaped portion was obtained by continuous casting using a lead alloy containing 0.09% by mass Ca, 0.4% by mass Sn, 0.02% by mass Al, and the remainder being lead and unavoidable impurities. The dimensions of the lattice-shaped portion are 100 mm in the direction in which the ear extends (height), 100 mm in the direction perpendicular thereto (width), and 0.8 mm in thickness. The dimensions of the ear are 10 mm in width and 15 mm in height. The ear extends from between the center and end of the lattice-shaped portion in the width direction.
The bones of the lattice portion of the obtained negative electrode current collector plate were composed of 16 vertical bones approximately perpendicular to the upper frame bone and 7 horizontal bones approximately perpendicular to the vertical bones.

得られた負極集電板の格子状部に、以下の方法で作製した負極用ペーストを55g充填した後、熟成前の熱処理を400℃または300℃で行った。次に、40℃、相対湿度90%で熟成した後、60℃で乾燥を行って、各サンプル用の負極充填板(化成前の負極板)を得た。
負極用ペーストの作製は、鉛粉に水と硫酸を添加して練り合わせて水練り物を得た後、この水練り物に導電性カーボンとしてアセチレンブラック(AB)またはケッチェンブラック(KB)を、鉛粉100質量部に対して0.2質量部となる割合で添加して練り合わせることにより行った。
The grid-shaped portion of the obtained negative electrode current collector was filled with 55 g of a negative electrode paste prepared by the following method, and then heat treatment before aging was performed at 400° C. or 300° C. Next, after aging at 40° C. and a relative humidity of 90%, drying was performed at 60° C. to obtain a negative electrode filled plate (negative electrode plate before chemical formation) for each sample.
The negative electrode paste was prepared by adding water and sulfuric acid to lead powder and kneading the mixture to obtain a water paste, and then adding acetylene black (AB) or ketjen black (KB) as conductive carbon to the water paste in a ratio of 0.2 parts by mass per 100 parts by mass of lead powder, and kneading the mixture.

<化成前の極板群の作製>
セパレータとして、縦リブ付きの多孔性ポリエチレン製セパレータ(エンテックアジア(株)製340G)を選択し、縦リブ側が外側になるように袋状にした袋状セパレータを用意した。
この袋状セパレータに各サンプル用の負極充填板を一枚ずつ収納した。負極充填板入り袋状セパレータ7個と正極充填板6枚を交互に積層することで、各サンプル用の積層体を6個ずつ作製した。
次に、COS(キャストオンストラップ)方式の鋳造装置を用いて、得られた各サンプル用の六個の積層体の正極充填板および負極充填板に、それぞれストラップ、中間極柱、端子極柱を形成することで、各サンプル用の六個の極板群を得た。
<Preparation of electrode plate group before chemical formation>
As the separator, a porous polyethylene separator with vertical ribs (340G manufactured by Entec Asia Co., Ltd.) was selected, and a pouch-shaped separator was prepared with the vertical rib side facing outward.
One negative electrode packing plate for each sample was placed in the pouch-shaped separator. Seven pouch-shaped separators containing negative electrode packing plates and six positive electrode packing plates were alternately stacked to prepare six stacks for each sample.
Next, using a cast-on-strap (COS) type casting device, straps, intermediate poles, and terminal poles were formed on the positive electrode packing plates and negative electrode packing plates of the six stacks obtained for each sample, thereby obtaining six electrode plate groups for each sample.

<電池の組み立て>
次に、得られた各サンプル用の六個の極板群を、ポリプロピレン製のモノブロックタイプの電槽の六個のセル室にそれぞれ入れた。
次に、通常の方法で、隣接するセル室間の中間極柱の抵抗溶接、電槽と蓋の熱溶着を行った。次に、比重が1.250(20℃換算値)である希硫酸からなる電解液を蓋の各注液孔から各セル室内へ注入した。次に、注液孔を塞いで未化成の液式鉛蓄電池を組み立てた。
その後、通常の方法で電槽化成を行うことで、正極充填板および負極充填板を正極板および負極板にして、液式鉛蓄電池を完成させた。
<Battery assembly>
Next, the six electrode plates obtained for each sample were placed in six cell compartments of a monoblock type battery container made of polypropylene.
Next, the intermediate poles between adjacent cell chambers were resistance-welded, and the battery case and the lid were heat-welded in a conventional manner. An electrolyte solution consisting of dilute sulfuric acid with a specific gravity of 1.250 (calculated at 20°C) was then poured into each cell chamber through each of the electrolyte injection holes in the lid. The electrolyte injection holes were then sealed to assemble an unformed flooded lead-acid battery.
The positive and negative packed plates were then converted into positive and negative plates by conventional container formation to complete a flooded lead acid battery.

〔No.13~No.24〕
<化成前の正極板の製造>
スラブ鋳造工程、圧延工程、打ち抜き工程をこの順に行って正極集電板を製造した。
先ず、以下の方法でスラブ鋳造工程を行った。
Caが0.06質量%、Snが1.6質量%、Alが0.02質量%、残部が鉛と不可避的不純物からなる鉛合金のブロックを用意し、加熱により溶融して溶湯を得た。この溶湯を相対する2つの金属ロール間に流し込み、金属ロールによって溶湯を冷却することで、鉛合金スラブを得た。
[No.13 to No.24]
<Production of positive electrode plate before chemical formation>
A positive electrode current collector plate was manufactured by carrying out a slab casting step, a rolling step, and a punching step in this order.
First, a slab casting process was carried out in the following manner.
A block of lead alloy containing 0.06% by mass Ca, 1.6% by mass Sn, 0.02% by mass Al, and the remainder being lead and unavoidable impurities was prepared and melted by heating to obtain a molten metal. The molten metal was poured between two opposing metal rolls and cooled by the metal rolls to obtain a lead alloy slab.

次に、得られた鉛合金スラブを、上下一対の圧延ロール間に通すことで、圧下率90%で圧延工程を行い、幅320mm×厚さ1.0mmの圧延シートを得た。
次に、得られた圧延シートをプレス成型機にかけて、厚さ方向に打ち抜くことにより、格子状部の上枠骨から上側に耳部が延びている形状の正極集電板を得た。格子状部の寸法は、耳部が伸びている方向の寸法(高さ)が116mm、これに垂直な方向の寸法(幅)が137mm、厚さが1.0mmである。耳部の寸法は幅が10mmで、高さが15mmである。耳部は格子状部の幅方向中心と端部との間から延びている。
得られた正極集電板の格子状部に、通常の方法で作製した正極用ペーストを充填し、通常の方法で熟成と乾燥を行って、化成前の正極板(正極充填板)を得た。
Next, the obtained lead alloy slab was passed between a pair of upper and lower rolling rolls to carry out a rolling process at a rolling reduction of 90%, thereby obtaining a rolled sheet having a width of 320 mm and a thickness of 1.0 mm.
Next, the obtained rolled sheet was put into a press molding machine and punched in the thickness direction to obtain a positive electrode current collector plate having an ear portion extending upward from the upper frame of the lattice portion. The dimensions of the lattice portion are 116 mm in the direction in which the ear portion extends (height), 137 mm in the direction perpendicular thereto (width), and 1.0 mm in thickness. The dimensions of the ear portion are 10 mm in width and 15 mm in height. The ear portion extends from between the center and the end of the lattice portion in the width direction.
A positive electrode paste prepared by a normal method was filled into the grid-like portion of the obtained positive electrode current collector plate, and the plate was aged and dried by a normal method to obtain a positive electrode plate (positive electrode filled plate) before chemical formation.

<化成前の負極板の製造>
Caが0.09質量%、Snが0.4質量%、Alが0.02質量%、残部が鉛と不可避的不純物からなる鉛合金を用いて、連続鋳造方式により、格子状部の上枠骨から上側に耳部が延びている形状の負極集電板を得た。格子状部の寸法は、耳部が伸びている方向の寸法(高さ)が115mm、これに垂直な方向の寸法(幅)が135mm、厚さが0.8mmである。耳部の寸法は幅が10mmで、高さが15mmである。耳部は格子状部の幅方向中心と端部との間から延びている。
<Production of negative electrode plate before chemical conversion>
A negative electrode current collector plate having an upper edge extending upward from the upper frame of the lattice-shaped portion was obtained by continuous casting using a lead alloy containing 0.09% by mass Ca, 0.4% by mass Sn, 0.02% by mass Al, and the remainder being lead and unavoidable impurities. The dimensions of the lattice-shaped portion are 115 mm in the direction in which the edge extends (height), 135 mm in the direction perpendicular thereto (width), and 0.8 mm in thickness. The dimensions of the edge are 10 mm in width and 15 mm in height. The edge extends from between the center and end of the lattice-shaped portion in the width direction.

また、得られた負極集電板の格子状部の中骨は、上枠骨に対して略垂直な縦中骨16本と、縦中骨に対して略垂直な横中骨10本で構成されている。
得られた負極集電板の格子状部に、以下の方法で作製した負極用ペーストを75g充填した後、熟成前の熱処理を400℃または300℃で行った。次に、40℃、相対湿度90%で熟成した後、60℃で乾燥を行って、化成前の負極板(負極充填板)を得た。
負極用ペーストの作製は、鉛粉に水と硫酸を添加して練り合わせて水練り物を得た後、この水練り物に導電性カーボンとしてアセチレンブラック(AB)またはケッチェンブラック(KB)を、鉛粉100質量部に対して0.2質量部となる割合で添加して練り合わせることにより行った。
The bones of the lattice portion of the obtained negative electrode current collector plate were composed of 16 vertical bones approximately perpendicular to the upper frame bone and 10 horizontal bones approximately perpendicular to the vertical bones.
The grid-shaped portion of the obtained negative electrode current collector was filled with 75 g of a negative electrode paste prepared by the following method, and then heat treatment before aging was performed at 400° C. or 300° C. Next, after aging at 40° C. and a relative humidity of 90%, drying was performed at 60° C. to obtain a negative electrode plate (negative electrode filled plate) before chemical conversion.
The negative electrode paste was prepared by adding water and sulfuric acid to lead powder and kneading the mixture to obtain a water paste, and then adding acetylene black (AB) or ketjen black (KB) as conductive carbon to the water paste in a ratio of 0.2 parts by mass per 100 parts by mass of lead powder, and kneading the mixture.

<化成前の極板群の作製>
袋状セパレータの寸法をNo.12~No.24の負極充填板の寸法に合わせて変えた以外は、No.1~No.12と同様の方法で化成前の極板群を作製した。
<電池の組み立て>
使用する電槽の寸法をNo.12~No.24の極板群の寸法に合わせて変えた以外は、No.1~No.12と同様の方法で電池の組み立てを行った。
<Preparation of electrode plate group before chemical formation>
Pre-chemical electrode plate assemblies were prepared in the same manner as Nos. 1 to 12, except that the dimensions of the pouch-shaped separator were changed to match the dimensions of the negative electrode packing plates of Nos. 12 to 24.
<Battery assembly>
Batteries were assembled in the same manner as No. 1 to No. 12, except that the dimensions of the battery container used were changed to match the dimensions of the electrode plate assemblies of No. 12 to No. 24.

[自重撓み量の測定]
得られた各サンプルの液式鉛蓄電池のうちの一個を解体して、負極板の自重撓み量hの測定を測定した。
具体的には、先ず、正極端子極柱を有する極板群が収納されたセル室(一番目のセル室)の二つ隣のセル室(三番目のセル室)から極板群を取り出して分解し、極板群の中央に配置された袋状セパレータに収納された負極板を取り出して水洗、乾燥させた。次に、水洗、乾燥させた負極板の質量W0[g]を測定した。
[Measurement of self-weight deflection]
One of the obtained sample flooded lead acid batteries was disassembled to measure the amount of deflection h of the negative electrode plate due to its own weight.
Specifically, the plate assembly was first removed from the cell chamber (third cell chamber) next to the cell chamber (first cell chamber) in which the plate assembly having the positive terminal pole was housed, and disassembled, and the negative plate housed in the pouch-shaped separator located in the center of the plate assembly was removed, washed with water, and dried. Next, the mass W0 [g] of the washed and dried negative plate was measured.

次に、質量を測定した負極板の自重撓み量h[mm]を、上述した図4に示す方法で測定した。その際に、負極板20の幅方向の一端部(耳部220から遠い側)20aとして、負極板20の幅L0[mm]の15%に相当する長さLの部分を、支持台82の上に置き、その上に重し83を置いて固定した。なお、支持台82の高さから、変形した負極板20の先端の高さまでの距離(極板先端の垂れ具合)を測定し、自重撓み量hとした。
測定された撓み量hと、負極板20の重し83が置かれていない部分(固定されていない部分)の幅方向の寸法L[mm]と、負極板20の重し83が置かれていない部分の質量W[g](=0.15×W0)とを用いて、指標「h/(L×W)」を算出した。
なお、撓み量の測定は、負極板20の一面とその反対側の面の両方で測定し、撓み量が大きい方の数値を採用した。
Next, the amount of deflection h [mm] of the negative plate whose mass was measured was measured by the method shown in Fig. 4. At that time, one end 20a of the negative plate 20 in the width direction (the side farther from the ear 220) having a length L equivalent to 15% of the width L0 [mm] of the negative plate 20 was placed on a support stand 82, and a weight 83 was placed and fixed on top of the end. The distance from the height of the support stand 82 to the height of the tip of the deformed negative plate 20 (the degree of sagging of the tip of the plate) was measured and used as the amount of deflection h of the negative plate.
The index "h/(L×W)" was calculated using the measured deflection amount h, the widthwise dimension L [mm] of the part of the negative electrode plate 20 where the weight 83 is not placed (the part that is not fixed), and the mass W [g] (= 0.15×W0) of the part of the negative electrode plate 20 where the weight 83 is not placed.
The amount of deflection was measured on both one surface and the opposite surface of the negative electrode plate 20, and the value of the larger amount of deflection was used.

[電池特性の評価]
<セパレータ破れ有無の確認、密着性の確認>
得られた各サンプルの液式鉛蓄電池の残りの一個を用いて、JIS D5301に記載の軽負荷寿命試験を行った。ただし、基板の腐食速度を上げる、つまり、正極板をグロースし易い状態とするため、試験温度は41℃ではなく75℃とし、放電時間も240秒から1/2である120秒に変更した。
具体的には、75℃水槽環境下において、2分間の25Aの放電、10分間のCC―CV充電(14.8V、最大充電電流25A)を繰り返し、480サイクル毎に56時間放置する。放置後、No.1~12では310A、No.13~24では590Aで30秒間連続放電を行い、30秒目電圧を調べる。これを1セットとして、8セット繰り返した後の30秒目電圧を「電池性能」として記録した。また、この記録後に電池を解体し、全てのセパレータの状態を目視により調査した。
[Evaluation of Battery Characteristics]
<Check for separator damage and adhesion>
Using the remaining one of the obtained sample flooded lead-acid batteries, a light load life test was carried out according to JIS D 5301. However, in order to increase the corrosion rate of the substrate, that is, to make the positive electrode plate in a state in which growth is facilitated, the test temperature was changed from 41°C to 75°C, and the discharge time was also changed from 240 seconds to 120 seconds, which is half the time.
Specifically, in a 75°C water bath environment, 25A discharge for 2 minutes and CC-CV charging (14.8V, maximum charging current 25A) for 10 minutes were repeated, and the batteries were left for 56 hours after each 480 cycles. After leaving the batteries, they were continuously discharged for 30 seconds at 310A for No. 1 to 12 and 590A for No. 13 to 24, and the voltage at 30 seconds was checked. This was counted as one set, and the voltage at 30 seconds after 8 sets was recorded as "battery performance". After recording, the batteries were disassembled and the condition of all the separators was visually inspected.

<判定基準>
上記8セット後の30秒目電圧が7.2V以上であれば、所定の基準(型式80D23Lの要求サイクル数である3800サイクル)を満たすため、電池性能は良好であると判断できる。
セパレータの状態を目視により調査した結果、破れているものが一枚でもある場合には、不合格と判断する。破れの程度がひどいものは、微小短絡を起こしていると考えられる。
8セット後の30秒目電圧が7.2V以上であり、セパレータの状態も良好であった場合は、総合評価を合格(〇)とし、これらの少なくともいずれかが不良であった場合は総合評価を不合格(×)と判断した。
これらの結果を負極板の構成、製造条件とともに表1に示す。
<Criteria>
If the 30-second voltage after the above 8 sets is 7.2 V or higher, it satisfies the predetermined standard (3800 cycles, which is the required number of cycles for model 80D23L), and therefore the battery performance can be determined to be good.
If even one separator is found to be torn as a result of visual inspection, the separator is deemed to have failed. Severely torn separators are considered to have caused a micro-short circuit.
If the 30-second voltage after the 8th set was 7.2 V or higher and the separator condition was also good, the overall evaluation was judged to be pass (◯), and if at least either of these was poor, the overall evaluation was judged to be fail (×).
These results are shown in Table 1 together with the negative electrode plate configuration and manufacturing conditions.

Figure 0007478877000002
Figure 0007478877000002

表1の結果から、今回の負極板の構成および試験条件では、負極板の指標「h/(L×W)」が0.0009以上0.0048以下を満たす、つまり、「{h/(L×W)}×1000」が0.9以上4.8以下を満たすことで、総合評価が合格となり、これを満たさない場合には総合評価が不合格になることが分かる。
また、指標「h/(L×W)」が0.0048を超えるNo.1,No.2,No.13,No.14、No.17,No.18では、セパレータに破れは生じなかったが、8セット後の30秒目電圧が7.2V未満であり、0.0009未満であるNo.7,No.11,No.12,No.23では、セパレータに破れが生じていた。
From the results in Table 1, it can be seen that with the negative plate configuration and test conditions used this time, the negative plate index "h/(L×W)" must be greater than or equal to 0.0009 and less than or equal to 0.0048, in other words, "{h/(L×W)}×1000" must be greater than or equal to 0.9 and less than or equal to 4.8, in order to pass the overall evaluation, and that if this is not satisfied, the overall evaluation will be failed.
In addition, in Nos. 1, 2, 13, 14, 17, and 18, in which the index “h/(L×W)” exceeded 0.0048, no separator tear occurred. However, in Nos. 7, 11, 12, and 23, in which the voltage at 30 seconds after 8 sets was less than 7.2 V and less than 0.0009, separator tear occurred.

特に、No.23では、8セット目に到達する前に短絡の挙動が見られたため、8セット繰り返した後の30秒目電圧は測定できなかった。これは、セパレータに破れが生じて微小短絡が生じたためであると考えられる。
また、No.11では、8セット後の30秒目電圧が7.2V未満であった。
以上のことから分かるように、今回の負極板の構成および試験条件では、負極板の指標「h/(L×W)」が0.0009以上0.0048以下を満たすことにより、所定の電池性能を保持しつつ、正極板にグロースが生じて湾曲した場合のセパレータの破損を防止することができる。
In particular, in No. 23, a short circuit was observed before the 8th set, so the voltage at 30 seconds after the 8th set could not be measured. This is thought to be due to a break in the separator, which caused a micro-short circuit.
In addition, in No. 11, the voltage at 30 seconds after the eighth set was less than 7.2V.
As can be seen from the above, with the negative plate configuration and test conditions used in this study, the negative plate index "h/(L x W)" satisfies the range of 0.0009 to 0.0048, so that a specified battery performance can be maintained while preventing damage to the separator when growth occurs in the positive plate and the plate curves.

10 正極板
101 正極合剤が保持された状態の格子状部
120 正極集電板の耳部
20 負極板
201 負極合剤が保持された状態の格子状部
21 負極集電板
210 負極集電板の格子状部
211 上枠骨
212 下枠骨
213 左枠骨
214 右枠骨
216 縦中骨
217 横中骨
220 負極集電板の耳部
30 セパレータ
1 電槽
4 セル室
3 極板群
6 積層体
71 正極ストラップ
8 正極端子極柱
72 負極ストラップ
9 負極端子極柱
REFERENCE SIGNS LIST 10 Positive electrode plate 101 Lattice portion holding positive electrode mixture 120 Ear portion of positive electrode current collector plate 20 Negative electrode plate 201 Lattice portion holding negative electrode mixture 21 Negative electrode current collector plate 210 Lattice portion of negative electrode current collector plate 211 Upper frame 212 Lower frame 213 Left frame 214 Right frame 216 Vertical center frame 217 Horizontal center frame 220 Ear portion of negative electrode current collector plate 30 Separator 1 Battery case 4 Cell chamber 3 Plate group 6 Laminate 71 Positive electrode strap 8 Positive electrode terminal pole 72 Negative electrode strap 9 Negative electrode terminal pole

Claims (2)

セル室を有する電槽と、前記セル室に収納された極板群と、前記セル室に注入された電解液と、を備え、
前記極板群は、交互に配置された複数枚の正極板および負極板と、前記正極板と前記負極板との間に配置された合成樹脂製のセパレータと、を備える積層体を有し、
前記正極板は、格子状部を含む正極集電板と、前記格子状部の前記電槽の上下方向の上側に突出する正極耳部と、前記格子状部に保持された正極合剤と、を有し、
前記負極板は、格子状部を含む負極集電板と、前記格子状部の前記電槽の上下方向の上側に突出する負極耳部と、前記格子状部に保持された負極合剤と、を有し、
前記正極耳部は、前記格子状部の幅方向の中心から一方にずれた位置に配置され、前記負極耳部は、前記格子状部の幅方向の中心から他方にずれた位置に配置され、
前記極板群は、さらに、複数枚の前記正極板および前記負極板の耳部をそれぞれ連結する正極ストラップおよび負極ストラップを有し、
前記正極集電板は、鉛合金製の圧延板からなるエキスパンド加工品または打ち抜き加工品であり、
前記負極板の幅方向一端部を固定した自重撓み試験における撓み量h[mm]、前記負極板の固定されていない部分の前記幅方向の寸法L[mm]、前記負極板の固定されていない部分の質量W[g]が、0.0009≦h/(L×W)≦0.0048を満たす液式鉛蓄電池。
The battery includes a battery case having a cell chamber, a plate group housed in the cell chamber, and an electrolyte injected into the cell chamber;
The electrode plate group has a laminate including a plurality of positive electrode plates and negative electrode plates arranged alternately, and a separator made of a synthetic resin arranged between the positive electrode plates and the negative electrode plates,
The positive electrode plate includes a positive electrode current collector including a lattice portion, a positive electrode lug protruding upward from the lattice portion in the up-down direction of the battery case, and a positive electrode mixture held by the lattice portion,
The negative electrode plate includes a negative electrode current collector including a lattice portion, a negative electrode lug protruding upward from the lattice portion in the up-down direction of the battery case, and a negative electrode mixture held by the lattice portion,
the positive electrode ear portion is disposed at a position shifted to one side from the center of the width direction of the lattice portion, and the negative electrode ear portion is disposed at a position shifted to the other side from the center of the width direction of the lattice portion,
The electrode plate group further includes a positive electrode strap and a negative electrode strap that connect the lugs of the positive electrode plates and the negative electrode plates, respectively,
The positive electrode current collector plate is an expanded or punched product made of a rolled plate made of a lead alloy,
A flooded lead-acid battery in which the amount of deflection h [mm] in a self-weight deflection test in which one end of the negative plate in the width direction is fixed, the dimension L [mm] in the width direction of the unfixed portion of the negative plate, and the mass W [g] of the unfixed portion of the negative plate satisfy 0.0009≦h/(L×W)≦0.0048.
前記正極集電板は、カルシウム(Ca)の含有率が0.035質量%以上0.1質量%以下、錫(Sn)の含有率が0.4質量%以上2.2質量%以下で、残部が鉛および不可避的不純物からなる鉛合金で形成され、
前記正極集電板の厚さは0.7mm以上1.1mm以下である請求項1記載の液式鉛蓄電池。
the positive electrode current collector is formed of a lead alloy having a calcium (Ca) content of 0.035 mass% or more and 0.1 mass% or less, a tin (Sn) content of 0.4 mass% or more and 2.2 mass% or less, and the remainder being lead and unavoidable impurities;
2. The flooded lead-acid battery according to claim 1, wherein the thickness of the positive electrode current collector is 0.7 mm or more and 1.1 mm or less.
JP2023054154A 2023-03-29 2023-03-29 Flooded lead-acid battery Active JP7478877B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023054154A JP7478877B1 (en) 2023-03-29 2023-03-29 Flooded lead-acid battery
PCT/JP2023/039704 WO2024202177A1 (en) 2023-03-29 2023-11-02 Liquid lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023054154A JP7478877B1 (en) 2023-03-29 2023-03-29 Flooded lead-acid battery

Publications (2)

Publication Number Publication Date
JP7478877B1 true JP7478877B1 (en) 2024-05-07
JP2024142131A JP2024142131A (en) 2024-10-10

Family

ID=90926079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023054154A Active JP7478877B1 (en) 2023-03-29 2023-03-29 Flooded lead-acid battery

Country Status (2)

Country Link
JP (1) JP7478877B1 (en)
WO (1) WO2024202177A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198056A (en) 2000-12-25 2002-07-12 Shin Kobe Electric Mach Co Ltd Grating body for lead acid battery
JP2003338287A (en) 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd Manufacturing method for expanded grid body for lead- acid storage battery
JP2009170234A (en) 2008-01-15 2009-07-30 Furukawa Battery Co Ltd:The Control valve type lead-acid battery
JP2014164993A (en) 2013-02-25 2014-09-08 Gs Yuasa Corp Control valve type lead-acid storage battery and using method thereof
JP2021163676A (en) 2020-04-01 2021-10-11 古河電池株式会社 Liquid type lead-acid battery
WO2022004120A1 (en) 2020-06-30 2022-01-06 古河電池株式会社 Liquid-type lead storage battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198056A (en) 2000-12-25 2002-07-12 Shin Kobe Electric Mach Co Ltd Grating body for lead acid battery
JP2003338287A (en) 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd Manufacturing method for expanded grid body for lead- acid storage battery
JP2009170234A (en) 2008-01-15 2009-07-30 Furukawa Battery Co Ltd:The Control valve type lead-acid battery
JP2014164993A (en) 2013-02-25 2014-09-08 Gs Yuasa Corp Control valve type lead-acid storage battery and using method thereof
JP2021163676A (en) 2020-04-01 2021-10-11 古河電池株式会社 Liquid type lead-acid battery
WO2022004120A1 (en) 2020-06-30 2022-01-06 古河電池株式会社 Liquid-type lead storage battery

Also Published As

Publication number Publication date
WO2024202177A1 (en) 2024-10-03

Similar Documents

Publication Publication Date Title
US8895192B2 (en) Grid plate for lead acid storage battery, plate, and lead acid storage battery provided with same plate
AU731138B2 (en) Lead-acid cells and batteries
US5691087A (en) Sealed lead-acid cells and batteries
US6180286B1 (en) Lead-acid cells and batteries
CN107026271B (en) Positive electrode plate for lead storage battery, and method for manufacturing positive electrode plate for lead storage battery
EP1801902A2 (en) Lead acid battery
US10276895B2 (en) Positive electrode grid for lead acid batteries and method for producing the same, and lead acid battery
US20170222214A1 (en) Positive electrode plate for lead-acid battery, lead-acid battery and method of manufacturing positive electrode plate for lead-acid battery
JP7478877B1 (en) Flooded lead-acid battery
JP4884748B2 (en) Lattice substrate for lead acid battery
JP2024142131A (en) Flooded lead-acid battery
JP7562981B2 (en) Positive electrode current collector for lead-acid battery and lead-acid battery
JP2017069023A (en) Lead storage battery
JP7554676B2 (en) Flooded lead-acid battery
JP7219366B1 (en) liquid lead acid battery
JP7331410B2 (en) Liquid lead-acid battery separator and liquid lead-acid battery
JP2001043863A (en) Sealed lead-acid battery
JP7128484B2 (en) liquid lead acid battery
JP5088679B2 (en) Lead acid battery
JP2023108240A (en) lead acid battery
JP2023013664A (en) Lead battery
JP2001332268A (en) Lead battery having control valve
JP2020098761A (en) Lead acid storage battery
JP2002231302A (en) Control valve type lead-acid battery
JP2022138753A (en) Lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240208

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240422

R150 Certificate of patent or registration of utility model

Ref document number: 7478877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150