JP4203634B2 - Manufacturing method of lead acid battery - Google Patents

Manufacturing method of lead acid battery Download PDF

Info

Publication number
JP4203634B2
JP4203634B2 JP28556399A JP28556399A JP4203634B2 JP 4203634 B2 JP4203634 B2 JP 4203634B2 JP 28556399 A JP28556399 A JP 28556399A JP 28556399 A JP28556399 A JP 28556399A JP 4203634 B2 JP4203634 B2 JP 4203634B2
Authority
JP
Japan
Prior art keywords
rolled
lead alloy
alloy
lead
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28556399A
Other languages
Japanese (ja)
Other versions
JP2001110426A (en
Inventor
省三 室地
正義 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP28556399A priority Critical patent/JP4203634B2/en
Publication of JP2001110426A publication Critical patent/JP2001110426A/en
Application granted granted Critical
Publication of JP4203634B2 publication Critical patent/JP4203634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、圧延鉛合金シートをエキスパンド加工した格子体を用いた鉛蓄電池の製造法に関するものである。
【0002】
【従来の技術】
自動車始動用の鉛蓄電池において生産性の向上やメンテナンスフリー性の向上を目的として従来のSbを含む鉛合金製の鋳造格子体からSbを含有しないPb−Ca−Sn合金の圧延体をエキスパンド加工したエキスパンド格子体が普及している。このエキスパンド格子体は格子体の水素過電圧を低下させるSbを含有しないので電池の充電中におけるガス発生と、これによる電解液量の減少を抑制すると共に自己放電を抑制することができる利点がある。しかしながら正極にこのようなSbを含まない格子体を用いた場合には、電池の深放電寿命特性が低下するという問題がある。このような問題点を解決するために特開昭63−148556号公報には格子表面にSbを多量に含んだ層を形成させたエキスパンド格子体が示されている。格子表面層に存在するSbは充放電の繰り返しによる格子と活物質との密着性の低下を抑制し、深放電寿命特性を改善する。そして格子表面層にSbを含む鉛合金層を形成する手段として、Pb−Sn−Sb合金のテープを格子母材となるPb−Ca−Sn合金シートに重ね合わせ両者を圧延し一体化する。そしてこのような鉛合金テープとしては鋳造体を圧延して得た圧延体を用いることが特開平5−205474号公報に記載されている。
【0003】
この特開平5−205474号公報において鉛合金テープとして鋳造体を圧延して得た圧延鉛合金テープを用いることが記載されているものの、圧延鉛合金自体の圧延方向と圧延鉛合金テープとPb−Ca−Sn合金シートとを圧延一体化する工程での圧延方向との関連性についてなんらの考慮もなされていなかった。本発明の発明者らはこれらの圧延方向の関係が圧延テープとPb−Ca−Sn合金シートとの密着性に非常に深く関連することを見出した。これらの圧延方向の関係について考慮しない場合には圧延合金テープとPb−Ca−Sn合金シートとの間に微小な剥離が発生することがある。このような剥離は非常に微視的なものであるが、前記したSbによる格子と活物質との密着性改善効果を損なってしまう。また、この時点で剥離が発生していなくてもエキスパンド加工のように圧延鉛合金シートにスリット形成し、スリット部を展開伸張する段階でPb−Ca−Sn合金シートと圧延鉛合金テープとの間に微小な剥離が新たに発生したりすることがある。特にロータリーエキスパンド方式のように鉛圧延シートに対して垂直方向に展開伸張し、その後に圧延鉛合金シートの幅方向に展開伸張する場合、格子骨にはねじれが発生する。このようなねじれは前記したような剥離の発生をより顕著なものとしていた。またロータリーエキスパンド方式はレシプロエキスパンド方式に比較して加工刃の回転運動により加工するため、加工速度を容易に高めて生産性を向上することができる。しかしながら前記したような課題により、本来生産性の高いロータリーエキスパンド方式でありながら、その方式を採用するのに障害となっていた。
【0004】
【発明が解決しようとする課題】
本発明はSbを含有する圧延鉛合金テープとPb−Ca−Sn合金シートとを圧延一体化する鉛蓄電池格子体用圧延鉛合金シートにおいて、Pb−Ca−Sn合金シートとPb−Sb系の圧延鉛合金テープとの間に発生する剥離を抑制することにより安定した深放電寿命性を有する鉛蓄電池を生産性を損なうことなく得ることを目的とする。
【0005】
【課題を解決するための手段】
前記した課題を解決するために本発明の請求項1に係る発明は、Pb−Ca−Sn合金からなる連続鋳造体圧延方向と長手方向とが平行であるPb−Sb系合金の圧延鉛合金テープとをそれらの長手方向が一致するように重ね合わせて圧延し一体化した圧延鉛合金シートの前記圧延鉛合金テープを圧延一体化した部分に前記圧延鉛合金テープの圧延方向と平行な複数のスリットを千鳥状に形成してエキスパンド加工して得た格子体を正極格子体に用いることを特徴とする鉛蓄電池の製造法を示すものである。
【0006】
また、本発明の請求項2記載に係る発明は、請求項1に記載した鉛蓄電池の製造法でのエキスパンド加工において、スリットにより形成される線条部を圧延鉛合金シート面に対して円弧状に塑性変形させて後、圧延鉛合金シートを幅方向に展開伸張することとした。
【0007】
また、本発明の請求項3記載に係る発明は、請求項1もしくは請求項2のいずれかに記載する鉛蓄電池の製造法において、Pb−Ca−Sn合金シートは少なくとも0.8重量%のSnを含有し、圧延鉛合金テープは少なくとも2.0重量%のSbを含有することとした。
【0010】
【発明の実施の形態】
本発明の実施の形態について作用と共に説明する。
【0011】
本発明の実施の形態では、Pb−Sb合金を溶融して鋳造スラブを作製した。鋳造スラブの寸法は幅10mm,厚み5.4mm,長さ600mmである。鋳造スラブの表面は凹凸があるため表裏を切削して厚み5.0mmの平滑表面をもつスラブ1とした。図1に示したように、このスラブ1をその長さ方向に沿って多段階、図1においては圧延ロール2によって10段階で圧延して最終的に0.1mm厚の圧延体3を作製した。この圧延体3の圧延方向(方向A)に沿ってスリッター4で切断し、圧延鉛合金テープ5を作製して巻取りロール6に巻取った。この圧延鉛合金テープ5の長手方向に圧延方向が平行となっている。
【0012】
次に図2に示したようにPb−Ca−Sn合金7を溶融して幅80mm,厚み10mmの連続鋳造体8を作製する。この連続鋳造体8は表面を水ノズル9で水冷して表面温度を150℃とし、圧延鉛合金テープ5を長手方向を一致させて重ね合わせて多段階、図2においては圧延ロール2aによって7段階で圧延した。連続鋳造体8と圧延鉛合金テープ5との位置関係は図3に示した通り連続鋳造体8の中央部10を除いた両側部に鉛合金テープ5が位置する。よって連続鋳造体8と圧延鉛合金テープ5とは圧延鉛合金テープを作製する時の圧延方向に対して平行に圧延一体化され、鉛蓄電池格子体用の圧延鉛合金シート11を得ることができる。なお、図3において2bは圧延ロールである。
【0013】
ここで連続鋳造体8に用いるPb−Ca−Sn合金のSn含有量としては0.8重量%以上、圧延鉛合金テープ5に用いるPb−Sb合金のSb含有量としては2.0重量%以上のものに本発明の構成を適用することが好ましい。このような組成を有する連続鋳造体と圧延鉛合金テープとの組合せは性能比較において後述するように従来の構成では両者の密着性が良好でなく、両者間に微小な剥離を発生させる可能性が高いからである。
【0014】
次に、図3に示した圧延鉛合金シート11の両側部の圧延鉛合金テープ5を圧延一体化した部分に圧延鉛合金テープ5の圧延方向に平行にスリット12を千鳥状に形成する。図4に示したようにスリット12によって形成される線条部13を圧延鉛合金シート11から円弧状にシート面に対して上下方向に突出するよう塑性変形により展開伸張される。このスリット形成と展開伸張とを行う手段としては、例えば特許公報第2568285号に記載されているような回転する円板状カッターを用いて行うことができる(いわゆるロータリーエキスパンド方式)。その後、圧延鉛合金シート11は幅方向Bに展開伸張されて格子網目部14が形成される。このようにいったん線条部13をシート面に対して上下方向に円弧状に変形させた後、上下方向と直交する幅方向Bに展開伸張するので線条部13、すなわち格子骨にはねじれが発生する。従来、このねじれが発生する過程においてPb−Sb合金とPb−Ca−Sn合金との間に微小な剥離が発生する頻度が高かったが、本発明の第1の実施の形態による圧延鉛合金シートを用いることにより格子骨にねじれが生じてもこのような微小な剥離の発生を抑制することができる。
【0015】
次にこうして得た格子網目部14に活物質ペーストが充填される。活物質ペーストとしては、例えば従来から用いられている鉛と鉛酸化物(一酸化鉛,鉛丹)を水,希硫酸で混練したものが用いられる。その後、格子網目部14を所望の寸法に切断後、熟成乾燥工程を得て未化成の正極板が得られる。この正極板を用い、常法にしたがって本発明の製造法による鉛蓄電池が作製される。このようにして得られる鉛蓄電池は従来の鉛蓄電池に比較して安定した深放電寿命特性を有している。
【0016】
特にここで連続鋳造体8に用いるPb−Ca−Sn合金のSn含有量としては0.8重量%以上、圧延鉛合金テープ5に用いるPb−Sb合金のSb含有量としては2.0重量%以上のものに本発明の構成を適用することが好ましい。このような組成を有する連続鋳造体と圧延鉛合金テープとの組合せは従来の構成では剥離が発生しやすく、エキスパンド加工時の展開伸張によってさらに剥離が進行するために鉛蓄電池の深放電寿命特性を低下させる可能性がより高くなるからである。
【0017】
【実施例】
次に、前記した本発明の実施の形態にしたがって圧延鉛合金シート11を作製した。ただし、Pb−Ca−Sn合金7の組成としてはCa含有量0.06重量%、Sn含有量としては0.6重量%から1.6重量%まで変化させた。また圧延鉛合金テープ5に用いるPb−Sb合金の組成としてはSb含有量を1.0重量%から15重量%まで変化させた。これらの圧延鉛合金シート11を長さ10cmにカットし、図5に示したように長さ方向の中央部で圧延鉛合金テープ5を圧着した側が広げられるように90°折り曲げた後に復元させた。その後、この折り曲げ部をエポキシ系の埋め込み用樹脂中に埋め込んで固定し、折り曲げ部の長さ方向の断面を研磨した後、エッチングを行い顕微鏡観察を行い、Pb−Ca−Sn合金7と圧延鉛合金テープ5との間に発生する剥離の有無を確認した。
【0018】
次に比較のために圧延方向と長手方向とが直交する圧延鉛合金テープを作製した。この比較例の圧延鉛合金テープを本発明の実施の形態に記載したように連続鋳造体の幅方向両側部に重ね合わせ圧延一体化して比較例による圧延鉛合金シートを得た。この比較例による圧延鉛合金シートについて前記と同様90°折り曲げた後のPb−Ca−Sn合金とPb−Sb合金との間に発生する剥離の有無を確認した。長手方向と圧延方向が一致した圧延鉛合金テープ5と連続鋳造体8とを長手方向とを一致させて重ね合わせ、これらの長手方向に沿って圧延一体化して得た圧延鉛合金シート11と比較例による圧延鉛合金シートのPb−Ca−Sn合金とPb−Sb合金との間の剥離の発生率をそれぞれ表1および表2に示す。
【0019】
【表1】

Figure 0004203634
【0020】
【表2】
Figure 0004203634
【0021】
表1および表2に示した結果から長手方向と圧延方向が一致した圧延鉛合金テープ5と連続鋳造体8とを長手方向とを一致させて重ね合わせ、これらの長手方向に沿って圧延一体化して得た圧延鉛合金シート11はPb−Ca−Sn合金とPb−Sb合金との間の剥離の発生を抑制できていることがわかる。特にPb−Ca−Sn合金層中のSn量が0.8重量%、Pb−Sb合金中のSb量が2.0重量%をそれぞれ超える領域では比較例の圧延鉛合金シートにおいて前記した剥離の発生が著しくなることから、このような組成の組合せを採用する場合には長手方向と圧延方向が一致した圧延鉛合金テープ5と連続鋳造体8とを長手方向とを一致させて重ね合わせ、これらの長手方向に沿って圧延一体化して得た圧延鉛合金シート11の構成により両者の合金間の剥離を抑制するという効果を顕著に得ることができることが理解できる。
【0022】
次に表3に示した合金の組み合わせで、本発明の実施形態による圧延鉛合金シートと比較例による圧延鉛合金シートを作成した。なお、以下に示す表3において、圧延鉛合金シートAは、表1に示すNo.1の圧延鉛合金シートに相当する。また、同様に、表3に示す圧延鉛合金シートBは、表1に示したNo.22の圧延鉛合金シートに相当するものである。さらに、表3に示す圧延鉛合金シートCは、表2に示したNo.25の圧延鉛合金シートに相当し、表3に示す圧延鉛合金シートDは、表2に示したNo.46の圧延鉛合金シートに相当する。
【0023】
【表3】
Figure 0004203634
【0024】
これらの各圧延鉛合金シートA、B、CおよびDを用いて以下に示す3種類の加工方法で鉛蓄電池用格子体を作製した。ここでそれぞれの圧延鉛合金シートと格子の加工方法は表4に示した組合せとした。
【0025】
【表4】
Figure 0004203634
【0026】
▲1▼ パンチング加工
圧延鉛合金シートのPb−Sb合金の圧延鉛合金テープを圧延一体化した部分を矩形状に打ち抜き格子目を作製する。
【0027】
▲2▼ レシプロエキスパンド方式
圧延鉛合金シートに対して上下運動するダイス刃で圧延鉛合金シートの圧延鉛合金テープを圧着した部分に千鳥状のスリットを圧延鉛合金シートの長手方向に平行に形成すると同時に展開拡張してエキスパンド網目を作製した。
【0028】
3)ロータリーエキスパンド方式
圧延鉛合金シートにロータリーエキスパンド方式によるエキスパンド網目を形成することにより、図4に示す格子網目部14を作製した。このエキスパンド網目は格子骨となる線条部13は圧延鉛合金シート面に対してスリット12が形成されると同時に上下方向に円弧状に展開伸張され圧延鉛合金シートの幅方向Bに再度展開拡張されるので線条部13にはねじれが発生する。ここでのスリットもレシプロエキスパンドと同様、圧延鉛合金シートの長手方向に平行に形成される。
【0029】
これらの格子体について格子骨部の断面観察を50個について行い、Pb−Ca−Sn合金と圧延鉛合金テープとの間での剥離の発生状態を調査した。その結果を表4に示す。
【0030】
表4に示した結果からパンチング法により作製した格子体であるAP,BP,CP,DPにおける前記の剥離の発生率は圧延鉛合金シート単体のそれとほぼ同等である。次にレシプロエキスパンド法による格子体になると比較例の格子体であるCE,DEでの剥離の発生率は著しく増加する。一方で本発明による格子体であるAE,BEでの剥離の発生率の増加は抑制されている。さらにロータリーエキスパンド法により格子体を作製した場合には比較例の格子体であるCR,DRでの剥離の発生率はレシプロエキスパンド法による場合のCE,DEに比較してさらに増大する。このときの本発明による格子体であるAR,BRでの剥離の発生率は比較例の格子体であるCR,DRよりも極めて低い水準に抑制されており、レシプロエキスパンド法による本発明の格子体であるAE,BEと同等の水準である。
【0031】
パンチング法は圧延鉛合金シートの合金間の剥離を抑制することができるが、打ち抜いた圧延鉛合金シートの屑を回収して再利用する設備が必要であり、生産性の面で好ましくない。しかしながら本発明のように、表3に示した圧延鉛合金シートであるA,Bをレシプロエキスパンド法、さらに生産性に優れるロータリーエキスパンド法に適用すれば生産性を低下させることなく剥離の抑制された鉛蓄電池用格子体を得ることができる。よって本発明の効果を最も良く発揮させるためには特に前記したロータリーエキスパンド法のように格子骨部にねじれが発生する格子製造法に適用することが好ましいことが判る。また、圧延鉛合金シートを構成する2種の鉛合金の組成に関しては比較例の構成でより両者の間に剥離の発生が顕著であった0.80重量%以上のSnを含有するPb−Ca−Sn合金(連続鋳造体)と2.0重量%以上のSbを含有するPb−Sb合金(圧延鉛合金テープ)の組合せに適用することにより本発明の効果をより顕著に得ることができる。
【0032】
(実施例3)
表4に示した格子体に鉛蓄電池用正極活物質ペーストを充填して鉛蓄電池用正極板を作製した。この活物質ペーストとしては従来の鉛粉(鉛と一酸化鉛,鉛丹等の鉛酸化物)を水と希硫酸で練合したものを使用した。この正極板を用いて55D23形の自動車用鉛蓄電池を作製した。
【0033】
ここで極板群構成としては正極板,負極板とも5枚とし、負極板は袋状の微孔性ポリエチレンセパレータに収納された構成とした。これらの各電池について深放電寿命試験を行った。この深放電寿命試験としてはJIS−D5301規格で規定された自動車用鉛蓄電池の重負荷寿命試験とした。試験はそれぞれの電池について10個で行い、寿命サイクル数の平均値、最大値および最小値をそれぞれ測定した。これらの結果を表5に示す。なお、電池記号は表4に示した格子体記号と同一とした。
【0034】
【表5】
Figure 0004203634
【0035】
表5に示した結果から本発明の構成によれば良好な深放電寿命特性を得られることが判る。またそのばらつきである最大値と最小値の差についても比較例に比べて極めて小さくすることができた。これは本発明の構成により正極格子体母材としてのPb−Ca−Sn合金と圧延鉛合金テープとしてのPb−Sb合金との間の剥離が抑制され両者間の密着性が向上したことに起因すると考えられる。
【0036】
【発明の効果】
本発明の構成によれば、Sbを含有する鉛合金テープがPb−Ca−Sn合金シート間を圧延一体化する鉛蓄電池格子体用圧延鉛合金シートにおいてPb−Ca−Sn合金シートとPb−Sb系合金テープとの間に発生する剥離を抑制することができる。そしてこの圧延鉛合金シートをエキスパンド加工して得た正極格子体用いることにより安定した深放電寿命特性を有する鉛蓄電池を生産性良く得ることができることから工業上極めて有用である。
【図面の簡単な説明】
【図1】(a)本発明の一実施の形態における圧延鉛合金テープの製造過程を示す図
(b)同図(a)の破線部詳細上面図
【図2】同圧延鉛合金シートの製造過程を示す図
【図3】同連続鋳造体と圧延鉛合金テープとの位置関係を示す図
【図4】同ロータリーエキスパンド加工工程を示す図
【図5】圧延鉛合金シートの折り曲げ試験方法を示す図
【符号の説明】
1 スラブ
3 圧延体
4 スリッター
5 圧延鉛合金テープ
7 Pb−Ca−Sn合金
8 連続鋳造体
10 中央部
11 圧延鉛合金シート
12 スリット
13 線条部
14 格子網目部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a lead-acid battery using a grid body obtained by expanding a rolled lead alloy sheet .
[0002]
[Prior art]
A Pb—Ca—Sn alloy rolled body containing no Sb was expanded from a conventional lead alloy cast grid containing Sb for the purpose of improving productivity and maintenance-free performance in lead-acid batteries for starting automobiles. Expanded lattices are widespread. Since this expanded lattice body does not contain Sb that lowers the hydrogen overvoltage of the lattice body, there is an advantage that gas generation during charging of the battery and a decrease in the amount of electrolyte due to this can be suppressed and self-discharge can be suppressed. However, when such a lattice body containing no Sb is used for the positive electrode, there is a problem that the deep discharge life characteristics of the battery are deteriorated. In order to solve such problems, Japanese Patent Application Laid-Open No. 63-148556 discloses an expanded lattice body in which a layer containing a large amount of Sb is formed on the lattice surface. Sb present in the lattice surface layer suppresses a decrease in adhesion between the lattice and the active material due to repeated charge and discharge, and improves the deep discharge life characteristics. As a means for forming a lead alloy layer containing Sb on the lattice surface layer, a Pb—Sn—Sb alloy tape is superimposed on a Pb—Ca—Sn alloy sheet serving as a lattice base material, and both are rolled and integrated. And as such a lead alloy tape, it is described in Unexamined-Japanese-Patent No. 5-205474 that the rolling body obtained by rolling a casting is used.
[0003]
Although JP-A-5-205474 describes using a rolled lead alloy tape obtained by rolling a cast body as a lead alloy tape, the rolling direction of the rolled lead alloy itself, the rolled lead alloy tape, and Pb- No consideration has been given to the relationship with the rolling direction in the process of rolling and integrating the Ca—Sn alloy sheet. The inventors of the present invention have found that the relationship between these rolling directions is very deeply related to the adhesion between the rolling tape and the Pb—Ca—Sn alloy sheet. If the relationship between the rolling directions is not taken into consideration, minute peeling may occur between the rolled alloy tape and the Pb—Ca—Sn alloy sheet. Although such peeling is very microscopic, the effect of improving the adhesion between the lattice and the active material due to Sb is impaired. Further, even if no peeling occurs at this time, a slit is formed in the rolled lead alloy sheet as in the expansion process, and the Pb-Ca-Sn alloy sheet and the rolled lead alloy tape are expanded at the stage where the slit portion is expanded and stretched. In some cases, fine peeling may newly occur. In particular, when the material is expanded and stretched in the vertical direction with respect to the lead rolled sheet as in the rotary expand method, and then expanded and stretched in the width direction of the rolled lead alloy sheet, the lattice bone is twisted. Such a twist made the occurrence of peeling as described above more remarkable. Further, since the rotary expand method is processed by the rotational movement of the processing blade as compared with the reciprocating expand method, the processing speed can be easily increased and the productivity can be improved. However, due to the problems as described above, although the rotary expand system is originally highly productive, it has been an obstacle to adopting the system.
[0004]
[Problems to be solved by the invention]
The present invention relates to a rolled lead alloy sheet for a lead storage battery grid in which a rolled lead alloy tape containing Sb and a Pb—Ca—Sn alloy sheet are integrated, and a Pb—Ca—Sn alloy sheet and a Pb—Sb rolling It aims at obtaining the lead storage battery which has the stable deep discharge life characteristic without impairing productivity by suppressing peeling generate | occur | produced between lead alloy tapes.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, the invention according to claim 1 of the present invention is a continuous lead body made of a Pb—Ca—Sn alloy and a rolled lead alloy of a Pb—Sb alloy in which the rolling direction and the longitudinal direction are parallel to each other. The rolled lead alloy sheet of the rolled lead alloy sheet that is rolled and integrated so that their longitudinal directions coincide with each other is rolled and integrated with a portion of the rolled lead alloy tape that is parallel to the rolling direction of the rolled lead alloy tape . A lead-acid battery manufacturing method is characterized in that a grid obtained by expanding slits in a zigzag pattern is used as a positive grid.
[0006]
Moreover, in the invention according to claim 2 of the present invention, in the expanding process in the method for producing a lead-acid battery according to claim 1, the filament formed by the slit is formed in an arc shape with respect to the rolled lead alloy sheet surface. After the plastic deformation, the rolled lead alloy sheet was expanded and stretched in the width direction .
[0007]
The invention according to claim 3 of the present invention is the method for producing a lead-acid battery according to claim 1 or 2, wherein the Pb-Ca-Sn alloy sheet contains at least 0.8% by weight of Sn. The rolled lead alloy tape contains at least 2.0% by weight of Sb .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the present invention will be described together with the operation.
[0011]
In the embodiment of the present invention, a cast slab was produced by melting a Pb—Sb alloy. The dimensions of the cast slab are 10 mm wide, 5.4 mm thick, and 600 mm long. Since the surface of the cast slab has irregularities, the front and back surfaces are cut to obtain a slab 1 having a smooth surface with a thickness of 5.0 mm. As shown in FIG. 1, this slab 1 is rolled in multiple stages along its length direction, in FIG. 1, by 10 stages with a rolling roll 2 to finally produce a rolled body 3 having a thickness of 0.1 mm. . The rolled body 3 was cut with a slitter 4 along the rolling direction (direction A) to produce a rolled lead alloy tape 5 and wound on a winding roll 6. The rolling direction is parallel to the longitudinal direction of the rolled lead alloy tape 5.
[0012]
Next, as shown in FIG. 2, the Pb—Ca—Sn alloy 7 is melted to produce a continuous cast body 8 having a width of 80 mm and a thickness of 10 mm. The continuous cast body 8 has a surface cooled with a water nozzle 9 to a surface temperature of 150 ° C., and the rolled lead alloy tape 5 is superposed in the longitudinal direction in a multi-stage manner. In FIG. Rolled in. The positional relationship between the continuous cast body 8 and the rolled lead alloy tape 5 is such that the lead alloy tape 5 is located on both sides of the continuous cast body 8 excluding the central portion 10 as shown in FIG. Therefore, the continuous cast body 8 and the rolled lead alloy tape 5 are rolled and integrated in parallel with the rolling direction when producing the rolled lead alloy tape, and the rolled lead alloy sheet 11 for the lead storage battery grid can be obtained. . In FIG. 3, 2b is a rolling roll .
[0013]
Here, the Sn content of the Pb—Ca—Sn alloy used for the continuous cast body 8 is 0.8 wt% or more, and the Sb content of the Pb—Sb alloy used for the rolled lead alloy tape 5 is 2.0 wt% or more. It is preferable to apply the configuration of the present invention to the above. As will be described later in the performance comparison, the combination of the continuous cast body having such a composition and the rolled lead alloy tape does not have good adhesion between the two in the conventional configuration, and may cause minute peeling between the two. Because it is expensive.
[0014]
Next, slits 12 are formed in a staggered manner parallel to the rolling direction of the rolled lead alloy tape 5 at the portion where the rolled lead alloy tape 5 on both sides of the rolled lead alloy sheet 11 shown in FIG . As shown in FIG. 4, the linear portion 13 formed by the slits 12 is expanded and stretched by plastic deformation so as to protrude from the rolled lead alloy sheet 11 in an arc shape in the vertical direction with respect to the sheet surface. As a means for performing the slit formation and development / extension, for example, a rotating disk-shaped cutter as described in Japanese Patent No. 2568285 can be used (so-called rotary expanding system). Thereafter, the rolled lead alloy sheet 11 is expanded and stretched in the width direction B to form a lattice network portion 14. Thus, once the linear portion 13 is deformed in an arc shape in the vertical direction with respect to the sheet surface, the linear portion 13, that is, the lattice bone, is twisted because it expands and expands in the width direction B orthogonal to the vertical direction. appear. Conventionally, there has been a high frequency of minute delamination between the Pb—Sb alloy and the Pb—Ca—Sn alloy in the process of generating this twist, but the rolled lead alloy sheet according to the first embodiment of the present invention. By using, even if the lattice bone is twisted, the occurrence of such minute separation can be suppressed.
[0015]
Next, the lattice material 14 thus obtained is filled with an active material paste. As the active material paste, for example, a conventionally used lead and lead oxide (lead monoxide, lead oxide) kneaded with water and dilute sulfuric acid is used. Thereafter, the lattice mesh portion 14 is cut to a desired size, and then an aging drying step is performed to obtain an unformed positive electrode plate. Using this positive electrode plate, a lead storage battery according to the production method of the present invention is produced according to a conventional method. The lead storage battery thus obtained has stable deep discharge life characteristics as compared with conventional lead storage batteries.
[0016]
In particular, the Sn content of the Pb—Ca—Sn alloy used for the continuous casting 8 here is 0.8% by weight or more, and the Sb content of the Pb—Sb alloy used for the rolled lead alloy tape 5 is 2.0% by weight. It is preferable to apply the configuration of the present invention to the above. The combination of a continuous cast body and a rolled lead alloy tape having such a composition is prone to exfoliation in the conventional configuration, and further exfoliation proceeds due to expansion and expansion during expansion processing. This is because the possibility of lowering becomes higher.
[0017]
【Example】
Next, a rolled lead alloy sheet 11 was produced according to the embodiment of the present invention described above . However, the composition of the Pb—Ca—Sn alloy 7 was changed to a Ca content of 0.06% by weight and a Sn content of 0.6% to 1.6% by weight. Moreover, as a composition of the Pb-Sb alloy used for the rolled lead alloy tape 5, the Sb content was changed from 1.0 wt% to 15 wt%. These rolled lead alloy sheets 11 were cut to a length of 10 cm and restored after being bent by 90 ° so that the side to which the rolled lead alloy tape 5 was crimped was spread at the center in the length direction as shown in FIG. . After that, the bent portion is embedded and fixed in an epoxy-based embedding resin, and the cross section in the length direction of the bent portion is polished, and then etched and observed with a microscope, and the Pb—Ca—Sn alloy 7 and rolled lead. The presence or absence of peeling occurring between the alloy tape 5 was confirmed.
[0018]
Next, for comparison, a rolled lead alloy tape in which the rolling direction and the longitudinal direction were orthogonal to each other was produced. As described in the embodiment of the present invention, a rolled lead alloy sheet according to a comparative example was obtained by superimposing and rolling the rolled lead alloy tape of this comparative example on both sides in the width direction of the continuous cast body. About the rolled lead alloy sheet by this comparative example, the presence or absence of the peeling | exfoliation generate | occur | produced between the Pb-Ca-Sn alloy after bending 90 degree | times similarly to the above was confirmed. Compared with the rolled lead alloy sheet 11 obtained by superimposing the rolled lead alloy tape 5 and the continuous cast body 8 in which the longitudinal direction and the rolling direction coincide with each other in the longitudinal direction and rolling and integrating them along the longitudinal direction. Table 1 and Table 2 show the occurrence rates of peeling between the Pb—Ca—Sn alloy and the Pb—Sb alloy of the rolled lead alloy sheet according to the example, respectively.
[0019]
[Table 1]
Figure 0004203634
[0020]
[Table 2]
Figure 0004203634
[0021]
From the results shown in Tables 1 and 2, the rolled lead alloy tape 5 and the continuous cast body 8 whose longitudinal direction and the rolling direction coincide with each other are overlapped with each other so that their longitudinal directions coincide with each other, and rolled and integrated along these longitudinal directions. It can be seen that the rolled lead alloy sheet 11 obtained in this way can suppress the occurrence of delamination between the Pb—Ca—Sn alloy and the Pb—Sb alloy. In particular, in the regions where the Sn content in the Pb—Ca—Sn alloy layer exceeds 0.8 wt% and the Sb content in the Pb—Sb alloy exceeds 2.0 wt%, the above-described peeling of the rolled lead alloy sheet of the comparative example. Since the occurrence becomes remarkable, when adopting such a combination of compositions, the rolled lead alloy tape 5 and the continuous cast body 8 in which the longitudinal direction and the rolling direction coincide with each other are overlapped with each other in the longitudinal direction. It can be understood that the effect of suppressing delamination between the two alloys can be remarkably obtained by the configuration of the rolled lead alloy sheet 11 obtained by rolling and integrating along the longitudinal direction .
[0022]
Next, a rolled lead alloy sheet according to an embodiment of the present invention and a rolled lead alloy sheet according to a comparative example were prepared using the combinations of alloys shown in Table 3. In Table 3 shown below, the rolled lead alloy sheet A is No. 1 shown in Table 1. It corresponds to 1 rolled lead alloy sheet. Similarly, the rolled lead alloy sheet B shown in Table 3 is No. 1 shown in Table 1. This corresponds to 22 rolled lead alloy sheets. Furthermore, the rolled lead alloy sheet C shown in Table 3 is No. 1 shown in Table 2. The rolled lead alloy sheet D shown in Table 3 corresponds to No. 25 shown in Table 2. This corresponds to 46 rolled lead alloy sheets.
[0023]
[Table 3]
Figure 0004203634
[0024]
Using each of these rolled lead alloy sheets A, B, C, and D , a lead-acid battery grid was prepared by the following three types of processing methods. Here, the processing methods of each rolled lead alloy sheet and lattice were the combinations shown in Table 4.
[0025]
[Table 4]
Figure 0004203634
[0026]
{Circle around (1)} Punched rolled lead alloy sheet A Pb—Sb alloy rolled lead alloy tape is rolled and integrated into a rectangular shape to produce a lattice.
[0027]
(2) When a staggered slit is formed parallel to the longitudinal direction of the rolled lead alloy sheet at the portion where the rolled lead alloy tape of the rolled lead alloy sheet is pressed with a die blade that moves up and down with respect to the reciprocating expanded type rolled lead alloy sheet. At the same time, the expanded mesh was produced by expanding and expanding.
[0028]
3) Rotary Expanding Method By forming an expanded mesh by a rotary expanding method on a rolled lead alloy sheet, a lattice network part 14 shown in FIG. 4 was produced. In this expanded mesh, the line 13 serving as a lattice bone is formed with a slit 12 with respect to the surface of the rolled lead alloy sheet, and at the same time, is expanded and expanded in an arc shape in the vertical direction and expanded and expanded again in the width direction B of the rolled lead alloy sheet. As a result, twisting occurs in the linear portion 13. The slit here is also formed in parallel with the longitudinal direction of the rolled lead alloy sheet, like the reciprocating expand.
[0029]
For these lattice bodies, cross-section observation of the lattice bone portion was performed for 50 pieces, and the occurrence state of peeling between the Pb—Ca—Sn alloy and the rolled lead alloy tape was investigated. The results are shown in Table 4.
[0030]
From the results shown in Table 4, the rate of occurrence of the above delamination in the AP, BP, CP, and DP, which are lattice bodies manufactured by the punching method, is almost the same as that of the rolled lead alloy sheet alone. Next, when the reciprocating expand method is used, the peeling rate of CE and DE, which are the lattice bodies of the comparative examples, increases remarkably. On the other hand, an increase in the occurrence rate of delamination in the lattice bodies AE and BE according to the present invention is suppressed. Further, when the lattice body is produced by the rotary expanding method, the occurrence rate of peeling in the comparative example CR and DR is further increased as compared with CE and DE in the reciprocating expanding method. At this time, the occurrence rate of delamination in the AR and BR which are the lattice bodies according to the present invention is suppressed to an extremely low level compared with the CR and DR which are the lattice bodies of the comparative examples. It is the same level as AE and BE.
[0031]
Although the punching method can suppress peeling between the alloys of the rolled lead alloy sheet, it requires an equipment for collecting and reusing the punched rolled lead alloy sheet waste, which is not preferable in terms of productivity. However, as in the present invention , if the rolled lead alloy sheets A and B shown in Table 3 are applied to the reciprocating expansion method and further to the rotary expanding method that is excellent in productivity, peeling is suppressed without reducing productivity. A grid for a lead storage battery can be obtained. Therefore, it can be seen that the present invention is preferably applied to a lattice manufacturing method in which twisting occurs in the lattice bone portion as in the above-described rotary expanding method in order to best exhibit the effects of the present invention. Further, regarding the composition of the two types of lead alloys constituting the rolled lead alloy sheet, Pb—Ca containing Sn of 0.80 wt% or more in which the occurrence of delamination was more remarkable between the two in the configuration of the comparative example. The effect of the present invention can be obtained more remarkably by applying to a combination of a Sn alloy (continuous casting) and a Pb—Sb alloy (rolled lead alloy tape) containing 2.0% by weight or more of Sb.
[0032]
(Example 3)
The grid body shown in Table 4 was filled with a positive electrode active material paste for a lead storage battery to produce a positive electrode plate for a lead storage battery. As this active material paste, a paste obtained by kneading conventional lead powder (lead and lead oxides such as lead monoxide and lead oxide) with water and dilute sulfuric acid was used. Using this positive electrode plate, a 55D23 type lead acid battery for automobiles was produced.
[0033]
Here, as the electrode plate group configuration, both the positive electrode plate and the negative electrode plate were five, and the negative electrode plate was stored in a bag-like microporous polyethylene separator. Each of these batteries was subjected to a deep discharge life test. The deep discharge life test was a heavy load life test of a lead acid battery for automobiles defined by the JIS-D5301 standard. The test was carried out with 10 batteries for each battery, and the average value, maximum value and minimum value of the number of life cycles were measured. These results are shown in Table 5. The battery symbol was the same as the lattice symbol shown in Table 4.
[0034]
[Table 5]
Figure 0004203634
[0035]
From the results shown in Table 5, it can be seen that good deep discharge life characteristics can be obtained according to the configuration of the present invention. Further, the difference between the maximum value and the minimum value, which is the variation, can be made extremely small as compared with the comparative example. This is because peeling between the Pb—Ca—Sn alloy as the positive electrode grid base material and the Pb—Sb alloy as the rolled lead alloy tape is suppressed and the adhesion between the two is improved by the configuration of the present invention. It is thought that.
[0036]
【The invention's effect】
According to the configuration of the present invention, a Pb-Ca-Sn alloy sheet and a Pb-Sb are used in a rolled lead alloy sheet for a lead-acid battery grid in which a lead alloy tape containing Sb is rolled and integrated between Pb-Ca-Sn alloy sheets. The peeling which generate | occur | produces between a system alloy tape can be suppressed. And it is industrially very useful because it can be obtained with good productivity lead-acid battery having stable deep discharge life characteristic by using a positive electrode grid body obtained by expanding processing the rolled lead alloy sheet.
[Brief description of the drawings]
FIG. 1A is a diagram showing a production process of a rolled lead alloy tape according to an embodiment of the present invention. FIG. 1B is a detailed top view of the broken line portion of FIG. FIG. 3 is a diagram showing the positional relationship between the continuous cast body and the rolled lead alloy tape. FIG. 4 is a diagram showing the rotary expanding process. FIG. 5 is a method for bending the rolled lead alloy sheet. Figure [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Slab 3 Rolled body 4 Slitter 5 Rolled lead alloy tape 7 Pb-Ca-Sn alloy 8 Continuous cast body 10 Central part 11 Rolled lead alloy sheet 12 Slit 13 Line part 14 Lattice mesh part

Claims (3)

Pb−Ca−Sn合金からなる連続鋳造体圧延方向と長手方向とが平行であるPb−Sb系合金の圧延鉛合金テープとをそれらの長手方向が一致するように重ね合わせて圧延し一体化した圧延鉛合金シートの前記圧延鉛合金テープを圧延一体化した部分に前記圧延鉛合金テープの圧延方向と平行な複数のスリットを千鳥状に形成してエキスパンド加工して得た格子体を正極格子体に用いることを特徴とする鉛蓄電池の製造法。A continuous cast body made of a Pb—Ca—Sn alloy and a rolled lead alloy tape of a Pb—Sb alloy whose rolling direction and longitudinal direction are parallel are overlapped and rolled so that their longitudinal directions coincide with each other and integrated. A grid obtained by expanding and forming a plurality of slits parallel to the rolling direction of the rolled lead alloy tape in a portion where the rolled lead alloy tape of the rolled lead alloy sheet has been rolled and integrated is positive grid A method for producing a lead-acid battery, characterized by being used for a body. エキスパンド加工において、スリットにより形成される線条部を圧延鉛合金シート面に対して円弧状に塑性変形させて後、前記圧延鉛合金シートを幅方向に展開伸張することを特徴とする請求項に記載の鉛蓄電池の製造法。In expanding process, according to claim 1, characterized in that the expanded decompressed by plastically deformed in an arc shape the linear portions formed by the slit with respect to the rolling lead alloy sheet surface, the rolled lead alloy sheet in the width direction The manufacturing method of lead acid battery as described in 2. Pb−Ca−Sn合金シート少なくとも0.8重量%のSnを含有し、圧延鉛合金テープは少なくとも2.0重量%のSbを含有するPb−Sb合金からなることを特徴とする請求項もしくは請求項のいずれか1項に記載の鉛蓄電池の製造法。Pb-Ca-Sn alloy sheet contains at least 0.8 wt% of Sn, claim 1 rolled lead alloy tape, characterized in that it consists of Pb-Sb alloy containing at least 2.0 wt% of Sb Or the manufacturing method of the lead acid battery of any one of Claim 2 .
JP28556399A 1999-10-06 1999-10-06 Manufacturing method of lead acid battery Expired - Lifetime JP4203634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28556399A JP4203634B2 (en) 1999-10-06 1999-10-06 Manufacturing method of lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28556399A JP4203634B2 (en) 1999-10-06 1999-10-06 Manufacturing method of lead acid battery

Publications (2)

Publication Number Publication Date
JP2001110426A JP2001110426A (en) 2001-04-20
JP4203634B2 true JP4203634B2 (en) 2009-01-07

Family

ID=17693183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28556399A Expired - Lifetime JP4203634B2 (en) 1999-10-06 1999-10-06 Manufacturing method of lead acid battery

Country Status (1)

Country Link
JP (1) JP4203634B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013003880T5 (en) 2012-12-21 2015-05-21 Panasonic Intellectual Property Management Co., Ltd. lead-acid battery
JP6597641B2 (en) * 2015-01-08 2019-10-30 株式会社Gsユアサ Positive electrode grid for lead acid battery and lead acid battery

Also Published As

Publication number Publication date
JP2001110426A (en) 2001-04-20

Similar Documents

Publication Publication Date Title
JP2010520607A (en) Battery negative grid
JP4288730B2 (en) Lead storage battery manufacturing method and lead storage battery grid manufacturing apparatus
US6291104B1 (en) Storage battery
JP4203634B2 (en) Manufacturing method of lead acid battery
JP5521503B2 (en) Lead acid battery
JP4062817B2 (en) Lead acid battery and manufacturing method thereof
JP4239303B2 (en) Lead acid battery
JPH10284085A (en) Grid for lead-acid battery
JP4686810B2 (en) Lead acid battery
JP4380184B2 (en) Storage battery grid and lead storage battery using the same
JP4834912B2 (en) Manufacturing method of storage battery grid and manufacturing method of lead storage battery using storage battery grid manufactured by the manufacturing method
JP4385557B2 (en) Expanded grid for battery and lead-acid battery using the same
JPH10321236A (en) Lead-acid battery
JP2000357518A (en) Grid for lead-acid battery and its manufacture
JP2002222654A (en) Collector for battery and battery, and lead storage battery provided with the collector
JP4876328B2 (en) Battery grid manufacturing equipment for storage batteries
JP4904632B2 (en) Lead acid battery
JPH1154129A (en) Lead-acid battery
JP4894105B2 (en) Lead acid battery
JP3632238B2 (en) Method for manufacturing grid for lead-acid battery
JP2000348732A (en) Lead-acid battery and manufacture therefor
JP2002100365A (en) Rolling lead alloy sheet for storage battery and lead storage battery using it
JP2000348735A (en) Manufacture of lead-acid battery
JP2010108680A (en) Methods of manufacturing rolled lead alloy sheet for lead storage battery, positive electrode plate for lead storage battery and lead storage battery
JP2002075380A (en) Expand grid body for lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4203634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term