JP2004311110A - Method for manufacturing storage battery grid and storage battery - Google Patents
Method for manufacturing storage battery grid and storage battery Download PDFInfo
- Publication number
- JP2004311110A JP2004311110A JP2003100651A JP2003100651A JP2004311110A JP 2004311110 A JP2004311110 A JP 2004311110A JP 2003100651 A JP2003100651 A JP 2003100651A JP 2003100651 A JP2003100651 A JP 2003100651A JP 2004311110 A JP2004311110 A JP 2004311110A
- Authority
- JP
- Japan
- Prior art keywords
- storage battery
- sheet
- rolling
- grid
- slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Metal Rolling (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は蓄電池用格子の製造方法及び蓄電池に関する。
【0002】
【従来の技術】
蓄電池、例えば、鉛蓄電池の正・負極板は、鉛または鉛合金からなる格子に、酸化鉛を主体とする鉛粉を希硫酸で練膏したペーストを充填し、熟成・乾燥を経た後、電解液である希硫酸中で、電気化学的に酸化・還元反応を起こさせ、正極に二酸化鉛、負極に鉛を生成させる化成工程を経て作製される。
【0003】
前記格子を作製する方法には、鉛合金等の溶融状態の金属を鋳型に注入・固化する鋳造方式と、鉛合金等からなる金属シートを打ち抜きあるいはエキスパンド加工により枡目を形成する機械加工方式とがある。近年では生産性の優れている後者の方式が増えている。
【0004】
一般的な金属シートの作製方法として、連続鋳造によるものや、押出し方式、圧延方式などがあげられる。特にロールによる圧延方式は、生産性が良いために鉄鋼関係のみならず非鉄金属、例えば、鉛あるいは鉛合金を用いる鉛蓄電池の分野においても広く採用されている。
【0005】
圧延によるシートの作製は、連続鋳造あるいは鍛造により形成されたスラブを一対の多段ロールプレス機の間に連続して通過させ徐々に厚みを薄くしていくのが一般的である。なお、スラブとは圧延シートを作製し易いように、一定の厚みを有する板状の金属物をいう。
【0006】
前記、スラブを圧延して薄くしていくと、元のスラブの金属体の結晶が潰され、細かくなると共に圧延方向に縞状の圧延組織が現れ、シートの強度が増加する。一定の圧延率までは、圧延することによってシートの強度が増加する傾向にあると共に、また伸びやすくなるために、後のエキスパンド加工における切断および展開時の加工性が良好になる。
【0007】
【発明が解決しようとしている課題】
従来の圧延方法で作製された金属シート、例えば、鉛合金シートを機械加工方式により作製した格子、例えば、エキスパンド格子を鉛蓄電池の正極板に使用した場合、格子中に細かい結晶組織が形成されているので、鋳造格子で見られた粒界に沿った局部的な腐食による破断や突然の劣化は発生しなくなった。しかし、その細かい結晶組織のために格子全体の腐食量が多くなり、格子が変形して伸びるといった現象が見られ、活物質の脱落や対極板との短絡で短寿命となる問題を抱えている。変形を抑制する目的でシートを熱処理し硬化させる方法もあるが、その際に発生する析出物が耐食性を低下させるといった別の問題が発生する。
【0008】
また、鉛合金そのものの耐食性を向上させるために、合金への添加物やその量を検討してきたが、その方法にも限度があった。
【0009】
本発明が解決しようとしている課題は、スラブを圧延してシートを作製し、該シートを機械加工方式により蓄電池用格子を作製する方法において、シートの機械的強度を維持しながら耐食性を向上させた蓄電池用格子の製造方法および該格子を使用した寿命性能の優れた蓄電池を提供することにある。
【0010】
【課題を解決するための手段】
本発明の課題を解決するための手段として、請求項1によれば、スラブを多段圧延ロールプレス機で段階的に連続シート状に圧延し、前記シートを機械加工方式により格子を形成する蓄電池用格子の製造方法において、
前記多段圧延ロールプレス機の少なくとも一組みの対向するロールの線速度が異なることを特徴とするものである。
【0011】
一組みの対向するロールの線速度が異なるロールプレス機で圧延することによって、スラブ表面への摩擦が通常より大きくなるため、より強く加工されるので結晶が細かくなり強度が向上する。一方、スラブにせん断応力が付与されるためにシート表面付近には圧延方向に均一化された結晶が形成されるのに対して内部ではずれた方位を有する結晶粒界が生成する。したがって、このようにして作製された圧延シートをエキスパンド加工あるいは打ち抜きにより形成された蓄電池用格子は、シートとしての機械的強度が高く、しかも耐食性に優れているので、安定した寿命性能を有する蓄電池が得られることがわかった。
【0012】
その場合、対向する一組のロールの線速度比を1.025以上、1.20以下にすることによって、本発明の効果が着実に現れ、その後、機械加工により形成される格子は、強度が高く、耐食性の優れていることがわかった。すなわち、線速度比を1.025より小さくすると、対向する一組のロールの線速度を変えたことによって、せん断応力がスラブに付与される効果が十分でなく、圧延シートの組織の変化が少なく、十分な耐食性が得られない。また、1.20を超えると、圧延時にシートが蛇行したりクラックが入ったりするなどの不具合が発生し良好なシートが得られなくなる。
【0013】
ここでいう線速度は、圧延ローラの外周面の線速度をいう。
【0014】
また、前記多段圧延ロールプレスの工程によって形成されるシートの総圧延率を70%以上、95%以下にすることにより、対向する一組のロールの線速度を変えた効果と相まって、その後、機械加工方式により作製される格子の強度および耐食性がより優れていることが分かった。その場合、圧延率を高くすると、圧延シートの強度は増すが、組織が細かくなり過ぎて腐食され易くなり、一方、圧延率が70%より低いとシートの強度が低くなる。したがって、70%以上、95%以下の圧延率で圧延することによって、結晶が比較的大きなまま存在させることができるために、通常の結晶組織が細かい圧延シートより耐食性が優れ、強度も一定のレベルが維持でき、しかも、対向する一組のロールの線速度が異なるロールを通すことによってシートにせん断応力が付加され耐食性が一層向上することがわかった。
【0015】
ここでの圧延率(%)とは、(圧延前のスラブ厚−圧延後のシート厚み)/圧延前のスラブ厚×100で表されるものである。
【0016】
請求項2によれば、請求項1に記載の製造方法によって製造された蓄電池用格子を備えたことを特徴とする蓄電池である。
【0017】
請求項1の方法によって製造された格子を用いることによって、耐食性が優れ、格子の強度も高く、正極格子の劣化速度が抑制され長寿命の蓄電池が得られる。
【0018】
【発明の実施の形態】
本発明の実施の形態は、多段ロールプレス機により、スラブから圧延シートを得る方法において、前記多段ロールプレス機の少なくとも対向する一組のロールの線速度を変えてシートを圧延することにある。このようにして得られたシートを機械加工方式により作製した格子は機械的強度を維持しながらしかも耐食性が優れているので、該格子を用いた蓄電池は優れた寿命特性が得られるというもので、以下、実施例により詳細に説明する。
【0019】
【実施例】
図1は、本発明の上下ロールの線速度の異なる一組のロールプレス機の一例を示す要部側面図で、1aは上部圧延ロール、1bは下部圧延ロール、21は前記ロールに圧延される前のシート、22は圧延後のシートをそれぞれ示す。
【0020】
図1に示すロールにシートを通過させることによって、シートとしての強度を維持しながら耐食性が大幅に向上することを明らかにするために以下に実施例に基づいて説明する。
【0021】
Pb−0.06%Ca−1.3%Sn合金からなる約10mmのスラブを通常の8段の連続圧延ロール機で圧延する際に、3段目の対向する一組のロールの線速度比を上下で1.0〜1.25まで変化させた。ここでの線速度比は、速いロールの線速度Vf/遅いロールの線速度Vsで定義する。圧延途中でたるみや破断がおこらないように、上下ロールの線速度の平均値が上下のロールの線速度が同じ場合の線速度と同じになるように調整した。
【0022】
一方、圧延シートの最終厚みが同じになるようにスラブ厚さとロール段数を調整して、総圧延率を50%から97%まで変化させた。
【0023】
これら二つの条件を組み合わせて作製した圧延シートを常法のロータリーエキスパンダーで機械加工を行い、格子を作製した。これら格子に鉛酸化物を主体とする原料を希硫酸で練膏したペーストを充填し、熟成・乾燥を行い、未化成正極板を作製した。この正極板と常法により作製された負極板および微孔性のポリエチレンを主体としたセパレータとを組み合わせてJIS D 5301に規定されている55D23型自動車用鉛蓄電池を作製した。該蓄電池に所定比重、所定量の希硫酸を注入し化成を行い完成させた。
【0024】
これらの蓄電池をJID D 5301に準ずる試験温度75℃の軽負荷寿命試験に供した。寿命試験は、3,000サイクルで終了し、蓄電池を解体し、正極板の最大伸び率を調査した。
【0025】
図2に線速度比および総圧延率(%)と寿命試験後の正極板の最大伸び率(%)との関係を示す。なお、正極格子の伸び率(%)は、総圧延率97%、線速度比1.0の正極板の伸び率を100%とした時の比率で表した。
【0026】
図2に示すように、上下のロールの線速度比を1.025以上、1.2以下の範囲で変えた場合に寿命試験中の正極板の伸びが抑制できた。特に1.1近辺でその効果が大きいことがわかった。また、総圧延率が70%以上、95%以下の範囲でその効果がより顕著であった。これは、ロールの線速度を変えることによる圧延シートの微細組織の変化に及ぼす影響と総圧延率を変えることによるシートの強度への影響とが相乗的に作用し、良好な結果が得られたと考えられる。
【0027】
しかし、線速度比が1.2を超えると、シートが蛇行したりクラックが入ったりする等の不具合が発生し、最終状態の圧延シートが得られず、エキスパンド格子が作製できなかった。一方、線速度比が1.025より小さくなると、速度比を変えた効果が十分でなく耐食性の向上は僅かであった。
【0028】
また、総圧延率が95%を超えるとシート全体が均一でより細かい組織になるため耐食性が劣り、正極板の伸びが大きかった。一方、総圧延率が70%より低くなると鋳造組織が残存するため粒界腐食に起因する正極板の伸びが見られた。
【0029】
本実施例では、Pb−0.06%Ca−1.3%Sn合金からなる約10mmのスラブを用いて圧延シートを作製したが、カルシウムの含有量は0.04質量%以上、0.09質量%以下の範囲、錫の含有量は1.0質量%以上、2.4質量%以下の範囲のスラブを用いて作製した圧延シートについても、同様の効果が得られることを本願発明者は確認している。また、合金種についても、Pb−Ca−Snに限定するものでなく、他の鉛合金、例えば、Pb−Sn系合金あるいはPb−Sb系合金でも同様の効果の得られる。
【0030】
また、本実施例では、鉛蓄電池について説明したが、金属スラブを圧延して連続シートを作製し、該シートを機械加工方式により作製した格子を用いて極板群を形成する方式の蓄電池であれば鉛蓄電池にこだわることなく適用可能であることはいうまでもない。
【0031】
なお、実施例では、ロールの線速度を個々で制御して実施したがが、圧延ロール径を上下で異なるようにすれば同じ回転速度であっても線速度の異なる状態が得られ、同様の効果が得られる。
【0032】
さらにこの効果は、0℃〜300℃の圧延温度範囲でもあまり左右されないことを本願の発明者は確認している。
【0033】
また、1回あたりの圧延率が50%を超えると、シート表裏で摩擦が大きくなり過ぎ、破断する恐れがあるので、1回あたり50%以下の圧延率で行うのが望ましい。
【0034】
【発明の効果】
以上、詳細に説明したように、スラブを多段ロールプレス機により圧延してシートを作製し、該シートをエキスパンド加工等の機械加工方式により格子を製造する方法において、圧延によってシートに微細組織が形成されるので腐食され易く、短寿命になる問題を抱えていた。それに対して、本発明によれば、前記多段ロールプレス機において、少なくとも対向する一組のロールの線速度を変えて圧延することによって、スラブあるいはシートにせん断応力が付与されるためにシート表面付近では圧延方向に均一化された結晶が生成されているのに対して内部ではずれた方位を有する結晶粒界が生成し、しかも、シートの総圧延率を70%以上、95%以下にすることによってシートの強度が維持されるので、機械的強度が高く、しかも耐食性に優れた格子が得られ、前記格子を用いた蓄電池は寿命特性が優れその工業的効果が極めて大である。
【図面の簡単な説明】
【図1】上下で線速度の異なる一組の圧延ロールプレス機を示す模式要部側面図。
【図2】線速度比および総圧延率と軽負荷寿命試験後の正極板の伸び率(%)との関係を示す図
【符号の説明】
1a 上部ロール
1b 下部ロール
21 加工前のシート
22 加工後のシート[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a grid for a storage battery and a storage battery.
[0002]
[Prior art]
The positive and negative plates of a storage battery, for example, a lead storage battery, are filled with a grid made of lead or a lead alloy, which is filled with a paste obtained by pulverizing lead powder mainly composed of lead oxide with dilute sulfuric acid, and after aging and drying, It is produced through a chemical conversion process in which oxidation and reduction reactions are caused electrochemically in dilute sulfuric acid as a liquid to generate lead dioxide on the positive electrode and lead on the negative electrode.
[0003]
The method of producing the lattice includes a casting method of injecting and solidifying a molten metal such as a lead alloy into a mold and a machining method of forming a mesh by punching or expanding a metal sheet made of a lead alloy or the like. There is. In recent years, the latter method, which has excellent productivity, is increasing.
[0004]
As a general method for producing a metal sheet, there are a method by continuous casting, an extrusion method, a rolling method, and the like. In particular, the rolling method using a roll is widely used not only in the field of iron and steel but also in the field of lead storage batteries using non-ferrous metals, for example, lead or a lead alloy because of high productivity.
[0005]
Generally, when a sheet is produced by rolling, a slab formed by continuous casting or forging is continuously passed between a pair of multi-stage roll presses to gradually reduce the thickness. Note that a slab refers to a plate-like metal object having a certain thickness so that a rolled sheet can be easily manufactured.
[0006]
When the slab is rolled and thinned, the crystal of the metal body of the original slab is crushed and finer, and a striped rolled structure appears in the rolling direction, thereby increasing the strength of the sheet. Up to a certain rolling reduction, the strength of the sheet tends to be increased by rolling, and the sheet is easily stretched, so that the workability at the time of cutting and unfolding in the subsequent expanding processing is improved.
[0007]
[Problems to be solved by the invention]
A metal sheet produced by a conventional rolling method, for example, a lattice produced by machining a lead alloy sheet, for example, when an expanded lattice is used for a positive electrode plate of a lead storage battery, a fine crystal structure is formed in the lattice. As a result, breakage and sudden deterioration due to local corrosion along the grain boundaries found in the cast grid did not occur. However, due to the fine crystal structure, the amount of corrosion of the entire lattice is increased, the phenomenon that the lattice is deformed and elongated is observed, and there is a problem that the active material is dropped and the life is short due to short circuit with the counter electrode plate . There is also a method of heat-treating and curing the sheet for the purpose of suppressing deformation, but another problem occurs in that the precipitate generated at that time lowers the corrosion resistance.
[0008]
Further, in order to improve the corrosion resistance of the lead alloy itself, additives and their amounts have been studied, but the method is limited.
[0009]
The problem to be solved by the present invention is to produce a sheet by rolling a slab, and to improve the corrosion resistance while maintaining the mechanical strength of the sheet in a method for producing a grid for a storage battery by machining the sheet. It is an object of the present invention to provide a method for manufacturing a storage battery grid and a storage battery having excellent life performance using the grid.
[0010]
[Means for Solving the Problems]
As means for solving the problems of the present invention, according to
A linear speed of at least one pair of opposing rolls of the multi-high rolling roll press machine is different.
[0011]
By rolling a pair of opposing rolls with roll presses having different linear velocities, the friction on the slab surface becomes larger than usual, and the slab is processed more strongly, so that the crystals become finer and the strength is improved. On the other hand, since a shear stress is applied to the slab, crystals uniform in the rolling direction are formed in the vicinity of the sheet surface, but crystal grain boundaries having a displaced orientation are generated inside. Therefore, the storage battery grid formed by expanding or punching the rolled sheet manufactured in this manner has a high mechanical strength as a sheet and is excellent in corrosion resistance, so a storage battery having stable life performance can be obtained. It turned out to be obtained.
[0012]
In this case, by setting the linear velocity ratio of the pair of opposing rolls to be equal to or greater than 1.025 and equal to or less than 1.20, the effect of the present invention appears steadily. It was found to be high and excellent in corrosion resistance. That is, when the linear velocity ratio is less than 1.025, the effect of applying shear stress to the slab is not sufficient by changing the linear velocity of a pair of opposing rolls, and the change in the structure of the rolled sheet is small. , Sufficient corrosion resistance cannot be obtained. On the other hand, if it exceeds 1.20, problems such as meandering and cracking of the sheet during rolling occur, and a good sheet cannot be obtained.
[0013]
Here, the linear velocity refers to the linear velocity of the outer peripheral surface of the rolling roller.
[0014]
Further, by setting the total rolling ratio of the sheet formed by the multi-stage rolling roll press step to 70% or more and 95% or less, the effect of changing the linear velocity of a pair of rolls facing each other is obtained. It was found that the strength and corrosion resistance of the grating produced by the processing method were more excellent. In this case, when the rolling ratio is increased, the strength of the rolled sheet is increased, but the structure becomes too fine and easily corroded. On the other hand, when the rolling ratio is lower than 70%, the strength of the sheet decreases. Therefore, by rolling at a rolling ratio of 70% or more and 95% or less, the crystal can be kept relatively large, so that the corrosion resistance is superior to that of a normal rolled sheet having a fine crystal structure, and the strength is at a certain level. It has been found that the shear stress is applied to the sheet by passing the pair of rolls having different linear velocities through different rolls, thereby further improving the corrosion resistance.
[0015]
Here, the rolling ratio (%) is represented by (slab thickness before rolling−sheet thickness after rolling) / slab thickness before rolling × 100.
[0016]
According to a second aspect of the present invention, there is provided a storage battery including a storage battery grid manufactured by the manufacturing method according to the first aspect.
[0017]
By using the grid manufactured by the method of the first aspect, a storage battery having excellent corrosion resistance, high strength of the grid, and a suppressed deterioration rate of the positive grid is obtained.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention resides in a method of obtaining a rolled sheet from a slab by a multi-stage roll press, wherein the sheet is rolled by changing a linear velocity of at least a pair of opposed rolls of the multi-stage roll press. The lattice produced by machining the sheet obtained in this way is excellent in corrosion resistance while maintaining mechanical strength, so that a storage battery using the lattice can have excellent life characteristics. Hereinafter, an embodiment will be described in detail.
[0019]
【Example】
FIG. 1 is a main part side view showing an example of a set of roll presses having different linear velocities of upper and lower rolls of the present invention, where 1a is an upper roll, 1b is a lower roll, and 21 is rolled on the roll. A sheet before 22 and a sheet after rolling are shown, respectively.
[0020]
An example will be described below in order to clarify that by passing the sheet through the roll shown in FIG. 1, the corrosion resistance is significantly improved while maintaining the strength as the sheet.
[0021]
When a slab of about 10 mm made of a Pb-0.06% Ca-1.3% Sn alloy is rolled by a normal eight-stage continuous rolling mill, the linear velocity ratio of a pair of opposing rolls in the third stage Was varied up and down from 1.0 to 1.25. Here the linear speed ratio, the defined at a linear velocity V f / slow roll linear velocity V s of fast rolls. The average value of the linear velocities of the upper and lower rolls was adjusted so as to be the same as the linear velocities when the linear velocities of the upper and lower rolls were the same so that sagging and breakage did not occur during rolling.
[0022]
On the other hand, the slab thickness and the number of roll stages were adjusted so that the final thickness of the rolled sheet was the same, and the total rolling reduction was changed from 50% to 97%.
[0023]
The rolled sheet produced by combining these two conditions was machined by a conventional rotary expander to produce a lattice. These lattices were filled with paste obtained by plastering a raw material mainly composed of lead oxide with dilute sulfuric acid, aging and drying to prepare an unformed positive electrode plate. By combining this positive electrode plate with a negative electrode plate produced by a conventional method and a separator mainly composed of microporous polyethylene, a 55D23 type lead-acid battery for automobiles specified in JIS D 5301 was produced. A predetermined specific gravity and a predetermined amount of dilute sulfuric acid were injected into the storage battery to form a chemical, thereby completing the storage battery.
[0024]
These batteries were subjected to a light load life test at a test temperature of 75 ° C. according to JID D 5301. The life test was completed after 3,000 cycles, the storage battery was disassembled, and the maximum elongation of the positive electrode plate was examined.
[0025]
FIG. 2 shows the relationship between the linear velocity ratio and the total rolling reduction (%) and the maximum elongation (%) of the positive electrode plate after the life test. In addition, the elongation rate (%) of the positive electrode lattice was represented by a ratio when the elongation rate of a positive electrode plate having a total rolling reduction of 97% and a linear velocity ratio of 1.0 was set to 100%.
[0026]
As shown in FIG. 2, when the linear velocity ratio between the upper and lower rolls was changed in the range of 1.025 or more and 1.2 or less, the elongation of the positive electrode plate during the life test could be suppressed. In particular, the effect was found to be large near 1.1. Further, the effect was more remarkable when the total rolling ratio was in the range of 70% or more and 95% or less. This is because the effect on the change in the microstructure of the rolled sheet by changing the linear velocity of the roll and the effect on the strength of the sheet by changing the total rolling ratio act synergistically, and good results were obtained. Conceivable.
[0027]
However, if the linear velocity ratio exceeds 1.2, problems such as meandering and cracking of the sheet occur, and a rolled sheet in a final state cannot be obtained, and an expanded lattice cannot be produced. On the other hand, when the linear velocity ratio was smaller than 1.025, the effect of changing the velocity ratio was not sufficient, and the improvement in corrosion resistance was slight.
[0028]
On the other hand, when the total rolling ratio exceeded 95%, the entire sheet had a uniform and fine structure, so that the corrosion resistance was poor and the elongation of the positive electrode plate was large. On the other hand, when the total rolling reduction was lower than 70%, since the cast structure remained, elongation of the positive electrode plate due to intergranular corrosion was observed.
[0029]
In this example, a rolled sheet was prepared using a slab of about 10 mm made of a Pb-0.06% Ca-1.3% Sn alloy, but the content of calcium was 0.04% by mass or more and 0.09% by mass. The inventor of the present application has found that the same effect can be obtained for a rolled sheet produced using a slab having a range of not more than 1.0% by mass and a tin content of not less than 1.0% by mass and not more than 2.4% by mass. I have confirmed. Also, the alloy type is not limited to Pb-Ca-Sn, and similar effects can be obtained with other lead alloys, for example, Pb-Sn-based alloys or Pb-Sb-based alloys.
[0030]
Further, in the present embodiment, the lead storage battery is described. However, a storage battery of a system in which a metal slab is rolled to form a continuous sheet, and the sheet is formed into a group of electrode plates using a grid formed by a machining method. It goes without saying that the present invention can be applied without being limited to lead-acid batteries.
[0031]
In the embodiment, the linear speed of the rolls was controlled individually, but the rolling speed was adjusted differently between upper and lower rolls. The effect is obtained.
[0032]
Furthermore, the inventor of the present application has confirmed that this effect is not significantly affected even in the rolling temperature range of 0 ° C to 300 ° C.
[0033]
If the rolling rate per operation exceeds 50%, the friction on the front and back of the sheet becomes too large, and there is a possibility that the sheet is broken. Therefore, it is preferable to perform the operation at a rolling rate of 50% or less per operation.
[0034]
【The invention's effect】
As described in detail above, in the method of producing a sheet by rolling a slab with a multi-stage roll press and manufacturing the lattice by a mechanical processing method such as expanding, a fine structure is formed on the sheet by rolling. Therefore, it has a problem that it is easily corroded and has a short life. On the other hand, according to the present invention, in the multi-stage roll press machine, by changing the linear speed of at least one pair of opposed rolls to perform rolling, a shear stress is applied to the slab or the sheet, so that the vicinity of the sheet surface is provided. In this method, crystal grains uniform in the rolling direction are generated, but crystal grain boundaries having a misaligned orientation are generated therein, and the total rolling ratio of the sheet is set to 70% or more and 95% or less. As a result, the strength of the sheet is maintained, so that a grid having high mechanical strength and excellent corrosion resistance can be obtained, and a storage battery using the grid has excellent life characteristics and its industrial effect is extremely large.
[Brief description of the drawings]
FIG. 1 is a schematic side view of a principal part showing a pair of rolling roll presses having different linear velocities in upper and lower portions.
FIG. 2 is a diagram showing a relationship between a linear velocity ratio and a total rolling reduction and an elongation (%) of a positive electrode plate after a light load life test.
1a Upper roll
Claims (2)
前記多段圧延ロールプレス機の少なくとも一組みの対向するロールの線速度が異なることを特徴とする蓄電池用格子の製造方法。Rolling the slab stepwise into a continuous sheet by a multi-stage rolling press, in the method of manufacturing a grid for a storage battery, wherein the grid is formed by machining the sheet.
A method of manufacturing a grid for a storage battery, wherein linear speeds of at least one pair of opposed rolls of the multi-high rolling roll press are different.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003100651A JP2004311110A (en) | 2003-04-03 | 2003-04-03 | Method for manufacturing storage battery grid and storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003100651A JP2004311110A (en) | 2003-04-03 | 2003-04-03 | Method for manufacturing storage battery grid and storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004311110A true JP2004311110A (en) | 2004-11-04 |
JP2004311110A5 JP2004311110A5 (en) | 2006-05-18 |
Family
ID=33464718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003100651A Withdrawn JP2004311110A (en) | 2003-04-03 | 2003-04-03 | Method for manufacturing storage battery grid and storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004311110A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006294296A (en) * | 2005-04-06 | 2006-10-26 | Gs Yuasa Corporation:Kk | Method of manufacturing electrode plate collector of lead storage battery |
JP2007287505A (en) * | 2006-04-18 | 2007-11-01 | Matsushita Electric Ind Co Ltd | Method of manufacturing rolled sheet for lead-acid battery grid |
KR101084314B1 (en) | 2010-03-18 | 2011-11-16 | 강릉원주대학교산학협력단 | Asymmetric rolling apparatus, asymmetric rolling method and rolled materials fabricated by using the same |
JP2014006963A (en) * | 2012-06-21 | 2014-01-16 | Kawasaki Heavy Ind Ltd | Battery and manufacturing method and apparatus of buffer member thereof |
-
2003
- 2003-04-03 JP JP2003100651A patent/JP2004311110A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006294296A (en) * | 2005-04-06 | 2006-10-26 | Gs Yuasa Corporation:Kk | Method of manufacturing electrode plate collector of lead storage battery |
JP2007287505A (en) * | 2006-04-18 | 2007-11-01 | Matsushita Electric Ind Co Ltd | Method of manufacturing rolled sheet for lead-acid battery grid |
KR101084314B1 (en) | 2010-03-18 | 2011-11-16 | 강릉원주대학교산학협력단 | Asymmetric rolling apparatus, asymmetric rolling method and rolled materials fabricated by using the same |
WO2011115402A3 (en) * | 2010-03-18 | 2012-02-23 | 강릉원주대학교 산학협력단 | Asymmetric rolling device, asymmetric rolling method and rolled material manufactured using same |
US9421592B2 (en) | 2010-03-18 | 2016-08-23 | Gangneung-Wonju National University Industry Academy Cooperation Group | Asymmetric rolling device, asymmetric rolling method and rolled material manufactured using same |
JP2014006963A (en) * | 2012-06-21 | 2014-01-16 | Kawasaki Heavy Ind Ltd | Battery and manufacturing method and apparatus of buffer member thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2657359B1 (en) | Electrode current collector and manufacturing method thereof | |
KR20160075604A (en) | Aluminum alloy foil for electrode current collector, and method for producing same | |
JP2008163361A (en) | Method for producing magnesium alloy thin sheet having uniformly fine crystal grain | |
JP4611733B2 (en) | Method for producing lead or lead alloy electrode plate grid for lead acid battery and lead acid battery | |
WO2013018165A1 (en) | Aluminum alloy foil for electrode collector and production method therefor | |
US6802917B1 (en) | Perforated current collectors for storage batteries and electrochemical cells, having improved resistance to corrosion | |
CN101792875B (en) | Aluminum foil and production method thereof | |
JP4929558B2 (en) | Method for manufacturing lead-acid battery grid | |
JP6049528B2 (en) | Method for producing positive grid substrate | |
JP2004311110A (en) | Method for manufacturing storage battery grid and storage battery | |
JP5137371B2 (en) | Rolled lead alloy sheet for expanded positive grid and lead-acid battery | |
JP5313633B2 (en) | Manufacturing method of lead acid battery substrate | |
JPH10284085A (en) | Grid for lead-acid battery | |
JP4852869B2 (en) | Method for producing electrode plate current collector for lead acid battery | |
JP4579514B2 (en) | Manufacturing method of grid substrate for lead acid battery | |
JP2006294296A5 (en) | ||
JP2004076059A (en) | Aluminum alloy foil for cathode of electrolytic capacitor, and manufacturing method therefor | |
JP3252443B2 (en) | Manufacturing method of lead alloy sheet for expanded grid of lead-acid battery | |
JP4263465B2 (en) | Electrode current collector, manufacturing method thereof, and sealed lead-acid battery | |
JP2004311296A (en) | Manufacturing method of lattice for storage battery, and storage battery | |
JPH10321236A (en) | Lead-acid battery | |
JP2005056621A (en) | Manufacturing method of lattice for lead acid storage battery, and lead acid storage battery | |
JPH0413824B2 (en) | ||
JP2005158440A (en) | Manufacturing method of lead-acid battery, and lead acid battery | |
JPS60185365A (en) | Manufacture of substrate for storage battery plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060329 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060329 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20070402 |