JP4263465B2 - Electrode current collector, manufacturing method thereof, and sealed lead-acid battery - Google Patents

Electrode current collector, manufacturing method thereof, and sealed lead-acid battery Download PDF

Info

Publication number
JP4263465B2
JP4263465B2 JP2002352313A JP2002352313A JP4263465B2 JP 4263465 B2 JP4263465 B2 JP 4263465B2 JP 2002352313 A JP2002352313 A JP 2002352313A JP 2002352313 A JP2002352313 A JP 2002352313A JP 4263465 B2 JP4263465 B2 JP 4263465B2
Authority
JP
Japan
Prior art keywords
current collector
electrode current
lead
electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002352313A
Other languages
Japanese (ja)
Other versions
JP2004186013A (en
Inventor
敏雄 松島
知伸 辻川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2002352313A priority Critical patent/JP4263465B2/en
Publication of JP2004186013A publication Critical patent/JP2004186013A/en
Application granted granted Critical
Publication of JP4263465B2 publication Critical patent/JP4263465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シール鉛蓄電池の極板等に用いられる格子状の電極集電体及びその製造方法とシール鉛蓄電池に関する。
【0002】
【従来の技術】
一般にシール鉛蓄電池は、複数枚の正極板と負極板をセパレータを介して組み立てられた極板群を、硫酸と共に電槽に収納することで構成されている。正・負極板は、障子の桟のような格子状の開口部を有する電極集電体に、電池反応に関わる活物質が塗り込まれて形成されている。集電体の役割は、反応に関与する活物質の保持と充放電に伴う電流の通路の確保である。従って、集電体の構造は電池の放電特性にも関わり、さらに、正極においては、通常予備電源として使用されると常時充電反応下におかれ、集電体は電気化学的な酸化を受ける。このため、集電体表面が酸化し、長期間使用した場合には活物質の保持が困難になり、電池として機能しなくなる。このため、集電体に使用される合金や集電体の製造方法については従来から種々の検討が行われてきている。
シール鉛蓄電池では、集電体の合金として鉛にカルシウムとスズを添加した鉛合金が使用されており、従来の集電体の製造方法としては、鋳造法やエキスパンド法が適用されてきている。(例えば、非特許文献1参照)。
【0003】
しかし、前記のカルシウムとスズを含有する鉛合金を用いて鋳造法で集電体を作製すると、合金内に「粒」が形成され、各「粒」間には界面が形成される。電池の使用中、集電体は充電状態にあり、酸化を受けるが、この酸化によって前記の「粒」の界面で酸化が進行しやすい。このため、粒界に酸化による生成物である硫酸鉛が生成し、集電体を構成する合金全体に伸びが生じ活物質の保持が困難になるという問題があった(例えば、非特許文献1参照)。
【0004】
図2は、エキスパンド法を用いる従来の電極集電体の製造方法を備えた電極の製造方法を示すフローチャートであり、図3はこの従来の電極を製造するための製造ラインを示す図である。この方法では、先と同じ合金を使用し、大きめの合金塊(鉛インゴット)10を形成し(インゴット鋳造工程a)、圧延加工の回数に応じて設けられたn対のロールによる圧延加工を多数回施して必要とする厚みのシート状に成形し(圧延工程b)、この後、シート11に刻みを入れて引っ張り、シート全体に格子状開口部11a(スリット形成工程c、エキスパンド工程d)を形成し、この後、このシートに活物質を塗布し(活物質塗布工程e)、所定形状にカットする(切断工程f)と、極板12が得られる(例えば、非特許文献2参照)。
この方法は、集電体の形成が全て機械加工で行えるため量産性に優れており、しかも、合金に圧延という機械加工を行うために金属組織に変成が生じ、上記の鋳造法で作製した集電体に見られた様な「粒」は存在しない。このため、エキスパンド法で作製した集電体は、使用中の酸化に対する耐性が高い。
【0005】
しかし、エキスパンド法を用いる従来の製法においては、鉛合金インゴット10に圧延処理を施し、その後、刻みを入れて引っ張り、シート全体に格子状開口部11aを設けているが、製造性が優先され圧延工程における条件が規定されていないため、シート状合金の作製が強い加圧下での多数回の圧延による場合が多く、金属組織に変成が生じていた(例えば、非特許文献3参照)。従って、従来のエキスパンド法により得られた集電体は、表面組織の耐酸化性が高い反面、電池反応に関与する活物質を保持させた際の集電体と活物質の密着性が低いという問題があった。集電体と活物質の密着性が低いと、電池の充放電時の電流が活物質まで十分に伝わることが難しくなる。このため、本来活物質の末端まで伝わるべき電気量が集電体表面の酸化(充電時)や還元(放電時)に費やされ、格子の腐食が促進され、電池寿命に影響が生じてくるという問題があった。
【0006】
【非特許文献1】
「ジーエス ニュース テクニカル レポート(GS News technical Report)」,1998年6月,第57巻第1号,p.16
【非特許文献2】
「電池便覧」第3版、平成13年2月20日、丸善、p.166
【非特許文献3】
「YUASA-JIHO」No84 Apri1,1998年,p.48
【0007】
【発明が解決しようとする課題】
上述したように従来のシール鉛蓄電池では、極板を構成する集電体が鋳造法やエキスパンド法によって製造されていたが、鋳造法を採用した場合には製造された集電体内に「粒」が形成され、使用中に、この粒界に沿って腐食が進行し極板の伸びが大きくなるという問題があり、エキスパンド法を採用した場合には、量産性が高い反面、金属組織に変成が生じ、電池を構成した際に重要となる集電体と活物質の接合状況に影響が生じ、蓄電池の放電特性や寿命にも影響が生じるという問題があった。
【0008】
本発明は、上記の課題を解決するためになされたものであって、電池反応に関与する活物質の密着性を向上できる電極集電体とその製造方法を提供することを目的する。
また、本発明は、電極集電体の耐食性の向上と、電池反応に関与する活物質の密着性を向上できる電極集電体とその製造方法を提供することを目的する。
また、本発明は、上記のように耐食性が向上し、活物質の密着性を向上した電極集電体を極板に備えることにより、放電特性や寿命を向上できるシール鉛蓄電池を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者は、上記の課題を解決するために鋭意研究および検討を重ねた結果、鋳造法またはエキスパンド法で製造された鉛合金(鉛を主成分とする合金)からなる電極集電体に特殊な表面処理を施すことにより、耐食性が向上し、しかも活物質との密着性が向上した電極集電体が得られることを究明し、本発明を完成したのである。すなわち、本発明の電極集電体は、鉛を主成分とする合金からなり、かつ、表面に層状の組織が形成されるとともに芯部に粒状組織が残存してなるエキスパンド法で形成された電極集電体の表面に鉛の酸化層が形成されていることを特徴とする。
【0010】
本発明の電極集電体が正極板に用いられる場合、前記鉛の酸化層はα−PbOであることが好ましい。
また、本発明のシール鉛蓄電池は、本発明の電極集電体に活物質を保持させてなる極板を備えたことを特徴とする。
【0011】
また、本発明の電極集電体の製造方法は、鉛を主成分とする合金を最終加工品の3倍以下の厚みで鋳造して平板状の電極集電体予備成形体を作製し、次いで、前記鋳造時に前記電極集電体予備成形体内に生成した粒状組織が少なくとも芯部に残る圧延条件によって前記予備成形体を最終加工品と同じ厚みを有するシート状に圧延した後、刻みを入れて展開し、次いで、鉛イオンを含むアルカリ性水溶液中に浸漬し、電解による電析処理を施すことを特徴とする
【0012】
また、シート状に圧延し刻みを入れて展開してから、このシートを切断して電極集電体とし、この後、電極集電体に上記の電析処理が施してもよい。あるいは上記の電析処理シートを切断する前に行ってもよい。
【0013】
また、本発明の電極集電体の製造方法においては、前記鉛を主成分とする合金からなる電極集電体に電析処理を施す際のアルカリ性水溶液が、NaOHまたはKOHを含んでいることを特徴とする。
また、本発明においては、前記鉛を主成分とする合金からなる電極集電体が、鉛とカルシウムとスズを必須として含み、さらにアルミニウムを含有していてもよい。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明するが、本発明は以下の実施形態に限定されるものではない。
(第1の実施形態)
図1は、本実施形態の電極集電体を備えた電極の製造方法を示すフローチャートである。以下に述べる本実施形態の電極集電体の製造方法では、本発明の電極集電体の製造方法をエキスパンド法を用いる電極集電体の製造方法に適用した場合について説明する。
まず、鉛を主成分とする合金(鉛合金ということもある。)を出発材料とし、板状の鋳造体(平板状の電極集電体予備成形体)を作製する(S1:板状の鋳造体作製工程)。
上記出発材料の鉛合金は、鉛とカルシウムとスズを必須として含み、さらにアルミニウムおよび/または銀を含有するものである。各元素の含有量としては、カルシウム0.04〜0.1重量%と、スズ0.1〜2.5重量%、アルミニウム及び/又は銀0.005〜0.05重量%、残部が鉛である。
【0015】
ここでの電極集電体予備成形体は、金型に上記出発材料と同様の組成の溶融合金を流し込むことで作製する。ここで作製された予備成形体(鋳造体)は、粒状組織から構成されている。
ここで作製する平板状の電極集電体予備成形体の厚みtは、最終形態の電極集電体(最終加工品あるいはエキスパンド成形体)の厚みtexpの3倍以下、好ましくは1〜3倍の厚み、より好ましくは2〜3倍の厚み、即ち、t≦(2〜3)×texpの条件を満たしていることがより好ましい。なお、エキスパンド成形体とは、後述する圧延加工により形成したシート状の圧延体にエキスパンド加工により開口部を形成したものである。
【0016】
次に、上記平板状の電極集電体予備成形体に、この予備成形体内の金属組織に影響が生じないような加圧力と回数に従う圧延条件、言い換えれば、鋳造時に予備成形体内に生成した粒状組織が少なくとも芯部に残るような圧延条件で圧延処理を施し、目的とする厚みのシートを成形する(S2:圧延工程)。
ここで圧延回数は1〜2回とすることが好ましい。
【0017】
本実施形態では、圧延工程S2に供される鉛合金(平板状の電極集電体予備成形体)の厚みtを最終形態の電極集電体texpの3倍以下、より好ましくは2〜3倍とするので、エキスパンド法を用いる従来の製法のような多数回の圧延過程を必要とせず、1〜2回の圧延処理で最終形態の電極集電体とほぼ厚みを有するシート状の圧延体を得ることができ、この後の工程のスリットを設けて広げる(エキスパンド)工程に回すことができる。
ここでの圧延工程では鉛合金の組織には大きな変成が起こらず、鋳造時に生成する粒状組織の大部分を残した状態でシート状の圧延体を得ることができる。
【0018】
次いで、上記シートにスリット加工を行い(S3:スリット形成工程)、左右に引っ張って開口部を形成する(S4:エキスパンド工程)。
次いで、開口部が形成されたシートから格子状の開口部を有する電極集電体(エキスパンド成形体)を切り出す(S5:切断工程)。
次いで、切り出したエキスパンド成形体を鉛イオンを含むアルカリ性水溶液中に浸漬し、電解による電析処理によってエキスパンド成形体の表面に鉛の酸化層を形成する(S6:電析処理工程)。
鉛の酸化層としては、α−PbO層又はβ−PbO層が挙げられ、正極用の集電体の場合はα−PbO層を形成する。鉛の酸化層の厚みとしては、50〜200μmの範囲とされる。電析処理を行う際の通電時間は、鉛の酸化層が目標とする厚みとなるような時間通電する。
この後、アルカリ性水溶液からエキスパンド成形体を取り出すと、目的とする格子状の開口部を有する電極集電体が得られる。
【0019】
上記のような電析処理を行った理由について以下に述べる。
先に述べたように本発明の製造方法に係わる圧延工程では、従来の製法のような多くの工程を必要としないので、鉛合金組織の変成は少ない。しかし、圧延工程によって部分的に粒状組織に変成が生じ、圧延体の表面に近い部分において組織変化が生じる。圧延工程で生じた組織は、鋳造時の粒が押しつぶされ、層状を呈しており、このような層状の金属組織は耐食性が高い反面、極板の製造工程で電極集電体の表面に塗布される活物質との密着性が低い。そこで、本発明では、特に、正極に使用される集電体に関しては、活物質と集電体表面との密着性を改善するため、表面に鉛の酸化層を設けるようにしている。
【0020】
鉛合金を酸化させた場合の生成物には、α−PbOとβ−PbOの2種類があるが、これらは結晶構造が異なるため反応性にも違いが生じており、正極活物質としては、後者のβ型の方が放電しやすい特性を有している。このようなβ−PbO層が正極用集電体表面に存在すると、活物質を塗布して電極を形成し電池として放電させた際、この表面のβ−PbOの放電が優先され、正極の集電体表面にPbSOが生成し抵抗層となってしまう。従って、本来放電に関与すべき、活物質層の放電が阻害され十分な電気量の取り出しが不可能になる。
【0021】
そこで、本発明では、集電体表面に放電性が劣るα−PbO層を形成することとしている。このα−PbO層の形成は、溶液中の場合pHの高い条件が必要である。このような水溶液としては、NaOH成分を含む水溶液にPb(NO、またはPbOを添加させた物が知られているが、本実施形態ではNaOH成分を含む水溶液にPbOを添加した物も使用できる。具体的には、2MのNaOHにPbOを飽和させた水溶液を使用できる。
【0022】
次に、表面に鉛の酸化層が析出した電極集電体に活物質を塗布する(S7:活物質塗布工程)と、目的とする極板が得られる。
即ち、図1の工程S1〜S6が電極集電体の製造工程であり、工程S1〜工程S7が極板の製造工程である。
【0023】
本実施形態の電極集電体の製造方法では、鋳造で形成する平板状の電極集電体予備成形体の厚みを最終加工品の3倍以下の厚みとしたことにより、後工程の圧延処理が少なくて済み、金属組織の変成が抑制され、この結果、電極集電体の耐食性を向上でき、さらに、電析処理により電極集電体の表面に鉛の酸化層を形成したことにより、活物質との密着性を向上できる。
本実施形態の電極集電体の製造方法により製造された電極集電体は、従来の鋳造法で製造された電極集電体のような「粒」は存在していないので、電極集電体を備えた極板を用いてシール鉛電池を作製し充放電しても、粒界に硫酸鉛が生成することがなく、集電体に伸びが生じることがない。従って、本実施形態の電極集電体の製造方法により製造された電極集電体は、耐食性が優れ、しかも活物質の密着性が優れるいう利点がある。そして、このような電極集電体に活物質を保持させてなる極板が備えられたシール鉛蓄電池は、従来のエキスパンド法により製造された電極集電体が極板に備えられたシール鉛蓄電池に比べて放電特性や寿命を向上できるという利点がある。
【0024】
(第2の実施形態)
次に、本実施形態の電極集電体を備えた電極の製造方法の他の例について説明する。以下に述べる本実施形態の電極集電体の製造方法では、本発明の電極集電体の製造方法を鋳造法を用いる電極集電体の製造方法に適用した場合について説明する。
まず、第1の実施形態で作製したものと同様の組成の鉛を主成分とする合金を出発材料とし、ブックモールド鋳造法によって格子状の開口部を有する鋳造体(電極集電体)を製造する。
ここで製造される鋳造体の全体寸法や電極集電体の格子骨のサイズは、鋳型全体の大きさと彫り込みで決定される。
【0025】
次に、上記の鋳造した格子状の開口部を有する電極集電体を第1の実施形態で用いるものと同様の鉛イオンを含むアルカリ性水溶液中に浸漬し、電解による電析処理によって電極集電体の表面に鉛の酸化層を形成する。
この後、アルカリ性水溶液から電極集電体を取り出すと、目的とする電極集電体が得られる。
次に、鉛の酸化層が析出した電極集電体に活物質を塗布すると、目的とする極板が得られる。
【0026】
本実施形態の電極集電体の製造方法では、電析処理により電極集電体の表面に鉛の酸化層を形成したことにより、活物質との密着性を向上できる。
このように活物質との密着性が向上した電極集電体を用いた極板が備えられたシール鉛蓄電池は、従来の鋳造法により製造された電極集電体を用いた極板が備えられたシール鉛蓄電池に比べて放電特性や寿命を向上できるという利点がある。
【0027】
【実施例】
(実施例1)
まず、鉛(98.93重量%)−カルシウム(0.05重量%)−スズ(1.0重量%)−アルミニウム(0.02重量%)合金を出発材料とし、厚さ10mm、幅5cmの板状の鋳造体を作製する(S1:板状の鋳造体作製工程)。ここでの板状の鋳造体は、幅5cm、深さ10mmに加工された金型に上記出発材料と同様の組成の溶融合金を流し込むことで作製した。最終的に作製する電極集電体(最終加工品)の厚みを5mmとした場合、ここで作製する板状の鋳造体の厚みは最終仕上がり品の2倍である。
次に、板状の鋳造体に1〜2回の圧延処理を施し、幅7cm、厚み5mmのシートを形成した(圧延工程S2)。
次いで、このシートにスリット加工を行い(S3:スリット形成工程)、左右に引っ張って開口部を形成した(S4:エキスパンド工程)。切り出し前の電極集電体は、このエキスパンド加工によって幅21cm、厚み5mmとなった。
【0028】
次いで、上記シートから格子状の開口部を有する電極集電体(エキスパンド成形体)を切り出した(S5:切断工程)。切り出し後の電極集電体の長さは15cmとした。
次に、2MのNaOHにPbOを飽和させた水溶液中に、作製した電極集電体を浸積し、5mA/cm程度の電流で表面にα−PbO層を析出させた(S6:電析処理工程)。なお、ここで析出させるα−PbO層の厚みは100μmを目標とし、このような厚みとなるような時間、通電させた。
この後、上記水溶液から電極集電体を取り出し、表面にα−PbO層が析出した電極集電体に正極活物質を塗布し(S7:活物質塗布工程)、目的とする正極板を得た。
【0029】
本実施例で作製した電極集電体を使用した正極板を用いて実施例1のシール鉛蓄電池を作製した。また、比較のために従来のエキスパンド法によって作製した電極集電体を使用した正極板を用いて比較例1のシール鉛蓄電池を作製した。
作製した実施例1と比較例1の電池についてそれぞれ充放電サイクル試験を行った。作製した電池の容量は、200Ahであり、充放電サイクル試験の条件は以下の通りとした。
【0030】

Figure 0004263465
【0031】
このサイクル試験の結果、従来のエキスパンド法により作製した集電体を備えた比較例1のシール鉛電池では800サイクルで容量が低下したのに対し、本発明の製造方法を実施して作製した集電体を備えた実施例1のシール鉛蓄電池では、1200サイクルまで使用可能であった。試験後の電池を解体した結果、従来の製法による比較例1の電池では、電極集電体近傍にPbSOの層が検出されたが、本発明の製造方法を実施した実施例1の電池では、顕著なPbSOは見られなかった。これは、電極集電体表面に形成したα−PbO層によって電極集電体と活物質の密着性が改善されたためと考えられる。
【0032】
(実施例2)
まず、先の実施例1と同じ、鉛(98.93重量%)−カルシウム(0.05%)−スズ(1.0%)−アルミニウム(0.02%)合金を出発材料とし、ブックモールド鋳造法によって格子状の開口部を有する鋳造体(電極集電体)製造した。
ここで作製した鋳造体は、全体寸法で20×15cm、厚みは周囲骨部で5mmである。
次に、上記の鋳造した電極集電体を、1MのNaOH水溶液に0.1MのPb(NOを溶解させた溶液に浸漬し、電解による電析処理によって電極集電体の表面に厚さ120μmのα−PbO層を形成した。
この後、上記水溶液から電極集電体を取り出し、表面にα−PbO層が析出した電極集電体に正極活物質を塗布し、目的とする正極板を得た。
【0033】
本実施例で作製した電極集電体を使用した正極板を用いて実施例2のシール鉛蓄電池を作製した。また、比較のために上記の電析処理が施されていない電極集電体(従来の鋳造法によって作製した電極集電体)を用いた以外は実施例2と同様のシール鉛蓄電池を作製し、比較例2とした。
作製した実施例2と比較例2の電池についてそれぞれ充放電サイクル試験を行った。作製した電池の容量は、150Ahであり、充放電サイクル試験の条件は先の実施例と同じ条件にした。
このサイクル試験の結果、従来の鋳造法により作製した集電体を備えた比較例2のシール鉛電池はサイクル数が600サイクルで容量が低下したのに対し、本発明の製造方法を実施して作製した集電体を備えた実施例2のシール鉛蓄電池では800サイクルまで使用可能であった。従って、電極集電体に本発明のような表面処理を施すことによりサイクル数の改善効果が得られることが分かる。
【0034】
以上のように、本発明の製造方法は電池の寿命特性の改善効果を有しており、特に、金属組織の変成が生じているエキスパンド法による集電体に適用した場合、格段に優れた効果が得られる。
【0035】
【発明の効果】
以上、詳細に説明したように本発明は、鋳造法、もしくはエキスパンド法で製造された電極集電体に特殊な表面処理を施すことを特徴とする。
さらに、エキスパンド法で電極集電体を製造する工程においては、鉛を主成分とする合金を最終加工品状態の3倍以下の厚み、より好ましくは2倍以下の厚みで平板状に鋳造し、次いで、先に鋳造した平板内の金属組織に影響が生じないような条件内の圧力と加圧回数に従う圧延工程によってシート状に圧延して厚さを整え、しかる後、刻みを入れて引っ張り、シート全体に格子状開口部を設けることを特徴としている。
上記のような方法により、エキスパンド法による電極集電体においては金属組織の変成が抑制され、この結果、耐食性が向上し、さらに、本発明に係わる表面処理を施すことによって活物質との密着性も向上することができ、このように耐食性が優れ、活物質の密着性が優れた電極集電体を用いた極板が備えられたシール鉛蓄電池によれば寿命特性の改善に大きな効果を奏する。
また、従来から主流技術になっている鋳造法による集電体においても、本発明に係わる表面処理を施すことによって活物質との密着性が改善され、シール鉛蓄電池の寿命特性の改善に大きな効果を奏する。
以上述べたように、本発明は、シール鉛蓄電池の主要部材である電極集電体の耐食性の向上と、電極集電体と活物質との密着性の向上に大きな効果を有しており、産業用大容量シール鉛蓄電池のみならず各種用途用小型シール鉛蓄電池にも適用可能であり、産業上、極めて大きな効果を有している。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態の電極集電体の製造方法を備えた電極の製造方法を示すフローチャート。
【図2】 エキスパンド法を用いる従来の電極集電体の製造方法を備えた電極の製造方法を示すフローチャート。
【図3】 従来の電極を製造するための製造ラインを示す図。
【符号の説明】
S1…板状の鋳造体作製工程(平板状の電極集電体予備成形体作製工程)、S2…圧延工程、S3…スリット形成工程、S4…エキスパンド工程、S5…切断工程、S6…電析処理工程、S7…活物質塗布工程。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a grid-shaped electrode current collector used for an electrode plate or the like of a sealed lead-acid battery, a manufacturing method thereof, and a sealed lead-acid battery.
[0002]
[Prior art]
In general, a sealed lead-acid battery is configured by housing an electrode plate group in which a plurality of positive and negative electrode plates are assembled via a separator together with sulfuric acid in a battery case. The positive and negative electrode plates are formed by applying an active material related to a battery reaction to an electrode current collector having a grid-like opening like a shoji bar. The role of the current collector is to maintain the active material involved in the reaction and to secure a current path associated with charge / discharge. Therefore, the structure of the current collector is also related to the discharge characteristics of the battery. Further, when the positive electrode is normally used as a standby power source, it is always subjected to a charging reaction, and the current collector is subjected to electrochemical oxidation. For this reason, the surface of the current collector is oxidized, and when it is used for a long period of time, it becomes difficult to hold the active material, and the battery does not function. For this reason, various studies have been conducted on alloys used for current collectors and methods for producing current collectors.
In a sealed lead-acid battery, a lead alloy in which calcium and tin are added to lead is used as a current collector alloy, and a casting method and an expanding method have been applied as a conventional method for producing a current collector. (For example, refer nonpatent literature 1).
[0003]
However, when a current collector is produced by a casting method using the above lead alloy containing calcium and tin, “grains” are formed in the alloy, and an interface is formed between the “grains”. While the battery is in use, the current collector is in a charged state and undergoes oxidation, but this oxidation tends to proceed at the interface of the “grains”. For this reason, there is a problem that lead sulfate, which is a product due to oxidation, is generated at the grain boundary, the entire alloy constituting the current collector is elongated, and it is difficult to hold the active material (for example, Non-Patent Document 1). reference).
[0004]
FIG. 2 is a flowchart showing an electrode manufacturing method including a conventional electrode current collector manufacturing method using the expanding method, and FIG. 3 is a diagram showing a manufacturing line for manufacturing this conventional electrode. In this method, the same alloy as above is used to form a large alloy lump (lead ingot) 10 (ingot casting step a), and many rolling processes are performed by n pairs of rolls provided according to the number of rolling processes. The sheet is formed into a sheet having the required thickness by rolling (rolling step b), and then the sheet 11 is cut and pulled to form a lattice-shaped opening 11a (slit forming step c, expanding step d) on the entire sheet. After forming and applying an active material to the sheet (active material application step e) and cutting it into a predetermined shape (cutting step f), the electrode plate 12 is obtained (see, for example, Non-Patent Document 2).
This method is excellent in mass productivity because all the current collectors can be formed by machining, and the metal structure is transformed due to the rolling process of the alloy, and the current collector produced by the above casting method is used. There are no “grains” like those found in electrical bodies. For this reason, the current collector produced by the expanding method has high resistance to oxidation during use.
[0005]
However, in the conventional manufacturing method using the expanding method, the lead alloy ingot 10 is subjected to a rolling process, and then the knurls are drawn and pulled to provide the lattice-like openings 11a over the entire sheet. Since the conditions in the process are not specified, the production of the sheet-like alloy is often performed by rolling a large number of times under strong pressure, and the metal structure has been transformed (for example, see Non-Patent Document 3). Therefore, the current collector obtained by the conventional expanding method has high oxidation resistance of the surface structure, but has low adhesion between the current collector and the active material when holding the active material involved in the battery reaction. There was a problem. When the adhesion between the current collector and the active material is low, it becomes difficult to sufficiently transmit the current during charging / discharging of the battery to the active material. For this reason, the amount of electricity that should be transmitted to the end of the active material is consumed for oxidation (during charging) and reduction (during discharging) of the current collector surface, which promotes corrosion of the grid and affects the battery life. There was a problem.
[0006]
[Non-Patent Document 1]
“GS News technical Report”, June 1998, Vol. 57, No. 1, p. 16
[Non-Patent Document 2]
“Battery Handbook” 3rd edition, February 20, 2001, Maruzen, p. 166
[Non-Patent Document 3]
“YUASA-JIHO” No84 Apri1, 1998, p. 48
[0007]
[Problems to be solved by the invention]
As described above, in the conventional sealed lead-acid battery, the current collector constituting the electrode plate is manufactured by a casting method or an expanding method. However, when the casting method is adopted, “grains” are formed in the manufactured current collector. During the use, there is a problem that the corrosion progresses along the grain boundary and the elongation of the electrode plate increases, and when the expanding method is adopted, the mass production is high, but the metal structure is transformed. As a result, there is a problem in that the joining state between the current collector and the active material, which is important when the battery is configured, is affected, and the discharge characteristics and life of the storage battery are also affected.
[0008]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an electrode current collector that can improve the adhesion of an active material involved in a battery reaction and a method for producing the electrode current collector.
Another object of the present invention is to provide an electrode current collector capable of improving the corrosion resistance of the electrode current collector and improving the adhesion of the active material involved in the battery reaction, and a method for producing the electrode current collector.
In addition, the present invention provides a sealed lead-acid battery that can improve discharge characteristics and life by providing an electrode plate with an electrode current collector having improved corrosion resistance and improved active material adhesion as described above. Objective.
[0009]
[Means for Solving the Problems]
As a result of intensive studies and studies to solve the above-mentioned problems, the present inventor is specialized in an electrode current collector made of a lead alloy (an alloy containing lead as a main component) manufactured by a casting method or an expanding method. Thus, the inventors of the present invention have completed the present invention by investigating that an electrode current collector having improved corrosion resistance and improved adhesion to an active material can be obtained by applying an appropriate surface treatment. That is, the electrode current collector of the present invention, Ri Do an alloy composed mainly of lead, and grain structure in the core with a layer of tissue is formed on the surface is formed by expanding method comprising the remaining A lead oxide layer is formed on the surface of the electrode current collector.
[0010]
When the electrode current collector of the present invention is used for a positive electrode plate, the lead oxide layer is preferably α-PbO 2 .
Moreover, the sealed lead-acid battery of the present invention is characterized by including an electrode plate in which an active material is held on the electrode current collector of the present invention.
[0011]
Further, in the method for producing an electrode current collector of the present invention, a plate-shaped electrode current collector preform is produced by casting an alloy containing lead as a main component in a thickness not more than 3 times the final processed product, In addition, after rolling the preform into a sheet having the same thickness as the final processed product according to the rolling conditions in which the granular structure generated in the electrode current collector preform at the time of casting remains at least in the core, Then, it is immersed in an alkaline aqueous solution containing lead ions and subjected to an electrodeposition treatment by electrolysis .
[0012]
Also, expand put increments by rolling into sheets, and an electrode current collector by cutting the sheet, after which the above electrolytic deposition treatment electrode current collector may be facilities. Or it may be performed before cutting the sheet of the above electrodeposition process.
[0013]
Further, in the method for producing an electrode current collector of the present invention, the alkaline aqueous solution used when performing electrodeposition treatment on the electrode current collector made of an alloy containing lead as a main component contains NaOH or KOH. Features.
Moreover, in this invention, the electrode electrical power collector which consists of an alloy which has the said lead as a main component contains lead, calcium, and tin as essential, and may contain aluminum further.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited to the following embodiments.
(First embodiment)
FIG. 1 is a flowchart showing a method for manufacturing an electrode provided with the electrode current collector of the present embodiment. In the electrode current collector manufacturing method of the present embodiment described below, a case where the electrode current collector manufacturing method of the present invention is applied to an electrode current collector manufacturing method using an expanding method will be described.
First, an alloy containing lead as a main component (sometimes referred to as a lead alloy) is used as a starting material to produce a plate-like casting (a plate-shaped electrode current collector preform) (S1: plate-like casting). Body preparation process).
The starting lead alloy contains lead, calcium, and tin as essential components, and further contains aluminum and / or silver. The content of each element is as follows: calcium 0.04 to 0.1% by weight, tin 0.1 to 2.5% by weight, aluminum and / or silver 0.005 to 0.05% by weight, the balance being lead is there.
[0015]
The electrode current collector preform is produced by pouring a molten alloy having the same composition as the starting material into a mold. The preformed body (cast body) produced here is composed of a granular structure.
The thickness t of the flat electrode current collector preform formed here is not more than 3 times, preferably 1 to 3 times the thickness t exp of the electrode collector (final processed product or expanded molded body) of the final form. More preferably, it satisfies the condition of t ≦ (2-3) × t exp , more preferably 2 to 3 times the thickness. In addition, an expanded molded object forms an opening part by the expanding process in the sheet-like rolled body formed by the rolling process mentioned later.
[0016]
Next, the flat electrode current collector preform is subjected to rolling conditions according to the applied pressure and the number of times so as not to affect the metal structure in the preform, in other words, the granules generated in the preform during casting. A rolling process is performed under such rolling conditions that the structure remains at least in the core, and a sheet having a target thickness is formed (S2: rolling process).
Here, the number of rolling is preferably 1 to 2 times.
[0017]
In the present embodiment, the thickness t of the lead alloy (flat electrode current collector preform) used in the rolling step S2 is three times or less, more preferably 2 to 3 times that of the final electrode current collector t exp. The sheet-like rolled body having a thickness substantially equal to that of the final electrode current collector by one or two rolling processes without requiring a number of rolling processes as in the conventional manufacturing method using the expanding method. Can be obtained, and can be passed to the process of expanding and expanding the slit in the subsequent process.
In the rolling process here, no significant transformation occurs in the structure of the lead alloy, and a sheet-like rolled body can be obtained in a state in which most of the granular structure generated during casting remains.
[0018]
Next, slit processing is performed on the sheet (S3: slit forming step), and an opening is formed by pulling left and right (S4: expanding step).
Next, an electrode current collector (expanded molded body) having a grid-like opening is cut out from the sheet on which the opening is formed (S5: cutting step).
Next, the expanded molded body that has been cut out is immersed in an alkaline aqueous solution containing lead ions, and an oxide layer of lead is formed on the surface of the expanded molded body by an electrodeposition process by electrolysis (S6: electrodeposition process).
Examples of the lead oxide layer include an α-PbO 2 layer and a β-PbO 2 layer. In the case of a positive electrode current collector, an α-PbO 2 layer is formed. The lead oxide layer has a thickness of 50 to 200 μm. The energization time during the electrodeposition process is such that the lead oxide layer has a target thickness.
Then, when an expanded molded object is taken out from alkaline aqueous solution, the electrode collector which has the target grid | lattice-like opening part will be obtained.
[0019]
The reason for performing the electrodeposition process as described above will be described below.
As described above, the rolling process according to the manufacturing method of the present invention does not require many processes as in the conventional manufacturing method, and therefore, the transformation of the lead alloy structure is small. However, the rolling process partially changes the granular structure, and the structure changes in a portion close to the surface of the rolled body. The structure produced in the rolling process is formed into a layered shape by crushing the grains at the time of casting. While such a layered metal structure has high corrosion resistance, it is applied to the surface of the electrode current collector in the electrode plate manufacturing process. Adhesion with active material is low. Therefore, in the present invention, particularly with respect to the current collector used for the positive electrode, a lead oxide layer is provided on the surface in order to improve the adhesion between the active material and the current collector surface.
[0020]
There are two types of products in the case of oxidizing a lead alloy, α-PbO 2 and β-PbO 2 , but these have different crystal structures and thus have different reactivities. Has the characteristic that the latter β type is more easily discharged. When such a β-PbO 2 layer is present on the surface of the current collector for the positive electrode, when the active material is applied to form an electrode and discharged as a battery, the surface discharge of β-PbO 2 is given priority. PbSO 4 is generated on the surface of the current collector and becomes a resistance layer. Therefore, the discharge of the active material layer, which should originally be involved in the discharge, is hindered and a sufficient amount of electricity cannot be taken out.
[0021]
Therefore, in the present invention, an α-PbO 2 layer having poor dischargeability is formed on the current collector surface. The formation of this α-PbO 2 layer requires a high pH condition in a solution. As such an aqueous solution, a solution obtained by adding Pb (NO 3 ) 2 or PbO to an aqueous solution containing a NaOH component is known, but in this embodiment, a solution obtained by adding PbO to an aqueous solution containing a NaOH component may also be used. Can be used. Specifically, an aqueous solution in which 2M NaOH is saturated with PbO can be used.
[0022]
Next, when an active material is applied to the electrode current collector having a lead oxide layer deposited on the surface (S7: active material application step), the intended electrode plate is obtained.
That is, steps S1 to S6 in FIG. 1 are electrode collector manufacturing steps, and steps S1 to S7 are electrode plate manufacturing steps.
[0023]
In the manufacturing method of the electrode current collector of the present embodiment, the thickness of the flat electrode current collector preform formed by casting is set to three times or less the final processed product, so that the rolling process in the subsequent process is performed. It is possible to reduce the amount of metal structure, and as a result, the corrosion resistance of the electrode current collector can be improved. Furthermore, by forming an oxide layer of lead on the surface of the electrode current collector by the electrodeposition process, the active material Adhesion with can be improved.
Since the electrode current collector manufactured by the method for manufacturing the electrode current collector of the present embodiment does not have “grains” like the electrode current collector manufactured by the conventional casting method, the electrode current collector Even when a sealed lead battery is manufactured and charged / discharged using an electrode plate provided with lead, lead sulfate is not generated at the grain boundary, and the current collector is not stretched. Therefore, the electrode current collector manufactured by the manufacturing method of the electrode current collector of this embodiment, corrosion resistance excellent, yet there is advantage that the excellent adhesion of the active material. And the sealed lead acid battery provided with the electrode plate made to hold | maintain an active material in such an electrode collector is the sealed lead acid battery with which the electrode current collector manufactured by the conventional expanding method was equipped with the electrode plate. There is an advantage that the discharge characteristics and life can be improved.
[0024]
(Second Embodiment)
Next, another example of the manufacturing method of the electrode provided with the electrode current collector of the present embodiment will be described. In the electrode current collector manufacturing method of the present embodiment described below, a case where the electrode current collector manufacturing method of the present invention is applied to an electrode current collector manufacturing method using a casting method will be described.
First, a casting (electrode current collector) having a grid-like opening is manufactured by a book mold casting method using an alloy mainly composed of lead having the same composition as that manufactured in the first embodiment as a starting material. To do.
The overall dimensions of the cast body produced here and the size of the grid bone of the electrode current collector are determined by the overall mold size and engraving.
[0025]
Next, the electrode collector having the above-described cast lattice-shaped openings is immersed in an alkaline aqueous solution containing lead ions similar to that used in the first embodiment, and the electrode current collector is subjected to electrodeposition treatment by electrolysis. A lead oxide layer is formed on the surface of the body.
Thereafter, when the electrode current collector is taken out from the alkaline aqueous solution, the intended electrode current collector is obtained.
Next, when an active material is applied to the electrode current collector on which the lead oxide layer is deposited, the intended electrode plate is obtained.
[0026]
In the manufacturing method of the electrode current collector of this embodiment, the adhesion with the active material can be improved by forming a lead oxide layer on the surface of the electrode current collector by electrodeposition.
Thus, the sealed lead-acid battery provided with the electrode plate using the electrode current collector having improved adhesion to the active material is provided with the electrode plate using the electrode current collector manufactured by the conventional casting method. Compared with sealed lead-acid batteries, there is an advantage that the discharge characteristics and life can be improved.
[0027]
【Example】
(Example 1)
First, a lead (98.93% by weight) -calcium (0.05% by weight) -tin (1.0% by weight) -aluminum (0.02% by weight) alloy is used as a starting material and has a thickness of 10 mm and a width of 5 cm. A plate-shaped casting is produced (S1: plate-like casting production step). The plate-like cast body here was produced by pouring a molten alloy having the same composition as the above starting material into a mold processed to a width of 5 cm and a depth of 10 mm. When the thickness of the electrode current collector (final processed product) to be finally produced is 5 mm, the thickness of the plate-like cast body produced here is twice that of the final finished product.
Next, the plate-like cast body was subjected to a rolling process once or twice to form a sheet having a width of 7 cm and a thickness of 5 mm (rolling step S2).
Next, slit processing was performed on this sheet (S3: slit forming step), and an opening was formed by pulling left and right (S4: expanding step). The electrode current collector before cutting became a width of 21 cm and a thickness of 5 mm by this expanding process.
[0028]
Next, an electrode current collector (expanded molded body) having a grid-like opening was cut out from the sheet (S5: cutting step). The length of the electrode current collector after cutting was 15 cm.
Next, the produced electrode current collector was immersed in an aqueous solution of 2M NaOH saturated with PbO, and an α-PbO 2 layer was deposited on the surface with a current of about 5 mA / cm 2 (S6: electric current). Analysis process). Here, the thickness of the α-PbO 2 layer to be deposited here was set to 100 μm, and energization was performed for such a time as to achieve such a thickness.
Thereafter, the electrode current collector is taken out from the aqueous solution, and a positive electrode active material is applied to the electrode current collector having an α-PbO 2 layer deposited on the surface (S7: active material application step) to obtain a target positive electrode plate. It was.
[0029]
The sealed lead acid battery of Example 1 was produced using the positive electrode plate which used the electrode electrical power collector produced in the present Example. For comparison, a sealed lead-acid battery of Comparative Example 1 was produced using a positive electrode plate using an electrode current collector produced by a conventional expanding method.
A charge / discharge cycle test was performed for each of the fabricated batteries of Example 1 and Comparative Example 1. The capacity of the produced battery was 200 Ah, and the conditions of the charge / discharge cycle test were as follows.
[0030]
Figure 0004263465
[0031]
As a result of this cycle test, the capacity of the sealed lead battery of Comparative Example 1 provided with the current collector produced by the conventional expanding method was reduced at 800 cycles, whereas the current produced by carrying out the production method of the present invention was used. In the sealed lead-acid battery of Example 1 equipped with an electric body, it could be used up to 1200 cycles. As a result of disassembling the battery after the test, in the battery of Comparative Example 1 according to the conventional manufacturing method, a PbSO 4 layer was detected in the vicinity of the electrode current collector, but in the battery of Example 1 in which the manufacturing method of the present invention was performed, No significant PbSO 4 was found. This is presumably because the adhesion between the electrode current collector and the active material was improved by the α-PbO 2 layer formed on the surface of the electrode current collector.
[0032]
(Example 2)
First, a lead mold (98.93% by weight) -calcium (0.05%)-tin (1.0%)-aluminum (0.02%) alloy, which is the same as in Example 1, is used as a starting material. A casting (electrode current collector) having a grid-like opening was produced by a casting method.
The cast body produced here has an overall size of 20 × 15 cm and a thickness of 5 mm at the peripheral bone portion.
Next, the cast electrode current collector is immersed in a solution in which 0.1 M Pb (NO 3 ) 2 is dissolved in 1 M NaOH aqueous solution and deposited on the surface of the electrode current collector by electrolysis. An α-PbO 2 layer having a thickness of 120 μm was formed.
Thereafter, the electrode current collector was taken out from the aqueous solution, and a positive electrode active material was applied to the electrode current collector having an α-PbO 2 layer deposited on the surface to obtain a target positive electrode plate.
[0033]
The sealed lead acid battery of Example 2 was produced using the positive electrode plate which used the electrode electrical power collector produced in the present Example. For comparison, a sealed lead-acid battery similar to that of Example 2 was prepared except that an electrode current collector not subjected to the above electrodeposition treatment (an electrode current collector produced by a conventional casting method) was used. Comparative Example 2 was obtained.
A charge / discharge cycle test was performed on each of the fabricated batteries of Example 2 and Comparative Example 2. The capacity of the produced battery was 150 Ah, and the conditions for the charge / discharge cycle test were the same as those in the previous example.
As a result of this cycle test, the sealed lead battery of Comparative Example 2 equipped with a current collector produced by a conventional casting method had a capacity decreased at 600 cycles, whereas the manufacturing method of the present invention was carried out. The sealed lead-acid battery of Example 2 provided with the produced current collector could be used up to 800 cycles. Therefore, it can be seen that the effect of improving the number of cycles can be obtained by subjecting the electrode current collector to the surface treatment as in the present invention.
[0034]
As described above, the production method of the present invention has an effect of improving the life characteristics of the battery, and particularly when applied to a current collector by the expanding method in which the metal structure is deformed, the effect is remarkably excellent. Is obtained.
[0035]
【The invention's effect】
As described above in detail, the present invention is characterized in that a special surface treatment is applied to an electrode current collector manufactured by a casting method or an expanding method.
Furthermore, in the step of producing an electrode current collector by the expanding method, an alloy containing lead as a main component is cast into a flat plate with a thickness of 3 times or less, more preferably 2 times or less of the final processed product state, Next, the thickness is adjusted by rolling into a sheet by a rolling process in accordance with the pressure and the number of pressurizations within conditions that do not affect the metal structure in the previously cast flat plate, and after that, indented and pulled, It is characterized by providing a grid-like opening in the entire sheet.
By the method as described above, in the electrode current collector by the expanding method, the transformation of the metal structure is suppressed. As a result, the corrosion resistance is improved, and furthermore, the surface treatment according to the present invention is applied to the adhesion to the active material. Thus, according to the sealed lead-acid battery equipped with the electrode plate using the electrode current collector with excellent corrosion resistance and excellent active material adhesion, it has a great effect on the improvement of the life characteristics. .
In addition, even in the current collector by casting method, which has been the mainstream technology, the surface treatment according to the present invention improves the adhesion with the active material, which is a great effect in improving the life characteristics of sealed lead-acid batteries. Play.
As described above, the present invention has a great effect in improving the corrosion resistance of the electrode current collector, which is the main member of the sealed lead-acid battery, and improving the adhesion between the electrode current collector and the active material, The present invention can be applied not only to large-capacity sealed lead-acid batteries for industrial use but also to small-sized sealed lead-acid batteries for various applications, and has an extremely large industrial effect.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an electrode manufacturing method including an electrode current collector manufacturing method according to a first embodiment of the present invention.
FIG. 2 is a flowchart showing an electrode manufacturing method including a conventional electrode current collector manufacturing method using an expanding method.
FIG. 3 shows a production line for producing a conventional electrode.
[Explanation of symbols]
S1 ... Plate-shaped casting body manufacturing step (plate-shaped electrode current collector preform forming step), S2 ... Rolling step, S3 ... Slit forming step, S4 ... Expanding step, S5 ... Cutting step, S6 ... Electrodeposition treatment Process, S7 ... Active material application process.

Claims (6)

鉛を主成分とする合金からなり、かつ、表面に層状の組織が形成されるとともに芯部に粒状組織が残存してなるエキスパンド法で形成された電極集電体の表面に鉛の酸化層が形成されていることを特徴とする電極集電体。 Ri Do alloy composed mainly of lead, and an oxide layer of lead on the surface of the grain structure is left to become expanding method in the formed electrode collector to the core with a layer of tissue is formed on the surface An electrode current collector is formed. 前記鉛の酸化層が、α−PbOであることを特徴とする電極集電体。The electrode current collector, wherein the lead oxide layer is α-PbO 2 . 請求項1又は2記載の電極集電体に活物質を保持させてなる極板を備えたシール鉛蓄電池。  A sealed lead-acid battery comprising an electrode plate in which an active material is held on the electrode current collector according to claim 1. 鉛を主成分とする合金を最終加工品の3倍以下の厚みで鋳造して平板状の電極集電体予備成形体を作製し、次いで、前記鋳造時に前記電極集電体予備成形体内に生成した粒状組織が少なくとも芯部に残る圧延条件によって前記予備成形体を最終加工品と同じ厚みを有するシート状に圧延した後、刻みを入れて展開し、次いで、鉛イオンを含むアルカリ性水溶液中に浸漬し、電解による電析処理を施すことを特徴とする電極集電体の製造方法。 An alloy containing lead as a main component is cast to a thickness not more than three times that of the final processed product to produce a flat electrode current collector preform, and then formed in the electrode current collector preform during the casting. After rolling the preform into a sheet having the same thickness as the final processed product according to the rolling conditions in which the granular structure remains at least in the core, it is developed with indentations and then immersed in an alkaline aqueous solution containing lead ions. And an electrodeposition process by electrolysis. 前記アルカリ性水溶液が、NaOHまたはKOHを含んでいることを特徴とする請求項4記載の電極集電体の製造方法。 The method for producing an electrode current collector according to claim 4 , wherein the alkaline aqueous solution contains NaOH or KOH. 前記鉛を主成分とする合金が、鉛とカルシウムとスズを必須として含み、さらにアルミニウムを含有していることを特徴とする請求項4記載の電極集電体の製造方法。5. The method for producing an electrode current collector according to claim 4, wherein the alloy containing lead as a main component contains lead, calcium, and tin as essential components, and further contains aluminum .
JP2002352313A 2002-12-04 2002-12-04 Electrode current collector, manufacturing method thereof, and sealed lead-acid battery Expired - Fee Related JP4263465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352313A JP4263465B2 (en) 2002-12-04 2002-12-04 Electrode current collector, manufacturing method thereof, and sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352313A JP4263465B2 (en) 2002-12-04 2002-12-04 Electrode current collector, manufacturing method thereof, and sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JP2004186013A JP2004186013A (en) 2004-07-02
JP4263465B2 true JP4263465B2 (en) 2009-05-13

Family

ID=32753960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352313A Expired - Fee Related JP4263465B2 (en) 2002-12-04 2002-12-04 Electrode current collector, manufacturing method thereof, and sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP4263465B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112913058A (en) * 2018-10-16 2021-06-04 株式会社杰士汤浅国际 Current collector for lead-acid battery and method for producing same
CN112786898B (en) * 2021-02-22 2022-03-01 天能电池集团股份有限公司 Preparation method of positive plate and lead storage battery
WO2022215329A1 (en) * 2021-04-08 2022-10-13 古河電池株式会社 Bipolar storage battery, method for manufacturing bipolar storage battery, and bipolar lead storage battery
JP7057465B1 (en) 2021-05-14 2022-04-19 古河電池株式会社 Bipolar lead acid battery

Also Published As

Publication number Publication date
JP2004186013A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
US6833218B2 (en) Direct cast lead alloy strip for expanded metal battery plate grids
US6803151B2 (en) Electrode
EP1349222A2 (en) Improved expanded grid
JP3182856B2 (en) Manufacturing method of electrode plate for lead-acid battery
KR20030014247A (en) Perforated current collectors for storage batteries and electrochemical cells, having improved resistance to corrosion
JP2006202635A (en) Copper foil for lithium secondary battery electrode, manufacturing method of copper foil, electrode for lithium secondary battery using copper foil, and lithium secondary battery
JP4263465B2 (en) Electrode current collector, manufacturing method thereof, and sealed lead-acid battery
US20030165742A1 (en) Electrode
JP4774297B2 (en) Method for manufacturing grid for lead-acid battery and lead-acid battery
JP4423837B2 (en) Rolled lead alloy for storage battery and lead storage battery using the same
JPH10321236A (en) Lead-acid battery
JP2004031041A (en) Grid for lead-acid battery
JPH09115524A (en) Plate grid for lead-acid battery and manufacture thereof
JP3637603B2 (en) Lead acid battery
JP2001243958A (en) Lead storage battery
JP2002075380A (en) Expand grid body for lead-acid battery
JP5088679B2 (en) Lead acid battery
JPH03245462A (en) Manufacture of latticed plate for lead-acid battery
JP2004311110A (en) Method for manufacturing storage battery grid and storage battery
JP2002100365A (en) Rolling lead alloy sheet for storage battery and lead storage battery using it
JPH1154129A (en) Lead-acid battery
JPH0320020B2 (en)
JPH10208750A (en) Lead-acid battery
JP2004273308A (en) Process of manufacturing grid for lead-acid battery, and lead-acid battery
JPS5828171A (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees