JP4579514B2 - Manufacturing method of grid substrate for lead acid battery - Google Patents

Manufacturing method of grid substrate for lead acid battery Download PDF

Info

Publication number
JP4579514B2
JP4579514B2 JP2003281341A JP2003281341A JP4579514B2 JP 4579514 B2 JP4579514 B2 JP 4579514B2 JP 2003281341 A JP2003281341 A JP 2003281341A JP 2003281341 A JP2003281341 A JP 2003281341A JP 4579514 B2 JP4579514 B2 JP 4579514B2
Authority
JP
Japan
Prior art keywords
mass
lead
shape
manufacturing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003281341A
Other languages
Japanese (ja)
Other versions
JP2005050673A (en
Inventor
正則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2003281341A priority Critical patent/JP4579514B2/en
Publication of JP2005050673A publication Critical patent/JP2005050673A/en
Application granted granted Critical
Publication of JP4579514B2 publication Critical patent/JP4579514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、鉛蓄電池の格子基板の製造方法に関し、特に自動車用鉛蓄電池、各種バックアップ電池などの鉛蓄電池に使用される格子基板の製造方法に関するものである。   The present invention relates to a method for manufacturing a grid substrate for a lead storage battery, and more particularly to a method for manufacturing a grid substrate used for a lead storage battery such as an automotive lead storage battery or various backup batteries.

従来、鉛蓄電池の格子基板は重力鋳造により製造されてきたが、最近は工程の連続化の動きの中で鉛合金板或いは条をエキスパンド加工する製法が普及している。このエキスパンド加工に供される板或いは条の製造方法には、連続鋳造法、連続鋳造・圧延法が適用されている。連続鋳造法は、溶湯をロール鋳型に注入接触して凝固されることで、素材を直接鋳造する方法である。この方法では、溶湯がロール鋳型と接触する側では通常の鋳造組織となるが、反対の空気と接する側では劣悪な析出を含んだ微細組織となるといったように組織が二重構造となり、これをエキスパンド加工して製造した格子基板は、耐食性および疲労強度の点で十分ではないといった問題があった。また、薄板では平坦性及び板厚均一性に難があり、エキスパンド加工した格子基板での格子目形状、基板全体の歪みの問題があった。   Conventionally, a lattice substrate of a lead storage battery has been manufactured by gravity casting, but recently, a manufacturing method of expanding a lead alloy plate or a strip in a process of continuation of processes has been widespread. A continuous casting method and a continuous casting / rolling method are applied to the manufacturing method of the plate or strip subjected to the expanding process. The continuous casting method is a method in which a raw material is directly cast by injecting and contacting a molten metal into a roll mold to be solidified. In this method, the molten metal has a normal cast structure on the side in contact with the roll mold, but the structure has a double structure, such as a fine structure including poor precipitation on the side in contact with the opposite air. The lattice substrate manufactured by expanding has a problem that it is not sufficient in terms of corrosion resistance and fatigue strength. In addition, the thin plate has difficulty in flatness and plate thickness uniformity, and there are problems of the lattice shape on the expanded lattice substrate and the distortion of the entire substrate.

また、連続鋳造・圧延法は、溶湯をグルーブ付き鋳造リングに連続的に鋳込み出来た板をインラインで連続的に圧延する方法と、溶湯を鋳型内で固めて固まったシェルを引き出すことを断続的に行う間欠引出し鋳造板を作り、その後これを圧延して素材を作り込む方式がある。   The continuous casting / rolling method is a method of continuously rolling in-line a plate in which molten metal has been continuously cast into a grooved casting ring, and intermittently pulling out a hardened shell by solidifying the molten metal in a mold. There is a method in which an intermittently drawn cast plate is made and then rolled to make a material.

リング鋳造・圧延方式及び間欠引出し鋳造・圧延方式では、500μm以上の結晶粒度を有した鋳塊に対して、通常90%以上の冷間加工が行われ、組織が層状、鱗片状となる。この素材をエキスパンド加工して製造した格子基板は、全面腐食を受け格子基板の大きな伸びを生じるといった問題があった。また、薄板には圧延時の残留応力が残る為、その後のエキスパンド加工において格子形状が不良となったり、ゆがみが発生したりするといった問題があった。更に、この方式では、圧延加工入るため、薄板は板厚が均一で平坦性がよいという利点がある一方、冷間圧延のため、残留応力が残り、エキスパンド加工により残留応力のバランスが崩れ、格子目形状や格子全体の歪みが悪いという問題があった。 In the ring casting / rolling method and the intermittent drawing casting / rolling method, an ingot having a crystal grain size of 500 μm or more is usually cold worked by 90% or more, and the structure becomes lamellar and scaly. The lattice substrate manufactured by expanding this material has a problem that it undergoes general corrosion and causes a large elongation of the lattice substrate. In addition, since residual stress during rolling remains in the thin plate, there is a problem in that the lattice shape becomes defective or distortion occurs in the subsequent expanding process. Furthermore, in this method, since rolling processing is performed , the thin plate has an advantage that the plate thickness is uniform and has good flatness, while cold rolling causes residual stress to remain, and the balance of residual stress is lost due to expansion processing. There was a problem that the lattice shape and the distortion of the whole lattice were bad.

上記の方法を改善するものとして、ハンソン−ロバートソン押出機によるチューブ押出、切裂き、開き加工、平坦化加工を行う方式が提案されている(特許文献1)。   As a method for improving the above method, a method of performing tube extrusion, tearing, opening, and flattening by a Hanson-Robertson extruder has been proposed (Patent Document 1).

国際特許公開WO 02/069421A2号公報International Patent Publication WO 02 / 069421A2

上記特許文献1に記載の方式では、融点以下の温度で鉛合金を押出し、押出直後に冷却水で急冷するので、上記の連続鋳造法の不均質な結晶組織を改善できる。しかし、粒界近傍での偏析が発生し耐食性が十分でなく正極のグロス(伸び)を起こすことになる。   In the method described in Patent Document 1, since the lead alloy is extruded at a temperature equal to or lower than the melting point and quenched with cooling water immediately after the extrusion, the heterogeneous crystal structure of the continuous casting method can be improved. However, segregation occurs in the vicinity of the grain boundary, resulting in insufficient corrosion resistance and causing gloss (elongation) of the positive electrode.

また、ダイス/ニップル間の芯ずれが多少生じる為、パイプ内での肉厚変動により、板厚精度が悪いという問題がある。またパイプの一端にスリットを入れ、その後ゴムロール等で平坦加工を行うが、両端バリのある平坦度の悪い薄板となる問題がある。この原因はゴムロールによる圧下率は5%未満の為、両端バリ及び平坦度が多少の改善に留まるためである。また、押出加工及び開き、平坦化加工による歪みが一部残留する為、エキスパンド加工において、残留応力のバランスが崩れ、格子形状の不良および全体的な歪みを発生するという問題を有している   Further, since there is some misalignment between the die and the nipple, there is a problem that the plate thickness accuracy is poor due to the thickness fluctuation in the pipe. In addition, a slit is made at one end of the pipe, and thereafter flat processing is performed with a rubber roll or the like, but there is a problem that a thin plate with poor flatness with burr at both ends is present. This is because the rolling reduction by the rubber roll is less than 5%, so that the burr at both ends and the flatness are only slightly improved. In addition, since some distortion due to extrusion, opening, and flattening remains, there is a problem that in the expanding process, the balance of residual stress is lost, resulting in poor lattice shape and overall distortion.

本発明は、融点直下押出による初期結晶サイズのコントロールと高温圧延中の再結晶促進により最終結晶サイズコントロール、凝固時の濃度勾配(粒界偏析)低減及び残留歪み低減による平坦性の改善を向上させるとともに、時効硬化性を改善して長期保管性と強度の長期安定性を向上させた高品質の鉛合金、特に耐食性、耐グロス性に優れたPb−Ca−Sn−Ba系鉛合金からなる格子基板を高品質で製造できる方法を提供することを目的とする。   The present invention improves the flatness by controlling the initial crystal size by extrusion directly under the melting point and controlling the final crystal size by promoting recrystallization during hot rolling, reducing the concentration gradient (segregation at grain boundaries) during solidification, and reducing residual strain. In addition, a high-quality lead alloy that has improved age-hardening properties and improved long-term storage and long-term stability of strength, in particular, a lattice made of a Pb—Ca—Sn—Ba-based lead alloy with excellent corrosion resistance and gloss resistance An object is to provide a method capable of manufacturing a substrate with high quality.

上記目的を達成するために、本発明は請求項1において、0.02質量%以上で0.06未満のカルシウム(Ca)と、0.4質量%以上で2.5質量%以下のスズ(Sn)と、0.002質量%以上で0.06質量%以下のバリウム(Ba)と、残部が鉛(Pb)からなるPb−Ca−Sn−Ba系鉛合金を融点より10℃〜100℃低い温度範囲で連続して押出し、その後これを融点より50℃〜230℃低い温度範囲の温度で総圧下率を10〜98%として圧延し、さらにこれをエキスパンド加工によって格子基板に形成することを特徴とする。 In order to achieve the above object, the present invention relates to claim 1, wherein 0.02 mass% or more and less than 0.06 calcium (Ca) and 0.4 mass% or more and 2.5 mass% or less tin ( Sn), Pb—Ca—Sn—Ba based lead alloy consisting of 0.002% by mass or more and 0.06% by mass or less of barium (Ba) and the balance of lead (Pb) from the melting point to 10 ° C. to 100 ° C. Continuous extrusion in a low temperature range, and then rolling this at a temperature range of 50 ° C. to 230 ° C. below the melting point with a total rolling reduction of 10 to 98%, and further forming this on a lattice substrate by expanding. Features.

更に請求項2において、融点より10℃〜100℃低い温度範囲で連続して押出された押出形状はパイプ状であり、押出された後、一端を開放してその開放部を押し広げて圧延したことを特徴とする。   Furthermore, in claim 2, the extruded shape continuously extruded in a temperature range lower by 10 ° C to 100 ° C than the melting point is a pipe shape, and after being extruded, one end is opened and the open portion is expanded and rolled. It is characterized by that.

更に請求項3において、押出形状は一端を開放したパイプ状又はU字状であることを特徴とするものである。   Further, in claim 3, the extruded shape is a pipe shape or U shape with one end opened.

合金組成として、Caは耐食性および機械的強度の観点からその含有量は0.02質量%から0.06質量%未満が好ましく、特に0.03〜0.045質量%が特に好ましい。   As the alloy composition, the content of Ca is preferably 0.02% by mass to less than 0.06% by mass, and particularly preferably 0.03 to 0.045% by mass from the viewpoint of corrosion resistance and mechanical strength.

Baは機械的強度の向上に寄与するもので、その含有量は0.002質量%から0.014質量%が好ましい。そして、CaとBaが共存することで耐食性は一段と向上し、格子基板とこれに塗布充填される活物質との界面が緻密化して、腐食層を介した格子基板と活物質との間の導電性が長期に安定して維持されるという新たな効果が発現し、蓄電池寿命が一層向上する。   Ba contributes to the improvement of mechanical strength, and its content is preferably 0.002% by mass to 0.014% by mass. Coexistence of Ca and Ba further improves the corrosion resistance, and the interface between the lattice substrate and the active material coated and filled therein becomes dense, and the electrical conductivity between the lattice substrate and the active material via the corroded layer. A new effect that the battery is stably maintained over a long period of time is developed, and the life of the storage battery is further improved.

Snは湯流れ性および機械的強度の観点からその含有量は0.4質量%から2.5質量%が好ましい。Snは更に蓄電池の充放電時に格子界面に溶出して腐食層にドープされ、腐食層に半導体的効果を生じさせ格子基板の導電性を高め蓄電池寿命を向上させ、特にその含有量は0.6〜2.5質量%が好ましい。   The content of Sn is preferably 0.4% by mass to 2.5% by mass from the viewpoints of hot metal flow and mechanical strength. Sn is further eluted at the lattice interface during the charge / discharge of the storage battery and is doped into the corrosion layer, causing a semiconducting effect in the corrosion layer, increasing the conductivity of the lattice substrate and improving the life of the storage battery. -2.5 mass% is preferable.

更に、これらPb−Ca−Sn−Ba系鉛合金としては、多少のAg、Bi及びTlが含有したものや、その他不可避な不純物が混入していても良い。Agの量としては、0.005〜0.07質量%、Biの量としては、0.01〜0.1質量%、Tlの量としては、0.001〜0.05質量%程度である。   Furthermore, these Pb—Ca—Sn—Ba based lead alloys may contain some Ag, Bi, and Tl, and other inevitable impurities. The amount of Ag is 0.005 to 0.07 mass%, the amount of Bi is 0.01 to 0.1 mass%, and the amount of Tl is about 0.001 to 0.05 mass%. .

本発明によれば、所定温度の合金を連続して押出し、これを所定の温度範囲と所定の総圧下率で圧延して再結晶させ結晶粒度を適当に緻密化したので粒界腐食が生じず耐食性が大きく改善されるとともに、内部残留応力を低減することができてエキスパンド加工した場合の平坦度を一層向上させ、高品質の格子基板を製造し得る。更に、時効硬化性を改善し得るので、素材の保管管理を不要ないし簡易なものとすることができ、製造管理および製造コストの低減を図ることができる。   According to the present invention, the alloy at a predetermined temperature is continuously extruded, rolled at a predetermined temperature range and at a predetermined total rolling reduction, recrystallized, and the grain size is appropriately densified, so that intergranular corrosion does not occur. Corrosion resistance can be greatly improved, internal residual stress can be reduced, flatness when expanded, and a high quality lattice substrate can be manufactured. Furthermore, since age-hardening can be improved, storage management of the material can be made unnecessary or simple, and manufacturing management and manufacturing cost can be reduced.

Pb−Ca−Sn−Bi鉛合金を表1に記載の組成に調合し、温度300℃として押出機より連続で押出した。この時の押出形状は図1に示す如く、一端にスリット1が形成され開放されたパイプ状で、その厚さは2.5mm、外径32mmである。その後開放部を押し広げ、圧延機で連続圧延後冷却を行い、条厚0.9mm、幅100mmの薄条を作製した。圧延は開始温度270℃、終了温度220℃で多段回の圧延を行い、総圧下率は64%である((2.5−0.9)/2.5×100)。   A Pb—Ca—Sn—Bi lead alloy was prepared in the composition shown in Table 1, and continuously extruded from an extruder at a temperature of 300 ° C. As shown in FIG. 1, the extruded shape at this time is a pipe shape having a slit 1 formed at one end and opened, and the thickness is 2.5 mm and the outer diameter is 32 mm. Thereafter, the open portion was spread and cooled after continuous rolling with a rolling mill to produce a thin strip having a strip thickness of 0.9 mm and a width of 100 mm. The rolling is performed in multiple stages at a start temperature of 270 ° C. and an end temperature of 220 ° C., and the total rolling reduction is 64% ((2.5−0.9) /2.5×100).

比較例1は表1に記載の組成合金を上記実施例と同一の方法で作製したもの、従来例1は表1中の合金No.Gに記載の組成合金を鋳造・圧延法を用いて総圧下率98%で作製したもの、従来例2は同様に合金No従来例1と同様の組成合金を上記押出温度で条厚0.9mmのパイプを押出し、急冷後固定カッターで切裂き、平坦化したものである。   In Comparative Example 1, the composition alloy shown in Table 1 was prepared by the same method as in the above Examples, and in Conventional Example 1, Alloy No. A composition alloy described in G was produced by casting and rolling at a total rolling reduction of 98%. Conventional Example 2 is the same composition alloy as Alloy No. Conventional Example 1 at the extrusion temperature of 0.9 mm. This pipe is extruded, quenched, cut with a fixed cutter, and flattened.

Figure 0004579514
Figure 0004579514

得られた各薄条について、腐食試験を行い、腐食減量と伸び率(グロス)を測定した。その結果を表2に示す。なお、腐食試験は、薄条を15×70mmの大きさに切断し、比重1.28の60℃硫酸中で1350mVの定電位(vs.Hg/Hg2SO4)で30日間連続して陽極酸化した後、生成酸化物を除去し質量減を測定した。伸び率(グロス)は、薄条を1.5mm×100mmに切断し、前記の質量減評価と同じように処理してその伸びを測定し、試験前の長さで除して百分率で示した。 About each obtained thin strip, the corrosion test was done and the corrosion weight loss and elongation rate (gloss) were measured. The results are shown in Table 2. In the corrosion test, a thin strip was cut into a size of 15 × 70 mm, and the anode was continuously used for 30 days at a constant potential of 1350 mV (vs. Hg / Hg 2 SO 4 ) in 60 ° C. sulfuric acid having a specific gravity of 1.28. After oxidation, the product oxide was removed and mass loss was measured. Elongation rate (gross) was expressed as a percentage by cutting a thin strip into 1.5 mm × 100 mm, treating it in the same manner as the mass loss evaluation described above, measuring its elongation, and dividing by the length before the test. .

次に、得られた各薄条にエキスパンド加工し、所定寸法に切断して格子基板とし、これにペースト状の正極活物質を塗布充填し、これを温度40℃、湿度95%の雰囲気に24時間保持して熟成した後、乾燥して正極未化成板とした。次に、前記正極未化成板に、正極と同じ条件で製造した負極未化成板を、ポリエチレンセパレータを介して組合せ、更に比重1.200の希硫酸を加えて電槽化成を行い、D23サイズ、5時間率容量が40Ahの液式鉛蓄電池を製造し、この鉛蓄電池について、JISD5301に準じた寿命試験(軽負荷試験)を、試験温度75℃の加速試験で行った。その結果を表2に示した。   Next, each thin strip obtained is expanded, cut to a predetermined size to obtain a lattice substrate, and this is coated with a paste-like positive electrode active material, which is then placed in an atmosphere at a temperature of 40 ° C. and a humidity of 95%. After aging for a period of time, drying was performed to obtain a positive electrode unformed sheet. Next, the negative electrode unformed plate manufactured under the same conditions as the positive electrode is combined with the positive electrode unformed plate through a polyethylene separator, and further dilute sulfuric acid having a specific gravity of 1.200 is added to form a battery case. A liquid lead-acid battery having a 5-hour rate capacity of 40 Ah was manufactured, and a life test (light load test) according to JIS D5301 was performed on this lead-acid battery in an accelerated test at a test temperature of 75 ° C. The results are shown in Table 2.

Figure 0004579514
Figure 0004579514

表2より明らかな通り、比較例の結果と比較し、実施例で使用された合金は従来の合金に比べて高耐食性および低グロス性が認められ、また、従来例1、2の結果と比較し、本発明方法により各特性が一段と向上することが分かる。   As is clear from Table 2, compared with the results of the comparative examples, the alloys used in the examples showed higher corrosion resistance and low gloss than the conventional alloys, and compared with the results of the conventional examples 1 and 2. And it turns out that each characteristic improves further by the method of this invention.

なお、総圧下率は10から98%が良く、10%未満では結晶粒度が大きくなり結果耐腐食性が低下し、98%超では引張強度が低下するとともに、耐腐食性もやや低下する。   The total rolling reduction is preferably 10 to 98%, and if it is less than 10%, the crystal grain size increases, resulting in a decrease in corrosion resistance. If it exceeds 98%, the tensile strength decreases and the corrosion resistance also decreases slightly.

また、押出形状はスリットを有さないパイプ状や、広いスリットを有するU字状でもよく、特に上記に示したスリットを有するパイプ状やU字状が好ましい。   Further, the extruded shape may be a pipe shape having no slit or a U shape having a wide slit, and the pipe shape or the U shape having the slit shown above is particularly preferable.

本発明の実施形態の押出形状を示す断面図Sectional drawing which shows the extrusion shape of embodiment of this invention

符号の説明Explanation of symbols

1・・スリット   1. Slit

Claims (3)

0.02質量%以上で0.06未満のカルシウム(Ca)と、0.4質量%以上で2.5質量%以下のスズ(Sn)と、0.002質量%以上で0.06質量%以下のバリウム(Ba)と、残部が鉛(Pb)からなるPb−Ca−Sn−Ba系鉛合金を融点より10℃〜100℃低い温度範囲で連続して押出し、その後これを融点より50℃〜230℃低い温度範囲の温度で総圧下率を10〜98%として圧延し、さらにこれをエキスパンド加工によって格子基板に形成することを特徴とする鉛蓄電池用格子基板の製造方法。 0.02 mass% or more and less than 0.06 calcium (Ca), 0.4 mass% or more and 2.5 mass% or less tin (Sn), 0.002 mass% or more and 0.06 mass% or more The following barium (Ba) and Pb—Ca—Sn—Ba based lead alloy consisting of lead (Pb) as the remainder are continuously extruded in a temperature range lower by 10 ° C. to 100 ° C. than the melting point, and then extruded from the melting point to 50 ° C. A method for producing a grid substrate for a lead-acid battery, comprising rolling at a temperature in a temperature range lower than 230 ° C. and a total rolling reduction of 10 to 98%, and further forming this on a grid substrate by expanding. 融点より10℃〜100℃低い温度範囲で連続して押出された押出形状はパイプ状であり、押出された後、一端を開放してその開放部を押し広げて圧延したことを特徴とする請求項1記載の鉛蓄電池用格子基板の製造方法。 The extrusion shape continuously extruded in a temperature range lower by 10 ° C to 100 ° C than the melting point is a pipe shape, and after extrusion, one end is opened and the open portion is expanded and rolled. The manufacturing method of the grid | lattice board | substrate for lead acid batteries of claim | item 1. 押出形状は一端を開放したパイプ状又はU字状である請求項2記載の鉛蓄電池用格子基板の製造方法。 The method for manufacturing a grid substrate for a lead storage battery according to claim 2, wherein the extruded shape is a pipe shape or U shape with one end open.
JP2003281341A 2003-07-28 2003-07-28 Manufacturing method of grid substrate for lead acid battery Expired - Lifetime JP4579514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281341A JP4579514B2 (en) 2003-07-28 2003-07-28 Manufacturing method of grid substrate for lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281341A JP4579514B2 (en) 2003-07-28 2003-07-28 Manufacturing method of grid substrate for lead acid battery

Publications (2)

Publication Number Publication Date
JP2005050673A JP2005050673A (en) 2005-02-24
JP4579514B2 true JP4579514B2 (en) 2010-11-10

Family

ID=34266877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281341A Expired - Lifetime JP4579514B2 (en) 2003-07-28 2003-07-28 Manufacturing method of grid substrate for lead acid battery

Country Status (1)

Country Link
JP (1) JP4579514B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4983024B2 (en) * 2006-01-12 2012-07-25 パナソニック株式会社 Method for producing expanded grid for lead-acid battery
WO2007111147A1 (en) * 2006-03-27 2007-10-04 Nissan Chemical Industries, Ltd. Method of determining sublimate in thermoset film with qcm sensor
US10276895B2 (en) 2015-01-08 2019-04-30 Gs Yuasa International Ltd. Positive electrode grid for lead acid batteries and method for producing the same, and lead acid battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57208068A (en) * 1981-06-17 1982-12-21 Furukawa Battery Co Ltd:The Manufacture of lead alloy member for lead storage battery plate
JPH07108320A (en) * 1993-10-08 1995-04-25 Toyota Motor Corp Device for forming hollow axis
JP2000504783A (en) * 1996-02-16 2000-04-18 メタローロップ、ソシエテ、アノニム Lead-calcium alloy especially for battery grid
WO2003092101A1 (en) * 2002-04-26 2003-11-06 The Furukawa Battery Co., Ltd. Process for producing lead or lead alloy plate grid for lead storage battery and lead storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57208068A (en) * 1981-06-17 1982-12-21 Furukawa Battery Co Ltd:The Manufacture of lead alloy member for lead storage battery plate
JPH07108320A (en) * 1993-10-08 1995-04-25 Toyota Motor Corp Device for forming hollow axis
JP2000504783A (en) * 1996-02-16 2000-04-18 メタローロップ、ソシエテ、アノニム Lead-calcium alloy especially for battery grid
WO2003092101A1 (en) * 2002-04-26 2003-11-06 The Furukawa Battery Co., Ltd. Process for producing lead or lead alloy plate grid for lead storage battery and lead storage battery

Also Published As

Publication number Publication date
JP2005050673A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
US20090172932A1 (en) Method of manufacturing a lead or a lead alloy plate lattice for a lead-acid battery
WO2010100924A1 (en) Aluminum alloy foil for current collector and method for producing the same
KR101953412B1 (en) Rolled copper foil for secondary battery collector and production method therefor
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
EP2171782B1 (en) Method for producing lead-base alloy grid for lead-acid battery
EP2857535B1 (en) Aluminum alloy foil for electrode collector, method for manufacturing same, and electrode material
EP1285472A2 (en) Perforated current collectors for storage batteries and electrochemical cells, having improved resistance to corrosion
JP4929558B2 (en) Method for manufacturing lead-acid battery grid
JP4579514B2 (en) Manufacturing method of grid substrate for lead acid battery
JP6049528B2 (en) Method for producing positive grid substrate
JP5137371B2 (en) Rolled lead alloy sheet for expanded positive grid and lead-acid battery
JP5313633B2 (en) Manufacturing method of lead acid battery substrate
JP2612137B2 (en) Battery negative electrode zinc can
JP2612138B2 (en) Battery negative electrode zinc can
JP2004311110A (en) Method for manufacturing storage battery grid and storage battery
JPH0146995B2 (en)
JP2005044760A (en) Manufacturing method of lead-acid storage battery positive electrode plate lattice
JP2004200028A (en) Manufacturing method of lead acid storage battery electrode grid
JPH0320020B2 (en)
JP2004273308A (en) Process of manufacturing grid for lead-acid battery, and lead-acid battery
JPS6327825B2 (en)
JP2006196283A (en) Lead-acid battery
JP2005158440A (en) Manufacturing method of lead-acid battery, and lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4579514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term