JP2004031041A - Grid for lead-acid battery - Google Patents

Grid for lead-acid battery Download PDF

Info

Publication number
JP2004031041A
JP2004031041A JP2002183863A JP2002183863A JP2004031041A JP 2004031041 A JP2004031041 A JP 2004031041A JP 2002183863 A JP2002183863 A JP 2002183863A JP 2002183863 A JP2002183863 A JP 2002183863A JP 2004031041 A JP2004031041 A JP 2004031041A
Authority
JP
Japan
Prior art keywords
lead
grid
lead alloy
acid battery
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002183863A
Other languages
Japanese (ja)
Inventor
Takafumi Kondo
近藤 隆文
Satoshi Minoura
箕浦 敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2002183863A priority Critical patent/JP2004031041A/en
Publication of JP2004031041A publication Critical patent/JP2004031041A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grid for a lead-acid battery having an expanded structure capable of preventing coming-off of an active material by improving corrosion resistance of a lead alloy surface. <P>SOLUTION: In the grid for a lead-acid battery formed of a Ca-based lead alloy having an expanded structure expanded and processed into a mesh-like form, the crystal particle size of the Ca-based lead alloy in a surface layer part 2 is set smaller than that in a main layer part 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は鉛蓄電池用格子体に関するものである。
【0002】
【従来の技術】
ペースト式鉛蓄電池用格子体の製造法として、従来の鋳造法に加え、鉛または鉛合金の圧延シートに連続的にスリットを入れ、そのシートに対して網目状に展開加工を施すエキスパンド加工法が用いられている。この方法は生産性が高く、活物質に対する格子体の軽量化ができる。さらに、圧延加工を施している分、鋳造法に比べ、材料強度も高い。また、結晶粒界が明確である鋳造法は局部的な腐食を受けるのに対して、エキスパンド加工法は微細な繊維状組織を有するため、ほぼ格子骨の外側部分から均一に腐食が進行し、耐食性の面から考えてもエキスパンド方式が優位といえる。
【0003】
従来のエキスパンド加工法による鉛蓄電池用格子体の製法としては、Pb−Ca−Sn合金の溶湯から連続鋳造体を作製し、これを自然放置によりある程度の時間をかけて常温まで冷却し、圧延ローラーにより圧延して鉛合金シートを作製し、この鉛合金シートをエキスパンド加工して作製していた。しかしながら、連続鋳造体を自然放置により常温まで冷却する方法では、結晶サイズが大きい状態で圧延することになり、結晶粒界が完全につぶれず、結晶粒界から腐食が進行することが考えられる。
【0004】
これらの課題に対して、特開平5−343070号のように連続鋳造体を作製した直後、その表面を150 〜200 ℃の温度から40〜60℃になるまで冷却し、その後圧延し、鉛合金シートを作製する方法が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、このように材料強度の小さい鉛合金を用いてエキスパンド構造の格子体、さらには鉛蓄電池を作製した場合、時間が経過するにつれ活物質の保持力が低下する問題点がある。また、格子体と活物質の密着性が悪い場合、活物質の脱落が見られる問題点がある。このことは、鉛蓄電池の容量低下および寿命特性の低下につながることになる。
【0006】
本発明の目的は、鉛合金表面の耐食性を向上させて活物質の脱落を防止できるエキスパンド構造の鉛蓄電池用格子体を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成する本発明の手段を以下に説明する。
【0008】
請求項1に記載の発明は、網目状に展開加工されたエキスパンド構造のCa系鉛合金からなる鉛蓄電池用格子体であって、
Ca系鉛合金の結晶粒サイズは主層部よりも表層部が細かいことを特徴とする。
【0009】
このようにCa系鉛合金からなるエキスパンド構造の格子体の結晶粒サイズを、主層部よりも表層部の方を細かく、即ち表層部の結晶を微細化させると、格子体の耐食性を向上させることができる。これにより格子体からの活物質の脱落を抑制し、鉛蓄電池の容量を向上させ、寿命特性を向上させたものである。
【0010】
次に、請求項2に記載の発明は、請求項1において、Ca系鉛合金中にはSnを0.8 〜1.6 質量%含有することを特徴とする。
【0011】
このようにCa系鉛合金中にSnを0.8 〜1.6 質量%含有させると、格子体の腐食による容量低下及び短寿命を抑制することができる。仮に、Ca系鉛合金中のSnの含有量を0.8 質量%より少なくすると、格子体の材料強度が小さくなり、活物質が脱落し、鉛蓄電池の容量低下につながる。一方、Ca系鉛合金中のSnの含有量を1.6 質量%より多くすると、電池使用時の耐食性がかえって劣ることになり、鉛蓄電池の容量低下及び寿命特性の低下を招くことになる。
【0012】
【発明の実施の形態】
以下、本発明に係る鉛蓄電池用格子体の実施の形態の各例を比較品と対照して説明する。
【0013】
まず、所定の鉛合金組成になるように鉛合金中に所定量のCa,Snを溶解し、金型に鋳込むことで鋳造シートを作製した。
【0014】
この鋳造シートを得た直後に、液体窒素を噴射することで急冷処理を行い、主層部より表層部の結晶サイズを細かい鋳造シートを得た。
【0015】
その後、この鋳造シートを長さ方向にて圧延加工を厚さが1.0 mmになるまで繰り返し行い、厚さが1.0 mmの圧延シートを作製した。
【0016】
得られた圧延シートの幅方向の中央部を除く左右両端部に順次スリットを入れ、この圧延シートを幅方向に展開加工して網目状に形成した。
【0017】
また、この圧延シートの非展開部から集電耳部を打ち抜き、また網目状部分を所定の寸法に切断することによって、図1のような主層部1より表層部2の結晶サイズが細かい特徴を持つエキスパンド構造の鉛蓄電池用格子体を作製した。
【0018】
この格子体上に、鉛粉と希硫酸と水とを練合した鉛ペーストを充填し、熟成、乾燥させて正極板を作製した。
【0019】
この正極板を7枚とセパレータに挿入した負極板8枚とを交互に積層して極板群を構成し、この極板群を電槽に収容した。
【0020】
この後、比重1.225 の硫酸溶液を電槽内に注入し、初期充電を行うことで単電池Aを作製した。
【0021】
同様の処理を行ったもので、鉛合金中のSn添加量が異なる単電池B,C,Dをそれぞれ作製した。
【0022】
また、鉛合金中のSn添加量に関して請求項2の範囲外となる単電池E,Fを作製した。
【0023】
また、比較品の鉛蓄電池として、鉛合金組成は単電池A,B,C,D,E,Fと同様で主層部1と表層部2の結晶が、図2に示すように同サイズである格子体を用いて単電池G,H,I,J,KまたLを作製した。
【0024】
これら単電池A〜Lの試験条件を表1に示した。
【0025】
【表1】

Figure 2004031041
表1に示した単電池A〜Lについて、充電4.5 Aで110 h、放置56hを1サイクルとして、サイクル毎に150 Aにて放電し、その時の30秒目電圧が1.2 Vを下回った時点を寿命とする試験を行った。
【0026】
その試験結果を図3に示す。この図3は、表層部の結晶サイズの大きさによる寿命性能の比較(一例として、単電池Dと電池Jとの比較)をしたものであるが、本発明品に係る単電池Dは比較品である単電池Jに比べて寿命性能が優れている。また、他の単電池についても同様に比較を行ったが、同様な結果が得られた。
【0027】
表2は本発明品と比較品での寿命特性の比較を行ったものであるが、本発明品の寿命特性が優れている結果が得られた。
【0028】
【表2】
Figure 2004031041
【0029】
【発明の効果】
本発明に係る鉛蓄電池用格子体では、Ca系鉛合金からなるエキスパンド構造の格子体の結晶粒サイズを、主層部よりも表層部の方を細かく、即ち表層部の結晶を微細化させたので、該格子体の耐食性を向上させることができる。これにより格子体からの活物質の脱落を抑制し、鉛蓄電池の容量を向上させ、寿命特性を向上させることができる。
【0030】
この場合、Ca系鉛合金中のSnの含有量を0.8 〜1.6 質量%とすると、格子体の腐食による容量低下及び短寿命を抑制することができる。仮に、Ca系鉛合金中のSnの含有量を0.8 質量%より少なくすると、格子体の材料強度が小さくなり、活物質が脱落し、鉛蓄電池の容量低下につながり、好ましくない。一方、Ca系鉛合金中のSnの含有量を1.6 質量%より多くすると、電池使用時の耐食性がかえって劣ることになり、鉛蓄電池の容量低下及び寿命特性の低下を招くことになり、好ましくない。
【図面の簡単な説明】
【図1】本発明に係る鉛蓄電池用格子体の表層部と主層部の結晶サイズの実施の形態の一例を示した断面図である。
【図2】比較品の鉛蓄電池用格子体の表層部と主層部の結晶サイズを示した断面図である。
【図3】本発明に係る鉛蓄電池用格子体と比較品の鉛蓄電池用格子体とを用いた鉛蓄電池の寿命特性の比較図である。
【符号の説明】
1 主層部
2 表層部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a grid for a lead storage battery.
[0002]
[Prior art]
In addition to the conventional casting method, an expanded processing method that continuously cuts a rolled sheet of lead or lead alloy and expands the sheet into a mesh is used as a method of manufacturing a grid for a paste-type lead storage battery. Used. This method has high productivity and can reduce the weight of the lattice body relative to the active material. Further, the material strength is higher than that of the casting method due to the rolling process. In addition, while the casting method in which the crystal grain boundaries are clear is subject to local corrosion, the expansion processing method has a fine fibrous structure, so that corrosion progresses almost uniformly from the outer part of the lattice bone, The expand method is superior even in terms of corrosion resistance.
[0003]
As a method of manufacturing a grid for a lead-acid battery by a conventional expanding method, a continuous cast body is prepared from a molten metal of a Pb-Ca-Sn alloy, and this is cooled to room temperature over a certain period of time by allowing it to stand naturally. To produce a lead alloy sheet, and then expand the lead alloy sheet. However, in the method in which the continuous cast body is cooled to room temperature by leaving it to stand naturally, rolling is performed in a state where the crystal size is large, and the crystal grain boundaries are not completely collapsed, and corrosion may progress from the crystal grain boundaries.
[0004]
To solve these problems, immediately after producing a continuous cast body as in JP-A-5-343070, the surface thereof is cooled from a temperature of 150 to 200 ° C. to 40 to 60 ° C., and then rolled to form a lead alloy. A method for producing a sheet has been proposed.
[0005]
[Problems to be solved by the invention]
However, when a grid body having an expanded structure and a lead storage battery are manufactured using such a lead alloy having a low material strength, there is a problem that the holding power of the active material decreases as time passes. In addition, when the adhesion between the lattice and the active material is poor, there is a problem that the active material may fall off. This leads to a reduction in the capacity and life characteristics of the lead storage battery.
[0006]
An object of the present invention is to provide a grid for a lead-acid storage battery having an expanded structure that can improve the corrosion resistance of the surface of a lead alloy and prevent the active material from falling off.
[0007]
[Means for Solving the Problems]
Means of the present invention for achieving the above object will be described below.
[0008]
The invention according to claim 1 is a grid body for a lead storage battery made of a Ca-based lead alloy having an expanded structure expanded and processed into a mesh,
The crystal grain size of the Ca-based lead alloy is characterized in that the surface layer is finer than the main layer.
[0009]
As described above, when the crystal grain size of the lattice structure of the expanded structure composed of the Ca-based lead alloy is made finer in the surface layer portion than in the main layer portion, that is, when the crystal in the surface layer portion is refined, the corrosion resistance of the lattice body is improved. be able to. As a result, the active material is prevented from falling off from the grid, the capacity of the lead storage battery is improved, and the life characteristics are improved.
[0010]
Next, a second aspect of the present invention is characterized in that, in the first aspect, the Ca-based lead alloy contains 0.8 to 1.6% by mass of Sn.
[0011]
When Sn is contained in the Ca-based lead alloy in an amount of 0.8 to 1.6% by mass, a reduction in capacity and a short life due to corrosion of the lattice can be suppressed. If the content of Sn in the Ca-based lead alloy is less than 0.8% by mass, the material strength of the lattice decreases, the active material falls off, and the capacity of the lead storage battery decreases. On the other hand, when the content of Sn in the Ca-based lead alloy is more than 1.6% by mass, the corrosion resistance during use of the battery is rather deteriorated, which leads to a reduction in the capacity and a life characteristic of the lead storage battery.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, each example of the embodiment of the grid for a lead-acid battery according to the present invention will be described in comparison with a comparative product.
[0013]
First, a predetermined amount of Ca and Sn was dissolved in a lead alloy so as to have a predetermined lead alloy composition, and cast into a mold to produce a cast sheet.
[0014]
Immediately after obtaining the cast sheet, a quenching treatment was performed by injecting liquid nitrogen to obtain a cast sheet in which the crystal size of the surface layer portion was smaller than that of the main layer portion.
[0015]
Thereafter, the cast sheet was repeatedly rolled in the length direction until the thickness became 1.0 mm, thereby producing a rolled sheet having a thickness of 1.0 mm.
[0016]
Slits were sequentially formed at the left and right ends of the obtained rolled sheet except for the center in the width direction, and the rolled sheet was processed in the width direction to form a mesh.
[0017]
Also, by punching a current collecting ear from a non-developed portion of the rolled sheet and cutting the mesh portion to a predetermined size, the crystal size of the surface layer 2 is smaller than that of the main layer 1 as shown in FIG. The grid structure for lead-acid storage batteries having an expanded structure was prepared.
[0018]
The grid body was filled with a lead paste obtained by kneading lead powder, diluted sulfuric acid and water, aged and dried to prepare a positive electrode plate.
[0019]
Seven positive electrode plates and eight negative electrode plates inserted into a separator were alternately stacked to form an electrode group, and the electrode group was housed in a battery case.
[0020]
Thereafter, a sulfuric acid solution having a specific gravity of 1.225 was injected into the battery case, and the battery was initially charged, whereby a cell A was produced.
[0021]
Unit cells B, C, and D which were subjected to the same treatment and differed in the amount of Sn added to the lead alloy were produced.
[0022]
In addition, unit cells E and F were prepared in which the amount of Sn added to the lead alloy was out of the range defined in claim 2.
[0023]
As a comparative lead storage battery, the lead alloy composition is the same as that of the cells A, B, C, D, E, and F, and the crystals of the main layer 1 and the surface layer 2 have the same size as shown in FIG. The cells G, H, I, J, K and L were manufactured using a certain lattice.
[0024]
Table 1 shows the test conditions for these cells A to L.
[0025]
[Table 1]
Figure 2004031041
The cells A to L shown in Table 1 were discharged at 150 A for each cycle, with a charge of 4.5 A for 110 h and a standing time of 56 h as one cycle. A test was performed in which the life was determined to be lower than the time.
[0026]
FIG. 3 shows the test results. FIG. 3 is a comparison of the life performance according to the size of the crystal size of the surface layer portion (for example, a comparison between the cell D and the battery J). The cell D according to the present invention is a comparative product. , The life performance is excellent. In addition, similar comparisons were made for other single cells, but similar results were obtained.
[0027]
Table 2 shows a comparison of the life characteristics between the product of the present invention and the comparative product. The result that the life characteristics of the product of the present invention were excellent was obtained.
[0028]
[Table 2]
Figure 2004031041
[0029]
【The invention's effect】
In the grid for a lead storage battery according to the present invention, the crystal grain size of the grid of the expanded structure made of a Ca-based lead alloy is finer in the surface layer than in the main layer, that is, the crystal in the surface layer is refined. Therefore, the corrosion resistance of the lattice body can be improved. Thus, the active material can be prevented from falling off from the lattice body, the capacity of the lead storage battery can be improved, and the life characteristics can be improved.
[0030]
In this case, when the content of Sn in the Ca-based lead alloy is set to 0.8 to 1.6% by mass, a reduction in capacity and a short life due to corrosion of the lattice can be suppressed. If the content of Sn in the Ca-based lead alloy is less than 0.8% by mass, the material strength of the lattice decreases, the active material falls off, and the capacity of the lead storage battery is reduced, which is not preferable. On the other hand, when the content of Sn in the Ca-based lead alloy is more than 1.6% by mass, the corrosion resistance during use of the battery is rather deteriorated, which leads to a reduction in the capacity and life characteristics of the lead storage battery, Not preferred.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a crystal size of a surface layer portion and a main layer portion of a grid body for a lead storage battery according to the present invention.
FIG. 2 is a cross-sectional view showing crystal sizes of a surface layer portion and a main layer portion of a comparative lead storage battery lattice.
FIG. 3 is a comparison diagram of the life characteristics of a lead-acid battery using the lead-acid battery grid according to the present invention and a comparative lead-acid battery grid.
[Explanation of symbols]
1 Main layer 2 Surface layer

Claims (2)

網目状に展開加工されたエキスパンド構造のCa系鉛合金からなる鉛蓄電池用格子体であって、
前記Ca系鉛合金の結晶粒サイズは主層部よりも表層部が細かいことを特徴とする鉛蓄電池用格子体。
A grid for a lead storage battery comprising a Ca-based lead alloy having an expanded structure expanded and processed into a mesh,
A lattice body for a lead-acid battery, wherein the crystal grain size of the Ca-based lead alloy is smaller at the surface layer portion than at the main layer portion.
前記Ca系鉛合金中にはSnを0.8 〜1.6 質量%含有することを特徴とする請求項1に記載の鉛蓄電池用格子体。The lead-acid battery grid according to claim 1, wherein the Ca-based lead alloy contains 0.8% to 1.6% by mass of Sn.
JP2002183863A 2002-06-25 2002-06-25 Grid for lead-acid battery Pending JP2004031041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002183863A JP2004031041A (en) 2002-06-25 2002-06-25 Grid for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002183863A JP2004031041A (en) 2002-06-25 2002-06-25 Grid for lead-acid battery

Publications (1)

Publication Number Publication Date
JP2004031041A true JP2004031041A (en) 2004-01-29

Family

ID=31179897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002183863A Pending JP2004031041A (en) 2002-06-25 2002-06-25 Grid for lead-acid battery

Country Status (1)

Country Link
JP (1) JP2004031041A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294296A (en) * 2005-04-06 2006-10-26 Gs Yuasa Corporation:Kk Method of manufacturing electrode plate collector of lead storage battery
CN100346511C (en) * 2005-05-13 2007-10-31 陈有孝 Alloy material of sheet grating in use for full closed lead acide battery in high energy
CN100382366C (en) * 2005-03-02 2008-04-16 北京天睿力迈科技有限公司 POsitive electrode grid material and structure of high-energy sealed lead-acid accumulator for submarine
CN100382365C (en) * 2005-03-02 2008-04-16 北京天睿力迈科技有限公司 High-energy sealed lead-acid battery negative-pole plate for undersea boat and negative-pole plate structure
JP2008177009A (en) * 2007-01-18 2008-07-31 Matsushita Electric Ind Co Ltd Rolled sheet for lead acid storage battery grid, lead acid storage battery grid, and lead acid storage battery
WO2012172754A1 (en) * 2011-06-17 2012-12-20 パナソニック株式会社 Pole plate for lead storage battery, lead storage battery, and method for producing pole plate for lead storage battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382366C (en) * 2005-03-02 2008-04-16 北京天睿力迈科技有限公司 POsitive electrode grid material and structure of high-energy sealed lead-acid accumulator for submarine
CN100382365C (en) * 2005-03-02 2008-04-16 北京天睿力迈科技有限公司 High-energy sealed lead-acid battery negative-pole plate for undersea boat and negative-pole plate structure
JP2006294296A (en) * 2005-04-06 2006-10-26 Gs Yuasa Corporation:Kk Method of manufacturing electrode plate collector of lead storage battery
CN100346511C (en) * 2005-05-13 2007-10-31 陈有孝 Alloy material of sheet grating in use for full closed lead acide battery in high energy
JP2008177009A (en) * 2007-01-18 2008-07-31 Matsushita Electric Ind Co Ltd Rolled sheet for lead acid storage battery grid, lead acid storage battery grid, and lead acid storage battery
WO2012172754A1 (en) * 2011-06-17 2012-12-20 パナソニック株式会社 Pole plate for lead storage battery, lead storage battery, and method for producing pole plate for lead storage battery

Similar Documents

Publication Publication Date Title
JPH08170126A (en) Porous metallic body, its production and plate for battery using the same
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
US20050031962A1 (en) Direct cast lead alloy strip for expanded metal battery plate grids
JP2008146898A (en) Lead storage battery
JP2004031041A (en) Grid for lead-acid battery
JP3182856B2 (en) Manufacturing method of electrode plate for lead-acid battery
JP2008084676A (en) Rolled lead alloy sheet for expanded positive grid and lead-acid battery
JP4062817B2 (en) Lead acid battery and manufacturing method thereof
JP2001243958A (en) Lead storage battery
JP4263465B2 (en) Electrode current collector, manufacturing method thereof, and sealed lead-acid battery
JP2004253324A (en) Positive electrode lattice body of lead acid storage battery and lead acid storage battery using the same
JP4026259B2 (en) Sealed lead acid battery
JP2002075379A (en) Lead-acid battery
JP2004087413A (en) Lattice body, and manufacturing method of grille shape object for lead accumulator and lead accumulator
JP2003157853A (en) Manufacturing method for lead-acid battery
JP2000357518A (en) Grid for lead-acid battery and its manufacture
JP4066496B2 (en) Manufacturing method of electrode plate for lead acid battery and lead acid battery using the electrode plate
JP4461697B2 (en) Cathode grid of lead-acid battery and lead-acid battery using the same
JP2003100301A (en) Expand grid body for positive pole and method of manufacturing the same
JP2000340235A (en) Lead-acid battery
JP2000021414A (en) Manufacture of grid for positive electrode for lead-acid battery, and manufacture of the positive electrode for the lead-acid battery
JP2003132897A (en) Method for manufacturing expand type electrode plate for positive electrode
JP2004311110A (en) Method for manufacturing storage battery grid and storage battery
JP2010113933A (en) Paste type lead-acid storage battery
JP2000100424A (en) Lead-acid battery