WO2012172754A1 - Pole plate for lead storage battery, lead storage battery, and method for producing pole plate for lead storage battery - Google Patents

Pole plate for lead storage battery, lead storage battery, and method for producing pole plate for lead storage battery Download PDF

Info

Publication number
WO2012172754A1
WO2012172754A1 PCT/JP2012/003709 JP2012003709W WO2012172754A1 WO 2012172754 A1 WO2012172754 A1 WO 2012172754A1 JP 2012003709 W JP2012003709 W JP 2012003709W WO 2012172754 A1 WO2012172754 A1 WO 2012172754A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
electrode plate
thickness
dense layer
storage battery
Prior art date
Application number
PCT/JP2012/003709
Other languages
French (fr)
Japanese (ja)
Inventor
晃平 佐野
明俊 平松
岡本 浩
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280007389.1A priority Critical patent/CN103348512B/en
Priority to JP2013520420A priority patent/JP5903606B2/en
Publication of WO2012172754A1 publication Critical patent/WO2012172754A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/745Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode plate for a lead storage battery using an expanded lattice, a lead storage battery using the electrode plate, and a method for manufacturing the electrode plate for a lead storage battery.
  • the electrode plate for a lead storage battery is manufactured by filling a lattice made of lead and a lead alloy with an active material paste containing lead and a lead compound and drying.
  • This lattice is mainly produced by one of the following two methods.
  • the first is a casting method (including a continuous casting method) in which a molten metal made of lead and lead alloy is poured into a lattice-shaped mold.
  • the second is an expanding method in which a strip-like slab obtained by continuously cooling a molten metal composed of lead and a lead alloy is rolled to produce a sheet, and a staggered slit is formed on the sheet to extend the sheet.
  • the expanding method with excellent productivity has been increasingly adopted.
  • the reciprocating method is a method in which a slit is formed in the sheet by reciprocating a die blade corresponding to the slit to be formed, and the slit portion is extended to form an expanded mesh.
  • the rotary method is a method in which a slit is formed in a sheet with a rotating disk-shaped cutter to form an expanded mesh.
  • a grid obtained by a reciprocating method which is inferior in productivity but is not corroded at the intersection of the expanded mesh and is not easily corroded, is often used for the positive electrode plate.
  • the grid obtained by the casting method and the slab used for the expanding method have different metal structures, and thus have different advantages.
  • the lattice continuum obtained by the continuous casting method has a metal structure with a large crystal grain size.
  • the crystal grain size is large, there is an advantage that the absolute amount of corrosion is reduced because the crystal grain boundary is reduced, and the change in strength at high temperature is reduced.
  • the slab obtained by continuously cooling the molten metal has a metal structure having a smaller crystal grain size as compared with the above-described method. If the crystal grain size is small, the strength is increased, so that it is suitable for the expanding process, and moreover, the crystal grain boundary increases, so that there is an advantage that corrosion does not easily progress inside. On the other hand, as the number of grain boundaries increases, the absolute amount of corrosion increases. In particular, when charging and discharging are repeated at high temperatures, the lattice easily expands and protrudes from the top of the separator, causing a short circuit and shortening the life. There is a drawback.
  • Patent Documents 1 and 2 describe a technology that combines the advantages of both methods. Specifically, a layer with a small crystal grain size (dense layer) is provided on the surface of a sheet obtained by rolling a slab, and the crystal grain size at the center is larger than that of the dense layer, thereby providing corrosion resistance and expanding processing. Describes a technique for achieving both strengths suitable for the above. The techniques described in Patent Documents 1 and 2 skillfully utilize the actual state of slab casting, in which a molten layer is cooled from the surface, so that a dense layer is easily formed on the surface.
  • the present invention has been made with respect to the above-mentioned problems, and has a high expandability and cycle life characteristics, and a lead plate for a lead storage battery in which short-circuiting due to elongation of the grid of the positive plate is suppressed, and the production of the lead plate for the lead storage battery A method is provided.
  • an electrode plate for a lead storage battery includes an expanded lattice made of lead or a lead alloy, and an active material filled in the expanded lattice, and the expanded lattice has a quadrilateral shape. And has a tab portion protruding from one side, and when the expanded lattice is set up vertically with the side having the tab portion as an upper side, the surface of the lattice strand faces upward and downward.
  • the surface has a dense layer having a crystal grain size smaller than the central part of the strand on the surface, and the dense layer is thinner on the surface facing upward of the strand than on the surface facing downward. is doing.
  • the thickness A of the dense layer on the surface facing upward of the strand and the thickness B of the dense layer on the surface facing downward have a relationship that A / B is 0.14 or more and 0.50 or less. It may be.
  • Thickness between the dense layer thickness A of the surface facing the strand, the thickness B of the dense layer of the surface facing downward, and the thickness between the surface facing upward and the surface facing downward of the strand C may have a relationship in which (A + B) / C is 0.15 or more and 0.40 or less.
  • the lead alloy may contain antimony. It is preferable that 2% by mass or less of antimony is contained in the lead alloy.
  • the lead storage battery of the present invention has a configuration in which the above-described electrode plate for lead storage battery is used as at least one of a positive electrode plate and a negative electrode plate and is opposed to a counter electrode plate via a separator.
  • the method for producing an electrode plate for a lead storage battery includes a first step of continuously cooling a molten metal made of lead or a lead alloy to cast a strip slab, and rolling the slab to produce a strip sheet.
  • a strip-like expanded lattice is produced by a second step of reciprocating and developing in a direction perpendicular to the longitudinal direction of the sheet while forming a plurality of staggered cuts parallel to the longitudinal direction of the sheet
  • dense layers having a crystal grain size smaller than that of the central portion are provided on both surfaces of the slab with different thicknesses on both surfaces, and in the third step, the dense layer is formed from a thin surface from the surface of the slab. Put the cut It has a configuration which forms the eyes.
  • the ratio A / B between the thickness A of the thinner dense layer and the thickness B of the other layer in the third step may be 0.14 or more and 0.50 or less.
  • the ratio (A + B) / C between the thickness C of the sheet in the third step and the sum A + B of the thickness A of the thinner dense layer and the thickness B of the other layer is 0.15 or more and 0.40 or less. There may be.
  • the lead alloy is an alloy containing more than 50% by weight of lead.
  • the strand is a bar-shaped member having a square cross section surrounding the expanded lattice. That is, the strand forms a lattice.
  • a dense layer is a layer that is relatively densely observed compared to other parts when observed with a microscope because the size of the crystal grains constituting the layer is small compared to other parts.
  • seat surface points out that it is smaller than the crystal grain of the center part of the thickness direction of a sheet
  • An antimony contained in the lead alloy of 2% by weight or less means that the antimony is contained in the lead alloy but the upper limit of the content is 2% by weight.
  • the reciprocating method is a method in which a blade is reciprocated up and down on a horizontally placed lead sheet to form a cut.
  • the expandability of the lead storage battery electrode plate is enhanced. Furthermore, the lead acid battery using this electrode plate has a high cycle life characteristic, and has a remarkable effect that the short circuit accompanying the expansion of the grid of the positive electrode plate is suppressed.
  • the molten metal When casting a slab by continuously cooling a molten metal made of lead or a lead alloy, the molten metal is cooled from the surface, so that a dense layer is easily formed on the surface. That is, since the surface of the molten metal is cooled quickly, the crystal grain size becomes small, and the inside (center portion) of the molten metal is cooled slowly, so that the crystal grain size becomes large. If both surfaces of the molten metal are cooled substantially uniformly, the dense layers formed on both surfaces have substantially the same thickness. As described above, this dense layer is not only suitable for expanding processing because of its small crystal grain size, but also because of its large number of crystal grain boundaries, corrosion hardly progresses toward the inside.
  • the side where the die blade is inserted has a relatively low extension rate, so the structure of the dense layer is the same as before, but the other side pressed down is considered to have a relatively high extension rate. Therefore, it has been found that the dense layer is spread and easily broken. When the degree of breakage is large, the expand processability itself deteriorates, so that a problem in the manufacturing process that the strand is cut due to the occurrence of a crack occurs. Further, since the dense layer is broken even if the strand is not cut, the central portion in the thickness direction of the sheet having a large crystal grain size is exposed and easily corroded.
  • the present inventors made different thicknesses of the dense layers on both surfaces of the slab in the casting process (first process) of the slab, and the dense layer in the expanding process (third process).
  • the die blade was inserted from the surface with the thinner side. As a result, the following four effects can be obtained.
  • Electrode 1 to 3 are schematic views showing an example of a method for producing an electrode plate for a lead storage battery according to the embodiment.
  • the electrode plate for a lead storage battery is manufactured through the following four steps.
  • the molten metal 1 made of lead or a lead alloy is poured onto the drum 2 rotating in the direction of the arrow, and the molten metal is supplied by the refrigerant supplied into the drum 2 and the refrigerant discharged from the refrigerant discharge port 3.
  • 1 is a process of continuously cooling 1 and casting a belt-like slab 4.
  • the surface of the slab 4 that is cooled quickly has a relatively small crystal grain size, and the inside of the slab 4 that is cooled slowly has a relatively large crystal grain size.
  • the second step is a step in which the slab 4 is rolled with a pair or a plurality of pairs of rolling rollers 5 to adjust the thickness to produce a belt-like sheet 6.
  • the sheet 6 is placed on the lower blade 8, and the die blade 7, which is the upper blade, is sequentially inserted into the sheet 6 from the upper surface side of the sheet 6 so as to be parallel to the longitudinal direction of the sheet 6.
  • a strip-shaped expanded lattice 9 composed of a mesh portion formed by the strands 9a and a plain portion 9b by a method (reciprocal method) that develops in a direction perpendicular to the longitudinal direction of the sheet 6 while forming a plurality of cut lines. It is a process of producing.
  • the plain portion 9b is not cut by the die blade 7.
  • the active material paste 11 containing lead and a lead compound is discharged from the paste discharge port 10 whose position is fixed to the mesh portion excluding the plain portion 9b in the expanded lattice 9 that proceeds in the direction of the arrow. Then, after filling, drying, and cutting to a predetermined dimension, the electrode plate 12 is produced. In this step, a tab portion is formed from the plain portion 9b.
  • dense layers having a crystal grain size smaller than the central portion in the thickness direction are provided on both surfaces of the slab 4 in the first step so as to have different thicknesses on both surfaces, and the dense layer is thin in the third step.
  • the die blade 7 is inserted from the surface of the surface. As shown in FIG. 7, when the cross section of the slab 4 or the sheet 6 is observed with a microscope, a dense layer 13 having a small crystal grain size is clearly observed on the surface as compared with the central portion 14 in the thickness direction where the crystal grain size is large.
  • the dense layer on the surface ⁇ side depends on the refrigerant. It is easy to thicken. This is because the surface ⁇ on the drum 2 side that can continuously contact the refrigerant inside is relatively easier to cool, and the surface ⁇ that contacts the refrigerant intermittently discharged from the refrigerant discharge port 3. However, cooling is relatively difficult to proceed. Therefore, in order to thicken the dense layer on the surface ⁇ side, the amount of the refrigerant discharged from the refrigerant discharge port 3 may be increased to increase the cooling capacity on the surface ⁇ side. In addition, when there is a difference in the thickness of the dense layer on the surface ⁇ side and ⁇ side in the slab 4, this difference continues even if the sheet 6 is rolled.
  • the lower blade 8 is designed so as not to contact the portion of the sheet 6 where the die blade 7 descends. Accordingly, in the portion of the sheet 6 where the die blade 7 is inserted, the extension rate by the die blade 7 is greatly different between the surface where the die blade 7 enters and the opposite surface which is pushed down along the shape of the die blade 7 (die die).
  • the surface where the blade 7 is inserted has a lower extension rate).
  • the stretch rate the amount that is extended or extended by the die blade 7 may be used, or it can be expressed by the stress applied when the die blade 7 is deformed.
  • a high stretch rate means that the stretched amount is large and the stress is large.
  • the dense layer existing on the surface opposite to the surface on which the die blade 7 enters (the surface that has a high extension rate and is pushed down) has a high extension rate and is greatly stretched, and thus is easily broken in the third step. .
  • the dense layer is broken in the vicinity where the cut is made, and fine cracks are formed on the surface. If the degree to which the dense layer is broken increases, the expand processability itself deteriorates, so that a problem in the manufacturing process that the strand is cut due to the occurrence of a crack occurs. Even if strand breakage does not occur, if the dense layer is broken and the central part with a large crystal grain size is exposed, the central part with few crystal grain boundaries tends to corrode toward the inside.
  • the grid of the electrode plate will corrode early. Accordingly, the lattice breaks early (sudden death), and the cycle life characteristics are deteriorated. Furthermore, the crystal grain boundaries (relatively many) of the dense layer are exposed in the destroyed portion of the dense layer, whereby corrosion of the dense layer proceeds and the lattice tends to stretch at high temperatures.
  • the present inventors provided dense layers 13a and 13b on both surfaces of the slab 4 and the sheet 6 in the first step so as to have different thicknesses.
  • the die blade 7 is inserted from the surface having the thin dense layer 13a.
  • the surface having the thick dense layer 13b is disposed on the surface that is relatively largely pressed down (the surface with a high extension rate). Even if the dense layer 13b is largely pushed down as shown in FIG. 4 or greatly stressed, the dense layer 13b is not broken because it has sufficient strength.
  • the surface into which the die blade 7 is to be inserted is randomly selected (thick dense layer).
  • the effects of the dense layers 13a and 13b expanding processability is high and corrosion does not easily progress inside
  • the crystal grain size Can be enjoyed together with the effect of the central portion 14 having a large (the absolute amount of corrosion is small, so the strength change is small at high temperatures).
  • the cooling capacity on the drum 2 side is increased in comparison with that on the refrigerant discharge port 3 side in the first step, and then the drum 2 is cooled in the third step.
  • the surface ⁇ side is in contact with the lower blade 8 (so that the die blade 7 is put in the surface ⁇ cooled by the refrigerant discharge port 3).
  • which is the upper surface in the first and second steps needs to be the lower surface in the third step.
  • the cooling capacity on the refrigerant discharge port 3 side is increased in comparison with that on the drum 2 side in the first step, and the cooling is performed by the refrigerant discharge port 3 in the third step.
  • this mode it is not necessary to reverse the surface in the first to third steps.
  • the cooling with the refrigerant discharge port 3 side is performed. The capacity balance needs to be carefully adjusted.
  • the ratio A / B between the layer thickness A of the dense layer 13a and the layer thickness B of the dense layer 13b is desirably 0.14 or more and 0.50 or less. Furthermore, in the third step, it is desirable that the ratio (A + B) / C of the thickness C of the sheet 6 and the sum A + B of the layer thicknesses of the dense layers 13a and 13b is 0.15 or more and 0.40 or less. If the ratios A / B and (A + B) / C are within the preferred ranges, the composition ratio of the thicknesses of the dense layers 13a and 13b in the sheet 6 is optimized and corrosion is less likely to proceed, resulting in higher cycle life characteristics. .
  • the lead storage battery electrode plate has undergone the manufacturing method of the present embodiment can be clearly determined even after the lead storage battery described in detail later is configured.
  • the presence of the dense layers 13a and 13b and the central portion 14 and the layer thickness thereof can be detected and measured by polishing the cross section of the expanded lattice 9 (particularly, the strand 9a) and observing the crystalline state.
  • the two sides on the upper side (the side close to the tab portion) of the mesh of the expanded lattice 9 are the surfaces on which the die blade 7 enters.
  • FIG. 6 is a front view of the electrode-plate-shaped expanded lattice 22 that is not filled with an active material.
  • the expanded lattice 11 has a quadrangular shape, and tab portions 23 protrude from the upper side shown in FIG.
  • the surface 25 facing upward in the strand 24 constituting the mesh has a thickness of the dense layer. It is a small surface on which the die blade 7 is placed.
  • the face 26 facing downward is the face where the dense layer is thick. Note that the front surface (surface shown in FIG. 6) and the back surface of the strand 24 in the vertically expanded lattice 22 are surfaces cut by a die blade.
  • FIG. 5 is an external view showing the lead storage battery of this embodiment.
  • the electrode plate group 16 is configured by using the electrode plate 12 for a lead storage battery of the present embodiment for at least one of the positive electrode plate 16a and the negative electrode plate 16b and confronting them with the separator 16c.
  • a plurality of electrode plate groups 16 are inserted into each cell chamber 17 of the battery case 15 provided with a plurality of cell chambers 17 by partitioning a space surrounded by the outer wall 15b and the bottom (not shown) with a partition wall 15a.
  • the positive electrode plate 16a an active material paste containing lead and lead oxide can be used.
  • the negative electrode plate 16b can be made of an active material paste containing lead and lead oxide, and further containing barium sulfate, carbon black, and a lignin compound.
  • Polyethylene or the like can be used for the separator 16c, and polypropylene (PP) or acrylonitrile-butadiene-styrene copolymer resin (ABS) can be used for the battery case 15 and the lid 20.
  • PP polypropylene
  • ABS acrylonitrile-butadiene-styrene copolymer resin
  • lead or various lead alloys can be used for the connection component 18 and the terminal 19.
  • what has functions, such as explosion-proof can be used for the liquid spout 20a.
  • the specific gravity of dilute sulfuric acid used as the electrolyte is preferably 1.2 to 1.4 g / ml.
  • Example 1 The molten metal 1 made of a lead-calcium alloy is poured onto the rotating drum 2, and the molten metal 1 is continuously cooled with the cooling water supplied into the drum 2 and the cooling water discharged from the refrigerant discharge port 3.
  • the belt-like slab 4 was cast (first step). At this time, the molten metal 1 contained 0.07% by mass of Ca and 1.5% by mass of Sn.
  • the slab 4 was rolled with a plurality of pairs of rolling rollers 5 and adjusted so that the thickness C became 1.0 mm, thereby producing a belt-like sheet 6 (second step).
  • a strip-shaped expanded lattice 9 composed of a mesh portion formed by the strands 9a and a plain portion 9b was produced by a reciprocating method that developed in a direction perpendicular to the longitudinal direction of the sheet 6 while forming a cut (third) Process).
  • the raw material lead powder mainly composed of mixed powder of lead and lead oxide (Pb, PbO, Pb 3 O 4 ) is refined with sulfuric acid.
  • the active material paste 11 produced by adding water was discharged from the paste discharge port 10, filled, dried, and then cut to a predetermined size to produce the electrode plate 12 (positive electrode plate 16a) (fourth plate) Process).
  • the layer thickness A of the dense layer 13a formed on the upper surface of the strand when the expanded lattice 9 is set up vertically with the tab portion facing upward is
  • the thickness B of the dense layer 13b formed on the lower surface of the strand was 0.05 mm (the ratio A / B was 0.71, the ratio (A + B) / C was 0.12).
  • an automotive lead acid battery (55D23) according to the description of the embodiment was produced.
  • Example 2 Compared to Example 1, by increasing the amount of cooling water supplied to the inside of the drum 2, the layer thickness B of the dense layer 13 b is 0.10 mm (ratio A / B is 0.50, ratio (A + B) / C is A lead-acid battery was produced in the same manner as in Example 1 except that 0.15).
  • Example 3 Compared to Example 2, the thickness B of the dense layer 13b is 0.15 mm (ratio A / B is 0.33, ratio (A + B) / C) by further increasing the amount of cooling water supplied into the drum 2.
  • a lead-acid battery was produced in the same manner as in Example 2, except that 0.20).
  • Example 4 Compared to Example 3, the thickness B of the dense layer 13b is 0.20 mm (ratio A / B is 0.25, ratio (A + B) / C) by further increasing the amount of cooling water supplied to the inside of the drum 2. Was changed to 0.25), and a lead storage battery was produced in the same manner as in Example 3.
  • Example 5 Compared to Example 4, the layer thickness B of the dense layer 13b is 0.30 mm (ratio A / B is 0.17, ratio (A + B) / C) by further increasing the amount of cooling water supplied to the inside of the drum 2.
  • a lead-acid battery was produced in the same manner as in Example 4 except that 0.35).
  • Example 6 Compared to Example 5, the layer thickness B of the dense layer 13b is 0.35 mm (ratio A / B is 0.14, ratio (A + B) / C) by further increasing the amount of cooling water supplied to the inside of the drum 2.
  • a lead-acid battery was produced in the same manner as in Example 5 except that the value was 0.40).
  • Example 7 Compared to Example 6, the layer thickness B of the dense layer 13b is 0.40 mm (ratio A / B is 0.13, ratio (A + B) / C) by further increasing the amount of cooling water supplied to the inside of the drum 2. Was made into the lead acid battery similarly to Example 6 except having set it as 0.45).
  • Example 8 The lead-acid battery is the same as in Example 4 except that the composition of the molten metal 1 is set to Ca: 0.07% by mass, Sn: 1.5% by mass, and Sb: 0.7% by mass with respect to Example 4. Was made.
  • Example 9 The lead acid battery is the same as in Example 4 except that the composition of the molten metal 1 is set to Ca: 0.07 mass%, Sn: 1.5 mass%, and Sb: 1.2 mass% with respect to Example 4. Was made.
  • Example 10 The lead-acid battery is the same as in Example 4 except that the composition of the molten metal 1 is set to Ca: 0.07% by mass, Sn: 1.5% by mass, and Sb: 1.6% by mass with respect to Example 4. Was made.
  • Example 11 The lead-acid battery is the same as in Example 4 except that the composition of the molten metal 1 is set to Ca: 0.07% by mass, Sn: 1.5% by mass, and Sb: 2.0% by mass with respect to Example 4. Was made.
  • Example 12 The lead acid battery is the same as in Example 4 except that the composition of the molten metal 1 is set to Ca: 0.07% by mass, Sn: 1.5% by mass, and Sb: 2.5% by mass with respect to Example 4. Was made.
  • the layer thickness B of the dense layer 13b is 0.05 mm (the ratio A / B is 1, the ratio (A + B) / C is 0.00.
  • a lead-acid battery was produced in the same manner as in Example 1 except that 10).
  • Example 2 In contrast to Example 4, the thickness A of the dense layer 13a is 0.20 mm and the thickness B of the dense layer 13b is 0.05 mm (ratio A / B) by supplying the belt-like sheet 6 without being reversed.
  • a lead storage battery was produced in the same manner as in Example 4 except that 4 was changed to 4).
  • Table 1 shows the rate of occurrence of defective cutting of the strands 9a in the third step (the number of defective electrode plates in the total number of positive plates 16a produced in the fourth step) for each condition described above.
  • the ratio A / B between the layer thickness A of the dense layer 13a and the layer thickness B of the dense layer 13b is 0.14 to 0.50, and the sum of the thickness C of the sheet 6 and the layer thicknesses of the dense layers 13a and 13b.
  • the dense layer 13b is thinned.
  • the cycle life is eliminated by wiping out the problem (corrosion of the central portion 14 starting from the fracture in the third step) and the problem (increased corrosion amount due to a large number of crystal grain boundaries) when the thickness is increased. The characteristics were good.
  • Examples 8 to 12 (especially Examples 9 to 12) in which Sb was added to the molten metal 1 were particularly good in cycle life characteristics, but as the Sb content increased, the expanding process defect rate increased. It was. However, if the Sb content is 2.0% by mass or less, the defective rate of the expanding process has no practical problem.
  • the above embodiments and examples are examples of the present invention, and the present invention is not limited to these examples.
  • the lead storage battery may have a structure other than that shown in FIG.
  • the raw material of the expanded lattice is not limited to the lead-calcium alloy, and the alloy composition is not limited to the above composition.
  • the present invention it is possible to provide a lead storage battery having a high cycle life characteristic and not easily short-circuited by using an electrode plate having high productivity (expanding processability). The contribution of is extremely high.

Abstract

This pole plate for a lead storage battery comprises an expandable grid formed from lead or a lead alloy and an active substance packed in the expandable grid. The expandable grid is a quadrangle having a tab part projecting from one side. When the expandable grid stands vertically such that the side having the tab part is the top side, the upward facing surface and the downward facing surface of the grid strands have a surface compact layer that has a smaller crystal grain diameter than the center portion of the strands and the compact layer of the upward facing surface of the strands is thinner than that of the downward facing surface.

Description

鉛蓄電池用極板、鉛蓄電池および鉛蓄電池用極板の製造方法Lead plate for lead storage battery, lead storage battery, and method for manufacturing lead plate for lead storage battery
 本発明は、エキスパンド格子を用いた鉛蓄電池用極板と、この極板を用いた鉛蓄電池と、鉛蓄電池用極板の製造方法に関するものである。 The present invention relates to an electrode plate for a lead storage battery using an expanded lattice, a lead storage battery using the electrode plate, and a method for manufacturing the electrode plate for a lead storage battery.
 鉛蓄電池用極板は、鉛および鉛合金からなる格子に、鉛および鉛化合物を含む活物質ペーストを充填し乾燥することで作製される。この格子は、主に次の2つの方式のいずれかで作製される。第1は、格子の型をした鋳型に鉛および鉛合金からなる溶湯を注いで鋳造する鋳造方式(連続鋳造方式を含む)である。第2は、鉛および鉛合金からなる溶湯を連続的に冷却して得られた帯状のスラブを圧延してシートを作製し、このシートに千鳥状のスリットを形成して伸展するエキスパンド方式である。これら2つの方式のうち、生産性に優れたエキスパンド方式が採られることが多くなってきた。 The electrode plate for a lead storage battery is manufactured by filling a lattice made of lead and a lead alloy with an active material paste containing lead and a lead compound and drying. This lattice is mainly produced by one of the following two methods. The first is a casting method (including a continuous casting method) in which a molten metal made of lead and lead alloy is poured into a lattice-shaped mold. The second is an expanding method in which a strip-like slab obtained by continuously cooling a molten metal composed of lead and a lead alloy is rolled to produce a sheet, and a staggered slit is formed on the sheet to extend the sheet. . Of these two methods, the expanding method with excellent productivity has been increasingly adopted.
 このエキスパンド方式は刃の動きの違いによって大きく二分される。レシプロ方式は、形成するスリットに対応したダイス刃を往復運動させることによって、シートにスリットを形成するとともに、スリット部を伸展し、エキスパンド網目を形成する方式である。一方ロータリー方式は、回転運動する円板状カッターでシートにスリットを形成しエキスパンド網目を形成する方式である。これら2つの方式のうち、生産性には劣るがエキスパンド網目の交点部に捩れがなく腐食されにくいレシプロ方式で得た格子を、正極板用に用いることが多い。 こ の This expanding method is largely divided into two depending on the movement of the blade. The reciprocating method is a method in which a slit is formed in the sheet by reciprocating a die blade corresponding to the slit to be formed, and the slit portion is extended to form an expanded mesh. On the other hand, the rotary method is a method in which a slit is formed in a sheet with a rotating disk-shaped cutter to form an expanded mesh. Of these two methods, a grid obtained by a reciprocating method, which is inferior in productivity but is not corroded at the intersection of the expanded mesh and is not easily corroded, is often used for the positive electrode plate.
 ところで鋳造方式で得られる格子とエキスパンド方式に用いられるスラブは、それぞれ異なる金属組織を有するためその利点も異なる。 By the way, the grid obtained by the casting method and the slab used for the expanding method have different metal structures, and thus have different advantages.
 連続鋳造方式で得られた格子の連続体は、結晶粒径が大きい金属組織を有している。結晶粒径が大きいと、結晶粒界が少なくなるために腐食の絶対量が少なくなり、特に高温下での強度変化が少なくなるという利点がある。 The lattice continuum obtained by the continuous casting method has a metal structure with a large crystal grain size. When the crystal grain size is large, there is an advantage that the absolute amount of corrosion is reduced because the crystal grain boundary is reduced, and the change in strength at high temperature is reduced.
 一方、溶湯を連続的に冷却して得られたスラブは、上述の方式と比べて結晶粒径が小さい金属組織を有している。結晶粒径が小さいと、強度が大きくなるためにエキスパンド加工に適する上に、結晶粒界が多くなるために腐食が内部に進行しにくいという利点がある。その反面、結晶粒界が多くなることで腐食の絶対量が多くなり、特に高温下で充放電を繰り返すと格子が伸展しやすくなってセパレータの上部からはみ出し、短絡が発生して短寿命化するという欠点がある。 On the other hand, the slab obtained by continuously cooling the molten metal has a metal structure having a smaller crystal grain size as compared with the above-described method. If the crystal grain size is small, the strength is increased, so that it is suitable for the expanding process, and moreover, the crystal grain boundary increases, so that there is an advantage that corrosion does not easily progress inside. On the other hand, as the number of grain boundaries increases, the absolute amount of corrosion increases. In particular, when charging and discharging are repeated at high temperatures, the lattice easily expands and protrudes from the top of the separator, causing a short circuit and shortening the life. There is a drawback.
 これら双方の方式の利点を融合する技術が、特許文献1および2には記載されている。具体的には、スラブを圧延して得られるシートの表面に結晶粒径が小さい層(緻密層)を設け、中央部の結晶粒径を緻密層より大きくすることで、耐腐食性とエキスパンド加工に適した強度とを両立させる技術が記載されている。特許文献1よび2に記載された技術は、溶湯が表面から冷却されるために表面には緻密層ができやすいというスラブの鋳造の実態を、巧みに活用したものである。 Patent Documents 1 and 2 describe a technology that combines the advantages of both methods. Specifically, a layer with a small crystal grain size (dense layer) is provided on the surface of a sheet obtained by rolling a slab, and the crystal grain size at the center is larger than that of the dense layer, thereby providing corrosion resistance and expanding processing. Describes a technique for achieving both strengths suitable for the above. The techniques described in Patent Documents 1 and 2 skillfully utilize the actual state of slab casting, in which a molten layer is cooled from the surface, so that a dense layer is easily formed on the surface.
特開2005-056622号公報JP 2005-056622 A 特開2004-031041号公報JP 2004-031041 A
 しかしながら無作為にスラブの表面に緻密層を設けると、このスラブを加工してエキスパンド格子を作製する際に、エキスパンド網目を構成する格子骨(ストランド)が切れてしまうという不具合が生じた。また格子骨が切れなくても、このエキスパンド格子からなる極板を用いて鉛蓄電池を構成した場合、サイクル寿命特性が低下するだけでなく、正極板の格子が伸展して短絡(突然死)するという課題が十分に解消されないことがわかった。短絡して突然死すると、鉛蓄電池が機能を十分に発揮している状態から突然機能を失って充放電ができなくなる。例えば自動車のセルスタータ用の鉛蓄電池が突然死した場合、使用者(車の運転者)は鉛蓄電池の寿命到達を予測できないため、前もって車検などの検査時に鉛蓄電池を交換する等のメンテナンスができない。 However, when a dense layer is randomly provided on the surface of the slab, when the expanded lattice is produced by processing the slab, a lattice bone (strand) constituting the expanded mesh is broken. Even if the lattice bone is not broken, when a lead-acid battery is constructed using an electrode plate made of this expanded lattice, not only the cycle life characteristics deteriorate, but also the positive electrode lattice extends and short-circuits (suddenly). It has been found that the problem is not fully resolved. If the battery is short-circuited and suddenly died, the lead-acid battery suddenly loses its function from the state where the battery is fully functioning, and charging / discharging cannot be performed. For example, when a lead storage battery for an automobile cell starter suddenly dies, the user (car driver) cannot predict the lead life of the lead storage battery, so maintenance such as replacing the lead storage battery in advance during inspections such as vehicle inspections cannot be performed. .
 本発明は上記課題についてなされたものであり、エキスパンド加工性やサイクル寿命特性が高く、正極板の格子の伸びに伴う短絡が抑制された鉛蓄電池用極板と、この鉛蓄電池用極板の製造方法を提供するものである。 The present invention has been made with respect to the above-mentioned problems, and has a high expandability and cycle life characteristics, and a lead plate for a lead storage battery in which short-circuiting due to elongation of the grid of the positive plate is suppressed, and the production of the lead plate for the lead storage battery A method is provided.
 上記課題を解決するために、本発明の鉛蓄電池用極板は、鉛あるいは鉛合金からなるエキスパンド格子と、前記エキスパンド格子に充填されている活物質とを備え、前記エキスパンド格子は、四辺形であって、一辺から突き出したタブ部を有しており、前記タブ部を有した辺を上辺として前記エキスパンド格子を鉛直に立てたときに、格子のストランドにおいて上を向いた面および下を向いた面は、ストランドの中心部分よりも結晶粒径が小さい緻密層を表面に有しており、前記ストランドの上を向いた面の方が下を向いた面よりも前記緻密層が薄い構成を有している。 In order to solve the above problems, an electrode plate for a lead storage battery according to the present invention includes an expanded lattice made of lead or a lead alloy, and an active material filled in the expanded lattice, and the expanded lattice has a quadrilateral shape. And has a tab portion protruding from one side, and when the expanded lattice is set up vertically with the side having the tab portion as an upper side, the surface of the lattice strand faces upward and downward. The surface has a dense layer having a crystal grain size smaller than the central part of the strand on the surface, and the dense layer is thinner on the surface facing upward of the strand than on the surface facing downward. is doing.
 前記ストランドの上を向いた面の前記緻密層の厚みAと、下を向いた面の前記緻密層の厚みBとは、A/Bが0.14以上0.50以下である関係を有していてもよい。 The thickness A of the dense layer on the surface facing upward of the strand and the thickness B of the dense layer on the surface facing downward have a relationship that A / B is 0.14 or more and 0.50 or less. It may be.
 前記ストランドの上を向いた面の前記緻密層の厚みAと、下を向いた面の前記緻密層の厚みBと、前記ストランドの上を向いた面と下を向いた面との間の厚みCとは、(A+B)/Cが0.15以上0.40以下である関係を有していてもよい。 Thickness between the dense layer thickness A of the surface facing the strand, the thickness B of the dense layer of the surface facing downward, and the thickness between the surface facing upward and the surface facing downward of the strand C may have a relationship in which (A + B) / C is 0.15 or more and 0.40 or less.
 前記鉛合金は、アンチモンを含んでいてもよい。アンチモンは前記鉛合金中に2質量%以下含まれていることが好ましい。 The lead alloy may contain antimony. It is preferable that 2% by mass or less of antimony is contained in the lead alloy.
 本発明の鉛蓄電池は、上記の鉛蓄電池用極板を少なくとも正極板および負極板の少なくとも一方に用い、セパレータを介して対極板と対峙させた構成を有している。 The lead storage battery of the present invention has a configuration in which the above-described electrode plate for lead storage battery is used as at least one of a positive electrode plate and a negative electrode plate and is opposed to a counter electrode plate via a separator.
 本発明の鉛蓄電池用極板の製造方法は、鉛あるいは鉛合金からなる溶湯を連続的に冷却して帯状のスラブを鋳造する第1の工程と、前記スラブを圧延して帯状のシートを作製する第2の工程と、前記シートの長尺方向と平行に千鳥状の複数の切れ目を形成しつつ前記シートの長尺方向と垂直な方向に展開するレシプロ方式によって、帯状のエキスパンド格子を作製する第3の工程と、鉛および鉛化合物を含む活物質ペーストを前記エキスパンド格子に充填し乾燥した後、所定の寸法に切断して極板を作製する第4の工程とを含み、前記第1の工程では、前記スラブの両表面に中央部よりも結晶粒径が小さい緻密層が両表面において異なる厚みで設けられており、前記第3の工程では、前記緻密層が薄い方の表面からダイス刃を入れて前記切れ目を形成している構成を有している。 The method for producing an electrode plate for a lead storage battery according to the present invention includes a first step of continuously cooling a molten metal made of lead or a lead alloy to cast a strip slab, and rolling the slab to produce a strip sheet. A strip-like expanded lattice is produced by a second step of reciprocating and developing in a direction perpendicular to the longitudinal direction of the sheet while forming a plurality of staggered cuts parallel to the longitudinal direction of the sheet A third step, and a fourth step of filling an active material paste containing lead and a lead compound into the expanded lattice and drying, then cutting to a predetermined size to produce an electrode plate, and In the step, dense layers having a crystal grain size smaller than that of the central portion are provided on both surfaces of the slab with different thicknesses on both surfaces, and in the third step, the dense layer is formed from a thin surface from the surface of the slab. Put the cut It has a configuration which forms the eyes.
 前記第3の工程における前記緻密層が薄い方の層厚みAと他方の層厚みBとの比A/Bが0.14以上0.50以下であってもよい。 The ratio A / B between the thickness A of the thinner dense layer and the thickness B of the other layer in the third step may be 0.14 or more and 0.50 or less.
 前記第3の工程における前記シートの厚みCと、前記緻密層が薄い方の層厚みAおよび他方の層厚みBの和A+Bとの比(A+B)/Cが0.15以上0.40以下であってもよい。 The ratio (A + B) / C between the thickness C of the sheet in the third step and the sum A + B of the thickness A of the thinner dense layer and the thickness B of the other layer is 0.15 or more and 0.40 or less. There may be.
 本発明においては、鉛合金とは、鉛を50重量%よりも多く含む合金である。ストランドとは、エキスパンド格子の格子目を取り囲んでいる断面四角形の棒状の部材のことである。すなわち、ストランドが格子目を形成している。 In the present invention, the lead alloy is an alloy containing more than 50% by weight of lead. The strand is a bar-shaped member having a square cross section surrounding the expanded lattice. That is, the strand forms a lattice.
 緻密層とは、層を構成する結晶粒の大きさがその他の部分に比べて小さいために、顕微鏡観察をしたときに他の部分に比べて相対的に緻密に観察される層のことである。本発明では、シート表面の所定の厚み範囲における結晶粒が、シートの厚み方向の中央部分の結晶粒よりも小さいことを指している。 A dense layer is a layer that is relatively densely observed compared to other parts when observed with a microscope because the size of the crystal grains constituting the layer is small compared to other parts. . In this invention, the crystal grain in the predetermined thickness range of the sheet | seat surface points out that it is smaller than the crystal grain of the center part of the thickness direction of a sheet | seat.
 アンチモンが鉛合金中に2重量%以下含まれているというのは、アンチモンは鉛合金中に含まれているが含有量の上限は2重量%であることを意味する。 An antimony contained in the lead alloy of 2% by weight or less means that the antimony is contained in the lead alloy but the upper limit of the content is 2% by weight.
 レシプロ方式とは、水平に置かれた鉛のシートに、刃が上下に往復運動をして切れ目を形成する方式である。 The reciprocating method is a method in which a blade is reciprocated up and down on a horizontally placed lead sheet to form a cut.
 本発明によれば、鉛蓄電池用極板のエキスパンド加工性が高くなる。さらにこの極板を用いた鉛蓄電池はサイクル寿命特性が高く、正極板の格子の伸びに伴う短絡が抑制されるという、顕著な効果を奏する。 According to the present invention, the expandability of the lead storage battery electrode plate is enhanced. Furthermore, the lead acid battery using this electrode plate has a high cycle life characteristic, and has a remarkable effect that the short circuit accompanying the expansion of the grid of the positive electrode plate is suppressed.
実施形態に係る鉛蓄電池用極板の製造方法の一部を示す概略図である。It is the schematic which shows a part of manufacturing method of the electrode plate for lead acid batteries which concerns on embodiment. 実施形態に係る鉛蓄電池用極板の製造方法の別の一部を示す概略図である。It is the schematic which shows another part of the manufacturing method of the electrode plate for lead acid batteries which concerns on embodiment. 実施形態に係る鉛蓄電池用極板の製造方法の他の一部を示す概略図である。It is the schematic which shows another part of the manufacturing method of the electrode plate for lead acid batteries which concerns on embodiment. 実施形態に係る鉛蓄電池用極板の製造方法の要部を示す概略図である。It is the schematic which shows the principal part of the manufacturing method of the electrode plate for lead acid batteries which concerns on embodiment. 実施形態に係る鉛蓄電池を示す外観図である。It is an external view which shows the lead acid battery which concerns on embodiment. 実施形態に係るエキスパンド格子を示す図である。It is a figure which shows the expanded grating | lattice which concerns on embodiment. ストランドの断面の一部を示す図面代用写真である。It is a drawing substitute photograph which shows a part of cross section of a strand.
 まず、本発明に想到するに至った経緯について説明をする。 First, the background that led to the present invention will be described.
 鉛又は鉛合金のスラブを圧延してシートとした後、レシプロ方式によってエキスパンド加工する際、シートはダイス刃によってダイス刃を入れる側の表面から押し下げられる。そのため、シートの反対側の面は相対的に伸展率が高くなり、伸展率に相応して加工時に受けるストレスが大きくなると考えられる。本発明者らはこの点に着目し、以下に示す課題のメカニズムを初めて知見し、本発明に至った。 After rolling a lead or lead alloy slab to form a sheet, when the sheet is expanded by a reciprocating method, the sheet is pushed down from the surface on the side where the die blade is inserted by the die blade. For this reason, it is considered that the opposite surface of the sheet has a relatively high stretch rate, and the stress applied during processing increases in accordance with the stretch rate. The present inventors paid attention to this point, and for the first time discovered the mechanism of the problem shown below, and reached the present invention.
 鉛あるいは鉛合金からなる溶湯を連続的に冷却してスラブを鋳造する際には、溶湯が表面から冷却されるために表面には緻密層ができやすい。即ち、溶湯の表面は早く冷却されるために結晶粒径が小さくなり、溶湯の内部(中央部分)はゆっくり冷却されるので結晶粒径が大きくなる。溶湯の両方の表面を略均等に冷却すれば、両表面に形成される緻密層の厚みは略同一となる。この緻密層は前述したように、結晶粒径が小さいためにエキスパンド加工に適しているだけでなく、結晶粒界が多いために内部に向かって腐食が進行しにくい。 When casting a slab by continuously cooling a molten metal made of lead or a lead alloy, the molten metal is cooled from the surface, so that a dense layer is easily formed on the surface. That is, since the surface of the molten metal is cooled quickly, the crystal grain size becomes small, and the inside (center portion) of the molten metal is cooled slowly, so that the crystal grain size becomes large. If both surfaces of the molten metal are cooled substantially uniformly, the dense layers formed on both surfaces have substantially the same thickness. As described above, this dense layer is not only suitable for expanding processing because of its small crystal grain size, but also because of its large number of crystal grain boundaries, corrosion hardly progresses toward the inside.
 ところがエキスパンド加工する際、ダイス刃を入れる側は相対的に伸展率が低いために緻密層の構造は加工前と変わらないが、押し下げられたもう一方の側は相対的に伸展率が高くなると考えられ、そのため緻密層が押し広げられて破壊されやすくなることが判明した。破壊の程度が大きい場合はエキスパンド加工性そのものが低下するので、クラックの発生によりストランドが切断されるという製造工程上の不具合が発生する。またストランドの切断にまでは至らなくても緻密層が破壊されるため、結晶粒径が大きいシートの厚み方向の中央部が露出して腐食されやすくなる。結晶粒界が少ない中央部は内部に向かって腐食が進行しやすいため、電池として使用中に格子が破断に至る(突然死)。つまり、サイクル寿命特性が低下する。さらには緻密層の結晶粒界(相対的に多い)が、緻密層の破壊によって暴露されることで腐食が進み、高温下において格子が伸びやすくなる。したがって特許文献1や特許文献2の技術を無作為に導入しても、課題は改善されない。 However, when expanding, the side where the die blade is inserted has a relatively low extension rate, so the structure of the dense layer is the same as before, but the other side pressed down is considered to have a relatively high extension rate. Therefore, it has been found that the dense layer is spread and easily broken. When the degree of breakage is large, the expand processability itself deteriorates, so that a problem in the manufacturing process that the strand is cut due to the occurrence of a crack occurs. Further, since the dense layer is broken even if the strand is not cut, the central portion in the thickness direction of the sheet having a large crystal grain size is exposed and easily corroded. Since the central part with few crystal grain boundaries tends to corrode toward the inside, the lattice breaks during use as a battery (sudden death). That is, the cycle life characteristics are deteriorated. Furthermore, the crystal grain boundaries (relatively many) of the dense layer are exposed by the destruction of the dense layer, whereby corrosion progresses and the lattice tends to stretch at high temperatures. Therefore, even if the techniques of Patent Document 1 and Patent Document 2 are randomly introduced, the problem is not improved.
 そこで本発明者らは種々の検討を重ねた結果、スラブの鋳造工程(第1の工程)においてスラブの両表面の緻密層の厚みを異ならせ、エキスパンド加工工程(第3の工程)において緻密層が薄い方の表面からダイス刃を入れるようにした。これによって、以下の4つの効果が得られるようになった。 Therefore, as a result of various studies, the present inventors made different thicknesses of the dense layers on both surfaces of the slab in the casting process (first process) of the slab, and the dense layer in the expanding process (third process). The die blade was inserted from the surface with the thinner side. As a result, the following four effects can be obtained.
 第1に、シート表面に緻密層を十分に存在させることができるので、強度が大きくエキスパンド加工性が高い上に内部に腐食が進行しにくい。第2に、シートの厚み方向中央部は結晶粒径が大きい(結晶粒界が少ない)ために腐食の絶対量が少なくなり、高温下での強度変化が小さくなる。第3に、エキスパンド加工時に伸展率が高くなる方の表面の緻密層を厚くするので、緻密層が破壊されにくくなり、上述した第1および第2の効果が損なわれない。 First, since a dense layer can be sufficiently present on the surface of the sheet, the strength is high, the expand processability is high, and corrosion does not easily progress inside. Second, since the crystal grain size is large (the number of crystal grain boundaries is small) in the central portion in the thickness direction of the sheet, the absolute amount of corrosion is small, and the change in strength at high temperatures is small. Thirdly, since the dense layer on the surface where the stretch ratio becomes high during the expansion process is thickened, the dense layer is hardly broken, and the above-described first and second effects are not impaired.
 以下に本発明の実施形態を説明する。 Embodiments of the present invention will be described below.
 (実施形態)
 図1~3は実施形態の鉛蓄電池用極板の製造方法の一例を示す概略図である。鉛蓄電池用極板は、次の4つの工程を経て製造される。
(Embodiment)
1 to 3 are schematic views showing an example of a method for producing an electrode plate for a lead storage battery according to the embodiment. The electrode plate for a lead storage battery is manufactured through the following four steps.
 第1の工程は、鉛あるいは鉛合金からなる溶湯1を矢印の方向に回転するドラム2の上に流し込み、ドラム2の内部に供給される冷媒と冷媒放出口3から放出される冷媒とで溶湯1を連続的に冷却し、帯状のスラブ4を鋳造する工程である。早く冷却されるスラブ4の表面は、結晶粒径が相対的に小さくなり、ゆっくり冷却されるスラブ4の内部は結晶粒径が相対的に大きくなる。 In the first step, the molten metal 1 made of lead or a lead alloy is poured onto the drum 2 rotating in the direction of the arrow, and the molten metal is supplied by the refrigerant supplied into the drum 2 and the refrigerant discharged from the refrigerant discharge port 3. 1 is a process of continuously cooling 1 and casting a belt-like slab 4. The surface of the slab 4 that is cooled quickly has a relatively small crystal grain size, and the inside of the slab 4 that is cooled slowly has a relatively large crystal grain size.
 第2の工程は、スラブ4を一対あるいは複数対の圧延ローラ5で圧延して厚みを調整し、帯状のシート6を作製する工程である。 The second step is a step in which the slab 4 is rolled with a pair or a plurality of pairs of rolling rollers 5 to adjust the thickness to produce a belt-like sheet 6.
 第3の工程は、下刃8の上にシート6を載置し、シート6の上面側から上刃であるダイス刃7をシート6に順次入れることでシート6の長尺方向と平行に千鳥状の複数の切れ目を形成しつつ、シート6の長尺方向と垂直な方向に展開する方式(レシプロ方式)によって、ストランド9aにより形成されるメッシュ部と無地部9bとからなる帯状のエキスパンド格子9を作製する工程である。なお、無地部9bにはダイス刃7による切れ目は入れられていない。 In the third step, the sheet 6 is placed on the lower blade 8, and the die blade 7, which is the upper blade, is sequentially inserted into the sheet 6 from the upper surface side of the sheet 6 so as to be parallel to the longitudinal direction of the sheet 6. A strip-shaped expanded lattice 9 composed of a mesh portion formed by the strands 9a and a plain portion 9b by a method (reciprocal method) that develops in a direction perpendicular to the longitudinal direction of the sheet 6 while forming a plurality of cut lines. It is a process of producing. The plain portion 9b is not cut by the die blade 7.
 第4の工程は、矢印の方向に進行するエキスパンド格子9のうち無地部9bを除くメッシュ部に対して、鉛および鉛化合物を含む活物質ペースト11を、位置固定されたペースト吐出口10から吐出して充填し、乾燥した後、所定の寸法に切断して極板12を作製する工程である。この工程では、無地部9bからタブ部が形成される。 In the fourth step, the active material paste 11 containing lead and a lead compound is discharged from the paste discharge port 10 whose position is fixed to the mesh portion excluding the plain portion 9b in the expanded lattice 9 that proceeds in the direction of the arrow. Then, after filling, drying, and cutting to a predetermined dimension, the electrode plate 12 is produced. In this step, a tab portion is formed from the plain portion 9b.
 本実施形態は、第1の工程においてスラブ4の両表面に厚み方向の中央部よりも結晶粒径が小さい緻密層を、両面において厚みが異なるように設け、第3の工程において緻密層が薄い方の表面からダイス刃7を入れるようにしたことを特徴とする。図7に示すように、スラブ4或いはシート6断面を顕微鏡観察すると、結晶粒径が大きい厚み方向の中央部14に比べ、結晶粒径が小さい緻密層13が表面に明確に観察される。 In the present embodiment, dense layers having a crystal grain size smaller than the central portion in the thickness direction are provided on both surfaces of the slab 4 in the first step so as to have different thicknesses on both surfaces, and the dense layer is thin in the third step. The die blade 7 is inserted from the surface of the surface. As shown in FIG. 7, when the cross section of the slab 4 or the sheet 6 is observed with a microscope, a dense layer 13 having a small crystal grain size is clearly observed on the surface as compared with the central portion 14 in the thickness direction where the crystal grain size is large.
 図1において、スラブ4及びシート6のドラム2と接触した表面をα、冷媒放出口3から放出される冷媒と接触した表面をβとしたとき、冷媒にもよるが表面α側の緻密層を厚くすることは容易である。これは、内部において連続的に冷媒と接することができるドラム2側の表面αの方が相対的に冷却は進みやすく、冷媒放出口3から間欠的に放出される冷媒と接触する表面βの方が相対的に冷却は進みにくいからである。したがって表面β側の緻密層を厚くするには、冷媒放出口3から放出される冷媒の量を増やして、表面β側の冷却能力を高めればよい。なおスラブ4における表面α側とβ側の緻密層の厚みに差異があった場合、圧延されてシート6となってもこの差異は継続することになる。 In FIG. 1, when the surface of the slab 4 and the sheet 6 in contact with the drum 2 is α, and the surface of the slab 4 in contact with the refrigerant discharged from the refrigerant discharge port 3 is β, the dense layer on the surface α side depends on the refrigerant. It is easy to thicken. This is because the surface α on the drum 2 side that can continuously contact the refrigerant inside is relatively easier to cool, and the surface β that contacts the refrigerant intermittently discharged from the refrigerant discharge port 3. However, cooling is relatively difficult to proceed. Therefore, in order to thicken the dense layer on the surface β side, the amount of the refrigerant discharged from the refrigerant discharge port 3 may be increased to increase the cooling capacity on the surface β side. In addition, when there is a difference in the thickness of the dense layer on the surface α side and β side in the slab 4, this difference continues even if the sheet 6 is rolled.
 ダイス刃7を往復させるレシプロ方式において、下刃8はシート6のうちダイス刃7が降りる箇所には接触しないように設計されている。したがってシート6のうちダイス刃7が入いる部位では、ダイス刃7が入いる面とダイス刃7の形状に沿って押し下げられる反対側の面とで、ダイス刃7による伸展率が大きく異なる(ダイス刃7を入れる面の方が伸展率は低い)。なお、伸展率の代わりに、ダイス刃7によって押し延ばされる、或いは引き延ばされる量を用いてもよいし、ダイス刃7により変形させられる際にかかる応力で表すこともできる。伸展率が大きいというのは、引き延ばされる量が大きいことであり、応力が大きいことである。 In the reciprocating system in which the die blade 7 is reciprocated, the lower blade 8 is designed so as not to contact the portion of the sheet 6 where the die blade 7 descends. Accordingly, in the portion of the sheet 6 where the die blade 7 is inserted, the extension rate by the die blade 7 is greatly different between the surface where the die blade 7 enters and the opposite surface which is pushed down along the shape of the die blade 7 (die die). The surface where the blade 7 is inserted has a lower extension rate). Instead of the stretch rate, the amount that is extended or extended by the die blade 7 may be used, or it can be expressed by the stress applied when the die blade 7 is deformed. A high stretch rate means that the stretched amount is large and the stress is large.
 すなわちダイス刃7が入る面とは反対側の面(伸展率が高い、押し下げられる方の面)に存在する緻密層は、伸展率が高く大きく引き延ばされるので、第3の工程において破壊されやすい。具体的には、切れ目が入る周辺において緻密層が破壊されて、表面に細かなひび割れが入る。緻密層が破壊される程度が大きくなるとエキスパンド加工性そのものが低下するので、クラックの発生によりストランドが切断されるという製造工程上の不具合が発生する。またストランドの切断が起こらなかった場合でも、緻密層が破壊されて結晶粒径の大きい中央部が暴露されれば、結晶粒界が少ない中央部は内部に向かって腐食が進行しやすいため、鉛蓄電池に組み立てられて使用されていると、極板の格子が早期に腐食してしまう。従って、格子が早期に破断に至ってしまい(突然死)、サイクル寿命特性が低下する。さらには緻密層の結晶粒界(相対的に多い)が緻密層の破壊された部分において暴露され、それにより緻密層の腐食が進み、高温下において格子が伸びやすくなる。 That is, the dense layer existing on the surface opposite to the surface on which the die blade 7 enters (the surface that has a high extension rate and is pushed down) has a high extension rate and is greatly stretched, and thus is easily broken in the third step. . Specifically, the dense layer is broken in the vicinity where the cut is made, and fine cracks are formed on the surface. If the degree to which the dense layer is broken increases, the expand processability itself deteriorates, so that a problem in the manufacturing process that the strand is cut due to the occurrence of a crack occurs. Even if strand breakage does not occur, if the dense layer is broken and the central part with a large crystal grain size is exposed, the central part with few crystal grain boundaries tends to corrode toward the inside. If assembled and used in a storage battery, the grid of the electrode plate will corrode early. Accordingly, the lattice breaks early (sudden death), and the cycle life characteristics are deteriorated. Furthermore, the crystal grain boundaries (relatively many) of the dense layer are exposed in the destroyed portion of the dense layer, whereby corrosion of the dense layer proceeds and the lattice tends to stretch at high temperatures.
 そこで本発明者らは、図4(図2の部位γに相当)に示すように、第1の工程においてスラブ4およびシート6の両表面の緻密層13a,13bを、厚みが異なるように設けた上で、第3の工程において薄い緻密層13aを有する表面からダイス刃7を入れるようにした。これによって、相対的に大きく押し下げられる方の面(伸展率が高い面)には厚い緻密層13bを有する表面が配置される。緻密層13bは図4のように大きく押し下げられることで大きく引き伸ばされたり、大きな応力がかかっても、十分な強度を有するために破壊されない。したがって両面の緻密層13a,13bの厚みを略同一とする場合や、両面の緻密層13a、13bとの厚みの差異を無視して、ダイス刃7を入れる面を無作為に選ぶ(厚い緻密層13bを有する表面からダイス刃7を入れるように)第3の工程を経た場合とは異なり、緻密層13a,13bの効果(エキスパンド加工性が高く、内部に腐食が進行しにくい)と結晶粒径が大きい中央部14の効果(腐食の絶対量が少ないので高温下で強度変化が小さい)をともに享受できる。 Therefore, as shown in FIG. 4 (corresponding to the portion γ in FIG. 2), the present inventors provided dense layers 13a and 13b on both surfaces of the slab 4 and the sheet 6 in the first step so as to have different thicknesses. In addition, in the third step, the die blade 7 is inserted from the surface having the thin dense layer 13a. As a result, the surface having the thick dense layer 13b is disposed on the surface that is relatively largely pressed down (the surface with a high extension rate). Even if the dense layer 13b is largely pushed down as shown in FIG. 4 or greatly stressed, the dense layer 13b is not broken because it has sufficient strength. Accordingly, when the thicknesses of the dense layers 13a and 13b on both sides are substantially the same, or the thickness difference between the dense layers 13a and 13b on both sides is ignored, the surface into which the die blade 7 is to be inserted is randomly selected (thick dense layer). Unlike the case of passing through the third step (so that the die blade 7 is inserted from the surface having 13b), the effects of the dense layers 13a and 13b (expanding processability is high and corrosion does not easily progress inside) and the crystal grain size Can be enjoyed together with the effect of the central portion 14 having a large (the absolute amount of corrosion is small, so the strength change is small at high temperatures).
 なお、上述のことはシート6が鉛や鉛-錫合金に関して言えることであるが、鉛蓄電池を高温状態や放電が深い状態で使用する場合は、極板のエキスパンド格子にアンチモンを1.2~2.0質量%含有させると鉛蓄電池の寿命が延びるので、シート6にアンチモンを加えることが好ましい。アンチモンが1.2質量%未満であると寿命が延びる効果が明確ではなく、2.0質量%を超えると、寿命の延びは2.0質量%含有の場合とほぼ変わらないがエキスパンド加工性が低下してエキスパンド工程での不良発生が増加する。 The above is true for sheet 6 and lead or a lead-tin alloy. However, when a lead storage battery is used in a high temperature state or in a deep discharge state, antimony is added to 1.2 to When containing 2.0% by mass, the life of the lead-acid battery is extended, so it is preferable to add antimony to the sheet 6. When antimony is less than 1.2% by mass, the effect of extending the life is not clear. When it exceeds 2.0% by mass, the increase in the life is almost the same as the case of containing 2.0% by mass, but the expand processability is improved. The occurrence of defects in the expanding process increases and decreases.
 本実施形態を具現化する態様の1つとして、第1の工程においてドラム2側の冷却能力を冷媒放出口3側のそれと比べて大きくした上で、第3の工程においてドラム2によって冷却される表面α側を下刃8と接するように(冷媒放出口3によって冷却される表面βにダイス刃7を入れるように)エキスパンド加工する方法が挙げられる。この態様を採る場合、図1~2に示すように、第1~2の工程で上面となるαを第3の工程では下面とする必要がある。 As one aspect for embodying the present embodiment, the cooling capacity on the drum 2 side is increased in comparison with that on the refrigerant discharge port 3 side in the first step, and then the drum 2 is cooled in the third step. There is an expanding method in which the surface α side is in contact with the lower blade 8 (so that the die blade 7 is put in the surface β cooled by the refrigerant discharge port 3). In the case of adopting this mode, as shown in FIGS. 1 and 2, α which is the upper surface in the first and second steps needs to be the lower surface in the third step.
 本実施形態を具現化する別の態様として、第1の工程において冷媒放出口3側の冷却能力をドラム2側のそれと比べて大きくした上で、第3の工程において冷媒放出口3によって冷却される表面β側を下刃8と接するように(ドラム2によって冷却される表面αにダイス刃7を入れるように)エキスパンド加工する方法が挙げられる。この態様を採る場合、第1~3の工程内で面を反転させる必要はないが、上述したように一般的にはドラム2の方が冷却能力は高いので、冷媒放出口3側との冷却能力バランスは、慎重に調整する必要がある。 As another mode for embodying the present embodiment, the cooling capacity on the refrigerant discharge port 3 side is increased in comparison with that on the drum 2 side in the first step, and the cooling is performed by the refrigerant discharge port 3 in the third step. There is a method of expanding so that the surface β side touches the lower blade 8 (so that the die blade 7 is put in the surface α cooled by the drum 2). When this mode is adopted, it is not necessary to reverse the surface in the first to third steps. However, as described above, since the drum 2 generally has a higher cooling capacity, the cooling with the refrigerant discharge port 3 side is performed. The capacity balance needs to be carefully adjusted.
 ここで第3の工程において、緻密層13aの層厚みAと緻密層13bの層厚みBとの比A/Bが0.14以上0.50以下であることが望ましい。さらに第3の工程において、シート6の厚みCと緻密層13aと13bの層厚みの和A+Bとの比(A+B)/Cが0.15以上0.40以下であることが望ましい。比A/Bおよび(A+B)/Cが好適範囲内であれば、シート6における緻密層13aおよび13bの厚みの構成比が最適化されて腐食が進みにくくなるので、サイクル寿命特性がより高くなる。 Here, in the third step, the ratio A / B between the layer thickness A of the dense layer 13a and the layer thickness B of the dense layer 13b is desirably 0.14 or more and 0.50 or less. Furthermore, in the third step, it is desirable that the ratio (A + B) / C of the thickness C of the sheet 6 and the sum A + B of the layer thicknesses of the dense layers 13a and 13b is 0.15 or more and 0.40 or less. If the ratios A / B and (A + B) / C are within the preferred ranges, the composition ratio of the thicknesses of the dense layers 13a and 13b in the sheet 6 is optimized and corrosion is less likely to proceed, resulting in higher cycle life characteristics. .
 なお鉛蓄電池用極板が本実施形態の製造方法を経たものか否かは、後ほど詳述する鉛蓄電池を構成した後であっても、明確に判別できる。緻密層13aおよび13bと中央部14の存在およびそれらの層厚みは、エキスパンド格子9(特にストランド9a)の断面を研磨して結晶状態を観察することで、検知および測定が可能である。そして図2~4からも明らかなように、エキスパンド格子9の網目(ストランド9aで構成された略菱形のもの)における上側(タブ部に近い側)の2辺はダイス刃7が入る面とは反対側の面(伸展率が高い、押し下げられる方の面)であるので、上述の方法で観察した緻密層13aがエキスパンド格子9の略菱形網目の上下2辺いずれに存在するかで、本実施形態の方法に沿ってダイス刃7を入れたか否かが特定できる。 Whether or not the lead storage battery electrode plate has undergone the manufacturing method of the present embodiment can be clearly determined even after the lead storage battery described in detail later is configured. The presence of the dense layers 13a and 13b and the central portion 14 and the layer thickness thereof can be detected and measured by polishing the cross section of the expanded lattice 9 (particularly, the strand 9a) and observing the crystalline state. As is clear from FIGS. 2 to 4, the two sides on the upper side (the side close to the tab portion) of the mesh of the expanded lattice 9 (substantially rhombus made of strands 9a) are the surfaces on which the die blade 7 enters. Since this is the opposite surface (the surface that has a high extension rate, the surface to be pushed down), it is determined whether the dense layer 13a observed by the above method exists on either the upper or lower side of the substantially rhombic mesh of the expanded lattice 9 It can be specified whether or not the die blade 7 is inserted along the method of the form.
 このことを図6を参照にして説明する。図6は、極板形状のエキスパンド格子22であって活物質を充填していない状態の正面図である。エキスパンド格子11は四辺形であって、図6に示す上辺からタブ部23が突き出している。他の極板との電気的接続を行うためのタブ部23を上にしてエキスパンド格子22を鉛直に立てたときに、メッシュを構成するストランド24において上を向いた面25が緻密層の厚みが小さく、ダイス刃7が入れられた面である。下を向いた面26が緻密層の厚みが大きい面である。なお、鉛直に立てたエキスパンド格子22においてストランド24の正面(図6により示されている面)及び背面は、ダイス刃により切断された面となっている。 This will be described with reference to FIG. FIG. 6 is a front view of the electrode-plate-shaped expanded lattice 22 that is not filled with an active material. The expanded lattice 11 has a quadrangular shape, and tab portions 23 protrude from the upper side shown in FIG. When the expanded lattice 22 is set up vertically with the tab portion 23 for electrical connection with another electrode plate facing upward, the surface 25 facing upward in the strand 24 constituting the mesh has a thickness of the dense layer. It is a small surface on which the die blade 7 is placed. The face 26 facing downward is the face where the dense layer is thick. Note that the front surface (surface shown in FIG. 6) and the back surface of the strand 24 in the vertically expanded lattice 22 are surfaces cut by a die blade.
 図5は本実施形態の鉛蓄電池を示す外観図である。正極板16aおよび負極板16bの少なくとも一方に本実施形態の鉛蓄電池用極板12を用い、これらをセパレータ16cと対峙させることで極板群16を構成する。そして外壁15bと底(図示せず)とで囲われた空間を隔壁15aで仕切って複数のセル室17を設けた電槽15の各々のセル室17に、複数の極板群16を挿入し、隣り合う極板群16の異なる極性どうしを接続部品18で接続することで、極板群16の数だけ直列接続された形態とする。蓋20を電槽15の開口部で封口する際に、両端の極板群16の一方の極性と接続された極柱(図示せず)をブッシング(図示せず)と接続することで、端子19を構成する。最後に蓋20に設けた穴(図示せず、各セル室の直上に配置)から電解液(図示せず)である希硫酸を注入し、液口栓20aで封口して化成することで、本実施形態の鉛蓄電池となる。 FIG. 5 is an external view showing the lead storage battery of this embodiment. The electrode plate group 16 is configured by using the electrode plate 12 for a lead storage battery of the present embodiment for at least one of the positive electrode plate 16a and the negative electrode plate 16b and confronting them with the separator 16c. A plurality of electrode plate groups 16 are inserted into each cell chamber 17 of the battery case 15 provided with a plurality of cell chambers 17 by partitioning a space surrounded by the outer wall 15b and the bottom (not shown) with a partition wall 15a. By connecting the different polarities of the adjacent electrode plate groups 16 with the connecting parts 18, the number of electrode plate groups 16 is connected in series. When the lid 20 is sealed at the opening of the battery case 15, a pole column (not shown) connected to one polarity of the electrode plate group 16 at both ends is connected to a bushing (not shown), whereby a terminal 19 is configured. Finally, by injecting dilute sulfuric acid, which is an electrolyte (not shown), from a hole (not shown, disposed immediately above each cell chamber) provided in the lid 20, and sealing with a liquid stopper 20a to form, It becomes the lead acid battery of this embodiment.
 ここで正極板16aには、活物質ペーストとして鉛および鉛酸化物を含むものを用いることができる。また負極板16bには、活物質ペーストとして鉛および鉛酸化物、さらには硫酸バリウムやカーボンブラック、およびリグニン化合物を含むものを用いることができる。セパレータ16cにはポリエチレンなどを用いることができ、電槽15や蓋20には、ポリプロピレン(PP)やアクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS)を用いることができる。また接続部品18や端子19には、鉛や種々の鉛合金を用いることができる。さらに液口栓20aには、防爆などの機能を有するものを用いることができる。なお電解液として用いる希硫酸の比重は、1.2~1.4g/mlであることが好ましい。 Here, as the positive electrode plate 16a, an active material paste containing lead and lead oxide can be used. The negative electrode plate 16b can be made of an active material paste containing lead and lead oxide, and further containing barium sulfate, carbon black, and a lignin compound. Polyethylene or the like can be used for the separator 16c, and polypropylene (PP) or acrylonitrile-butadiene-styrene copolymer resin (ABS) can be used for the battery case 15 and the lid 20. Further, lead or various lead alloys can be used for the connection component 18 and the terminal 19. Furthermore, what has functions, such as explosion-proof, can be used for the liquid spout 20a. The specific gravity of dilute sulfuric acid used as the electrolyte is preferably 1.2 to 1.4 g / ml.
 (実施例1)
 鉛-カルシウム系合金からなる溶湯1を回転するドラム2の上に流し込み、ドラム2の内部に供給される冷却水と冷媒放出口3から放出される冷却水とで溶湯1を連続的に冷却し、帯状のスラブ4を鋳造した(第1の工程)。このとき溶湯1には、Caが0.07質量%、Snが1.5質量%含有されていた。
Example 1
The molten metal 1 made of a lead-calcium alloy is poured onto the rotating drum 2, and the molten metal 1 is continuously cooled with the cooling water supplied into the drum 2 and the cooling water discharged from the refrigerant discharge port 3. The belt-like slab 4 was cast (first step). At this time, the molten metal 1 contained 0.07% by mass of Ca and 1.5% by mass of Sn.
 そしてスラブ4を複数対の圧延ローラ5で圧延して厚みCが1.0mmとなるように調整し、帯状のシート6を作製した(第2の工程)。 Then, the slab 4 was rolled with a plurality of pairs of rolling rollers 5 and adjusted so that the thickness C became 1.0 mm, thereby producing a belt-like sheet 6 (second step).
 この帯状のシート6の表裏を反転させて供給し、下刃8の上に載置したシート6の上面からダイス刃7を順次入れることでシート6の長尺方向と平行に千鳥状の複数の切れ目を形成しつつ、シート6の長尺方向と垂直な方向に展開するレシプロ方式によって、ストランド9aにより形成されるメッシュ部と無地部9bとからなる帯状のエキスパンド格子9を作製した(第3の工程)。 By supplying the belt-like sheet 6 with its front and back reversed and sequentially inserting the dice blades 7 from the upper surface of the sheet 6 placed on the lower blade 8, a plurality of zigzag-like plurals are formed in parallel with the longitudinal direction of the sheet 6. A strip-shaped expanded lattice 9 composed of a mesh portion formed by the strands 9a and a plain portion 9b was produced by a reciprocating method that developed in a direction perpendicular to the longitudinal direction of the sheet 6 while forming a cut (third) Process).
 最後にエキスパンド格子9のうち無地部9bを除く部位(メッシュ部)に対して、鉛および鉛酸化物(Pb、PbO、Pb34)の混合粉を主体とした原料鉛粉に硫酸と精製水とを加えて作製した活物質ペースト11をペースト吐出口10から吐出して充填し、乾燥させた後、所定の寸法に切断して極板12(正極板16a)を作製した(第4の工程)。 Finally, for the portion (mesh portion) of the expanded lattice 9 excluding the plain portion 9b, the raw material lead powder mainly composed of mixed powder of lead and lead oxide (Pb, PbO, Pb 3 O 4 ) is refined with sulfuric acid. The active material paste 11 produced by adding water was discharged from the paste discharge port 10, filled, dried, and then cut to a predetermined size to produce the electrode plate 12 (positive electrode plate 16a) (fourth plate) Process).
 なお第3の工程の後にエキスパンド格子9を解析した結果、タブ部を上にしてエキスパンド格子9を鉛直に立てた際に、ストランドの上側の面に形成されている緻密層13aの層厚みAは0.05mm、ストランドの下側の面に形成されている緻密層13bの層厚みBは0.07mm(比A/Bは0.71、比(A+B)/Cは0.12)であった。 As a result of analyzing the expanded lattice 9 after the third step, the layer thickness A of the dense layer 13a formed on the upper surface of the strand when the expanded lattice 9 is set up vertically with the tab portion facing upward is The thickness B of the dense layer 13b formed on the lower surface of the strand was 0.05 mm (the ratio A / B was 0.71, the ratio (A + B) / C was 0.12). .
 上述した正極板16aと常法(公知の方法)により作製した負極板16bとを用いて、実施形態の記載に準じた自動車用の鉛蓄電池(55D23)を作製した。 Using the positive electrode plate 16a described above and the negative electrode plate 16b prepared by a conventional method (a known method), an automotive lead acid battery (55D23) according to the description of the embodiment was produced.
 (実施例2)
 実施例1に対して、ドラム2の内部に供給する冷却水の水量を増やすことで緻密層13bの層厚みBを0.10mm(比A/Bを0.50、比(A+B)/Cを0.15)としたこと以外は、実施例1と同様に鉛蓄電池を作製した。
(Example 2)
Compared to Example 1, by increasing the amount of cooling water supplied to the inside of the drum 2, the layer thickness B of the dense layer 13 b is 0.10 mm (ratio A / B is 0.50, ratio (A + B) / C is A lead-acid battery was produced in the same manner as in Example 1 except that 0.15).
 (実施例3)
 実施例2に対して、ドラム2の内部に供給する冷却水の水量をさらに増やすことで緻密層13bの層厚みBを0.15mm(比A/Bを0.33、比(A+B)/Cを0.20)としたこと以外は、実施例2と同様に鉛蓄電池を作製した。
(Example 3)
Compared to Example 2, the thickness B of the dense layer 13b is 0.15 mm (ratio A / B is 0.33, ratio (A + B) / C) by further increasing the amount of cooling water supplied into the drum 2. A lead-acid battery was produced in the same manner as in Example 2, except that 0.20).
 (実施例4)
 実施例3に対して、ドラム2の内部に供給する冷却水の水量をさらに増やすことで緻密層13bの層厚みBを0.20mm(比A/Bを0.25、比(A+B)/Cを0.25)としたこと以外は、実施例3と同様に鉛蓄電池を作製した。
Example 4
Compared to Example 3, the thickness B of the dense layer 13b is 0.20 mm (ratio A / B is 0.25, ratio (A + B) / C) by further increasing the amount of cooling water supplied to the inside of the drum 2. Was changed to 0.25), and a lead storage battery was produced in the same manner as in Example 3.
 (実施例5)
 実施例4に対して、ドラム2の内部に供給する冷却水の水量をさらに増やすことで緻密層13bの層厚みBを0.30mm(比A/Bを0.17、比(A+B)/Cを0.35)としたこと以外は、実施例4と同様に鉛蓄電池を作製した。
(Example 5)
Compared to Example 4, the layer thickness B of the dense layer 13b is 0.30 mm (ratio A / B is 0.17, ratio (A + B) / C) by further increasing the amount of cooling water supplied to the inside of the drum 2. A lead-acid battery was produced in the same manner as in Example 4 except that 0.35).
 (実施例6)
 実施例5に対して、ドラム2の内部に供給する冷却水の水量をさらに増やすことで緻密層13bの層厚みBを0.35mm(比A/Bを0.14、比(A+B)/Cを0.40)としたこと以外は、実施例5と同様に鉛蓄電池を作製した。
(Example 6)
Compared to Example 5, the layer thickness B of the dense layer 13b is 0.35 mm (ratio A / B is 0.14, ratio (A + B) / C) by further increasing the amount of cooling water supplied to the inside of the drum 2. A lead-acid battery was produced in the same manner as in Example 5 except that the value was 0.40).
 (実施例7)
 実施例6に対して、ドラム2の内部に供給する冷却水の水量をさらに増やすことで緻密層13bの層厚みBを0.40mm(比A/Bを0.13、比(A+B)/Cを0.45)としたこと以外は、実施例6と同様に鉛蓄電池を作製した。
(Example 7)
Compared to Example 6, the layer thickness B of the dense layer 13b is 0.40 mm (ratio A / B is 0.13, ratio (A + B) / C) by further increasing the amount of cooling water supplied to the inside of the drum 2. Was made into the lead acid battery similarly to Example 6 except having set it as 0.45).
 (実施例8)
 実施例4に対して、溶湯1の組成を、Ca:0.07質量%、Sn:1.5質量%、Sb:0.7質量%としたこと以外は、実施例4と同様に鉛蓄電池を作製した。
(Example 8)
The lead-acid battery is the same as in Example 4 except that the composition of the molten metal 1 is set to Ca: 0.07% by mass, Sn: 1.5% by mass, and Sb: 0.7% by mass with respect to Example 4. Was made.
 (実施例9)
 実施例4に対して、溶湯1の組成を、Ca:0.07質量%、Sn:1.5質量%、Sb:1.2質量%としたこと以外は、実施例4と同様に鉛蓄電池を作製した。
Example 9
The lead acid battery is the same as in Example 4 except that the composition of the molten metal 1 is set to Ca: 0.07 mass%, Sn: 1.5 mass%, and Sb: 1.2 mass% with respect to Example 4. Was made.
 (実施例10)
 実施例4に対して、溶湯1の組成を、Ca:0.07質量%、Sn:1.5質量%、Sb:1.6質量%としたこと以外は、実施例4と同様に鉛蓄電池を作製した。
(Example 10)
The lead-acid battery is the same as in Example 4 except that the composition of the molten metal 1 is set to Ca: 0.07% by mass, Sn: 1.5% by mass, and Sb: 1.6% by mass with respect to Example 4. Was made.
 (実施例11)
 実施例4に対して、溶湯1の組成を、Ca:0.07質量%、Sn:1.5質量%、Sb:2.0質量%としたこと以外は、実施例4と同様に鉛蓄電池を作製した。
(Example 11)
The lead-acid battery is the same as in Example 4 except that the composition of the molten metal 1 is set to Ca: 0.07% by mass, Sn: 1.5% by mass, and Sb: 2.0% by mass with respect to Example 4. Was made.
 (実施例12)
 実施例4に対して、溶湯1の組成を、Ca:0.07質量%、Sn:1.5質量%、Sb:2.5質量%としたこと以外は、実施例4と同様に鉛蓄電池を作製した。
(Example 12)
The lead acid battery is the same as in Example 4 except that the composition of the molten metal 1 is set to Ca: 0.07% by mass, Sn: 1.5% by mass, and Sb: 2.5% by mass with respect to Example 4. Was made.
 (比較例1)
 実施例4に対して、ドラム2の内部に供給する冷却水の水量を減らすことで緻密層13bの層厚みBを0.05mm(比A/Bを1、比(A+B)/Cを0.10)としたこと以外は、実施例1と同様に鉛蓄電池を作製した。
(Comparative Example 1)
Compared to the fourth embodiment, by reducing the amount of cooling water supplied to the inside of the drum 2, the layer thickness B of the dense layer 13b is 0.05 mm (the ratio A / B is 1, the ratio (A + B) / C is 0.00. A lead-acid battery was produced in the same manner as in Example 1 except that 10).
 (比較例2)
 実施例4に対して、帯状のシート6の表裏を反転させずに供給することで緻密層13aの層厚みAを0.20mm、緻密層13bの層厚みBを0.05mm(比A/Bを4)としたこと以外は、実施例4と同様に鉛蓄電池を作製した。
(Comparative Example 2)
In contrast to Example 4, the thickness A of the dense layer 13a is 0.20 mm and the thickness B of the dense layer 13b is 0.05 mm (ratio A / B) by supplying the belt-like sheet 6 without being reversed. A lead storage battery was produced in the same manner as in Example 4 except that 4 was changed to 4).
 上述した各条件に対する、第3の工程におけるストランド9aの切断不良の発生率(第4の工程で作製した正極板16aの総枚数に占める不良極板枚数)を(表1)に記す。 (Table 1) shows the rate of occurrence of defective cutting of the strands 9a in the third step (the number of defective electrode plates in the total number of positive plates 16a produced in the fourth step) for each condition described above.
 また上述した各条件の鉛蓄電池を用いて、JIS規格(D5301)で規定される軽負荷寿命試験を雰囲気温度75℃の気相中で実施した。480サイクル毎の判定放電における5秒目電圧が7.2Vに低下するまでのサイクル数を、寿命に達した鉛蓄電池を分解して内部短絡の有無を確認した結果とともに(表1)に記す。 Moreover, the light load life test prescribed | regulated by JIS specification (D5301) was implemented in the gaseous phase with an atmospheric temperature of 75 degreeC using the lead storage battery of each conditions mentioned above. The number of cycles until the voltage at the 5th second in the judgment discharge every 480 cycles decreases to 7.2 V is described in (Table 1) together with the result of confirming the presence or absence of an internal short circuit by disassembling the lead storage battery that has reached the end of its life.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (表1)で明らかなように、スラブ4の両表面に異なる厚みの緻密層を設けてシート6に反映させ(層厚みが緻密層13a<緻密層13b)、緻密層13a側の表面からダイス刃7を入れるようにした実施例1~12は、緻密層13aと13bの層厚みが同じである比較例1や、層厚みが大きい緻密層13b側の表面からダイス刃7を入れるようにした比較例2に対して、良好なサイクル寿命特性を示した。特にこれら実施例は、突然死となる内部短絡(高温下において正極板16aのエキスパンド格子9が伸びて負極板16bに接することで発生)が見られなかった。 As is clear from (Table 1), dense layers having different thicknesses are provided on both surfaces of the slab 4 and reflected on the sheet 6 (the layer thickness is the dense layer 13a <dense layer 13b). In Examples 1 to 12 in which the blade 7 is inserted, the die blade 7 is inserted from the surface of the comparative example 1 in which the dense layers 13a and 13b have the same layer thickness and the dense layer 13b side where the layer thickness is large. Good cycle life characteristics were exhibited with respect to Comparative Example 2. In particular, in these examples, there was no internal short-circuit (generated when the expanded lattice 9 of the positive electrode plate 16a extends and contacts the negative electrode plate 16b at a high temperature) that suddenly dies.
 中でも緻密層13aの層厚みAと緻密層13bの層厚みBとの比A/Bが0.14以上0.50以下であり、シート6の厚みCと緻密層13aと13bの層厚みの和A+Bとの比(A+B)/Cが0.15以上0.40以下である実施例2~6及び8~12(とりわけ実施例3~5及び8~12)は、緻密層13bが薄くなった場合の課題(第3の工程における破壊を起点とする中央部14の腐食)や厚くなった場合の課題(結晶粒界が多いことによる腐食量の増大)が払拭されることで、特にサイクル寿命特性が良好であった。また、溶湯1にSbを加えた実施例8~12(とりわけ実施例9~12)は特にサイクル寿命特性が良好であったが、Sbの含有量が増えるにつれてエキスパンド工程不良率も大きくなっていった。しかしながら、Sbの含有量が2.0質量%以下であればエキスパンド工程の不良率も実用上問題なかった。 In particular, the ratio A / B between the layer thickness A of the dense layer 13a and the layer thickness B of the dense layer 13b is 0.14 to 0.50, and the sum of the thickness C of the sheet 6 and the layer thicknesses of the dense layers 13a and 13b. In Examples 2 to 6 and 8 to 12 (particularly Examples 3 to 5 and 8 to 12) in which the ratio (A + B) / C with respect to A + B is 0.15 or more and 0.40 or less, the dense layer 13b is thinned. In particular, the cycle life is eliminated by wiping out the problem (corrosion of the central portion 14 starting from the fracture in the third step) and the problem (increased corrosion amount due to a large number of crystal grain boundaries) when the thickness is increased. The characteristics were good. In addition, Examples 8 to 12 (especially Examples 9 to 12) in which Sb was added to the molten metal 1 were particularly good in cycle life characteristics, but as the Sb content increased, the expanding process defect rate increased. It was. However, if the Sb content is 2.0% by mass or less, the defective rate of the expanding process has no practical problem.
 (その他の実施形態)
 上記の実施形態や実施例は本発明の例示であって、本発明はこれらの例に限定されない。鉛蓄電池の構造は、図5に示された以外の構造でもよい。エキスパンド格子の原料は鉛-カルシウム系合金に限定されないし、合金組成も上記の組成に限定されない。
(Other embodiments)
The above embodiments and examples are examples of the present invention, and the present invention is not limited to these examples. The lead storage battery may have a structure other than that shown in FIG. The raw material of the expanded lattice is not limited to the lead-calcium alloy, and the alloy composition is not limited to the above composition.
 本発明によれば、生産性(エキスパンド加工性)が高い極板を用いて、サイクル寿命特性が高く短絡しにくい鉛蓄電池を提供できるようになるので、利用可能性が高いだけでなく、産業上の貢献度は極めて高い。 According to the present invention, it is possible to provide a lead storage battery having a high cycle life characteristic and not easily short-circuited by using an electrode plate having high productivity (expanding processability). The contribution of is extremely high.
  1      溶湯
  2      ドラム
  3      冷媒放出口
  4      スラブ
  5      圧延ローラ
  6      シート
  7      ダイス刃
  8      下刃
  9      エキスパンド格子
  9a     ストランド
  9b     無地部
 10      ペースト吐出口
 11      活物質ペースト
 12      極板
 13      緻密層
 13a、13b 緻密層
 14      中央部
 15      電槽
 15a     隔壁
 15b     外壁
 16      極板群
 16a     正極板
 16b     負極板
 16c     セパレータ
 17      セル室
 18      接続部品
 19      端子
 20      蓋
 20a     液口栓
 22      極板形状のエキスパンド格子
 23      タブ部
 24      ストランド
 25      ストランド上側面
 26      ストランド下側面
DESCRIPTION OF SYMBOLS 1 Molten metal 2 Drum 3 Refrigerant discharge port 4 Slab 5 Rolling roller 6 Sheet 7 Die blade 8 Lower blade 9 Expanded lattice 9a Strand 9b Plain part 10 Paste discharge port 11 Active material paste 12 Electrode 13 Dense layer 13a, 13b Dense layer 14 Center Part 15 Battery case 15a Bulkhead 15b Outer wall 16 Electrode plate group 16a Positive electrode plate 16b Negative electrode plate 16c Separator 17 Cell chamber 18 Connection component 19 Terminal 20 Lid 20a Liquid plug 22 Electrode plate-shaped expanded lattice 23 Tab part 24 Strand 25 Strand upper side surface 26 Lower side of the strand

Claims (9)

  1.  鉛あるいは鉛合金からなるエキスパンド格子と、
     前記エキスパンド格子に充填されている活物質と
     を備えた鉛蓄電池用極板であって、
      前記エキスパンド格子は、四辺形であって、一辺から突き出したタブ部を有しており、
      前記タブ部を有した辺を上辺として前記エキスパンド格子を鉛直に立てたときに、格子のストランドにおいて上を向いた面および下を向いた面は、ストランドの中心部分よりも結晶粒径が小さい緻密層を表面に有しており、
      前記ストランドの上を向いた面の方が下を向いた面よりも前記緻密層が薄い、鉛蓄電池用極板。
    An expanded grid of lead or lead alloys;
    An electrode plate for a lead-acid battery comprising an active material filled in the expanded lattice,
    The expanded lattice is a quadrilateral and has a tab portion protruding from one side;
    When the expanded lattice is erected vertically with the side having the tab portion as the upper side, the surface facing upward and the surface facing downward in the strand of the lattice is a dense crystal grain having a smaller crystal grain size than the central portion of the strand Has a layer on the surface,
    The electrode plate for a lead storage battery, wherein the dense layer is thinner on the surface facing upward of the strand than on the surface facing downward.
  2.  前記ストランドの上を向いた面の前記緻密層の厚みAと、下を向いた面の前記緻密層の厚みBとは、A/Bが0.14以上0.50以下である関係を有している、請求項1に記載されている鉛蓄電池用極板。 The thickness A of the dense layer on the surface facing upward of the strand and the thickness B of the dense layer on the surface facing downward have a relationship that A / B is 0.14 or more and 0.50 or less. The electrode plate for a lead storage battery according to claim 1.
  3.  前記ストランドの上を向いた面の前記緻密層の厚みAと、下を向いた面の前記緻密層の厚みBと、前記ストランドの上を向いた面と下を向いた面との間の厚みCとは、(A+B)/Cが0.15以上0.40以下である関係を有している、請求項1または2に記載されている鉛蓄電池用極板。 Thickness between the dense layer thickness A of the surface facing the strand, the thickness B of the dense layer of the surface facing downward, and the thickness between the surface facing upward and the surface facing downward of the strand The electrode plate for a lead storage battery according to claim 1 or 2, wherein C has a relationship in which (A + B) / C is 0.15 or more and 0.40 or less.
  4.  前記鉛合金は、アンチモンを含んでいる、請求項1から3のいずれか一つに記載されている鉛蓄電池用極板。 The lead-acid battery electrode plate according to any one of claims 1 to 3, wherein the lead alloy contains antimony.
  5.  アンチモンは前記鉛合金中に2質量%以下含まれている、請求項4に記載されている鉛蓄電池用極板。 The electrode plate for a lead storage battery according to claim 4, wherein antimony is contained in the lead alloy in an amount of 2% by mass or less.
  6.  請求項1から5のいずれか一つに記載の鉛蓄電池用極板を少なくとも正極板および負極板の少なくとも一方に用い、セパレータを介して対極板と対峙させたことを特徴とする鉛蓄電池。 A lead-acid battery using the electrode plate for a lead-acid battery according to any one of claims 1 to 5 as at least one of a positive electrode plate and a negative electrode plate and facing the counter electrode plate via a separator.
  7.  鉛あるいは鉛合金からなる溶湯を連続的に冷却して帯状のスラブを鋳造する第1の工程と、
     前記スラブを圧延して帯状のシートを作製する第2の工程と、
     前記シートの長尺方向と平行に千鳥状の複数の切れ目を形成しつつ前記シートの長尺方向と垂直な方向に展開するレシプロ方式によって、帯状のエキスパンド格子を作製する第3の工程と、
     鉛および鉛化合物を含む活物質ペーストを前記エキスパンド格子に充填し乾燥した後、所定の寸法に切断して極板を作製する第4の工程と
     を含んだ鉛蓄電池用極板の製造方法であって、
     前記第1の工程では、前記スラブの両表面に中央部よりも結晶粒径が小さい緻密層が両表面において異なる厚みで設けられており、
     前記第3の工程では、前記緻密層が薄い方の表面からダイス刃を入れて前記切れ目を形成している、鉛蓄電池用極板の製造方法。
    A first step of continuously cooling a molten metal made of lead or a lead alloy to cast a strip-shaped slab;
    A second step of rolling the slab to produce a strip-shaped sheet;
    A third step of producing a strip-shaped expanded lattice by a reciprocal system that develops in a direction perpendicular to the longitudinal direction of the sheet while forming a plurality of staggered cuts parallel to the longitudinal direction of the sheet;
    And a fourth step of producing an electrode plate by filling an active material paste containing lead and a lead compound into the expanded lattice and drying, and then cutting the electrode plate to a predetermined size. And
    In the first step, dense layers having a crystal grain size smaller than the central portion are provided on both surfaces of the slab with different thicknesses on both surfaces,
    In the third step, the lead plate for a lead-acid battery, wherein the cut is formed by inserting a die blade from the surface where the dense layer is thin.
  8.  前記第3の工程における前記緻密層が薄い方の層厚みAと他方の層厚みBとの比A/Bが0.14以上0.50以下であることを特徴とする、請求項7に記載されている鉛蓄電池用極板の製造方法。 The ratio A / B between the layer thickness A of the thinner dense layer and the other layer thickness B in the third step is 0.14 or more and 0.50 or less. The manufacturing method of the electrode plate for lead acid batteries currently used.
  9.  前記第3の工程における前記シートの厚みCと、前記緻密層が薄い方の層厚みAおよび他方の層厚みBの和A+Bとの比(A+B)/Cが0.15以上0.40以下であることを特徴とする、請求項7または8に記載されている鉛蓄電池用極板の製造方法。 The ratio (A + B) / C between the thickness C of the sheet in the third step and the sum A + B of the thickness A of the thinner dense layer and the thickness B of the other layer is 0.15 or more and 0.40 or less. 9. The method for producing a lead-acid battery electrode plate according to claim 7 or 8, wherein the method is provided.
PCT/JP2012/003709 2011-06-17 2012-06-06 Pole plate for lead storage battery, lead storage battery, and method for producing pole plate for lead storage battery WO2012172754A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280007389.1A CN103348512B (en) 2011-06-17 2012-06-06 The manufacture method of lead battery pole plate, lead battery and lead battery pole plate
JP2013520420A JP5903606B2 (en) 2011-06-17 2012-06-06 Lead plate for lead storage battery, lead storage battery, and method for manufacturing lead plate for lead storage battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-134889 2011-06-17
JP2011134889 2011-06-17

Publications (1)

Publication Number Publication Date
WO2012172754A1 true WO2012172754A1 (en) 2012-12-20

Family

ID=47356764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003709 WO2012172754A1 (en) 2011-06-17 2012-06-06 Pole plate for lead storage battery, lead storage battery, and method for producing pole plate for lead storage battery

Country Status (3)

Country Link
JP (1) JP5903606B2 (en)
CN (1) CN103348512B (en)
WO (1) WO2012172754A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345659A (en) * 2015-07-17 2017-01-25 株式会社捷太格特 Web coating apparatus and web coating method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845898A (en) * 2016-04-01 2016-08-10 中国电力科学研究院 Lead-carbon battery negative plate and preparation method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031041A (en) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd Grid for lead-acid battery
JP2005056622A (en) * 2003-08-08 2005-03-03 Japan Storage Battery Co Ltd Manufacturing method of lattice for lead acid storage battery, and lead acid storage battery
JP2007066786A (en) * 2005-09-01 2007-03-15 Matsushita Electric Ind Co Ltd Expanded lattice body for lead-acid battery, lead-acid battery, and manufacturing method of expanded lattice body for lead-acid battery
JP2008177009A (en) * 2007-01-18 2008-07-31 Matsushita Electric Ind Co Ltd Rolled sheet for lead acid storage battery grid, lead acid storage battery grid, and lead acid storage battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211567A (en) * 1987-02-25 1988-09-02 Matsushita Electric Ind Co Ltd Plate for lead-acid battery
CN1048435C (en) * 1993-12-29 2000-01-19 科明哥公司 Method and apparatus for producing metal strip
JP3358508B2 (en) * 1997-09-09 2002-12-24 松下電器産業株式会社 Expanded grid for lead-acid battery
JP2008159510A (en) * 2006-12-26 2008-07-10 Gs Yuasa Corporation:Kk Lead alloy grid and lead storage battery using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031041A (en) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd Grid for lead-acid battery
JP2005056622A (en) * 2003-08-08 2005-03-03 Japan Storage Battery Co Ltd Manufacturing method of lattice for lead acid storage battery, and lead acid storage battery
JP2007066786A (en) * 2005-09-01 2007-03-15 Matsushita Electric Ind Co Ltd Expanded lattice body for lead-acid battery, lead-acid battery, and manufacturing method of expanded lattice body for lead-acid battery
JP2008177009A (en) * 2007-01-18 2008-07-31 Matsushita Electric Ind Co Ltd Rolled sheet for lead acid storage battery grid, lead acid storage battery grid, and lead acid storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345659A (en) * 2015-07-17 2017-01-25 株式会社捷太格特 Web coating apparatus and web coating method
JP2017023906A (en) * 2015-07-17 2017-02-02 株式会社ジェイテクト Web coating device and web coating method
CN106345659B (en) * 2015-07-17 2020-08-14 株式会社捷太格特 Sheet coating device and sheet coating method

Also Published As

Publication number Publication date
CN103348512A (en) 2013-10-09
JP5903606B2 (en) 2016-04-13
CN103348512B (en) 2016-06-15
JPWO2012172754A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
EP3059791B1 (en) Valve-regulated lead-acid battery
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
JP4929558B2 (en) Method for manufacturing lead-acid battery grid
JP5903606B2 (en) Lead plate for lead storage battery, lead storage battery, and method for manufacturing lead plate for lead storage battery
WO2013122132A1 (en) Positive electrode plate for lead acid battery, method for producing said electrode plate, and lead acid battery using said positive electrode plate
JP5137371B2 (en) Rolled lead alloy sheet for expanded positive grid and lead-acid battery
JP2003306733A (en) Lead based alloy for lead storage battery, and lead storage battery using the same
JP5521503B2 (en) Lead acid battery
JP5145644B2 (en) Lead acid battery
JP4774297B2 (en) Method for manufacturing grid for lead-acid battery and lead-acid battery
JPH10321236A (en) Lead-acid battery
JP2005044760A (en) Manufacturing method of lead-acid storage battery positive electrode plate lattice
JP2006114416A (en) Lead-acid battery
JP4678117B2 (en) Lead acid battery
JP2006196283A (en) Lead-acid battery
JP2016085859A (en) Lead acid storage battery
JP2000195524A (en) Sealed lead-acid battery
JP2001250562A (en) Lead battery
JPH1154129A (en) Lead-acid battery
JP2023108240A (en) lead acid battery
JP2003132897A (en) Method for manufacturing expand type electrode plate for positive electrode
JP5594039B2 (en) Lead plate for lead-acid battery and lead-acid battery using the same
JPH10208750A (en) Lead-acid battery
JP2010108680A (en) Methods of manufacturing rolled lead alloy sheet for lead storage battery, positive electrode plate for lead storage battery and lead storage battery
JP2004273400A (en) Grid body for storage battery and lead storage battery using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520420

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12801196

Country of ref document: EP

Kind code of ref document: A1