JP6351050B1 - Perforated metal foil for power storage device current collector, manufacturing method thereof, electrode, and battery including the electrode - Google Patents

Perforated metal foil for power storage device current collector, manufacturing method thereof, electrode, and battery including the electrode Download PDF

Info

Publication number
JP6351050B1
JP6351050B1 JP2017065045A JP2017065045A JP6351050B1 JP 6351050 B1 JP6351050 B1 JP 6351050B1 JP 2017065045 A JP2017065045 A JP 2017065045A JP 2017065045 A JP2017065045 A JP 2017065045A JP 6351050 B1 JP6351050 B1 JP 6351050B1
Authority
JP
Japan
Prior art keywords
foil
hole
metal foil
current collector
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017065045A
Other languages
Japanese (ja)
Other versions
JP2018170106A (en
Inventor
貴史 鈴木
貴史 鈴木
遠藤 昌也
昌也 遠藤
秋草 順
順 秋草
直樹 力田
直樹 力田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Mitsubishi Materials Corp filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2017065045A priority Critical patent/JP6351050B1/en
Priority to PCT/JP2018/012362 priority patent/WO2018181278A1/en
Application granted granted Critical
Publication of JP6351050B1 publication Critical patent/JP6351050B1/en
Publication of JP2018170106A publication Critical patent/JP2018170106A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】本発明は、物理的な加工法でありながら、加工時の金属片発生を抑制することができる蓄電デバイス集電体用の孔開き金属箔及びその製造方法の提案を目的とする。【解決手段】本発明の蓄電デバイス集電体用孔開き金属箔は、長辺/短辺で規定されるアスペクト比10以上のスリット状の貫通孔が複数各々の長さ方向を揃えて箔本体に形成されたことを特徴とする。前記箔本体が帯状であり、その長さ方向に前記複数の貫通孔の長さ方向が揃えられ、前記貫通孔の開口部周縁にバリが形成されたことが好ましい。前記貫通孔の長辺側の開口部周縁に前記貫通孔のスリット幅の1/2より長いバリが形成されたことが好ましい。【選択図】図1An object of the present invention is to propose a perforated metal foil for an electricity storage device current collector and a method of manufacturing the same, which can suppress the generation of metal pieces during processing, although it is a physical processing method. A perforated metal foil for an electricity storage device current collector according to the present invention includes a plurality of slit-like through-holes having an aspect ratio of 10 or more defined by long sides / short sides aligned in the length direction of the foil body. It is characterized by being formed. It is preferable that the foil main body has a strip shape, the length direction of the plurality of through holes is aligned in the length direction, and burrs are formed on the periphery of the opening of the through hole. It is preferable that a burr longer than 1/2 of the slit width of the through hole is formed at the periphery of the opening on the long side of the through hole. [Selection] Figure 1

Description

本発明は、二次電池などの蓄電デバイス集電体用として好適な集電体用孔開き金属箔および及びその製造方法と電極及び該電極を備えた電池に関する。 The present invention relates to a perforated metal foil for a current collector that is suitable for a power storage device current collector such as a secondary battery, a manufacturing method thereof, an electrode, and a battery including the electrode .

リチウムイオン電池、リチウムイオンキャパシタ、電気二重層キャパシタ、そして全固体電池などの蓄電デバイスには集電体に金属箔が用いられており、例えばリチウムイオン電池では正極集電体としてアルミニウム箔、負極集電体として銅箔が主に用いられている。
これら蓄電デバイスにおいて、リチウムイオンのプレドープ効率の向上、活物質層の脱落防止等を目的に貫通孔を設けた孔開き金属箔が集電体として用いられる場合がある。
A metal foil is used as a current collector in power storage devices such as a lithium ion battery, a lithium ion capacitor, an electric double layer capacitor, and an all solid state battery. For example, in a lithium ion battery, an aluminum foil or a negative electrode current collector is used as a positive electrode current collector. Copper foil is mainly used as the electric body.
In these power storage devices, a perforated metal foil provided with through holes may be used as a current collector for the purpose of improving the pre-doping efficiency of lithium ions and preventing the active material layer from falling off.

例えば以下の特許文献1や特許文献2に記載のように、表面に凹凸を有するロールと平滑ロールとの間に金属箔を通すことで金属箔に貫通孔を複数形成し、金属箔と活物質の密着性を改善することが提案されている。   For example, as described in Patent Document 1 and Patent Document 2 below, a plurality of through holes are formed in the metal foil by passing the metal foil between a roll having irregularities on the surface and a smooth roll, and the metal foil and the active material It has been proposed to improve the adhesion of the.

その他、特許文献3に記載のようにエッチング処理により金属箔に多数の貫通孔を形成する手法も知られている。   In addition, a method of forming a large number of through holes in a metal foil by etching as described in Patent Document 3 is also known.

特許第4074689号公報Japanese Patent No. 4074689 特許第5830080号公報Japanese Patent No. 583080 特開2011−216364号公報JP 2011-216364 A

しかし、特許文献2には、表面に凹凸を有するロールと平滑ロールとの間に金属箔を通すという物理的な手法で孔開け加工を行った場合、孔開け加工時に微細金属片が発生する事が明記されている。ある程度の大きさの金属片が電池に混入した場合、内部で短絡を生じるおそれがあり、場合によっては異常発熱する危険性がある。一部の文献では発生した金属片を後で除去する手法も報告されているものの、内部短絡は電池の安全面において致命的な現象であり、発生そのものを抑制する事が望ましい。
また、特許文献3に記載されているエッチングを用いた手法では、前述の金属片発生のリスクは少ないが、レジスト膜の形成、エッチング、レジスト膜の除去といった製法である為、物理的な孔開け加工方法に比べ生産性が著しく低く、集電体としての製造コストが極めて大きくなるという懸念がある。
However, Patent Document 2 discloses that when a punching process is performed by a physical method in which a metal foil is passed between a roll having an uneven surface and a smooth roll, fine metal pieces are generated during the punching process. Is clearly stated. When metal pieces of a certain size are mixed in the battery, there is a risk of short circuit inside, and there is a risk of abnormal heat generation in some cases. Although some documents report a method of removing the generated metal piece later, the internal short circuit is a fatal phenomenon in terms of battery safety, and it is desirable to suppress the occurrence itself.
In addition, in the technique using etching described in Patent Document 3, the risk of the above-mentioned metal piece generation is small, but since the manufacturing method is resist film formation, etching, and resist film removal, physical drilling is performed. There is a concern that the productivity is remarkably low as compared with the processing method, and the manufacturing cost as a current collector becomes extremely high.

本発明では金属箔に形成する貫通孔の形状を工夫する事で、物理的な加工法でありながら、加工時の金属片発生を抑制することができる蓄電デバイス集電体用の孔開き金属箔及びその製造方法の提案を目的とする。また、本発明では前記金属箔に活物質層を設けた電極及び該電極を備えた電池の提供を目的とする。 In the present invention, the shape of the through-hole formed in the metal foil is devised, so that it is a physical processing method, but the perforated metal foil for the electricity storage device current collector that can suppress the generation of metal pieces during processing And a method of manufacturing the same. Another object of the present invention is to provide an electrode provided with an active material layer on the metal foil, and a battery including the electrode.

本発明は、かかる知見に基づきなされたものであって、以下の構成を有する。
本発明の蓄電デバイス集電体用孔開き金属箔は、長辺/短辺で規定されるアスペクト比10以上のスリット状の貫通孔が複数各々の長さ方向を揃えて箔本体に形成され、前記各貫通孔の開口部周縁全周に前記貫通孔のスリット幅の1/2より長いバリが形成されたことを特徴とする。
本発明において、前記箔本体が帯状であり、その長さ方向に前記複数の貫通孔の長さ方向が揃えられた構成を採用できる。
本発明において、前記箔本体の前記開口部周縁全周を囲んで前記バリが形成され、前記貫通孔の長さ方向端部側のバリ高さが、前記貫通孔の長さ方向中央部のバリ高さより高くされた構成を採用できる。
This invention is made | formed based on this knowledge, Comprising: It has the following structures.
The perforated metal foil for the electricity storage device current collector of the present invention is formed in the foil body with a plurality of slit-shaped through-holes having an aspect ratio of 10 or more defined by the long side / short side aligned in the length direction, A burr longer than ½ of the slit width of the through hole is formed on the entire periphery of the opening of each through hole .
In this invention, the said foil main body is strip | belt shape, and the structure by which the length direction of these through-holes was arrange | equalized in the length direction is employable.
In the present invention, the burr is formed so as to surround the entire periphery of the opening of the foil body, and the burr height on the end in the length direction of the through hole is the burr at the center in the length direction of the through hole. A configuration higher than the height can be adopted.

本発明において、前記バリに塑性変形部分を有する構成を採用できる。
本発明において、前記複数の貫通孔が前記箔本体に0.5mm以上のピッチで間欠形成された構成を採用できる。
本発明において、前記貫通孔の短辺が1〜500μm、長辺が10〜5000μmである構成を採用できる。
本発明において、前記貫通孔がその長さ方向に延在する平行な一対の長辺部と該一対の長辺部の長さ方向両端側に形成されて先窄まり状に形成された端縁部からなる構成を採用できる。
In the present invention, it can adopt a configuration having a plastic deformation portion to the burr.
In the present invention, a configuration in which the plurality of through holes are intermittently formed in the foil body at a pitch of 0.5 mm or more can be employed.
In the present invention, a configuration in which the short side of the through hole is 1 to 500 μm and the long side is 10 to 5000 μm can be adopted.
In the present invention, the through-holes are formed in a pair of parallel long side portions extending in the length direction thereof and end edges formed in a tapered shape on both ends in the length direction of the pair of long side portions. The structure which consists of parts can be adopted.

本発明に係る蓄電デバイス用孔開き金属箔の製造方法は、円板型の本体部の外周縁に沿って凹部を介し間欠的に複数の刃先部を備えた回転刃を用い、該回転刃を金属箔に押し付けつつ回転させて前記個々の刃先部で前記金属箔に回転方向に並行で間欠的に、長辺/短辺で規定されるアスペクト比10以上のスリット状の貫通孔であって、その長辺側の開口部周縁にスリット幅の1/2より長いバリを有する貫通孔を形成することを特徴とする。
本発明において、前記刃先部を前記箔本体の厚さ方向に押し付けて前記刃先部で前記箔本体に塑性変形を加えつつ前記箔本体に前記刃先部を突き通すことにより、前記突き通し側に前記箔本体の一部を塑性変形させた塑性変形部分を有するバリを形成しながら前記貫通孔を形成することができる。
A method for manufacturing a perforated metal foil for an electricity storage device according to the present invention uses a rotary blade provided with a plurality of cutting edge portions intermittently through a recess along the outer peripheral edge of a disk-shaped main body portion. It is a slit-shaped through-hole having an aspect ratio of 10 or more defined by long sides / short sides intermittently in parallel with the metal foil in the direction of rotation at the individual blade edge portions while being pressed against the metal foil , A through hole having a burr longer than ½ of the slit width is formed at the periphery of the opening on the long side .
In the present invention, the blade edge portion is pressed in the thickness direction of the foil body, and the blade edge portion is pierced through the foil body while plastic deformation is applied to the foil body at the blade edge portion. The through hole can be formed while forming a burr having a plastically deformed portion obtained by plastically deforming a part of the main body.

本発明において、前記複数の貫通孔を前記箔本体に0.5mm以上のピッチで間欠形成することができる。
本発明において、前記貫通孔の短辺を1〜500μm、長辺を10〜5000μmとすることができる。
本発明の電極は、長辺/短辺で規定されるアスペクト比10以上のスリット状の貫通孔が複数各々の長さ方向を揃えて箔本体に形成され、前記各貫通孔の開口部周縁全周に前記貫通孔のスリット幅の1/2より長いバリが形成され、前記バリが押し潰され、平滑化された金属箔と、該金属箔の表裏両面に塗布された活物質層とを備えたことを特徴とする。
本発明において、前記箔本体の表裏両面に形成された前記活物質層が前記貫通孔を介し密着された構成を採用できる。
本発明において、前記複数の貫通孔が前記箔本体に0.5mm以上のピッチで間欠形成された構成を採用できる。
本発明において、前記貫通孔の短辺が1〜500μm、長辺が10〜5000μmである構成を採用できる。
本発明の電池は、先の何れか一項に記載の電極を備えた構成を採用できる。

In the present invention, the plurality of through holes can be intermittently formed in the foil body at a pitch of 0.5 mm or more.
In this invention, the short side of the said through-hole can be 1-500 micrometers, and a long side can be 10-5000 micrometers.
In the electrode of the present invention, a plurality of slit-shaped through-holes having an aspect ratio of 10 or more defined by the long side / short side are formed in the foil body with the length direction of each being aligned, and the entire periphery of the opening of each through-hole is formed. A burr longer than ½ of the slit width of the through hole is formed in the periphery, and the burr is crushed and smoothed, and an active material layer applied to both front and back surfaces of the metal foil is provided. It is characterized by that.
In the present invention, it is possible to adopt a configuration in which the active material layers formed on both the front and back surfaces of the foil main body are in close contact with each other through the through hole.
In the present invention, a configuration in which the plurality of through holes are intermittently formed in the foil body at a pitch of 0.5 mm or more can be employed.
In the present invention, a configuration in which the short side of the through hole is 1 to 500 μm and the long side is 10 to 5000 μm can be adopted.
The battery of the present invention can employ a configuration including the electrode according to any one of the preceding items.

本発明の蓄電デバイス集電体用孔開き金属箔によれば、アスペクト比10以上のスリット状の貫通孔を複数形成し、各貫通孔の開口部周縁全周にスリット幅の1/2より長いバリを設けているので、孔開き加工時の金属片発生を抑制できる。また、金属箔の表面と裏面の両面に活物質を塗布した場合、貫通孔の存在により表面と裏面の活物質同士が密着し、活物質の金属箔に対する密着性を向上できる。
帯状の金属箔である場合、その長さ方向に巻き取り時あるいは巻き出し時の張力が印加されるが、金属箔の長さ方向に沿うように貫通孔の長辺を揃えた構成とすることで巻き取り時あるいは巻き出し時の張力に耐える構成の金属箔を提供できる。
また、蓄電デバイスの電極として、積層、捲回した場合であって集電箔に孔が無い場合、電極間の電解液がドライアップすると、その部分の抵抗が著しく増加する傾向になるが、集電箔に貫通孔がある場合には、隣の層から貫通孔を介して電解液が毛細管現象により、ドライアップした部分に浸透することができ、電極抵抗の増加を抑制することが可能になる。従って、電解液の部分的なドライアップが起こりにくくなり、長期間使用した際のサイクル特性の向上に繋がる。
特に、捲回式の電極の場合、構造上、蓄電デバイスの中心部からの放熱が出来ず、発熱が多くなり、この部分の電解液のドライアップに伴う抵抗増加が起こりやすいが、電極の集電体に貫通孔が開いていると、外周部から電解液が浸透しやすく、中心部分の電極の抵抗増加に繋がりにくく、全体の蓄電デバイスとしても抵抗が増加しにくくなる。
本発明の金属箔では貫通孔形成時に金属片の発生を抑制できるので、金属箔の両面に活物質層を形成して電極を構成し、この電極を備えた電池を構成した場合、金属片の存在に起因する内部短絡のおそれのない電池を提供できる。
According to the perforated metal foil for the electricity storage device current collector of the present invention, a plurality of slit-like through holes having an aspect ratio of 10 or more are formed, and the entire circumference of the opening periphery of each through hole is longer than ½ of the slit width. Since the burr is provided, it is possible to suppress the generation of metal pieces during drilling. Moreover, when an active material is applied to both the front and back surfaces of the metal foil, the active materials on the front and back surfaces are in close contact with each other due to the presence of the through-holes, and the adhesion of the active material to the metal foil can be improved.
In the case of a strip-shaped metal foil, the tension at the time of winding or unwinding is applied in the length direction, but the long side of the through hole is aligned along the length direction of the metal foil. Thus, it is possible to provide a metal foil configured to withstand the tension during winding or unwinding.
Also, as the electrode of the electricity storage device, when laminated and wound and there is no hole in the current collector foil, when the electrolyte between the electrodes is dried up, the resistance of that part tends to increase significantly, If there is a through hole in the collector foil, the electrolytic solution capillarity through the through-hole from the adjacent layers, it is possible to penetrate the moiety de Lai up, it is possible to suppress an increase in the electrode resistance become. Therefore, partial dry-up of the electrolytic solution is unlikely to occur, which leads to improvement in cycle characteristics when used for a long period of time.
In particular, in the case of a wound electrode, the heat cannot be radiated from the central portion of the electricity storage device due to the structure, and the heat generation increases, and the resistance increases easily due to the electrolyte dry-up in this portion. When the through-hole is opened in the electric body, the electrolytic solution easily permeates from the outer peripheral portion, and it is difficult to increase the resistance of the electrode in the central portion, and the resistance as the entire power storage device is difficult to increase.
In the metal foil of the present invention, the generation of metal pieces can be suppressed at the time of forming the through-hole. Therefore, when an active material layer is formed on both surfaces of the metal foil to form an electrode and a battery equipped with this electrode is formed, It is possible to provide a battery that is free from the risk of an internal short circuit due to the presence.

本発明の第1実施形態の蓄電デバイス集電体用孔開き金属箔の平面図。The top view of the perforated metal foil for electrical storage device electrical power collectors of 1st Embodiment of this invention. 同金属箔に形成されている貫通孔の配列状態の一例を示す部分拡大平面図。The partial enlarged plan view which shows an example of the arrangement | sequence state of the through-hole currently formed in the metal foil. 同金属箔に形成されている貫通孔の形状を説明するための部分拡大平面図。The partial enlarged plan view for demonstrating the shape of the through-hole currently formed in the metal foil. 同金属箔に形成されている貫通孔の実例を示す拡大模式図。The enlarged schematic diagram which shows the example of the through-hole currently formed in the metal foil. 同金属箔に形成されている貫通孔の実例を箔の表面側から見た拡大斜視図。The expanded perspective view which looked at the example of the through-hole currently formed in the metal foil from the surface side of foil. 同金属箔に形成されている貫通孔の実例を箔の裏面側から見た拡大斜視図。The expanded perspective view which looked at the example of the through-hole currently formed in the metal foil from the back surface side of foil. 同金属箔に工具の刃先部によって貫通孔を形成する状態を説明するための側面図。The side view for demonstrating the state which forms a through-hole by the blade edge part of a tool in the metal foil. 同金属箔に貫通孔を形成する場合に用いる工具による貫通孔形成状態の一例を示す斜視図。The perspective view which shows an example of the through-hole formation state by the tool used when forming a through-hole in the metal foil. 同金属箔に貫通孔を形成する場合に用いる工具の一例を示す平面図。The top view which shows an example of the tool used when forming a through-hole in the metal foil. 帯状の金属箔に連続的に貫通孔を形成するために用いる製造装置の一例を示す側面略図。The side schematic diagram which shows an example of the manufacturing apparatus used in order to form a through-hole continuously in a strip | belt-shaped metal foil. 帯状の金属箔に連続的に貫通孔を形成し、更にバリを潰す機能を付加した製造装置の一例を示す側面図。The side view which shows an example of the manufacturing apparatus which added the function which forms a through-hole continuously in a strip | belt-shaped metal foil, and also crushes a burr | flash. 本発明の第2実施形態の蓄電デバイス集電体用孔開き金属箔の平面図。The top view of the perforated metal foil for electrical storage device electrical power collectors of 2nd Embodiment of this invention. 本発明に係る金属箔を正極集電体として用いたラミネートタイプの二次電池の一例を示すもので、(A)は二次電池の一部を分解し全体の構成を示すための斜視図、(B)は正極集電体と負極集電体とそれらに塗布された活物質を示す拡大斜視図。1 shows an example of a laminate type secondary battery using a metal foil according to the present invention as a positive electrode current collector, (A) is a perspective view for disassembling a part of the secondary battery and showing the entire configuration; (B) is an enlarged perspective view showing a positive electrode current collector, a negative electrode current collector, and an active material applied thereto. 従来の孔開き金属箔を製造する場合に用いる工具の一例を示す側面図。The side view which shows an example of the tool used when manufacturing the conventional perforated metal foil. 実施例において製造した金属箔に形成されている貫通孔表面部分の3D画像検査結果を示す図。The figure which shows the 3D image test result of the through-hole surface part currently formed in the metal foil manufactured in the Example. 実施例において製造した金属箔に形成されている貫通孔裏面部分の3D画像検査結果を示す図。The figure which shows the 3D image test result of the through-hole back surface part currently formed in the metal foil manufactured in the Example. 実施例において製造した金属箔に形成されている貫通孔を平面視した顕微鏡写真。The microscope picture which planarly viewed the through-hole currently formed in the metal foil manufactured in the Example. 実施例において製造した金属箔に形成した貫通孔の実例と比較例の貫通孔の具体例を示す写真。The photograph which shows the specific example of the through-hole of the actual example of the through-hole formed in the metal foil manufactured in the Example, and a comparative example. 同金属箔を製造した場合に同金属箔の下に敷いたゴムマット上に付着した金属片の発生状態を示すもので、(A)は比較例の金属箔を形成した領域(写真左側)と実施例の金属箔を形成した領域(写真右側)を対比して示す写真、(B)は(A)に示す領域を部分拡大して示す写真である。This figure shows the state of occurrence of metal pieces adhering to a rubber mat laid under the metal foil when the metal foil is manufactured. (A) shows the region (left side of the photograph) formed with the metal foil of the comparative example. The photograph which compares and shows the area | region (photograph right side) which formed the metal foil of an example, (B) is a photograph which expands and shows the area | region shown to (A) partially. 同金属箔に貫通孔を形成する場合に用いる工具の刃先部の他の形態を示すもので、(A)は第2の形態を示す側面図、(B)は第3の形態を示す側面図。The other form of the blade edge | tip part of the tool used when forming a through-hole in the metal foil is shown, (A) is a side view which shows a 2nd form, (B) is a side view which shows a 3rd form. . 同金属箔に貫通孔を形成する場合に用いる工具の刃先部の更に他の形態を示すもので、(A)は第4の形態を示す正面図、(B)は第5の形態を示す正面図、(C)は第6の形態を示す正面図、(D)は第7の形態を示す正面図。FIG. 6 shows still another form of the cutting edge portion of the tool used when forming a through hole in the metal foil, (A) is a front view showing a fourth form, and (B) is a front view showing a fifth form. (C) is a front view showing a sixth embodiment, (D) is a front view showing a seventh embodiment. 同金属箔に貫通孔を形成する場合に用いるロータリー刃と刃先部を示すもので、(A)はロータリー刃の他の形態を示す図、(B)は刃先部の第8の形態を示す側面図、(C)は刃先部の第9の形態を示す側面図、(D)は刃先部の第8の形態を示す側面図である。The rotary blade and blade edge | tip part used when forming a through-hole in the metal foil are shown, (A) is a figure which shows the other form of a rotary blade, (B) is the side surface which shows the 8th form of a blade edge | tip part. (C) is a side view showing a ninth form of the blade edge part, (D) is a side view showing an eighth form of the blade edge part.

本発明に係る蓄電デバイス用孔開き金属箔の具体的な実施形態について図面を参照しながら説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
図1は本実施形態の蓄電デバイス集電体用孔開き金属箔1を示すもので、帯状の箔本体1Aにその長さ方向に沿ってスリット状(平面視略長方形状)の貫通孔2が複数、所定の間隔で間欠的にかつ複数列形成されてなる。
なお、図1は全体構成を示す略図であり、貫通孔2の形成位置を強調するため貫通孔2を黒塗りの長方形状に表示しているが、貫通孔2は図2、図3に示すようにスリット状の孔として箔本体1に形成されている。また、箔本体1Aに形成する具体的な貫通孔2の詳細形状については図4〜図6を基に後に詳述する。
A specific embodiment of a perforated metal foil for an electricity storage device according to the present invention will be described with reference to the drawings. In addition, in the drawings used in the following description, in order to make the features easy to understand, there are cases where the portions that become the features are enlarged for the sake of convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. Absent.
FIG. 1 shows a perforated metal foil 1 for an electricity storage device current collector according to this embodiment. A slit-shaped (substantially rectangular in plan view) through-hole 2 is formed in a strip-shaped foil main body 1A along its length direction. A plurality of rows are formed intermittently and at a predetermined interval.
FIG. 1 is a schematic diagram showing the overall configuration. In order to emphasize the formation position of the through hole 2, the through hole 2 is displayed in a black rectangle, but the through hole 2 is shown in FIGS. 2 and 3. In this way, the foil body 1 is formed as a slit-like hole. The detailed shape of the specific through-hole 2 formed in the foil body 1A will be described later in detail with reference to FIGS.

箔本体1は、一例としてアルミニウムまたはアルミニウム合金の箔、銅または銅合金の箔、ニッケルまたはニッケル合金の箔、銀または銀合金の箔など、いずれの金属の箔から構成されていても良い。
本実施形態の金属箔1をリチウムイオン二次電池などの蓄電デバイスの集電体として適用する場合、正極集電体として利用するならば、アルミニウムまたはアルミニウム合金の箔を用いることができ、負極集電体として利用するならば、銅または銅合金の箔を用いることができる。
金属箔1はリチウムイオン二次電池の集電体に限らず、リチウムイオンキャパシタ、電気二重層キャパシタあるいは全固体電池など、各種蓄電デバイスの集電体として広く適用することができる。
The foil body 1 may be made of any metal foil such as aluminum or aluminum alloy foil, copper or copper alloy foil, nickel or nickel alloy foil, silver or silver alloy foil, for example.
When the metal foil 1 of the present embodiment is applied as a current collector of an electricity storage device such as a lithium ion secondary battery, if it is used as a positive electrode current collector, an aluminum or aluminum alloy foil can be used. If used as an electric body, a copper or copper alloy foil can be used.
The metal foil 1 is not limited to a current collector of a lithium ion secondary battery, but can be widely applied as a current collector of various power storage devices such as a lithium ion capacitor, an electric double layer capacitor, or an all solid state battery.

金属箔1に形成されている貫通孔2は図2または図3に拡大して示すように長辺2aと短辺2bを有し、全てほぼ同等形状、かつ、全てほぼ同等長径、全てほぼ同等短径の貫通孔2として形成されており、貫通孔2の長辺(2a)/短辺(2b)で規定できるアスペクト比が10以上とされている。貫通孔2のアスペクト比を10未満にすると長辺/短辺の比が小さくなって貫通孔2が正方形の孔に近い形状となり、後述する工具を用いた孔開け加工時に箔本体1Aを構成する金属が千切れて微細金属片を生じてしまうため、望ましくない。このため、貫通孔2のアスペクト比を高くした方が金属片発生低減の面で効果がある。
貫通孔2のアスペクト比について上限は特に規定しないが、箔本体1Aに貫通孔2を形成する場合の加工性や取り扱い性の容易さを考慮すると、アスペクト比の上限を200程度とすることが好ましい。
The through-hole 2 formed in the metal foil 1 has a long side 2a and a short side 2b as shown in an enlarged view in FIG. 2 or FIG. 3, and all have substantially the same shape, all have substantially the same major diameter, and all have substantially the same. The short-diameter through-hole 2 is formed, and the aspect ratio that can be defined by the long side (2a) / short side (2b) of the through-hole 2 is 10 or more. When the aspect ratio of the through hole 2 is less than 10, the ratio of the long side / short side becomes small and the through hole 2 becomes a shape close to a square hole, and the foil main body 1A is configured at the time of drilling using a tool described later. This is not desirable because the metal is broken to produce fine metal pieces. For this reason, increasing the aspect ratio of the through hole 2 is more effective in reducing the generation of metal pieces.
The upper limit of the aspect ratio of the through hole 2 is not particularly specified, but the upper limit of the aspect ratio is preferably set to about 200 in consideration of ease of workability and ease of handling when forming the through hole 2 in the foil body 1A. .

二次電池集電体用として金属箔1を用いる場合、貫通孔2の長辺2aは10μm〜5000μmの範囲であることが望ましく、短辺2bは1μm〜500μmの範囲であることが望ましい。前述の範囲において、長辺2aは500〜3000μmの範囲がより好ましく、短辺2bは5〜100μmの範囲がより好ましい。
なお、本願明細書において数値範囲を規定する場合、特に注記しない限り、上限と下限を含む範囲を意味する。従って、10μm〜5000μmの範囲は10μm以上5000μm以下の範囲を意味する。
When the metal foil 1 is used for the secondary battery current collector, the long side 2a of the through hole 2 is preferably in the range of 10 μm to 5000 μm, and the short side 2b is preferably in the range of 1 μm to 500 μm. In the aforementioned range, the long side 2a is more preferably in the range of 500 to 3000 μm, and the short side 2b is more preferably in the range of 5 to 100 μm.
In the specification of the present application, when a numerical range is defined, it means a range including an upper limit and a lower limit unless otherwise noted. Therefore, the range of 10 μm to 5000 μm means a range of 10 μm to 5000 μm.

二次電池集電体用として金属箔1を用いる場合、箔本体1Aの長さ方向に間欠的に一列配列された貫通孔2のピッチ(1つの貫通孔2の先端から次の貫通孔2の先端までの間隔:図2、図3参照)Pは一例として0.5mm以上とすることが好ましい。ただし、この制限は箔本体1Aに後述する工具を用いて切り込みにより貫通孔2を形成する場合であって、ピッチPが小さすぎる場合に金属箔1をロールにより巻き取りあるいはロールにより巻き出しした場合に、箔本体1Aの変形や破断のおそれがあり、一列に隣接する貫通孔2どうしが繋がってしまうおそれを考慮した場合のピッチ制限である。このため、箔本体1Aの破断や変形のおそれがない場合は0.5mm未満のピッチPを採用しても差し支えない。
なお、ピッチPの値はこの実施形態の如く一定である必要は無く、周期的に異なっていたり、ランダムに変化していても良い。
When the metal foil 1 is used for the secondary battery current collector, the pitch of the through holes 2 intermittently arranged in a row in the length direction of the foil body 1A (from the tip of one through hole 2 to the next through hole 2). (Distance to tip: see FIGS. 2 and 3) As an example, P is preferably 0.5 mm or more. However, this limitation is the case where the through hole 2 is formed by cutting into the foil body 1A using a tool described later, and when the pitch P is too small, the metal foil 1 is taken up by a roll or unwound by a roll. In addition, there is a risk of deformation or breakage of the foil main body 1A, and this is a pitch limitation in consideration of a possibility that the through holes 2 adjacent to each other are connected in a row. For this reason, when there is no fear of breakage or deformation of the foil body 1A, a pitch P of less than 0.5 mm may be adopted.
Note that the value of the pitch P does not have to be constant as in this embodiment, and may vary periodically or change randomly.

金属箔1の厚さは1μm〜40μmの範囲であることが望ましい。金属箔が1μmより薄くなると強度が不足し、巻き取りや巻き出しの際に変形するおそれがあり、40μmを超えて厚い場合は二次電池用集電体としてのメリットが少なくなる。   The thickness of the metal foil 1 is desirably in the range of 1 μm to 40 μm. If the metal foil is thinner than 1 μm, the strength is insufficient and may be deformed during winding or unwinding, and if it exceeds 40 μm, the merit as a current collector for a secondary battery is reduced.

図2、図3に拡大して示すように金属箔1には、上述のピッチPで貫通孔2が帯状の箔本体1Aの長さ方向に長辺2aを揃えて複数形成され、箔本体1Aの幅方向には貫通孔2の列が複数所定の間隔Tをあけて形成されている。
箔本体1Aにおいてその幅方向に配列されている貫通孔2は箔本体1Aの幅方向に互い違いに配置されている。また、この例では貫通孔2の長辺2aの長さより前記ピッチPが小さく形成されている。このため、箔本体1Aの長さ方向に所定のピッチPで隣接する貫通孔2、2の間の領域の側方に隣の列の貫通孔2が配置されている。一例として図2または図3に示すように3つの貫通孔2が隣接配置されている領域を平面視した場合、3つの貫通孔2の長さ方向中心点を結ぶ図形が2等辺三角形あるいは正三角形となるような配置を採用できる。なお、この配列は1つの例であって、貫通孔2の配列として他の配列を採用しても良いのは勿論である。
2 and 3, the metal foil 1 is formed with a plurality of through holes 2 with the above-described pitch P, with the long sides 2a aligned in the length direction of the strip-shaped foil body 1A. A plurality of rows of through holes 2 are formed at a predetermined interval T in the width direction.
The through holes 2 arranged in the width direction of the foil body 1A are alternately arranged in the width direction of the foil body 1A. In this example, the pitch P is smaller than the length of the long side 2 a of the through hole 2. For this reason, the through-hole 2 of the adjacent row | line | column is arrange | positioned in the side of the area | region between the through-holes 2 and 2 adjacent by the predetermined pitch P in the length direction of 1 A of foil main bodies. As an example, when the region where the three through holes 2 are adjacently disposed is viewed in plan as shown in FIG. 2 or FIG. 3, the figure connecting the longitudinal center points of the three through holes 2 is an isosceles triangle or an equilateral triangle. It is possible to adopt such an arrangement. This arrangement is an example, and it is needless to say that another arrangement may be adopted as the arrangement of the through holes 2.

図1に示す金属箔1においては、箔本体1Aの幅方向に11列の貫通孔2が形成され、図2では3列の貫通孔2を拡大表示し、図3では2列の貫通孔2を拡大表示している。貫通孔2の列どうしの間隔Tは、例えば1mm〜20mmの範囲を選択できる。
前記ピッチPと前記間隔Tを小さくし過ぎると、金属箔1の強度が低下するため、金属箔1の長さ方向に張力を印加した場合に金属箔1が変形するおそれがある。例えば、二次電池を製造する場合に金属箔1に張力を印加しつつ巻き取りや巻き出しなどの処理を行う必要があるので、巻き取り時や巻き出し時に金属箔1が変形することのないようなピッチPと間隔Tを採用する必要がある。
In the metal foil 1 shown in FIG. 1, eleven rows of through holes 2 are formed in the width direction of the foil body 1A. In FIG. 2, three rows of through holes 2 are enlarged, and in FIG. Is enlarged. The interval T between the rows of the through-holes 2 can be selected from a range of 1 mm to 20 mm, for example.
If the pitch P and the interval T are too small, the strength of the metal foil 1 is lowered, and therefore, when the tension is applied in the length direction of the metal foil 1, the metal foil 1 may be deformed. For example, when manufacturing a secondary battery, since it is necessary to perform a process such as winding or unwinding while applying tension to the metal foil 1, the metal foil 1 is not deformed during winding or unwinding. It is necessary to adopt such a pitch P and interval T.

図1〜図3に示した貫通孔2について後述する工具の刃先部を用いて実際に箔本体1Aに形成した場合の詳細拡大図を図4〜図6に示す。
この例の貫通孔2は、その開口部2Aにおいて互いに平行な長辺部2Bとこれら長辺部2Bの長さ方向両端側にU字型に先窄まり状に形成された短辺部2Cとからなるスリット状であり、図5に示すように開口部2Aのほぼ全周において箔本体1Aの表面側から裏面側にバリ3が突出形成されている。バリ3は開口部2Aの長辺部2Bから突出された長辺バリ部3Aと短辺部2Cから突出された短辺バリ部3Bとからなり、2つの長辺バリ部3Aと2つの短辺バリ部3Bによって開口部2Aの裏面側ほぼ全周が囲まれている。図4に示すように平面視した貫通孔2において貫通孔2の長さをaと表記でき、貫通孔2のスリット幅(対向する長辺部2Bの間の間隔:図4における上下方向に沿う短辺部2Cの長さ)をDと表記することができる。
4 to 6 are detailed enlarged views when the through hole 2 shown in FIGS. 1 to 3 is actually formed on the foil main body 1A using a cutting edge portion of a tool described later.
The through-hole 2 in this example includes a long side 2B parallel to each other in the opening 2A, and a short side 2C formed in a U-shaped tapered shape on both ends in the length direction of the long side 2B. As shown in FIG. 5, burrs 3 are formed so as to protrude from the front surface side to the back surface side of the foil body 1A on almost the entire periphery of the opening 2A. The burr 3 includes a long side burr part 3A protruding from the long side part 2B of the opening 2A and a short side burr part 3B protruding from the short side part 2C. The two long side burr parts 3A and the two short sides The burr 3B surrounds the entire back surface of the opening 2A. As shown in FIG. 4, the length of the through hole 2 in the plan view of the through hole 2 can be expressed as a, and the slit width of the through hole 2 (interval between the opposing long side portions 2 </ b> B: along the vertical direction in FIG. 4. The length of the short side portion 2C) can be expressed as D.

これらのバリ3は後述する工具の刃先部によって箔本体1Aをその厚さ方向に突き通すとともに、突き通す場合に箔本体1Aを部分的に塑性変形させて形成したものである。
このため、長辺バリ部3Aの高さ(長さ)は貫通孔2のスリット幅の1/2より大きく形成されている。また、長辺バリ部3Aの高さ(長さ)と短辺バリ部3Bの高さ(長さ)はほぼ同等とされている。長辺バリ部3Aの高さが貫通孔2のスリット幅の1/2より大きく形成されているのは、後述する工具の刃先部で箔本体1Aの一部をその厚さ方向に突き通す場合に箔本体1Aを構成する金属材料が塑性変形により伸ばされた結果である。
長辺バリ部3Aの高さが貫通孔2のスリット幅の1/2より大きく形成されていることは、後述する工具の刃先部を用いて箔本体1Aをその厚さ方向に突き通すことにより貫通孔2を形成したことを表している。
These burrs 3 are formed by penetrating the foil main body 1A in the thickness direction by a cutting edge portion of a tool described later and partially plastically deforming the foil main body 1A when penetrating.
For this reason, the height (length) of the long side burr portion 3 </ b> A is formed to be larger than ½ of the slit width of the through hole 2. Further, the height (length) of the long side burr portion 3A and the height (length) of the short side burr portion 3B are substantially equal. The reason why the height of the long side burr portion 3A is formed to be larger than ½ of the slit width of the through hole 2 is when a part of the foil body 1A is penetrated in the thickness direction at the blade edge portion of the tool described later. This is a result of extending the metal material constituting the foil body 1A by plastic deformation.
The fact that the length of the long side burr portion 3A is formed to be larger than ½ of the slit width of the through hole 2 is that the foil main body 1A is penetrated in the thickness direction by using a blade edge portion of a tool to be described later. It shows that the hole 2 was formed.

図7は箔本体1に工具10の刃先部10Gを用いて突き通しにより貫通孔2を形成した状態の一例を示し、図8は、箔本体1Aに貫通孔2を形成する場合に用いて好適な工具の一例を示す。
図8に示す工具10は、支持軸10Aの一部に軸部10Bにより回転自在に設けられた円板状の回転刃10Dを有した工具である。
この回転刃10Dの外周縁部には、円周方向に複数の凹部10Eを介して凸型の切断刃10Fが定間隔で交互に複数形成され、切断刃10Fの先端部分に刃先部10Gが形成されているロータリー式の隙間刃が構成されている。
FIG. 7 shows an example of a state in which the through-hole 2 is formed by piercing the foil body 1 using the cutting edge portion 10G of the tool 10, and FIG. 8 is suitable for use when forming the through-hole 2 in the foil body 1A. An example of a simple tool is shown.
A tool 10 shown in FIG. 8 is a tool having a disk-shaped rotary blade 10D that is rotatably provided by a shaft portion 10B on a part of a support shaft 10A.
A plurality of convex cutting blades 10F are alternately formed at regular intervals on the outer peripheral edge portion of the rotary blade 10D via a plurality of concave portions 10E in the circumferential direction, and a cutting edge portion 10G is formed at a tip portion of the cutting blade 10F. The rotary-type clearance blade is configured.

この工具10の回転刃10Dを金属箔1の箔本体1Aに対し直角に押し付けて個々の刃先部10Gで箔本体1Aを突き通すように加工しながら箔本体1Aの長さ方向に沿って回転刃10Dを回転移動することで、箔本体1Aに図8に示すように複数の貫通孔2を間欠的に1列形成することができる。この加工に先立ち、箔本体1Aの裏面側にゴムシートなどの受け材を配置し、刃先部10Gが箔本体1Aを貫通する場合のクッション材とすることが好ましい。   While the rotary blade 10D of the tool 10 is pressed at right angles to the foil body 1A of the metal foil 1 and processed so as to penetrate the foil body 1A with the individual blade edge portions 10G, the rotary blade 10D is moved along the length direction of the foil body 1A. As shown in FIG. 8, a plurality of through-holes 2 can be intermittently formed in a row in the foil body 1A. Prior to this processing, it is preferable to arrange a receiving material such as a rubber sheet on the back surface side of the foil main body 1A so as to provide a cushion material when the blade edge portion 10G penetrates the foil main body 1A.

図7に刃先部10Gが箔本体1Aをその厚さ方向に突き通して貫通孔2を形成した後、刃先部10Gを箔本体1Aから引き抜いた状態を示す。刃先部10Gで箔本体1Aをその厚さ方向に突き通すことで、箔本体1Aにスリット幅Dの貫通孔2を形成できるとともに、箔本体1Aの裏面側に金属材料を引き延ばすように塑性変形させてバリ3を形成することができる。従って、バリ3において長辺バリ部3Aの高さ(長さ)Hは、スリット幅Dの1/2よりも大きく形成されている。なお、貫通孔2の短辺側においても同様に塑性変形を伴いつつ短辺バリ部3Bが形成されるので、短辺バリ部3Bは長辺バリ部3Aと同等の高さ(長さ)に形成される。   FIG. 7 shows a state in which the blade edge portion 10G is pulled out from the foil body 1A after the blade edge portion 10G penetrates the foil body 1A in the thickness direction to form the through-hole 2. By penetrating the foil body 1A with the cutting edge portion 10G in the thickness direction, a through hole 2 having a slit width D can be formed in the foil body 1A and plastically deformed so as to extend a metal material on the back side of the foil body 1A. A burr 3 can be formed. Therefore, in the burr 3, the height (length) H of the long side burr part 3A is formed to be larger than ½ of the slit width D. In addition, since the short side burr | flash part 3B is similarly formed in the short side side of the through-hole 2 with a plastic deformation, the short side burr | flash part 3B becomes the height (length) equivalent to 3A of long side burr | flash parts. It is formed.

図8に示すように1列の貫通孔2を形成したならば、工具10の回転刃10Dを用いて箔本体1Aの幅方向の別の位置に必要な列の貫通孔2を順次形成することにより、図1に示す構成の金属箔1を得ることができる。
このように図8、図9に示す回転刃10Dを備えた工具10を用いて箔本体1Aに貫通孔2を形成するならば、刃先部10Gを用いてバリ3を形成しながら箔本体1Aに貫通孔2を形成できるので、目的のアスペクト比で目的の大きさの貫通孔2を多数有する金属箔1を容易に製造することができる。また、刃先部10Gを用いて突き通しにより箔本体1Aにアスペクト比10以上の貫通孔2を形成するならば、箔本体1の材料を刃先部10Gで引き延ばして塑性変形させた後に貫通孔2を生成しバリ3を形成するので、微細金属片などの異物を個別に発生させることなく貫通孔2の形成ができる。このため、微細金属片などの異物を有していない金属箔1は二次電池などの蓄電デバイスの集電体用として好適であり、内部短絡などのおそれのない高品質の集電体を提供できる。
If one row of through-holes 2 is formed as shown in FIG. 8, the necessary rows of through-holes 2 are sequentially formed at different positions in the width direction of the foil body 1A using the rotary blade 10D of the tool 10. Thus, the metal foil 1 having the configuration shown in FIG. 1 can be obtained.
If the through-hole 2 is formed in the foil body 1A using the tool 10 having the rotary blade 10D shown in FIGS. 8 and 9, the burr 3 is formed in the foil body 1A using the blade edge portion 10G. Since the through-hole 2 can be formed, the metal foil 1 having many through-holes 2 having a target aspect ratio and a target size can be easily manufactured. Further, if the through-hole 2 having an aspect ratio of 10 or more is formed in the foil body 1A by piercing using the blade edge portion 10G, the material of the foil body 1 is stretched by the blade edge portion 10G and plastically deformed, and then the through-hole 2 is formed. Since the burr 3 is generated and formed, the through hole 2 can be formed without generating foreign matters such as fine metal pieces individually. For this reason, the metal foil 1 having no foreign matter such as a fine metal piece is suitable for a current collector of a power storage device such as a secondary battery, and provides a high-quality current collector without fear of an internal short circuit. it can.

図10は、長尺の帯状の箔本体1Aに対し複数列の貫通孔2を連続形成する場合に用いて好適な製造装置の一例を示す側面図である。
この例の製造装置15は、帯状の箔本体1Aを巻き出し自在な巻出リール16と箔本体1Aを巻き取り自在な巻取リール17を有し、巻出リール16と巻取リール17の間に押当ロール18とロータリー刃19が設けられ、それらの前後に調整リール20が設けられている。
ロータリー刃19は刃先部19aを外周部に複数、凹部19bを介して設けた回転刃19cを必要数それぞれの厚さ方向に積層した構成である。回転刃19cの積層数は箔本体1Aの幅方向に形成する貫通孔2の列数に対応される。
押当ロール18は外周部に弾性体層を有するか全体が弾性体からなるロールであり、ロータリー刃19の刃先部19aで帯状の箔本体1Aを突き通した場合に刃先部19aの先端を弾性的に受けるためのクッションロールである。
FIG. 10 is a side view showing an example of a manufacturing apparatus suitable for use in the case where a plurality of rows of through holes 2 are continuously formed on a long strip-shaped foil body 1A.
The manufacturing apparatus 15 of this example has an unwinding reel 16 that can unwind the strip-shaped foil body 1 </ b> A and a take-up reel 17 that can wind up the foil body 1 </ b> A, and between the unwinding reel 16 and the take-up reel 17. A pressing roll 18 and a rotary blade 19 are provided on the front side, and an adjustment reel 20 is provided on the front and rear sides thereof.
The rotary blade 19 has a configuration in which a plurality of blade edges 19a are provided on the outer peripheral portion, and a plurality of rotary blades 19c provided via recesses 19b are stacked in a necessary thickness direction. The number of the rotary blades 19c stacked corresponds to the number of rows of the through holes 2 formed in the width direction of the foil body 1A.
The pressing roll 18 is a roll having an elastic body layer on the outer peripheral portion or made entirely of an elastic body. When the strip-shaped foil body 1A is pierced by the blade edge portion 19a of the rotary blade 19, the tip of the blade edge portion 19a is elastic. It is a cushion roll for receiving.

巻出リール16に巻き付けておいた帯状の箔本体1Aを繰り出し、一方の調整リール20を介してロータリー刃19と押当ロール18との間を通過させ、他方の調整リール20を介して巻取リール17で巻き取る。この操作により、ロータリー刃19と押当ロール18との間を通過した箔本体1Aにロータリー刃19の複数の刃先部19aによって複数列の貫通孔2を間欠的に順次同時形成することができる。
複数のロータリー刃19を並列した構成で箔本体1Aに貫通孔2を形成するならば、箔本体1Aの幅方向に所定の間隔で正確に整列した状態の複数の貫通孔2を形成できる。図10に示す製造装置15を用いることで箔本体1Aに均一かつ正確に配列させた状態の貫通孔2を形成することができる。
The strip-shaped foil body 1A wound around the unwinding reel 16 is fed out, passed between the rotary blade 19 and the pressing roll 18 via one adjustment reel 20, and taken up via the other adjustment reel 20. Take up with reel 17. By this operation, a plurality of rows of through holes 2 can be intermittently and simultaneously formed in the foil main body 1A that has passed between the rotary blade 19 and the pressing roll 18 by the plurality of cutting edge portions 19a of the rotary blade 19.
If the through holes 2 are formed in the foil body 1A with a configuration in which the plurality of rotary blades 19 are arranged in parallel, the plurality of through holes 2 in a state of being accurately aligned at a predetermined interval in the width direction of the foil body 1A can be formed. By using the manufacturing apparatus 15 shown in FIG. 10, the through holes 2 in a state of being uniformly and accurately arranged in the foil body 1A can be formed.

図11は、長尺の帯状の箔本体1Aに対し複数列の貫通孔2を連続形成する場合に用いて好適な製造装置の他の例を示す側面図である。図11に示す製造装置21において図10に示す製造装置15と同等の構成要素には同一の符号を付し、同等の構成要素については説明を省略する。
この例の製造装置21においては、ロータリー刃19および押当ロール18の設置位置と巻取リール17側の調整リール20との間に軽圧下ロール22、22を配置した点に特徴を有する。
これらの軽圧下ロール22、22は箔本体1Aに軽く圧延を施し、ロータリー刃19および押当ロール18によって箔本体1Aに形成した複数の貫通孔2に設けられているバリ3を押し潰して箔本体1Aを平滑化する機能を有する。
FIG. 11 is a side view showing another example of a manufacturing apparatus suitable for use in the case where a plurality of rows of through holes 2 are continuously formed on a long strip-shaped foil body 1A. In the manufacturing apparatus 21 shown in FIG. 11, the same components as those of the manufacturing apparatus 15 shown in FIG. 10 are denoted by the same reference numerals, and the description of the same components is omitted.
The manufacturing apparatus 21 of this example is characterized in that light pressure lowering rolls 22 and 22 are arranged between the installation position of the rotary blade 19 and the pressing roll 18 and the adjustment reel 20 on the take-up reel 17 side.
These lightly rolling rolls 22 and 22 lightly roll the foil main body 1A, and crush the burrs 3 provided in the plurality of through holes 2 formed in the foil main body 1A by the rotary blade 19 and the pressing roll 18 to obtain the foil. It has a function of smoothing the main body 1A.

図12は第2実施形態に係る金属箔23を示すもので、この第2実施形態の金属箔23にはその長さ方向に沿って一定のピッチで形成された貫通孔24がそれぞれ幅方向には一列に揃うように形成されている。
この第2実施形態の構造に示すように貫通孔24は金属箔23の幅方向に列をなして揃うように形成されていても良く、先の実施形態のように互い違いに形成されていても良く、その他、自由な配列であっても差し支えないが、いずれにおいても金属箔23の長さ方向に沿って形成されていることが好ましい。
FIG. 12 shows a metal foil 23 according to the second embodiment. In the metal foil 23 according to the second embodiment, through holes 24 formed at a constant pitch along the length direction are respectively provided in the width direction. Are formed in a line.
As shown in the structure of the second embodiment, the through holes 24 may be formed so as to be aligned in the width direction of the metal foil 23, or may be formed alternately as in the previous embodiment. In addition, a free arrangement may be used, but in any case, the metal foil 23 is preferably formed along the length direction.

以上説明した工具10あるいは製造装置15、21により製造された金属箔1は、例えば、図13を基に以下に説明するリチウムイオン二次電池の電極箔として適用することができる。
図13に示す二次電池25は、タブリード26、27の周囲にセパレータ28、29を介しアルミニウムまたはアルミニウム合金の箔本体からなる正極集電体31と、銅または銅合金の箔本体からなる負極集電体30とが巻回されてなる。正極集電体31の両面には正極活物質層33が塗布され、負極集電体30の両面には負極活物質層32が塗布されている。
正極集電体31には前述の貫通孔2を整列形成した箔本体1Aからなる金属箔1が適用され、負極集電体30には前述の貫通孔2を整列形成した箔本体1Aからなる金属箔1が適用されている。あるいは、正極集電体31と負極集電体30のどちらか一方のみを箔本体1Aからなる金属箔1としても良い。
図13に示す二次電池25において、正極集電体31と負極集電体30のスリット2がそれぞれこれらの巻回方向に対し平行に形成されている。このように電極を巻く方向に沿ってスロット2が形成されていることで、金属箔を巻く際に引張り応力がかかる場合にスリット2が形を保持するので好ましい。
The metal foil 1 manufactured by the tool 10 or the manufacturing apparatuses 15 and 21 described above can be applied as, for example, an electrode foil of a lithium ion secondary battery described below based on FIG.
The secondary battery 25 shown in FIG. 13 includes a positive electrode current collector 31 made of an aluminum or aluminum alloy foil body and separators 28 and 29 around tab leads 26 and 27, and a negative electrode current collector made of a copper or copper alloy foil body. The electric body 30 is wound. A positive electrode active material layer 33 is applied to both surfaces of the positive electrode current collector 31, and a negative electrode active material layer 32 is applied to both surfaces of the negative electrode current collector 30.
The positive electrode current collector 31 is applied with the metal foil 1 composed of the foil body 1A in which the above-described through holes 2 are aligned, and the negative electrode current collector 30 is composed of the metal foil composed of the foil body 1A in which the above-described through holes 2 are aligned. The foil 1 is applied. Alternatively, only one of the positive electrode current collector 31 and the negative electrode current collector 30 may be the metal foil 1 made of the foil body 1A.
In the secondary battery 25 shown in FIG. 13, the slits 2 of the positive electrode current collector 31 and the negative electrode current collector 30 are formed in parallel to these winding directions. The slot 2 is formed along the direction in which the electrode is wound in this way, which is preferable because the slit 2 retains its shape when a tensile stress is applied when the metal foil is wound.

前述の貫通孔2を複数形成した箔本体からなる正極集電体31と負極集電体30では、貫通孔2を複数設けた集電体30、31のそれぞれの両面に活物質層32あるいは活物質層33が設けられる結果、各集電体の両面に設けられている活物質同士が密着するので、集電体30、31に対する活物質層32、33のそれぞれの密着性が向上する。
また、正極集電体31と負極集電体30に活物質を塗布する場合に正極集電体31の箔本体1Aと負極集電体30の箔本体1Aにそれぞれ張力が印加されるが、貫通孔2が上述の条件で形成され、巻き出しや巻き取りに必要な強度が維持されているから、箔本体1Aの破断や変形などの支障を生じることなく活物質の塗布ができる。
In the positive electrode current collector 31 and the negative electrode current collector 30 formed of a foil body in which a plurality of the through holes 2 are formed, the active material layer 32 or the active material layer 32 is formed on both surfaces of the current collectors 30 and 31 provided with the plurality of through holes 2. As a result of the material layer 33 being provided, the active materials provided on both surfaces of the current collectors are in close contact with each other, so that the adhesion of the active material layers 32 and 33 to the current collectors 30 and 31 is improved.
Further, when an active material is applied to the positive electrode current collector 31 and the negative electrode current collector 30, tension is applied to the foil main body 1A of the positive electrode current collector 31 and the foil main body 1A of the negative electrode current collector 30, respectively. Since the holes 2 are formed under the above-described conditions and the strength necessary for unwinding and winding is maintained, the active material can be applied without causing any trouble such as breakage or deformation of the foil body 1A.

前述の金属箔1であるならば、貫通孔2の長辺(2a)/短辺(2b)で規定できるアスペクト比が10以上とされ、前述の工具10あるいは製造装置15、21で貫通孔2が形成されているので、金属箔1に微細金属片などの不要な導電性の異物が付着しておらず、集電体の導電性異物に起因する内部短絡のおそれを生じない二次電池を構成できる。
また、貫通孔2の長辺2aは10μm〜5000μmの範囲、短辺2bは1μm〜500μmの範囲であり、箔本体1Aの長さ方向に貫通孔2の長辺2aを揃え、箔本体1Aの厚さを1〜40μm、貫通孔2を箔本体に0.5mm以上のピッチで間欠形成しているので、二次電池製造時の巻き出しや巻き取りの際の張力印加に耐える実用的な強度を有する。
また、図12に示すような捲回式の集電体30、31である場合、構造上、蓄電デバイスの中心部からの放熱が出来ず、発熱が多くなり、この部分の電解液のドライアップに伴う抵抗増加が起こりやすい。ところが、電極の集電体30、31に貫通孔2が複数形成されていると、外周部から貫通孔2を解し電解液が浸透しやすく、中心部分の電極の抵抗増加に繋がりにくく、二次電池全体としても抵抗が増加しにくくなる。
If it is the above-mentioned metal foil 1, the aspect ratio which can be prescribed | regulated by the long side (2a) / short side (2b) of the through-hole 2 shall be 10 or more, and the through-hole 2 with the above-mentioned tool 10 or the manufacturing apparatuses 15 and 21. Therefore, a secondary battery in which unnecessary conductive foreign matters such as fine metal pieces are not attached to the metal foil 1 and the internal short circuit due to the conductive foreign matters of the current collector does not occur. Can be configured.
The long side 2a of the through hole 2 is in the range of 10 μm to 5000 μm, the short side 2b is in the range of 1 μm to 500 μm, and the long side 2a of the through hole 2 is aligned in the length direction of the foil body 1A. Since the thickness is 1 to 40 μm and the through holes 2 are intermittently formed in the foil body at a pitch of 0.5 mm or more, the practical strength that can withstand the application of tension during unwinding and winding during secondary battery production Have
In addition, in the case of the wound current collectors 30 and 31 as shown in FIG. 12, heat cannot be radiated from the central portion of the electricity storage device due to the structure, and heat generation increases, and the electrolyte solution in this portion is dried up. Increase in resistance easily occurs. However, when a plurality of through-holes 2 are formed in the current collectors 30 and 31 of the electrodes, the electrolytic solution can easily penetrate through the through-holes 2 from the outer peripheral portion, and it is difficult to increase the resistance of the electrode in the central portion. The resistance of the secondary battery as a whole is less likely to increase.

なお、従来技術の凹凸ロールによって金属箔に貫通孔を開けた場合、凹凸ロールに挟まれた金属箔を引きちぎるように打ち抜いて孔あけ加工しているので、必然的に微細な金属片が多数発生し、短絡のおそれが生じる。これに対し上述の工具10あるいは製造装置15、21で貫通孔2を形成するならば、金属箔の一部を塑性加工はするが、塑性加工部分はバリとしてそのまま残し、塑性加工した部分の一部を切断して貫通孔2を形成しているので、不要な金属片を発生させることなく貫通孔2を形成できる。このため、金属片の付着が生じていない金属箔を得ることができる。   In addition, when a through-hole is opened in a metal foil with a conventional uneven roll, the metal foil sandwiched between the uneven rolls is punched so as to tear, so inevitably many fine metal pieces are generated. However, there is a risk of short circuit. On the other hand, if the through-hole 2 is formed by the tool 10 or the manufacturing apparatuses 15 and 21 described above, a part of the metal foil is plastic-worked, but the plastic-worked part is left as a burr, and one part of the plastic-worked part is left. Since the through hole 2 is formed by cutting the portion, the through hole 2 can be formed without generating unnecessary metal pieces. For this reason, the metal foil which the adhesion of the metal piece has not arisen can be obtained.

以下に、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。
厚さ15μmのJIS A 1085合金からなる幅200mm×長さ300mmのアルミニウム箔(調質:H18)をゴムマットの上に敷設し、図8、図9に示すスリット付きロータリー刃を備えた工具により以下の表1に示すサイズの貫通孔を以下の表1に示すピッチで20列形成した。
刃先部の長辺長さ、短辺長さ、刃先部どうしのピッチを表1に示す値となるように種々変更したロータリー刃を用意し、前記と同等の条件でアルミニウム箔に貫通孔を形成した。また、比較例については、図14に示すハンドル部35の先端側にアーム部36を介して先が尖った円錘型の刃先を回転ホイールの外周に複数有するトレーシングホイール37を用いて箔本体に貫通孔を形成した。用いたロータリー刃の刃先部の刃の最厚部厚みは0.5mm、刃先断面形状は図7に示す刃先形状で刃先角度20゜のものを用いた。
表1において、長辺2700μm、短辺8μmの貫通孔はこの貫通孔とほぼ同じ長さと幅の刃先部を備えたロータリー刃を用いた隙間刃を用いてアルミニウム箔に貫通孔を形成している。他の貫通孔についても、隙間刃の刃先部の大きさと貫通孔の大きさは対応している。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
An aluminum foil (tempered: H18) made of JIS A 1085 alloy with a thickness of 15 μm and having a width of 200 mm × length of 300 mm was laid on a rubber mat, and a tool equipped with a rotary blade with slits shown in FIGS. 20 rows of through holes having the sizes shown in Table 1 were formed at the pitches shown in Table 1 below.
Prepare a rotary blade with various changes so that the long side length, short side length, and pitch between the blade edges are the values shown in Table 1, and form through holes in the aluminum foil under the same conditions as above. did. Moreover, about a comparative example, foil body using the tracing wheel 37 which has the cone-shaped blade edge | tip with the pointed tip through the arm part 36 on the front end side of the handle | steering-wheel part 35 shown in FIG. A through-hole was formed in. The thickness of the blade portion of the rotary blade used was 0.5 mm, and the cross-sectional shape of the blade edge was the blade edge shape shown in FIG. 7 with a blade edge angle of 20 °.
In Table 1, a through hole having a long side of 2700 μm and a short side of 8 μm is formed in the aluminum foil using a gap blade using a rotary blade having a blade edge portion having substantially the same length and width as this through hole. . For the other through holes, the size of the cutting edge portion of the gap blade corresponds to the size of the through hole.

以下に示す正極活物質、導電材、バインダ及び希釈剤からなる正極スラリー(正極活物質)を厚み50μmになるように表1の実施例1〜5の各アルミニウム箔上に、更には比較例及び孔開け前の各アルミニウム箔上に塗布し、130℃で1時間乾燥して電極を得た。実施例1〜5と比較例については箔の両面に正極スラリーを塗布している。
正極活物質 リン酸鉄リチウム(平均粒径:1μm)
導電材 アセチレンブラック(AB)
バインダ ポリビニリデンフルオライド(PVDF)
希釈剤 N−メチル−2−ピロリドン(NMP)
各成分の配合比(重量比) 正極活物質:AB:PVDF=85:8:7
A positive electrode slurry (positive electrode active material) composed of a positive electrode active material, a conductive material, a binder, and a diluent shown below is formed on each aluminum foil of Examples 1 to 5 in Table 1 so as to have a thickness of 50 μm. It apply | coated on each aluminum foil before drilling, and it dried at 130 degreeC for 1 hour, and obtained the electrode. About Examples 1-5 and a comparative example, the positive electrode slurry is apply | coated to both surfaces of foil.
Positive electrode active material Lithium iron phosphate (average particle size: 1μm)
Conductive material Acetylene Black (AB)
Binder Polyvinylidene fluoride (PVDF)
Diluent N-methyl-2-pyrrolidone (NMP)
Mixing ratio of each component (weight ratio) Positive electrode active material: AB: PVDF = 85: 8: 7

各電極について幅15mmの短冊試験片を切り出し、90°剥離試験を行い剥離強度(N/15mm)の測定を行った。孔開き前の箔の剥離強度を1としたときに、0以上1未満を×、1以上2未満を○、2以上を◎とした。その結果を表1に記載する。   A strip test piece having a width of 15 mm was cut out for each electrode, a 90 ° peel test was performed, and a peel strength (N / 15 mm) was measured. When the peel strength of the foil before perforation was set to 1, 0 or more and less than 1 was evaluated as x, 1 or more and less than 2 as ◯, and 2 or more as 以上. The results are listed in Table 1.

実施例1〜5、比較例、及び孔開け前の各アルミニウム箔について幅15mm×長さ200mmの短冊試験片を作成した。万能引張試験機(島津製作所製)のチャック間距離を100mmに設定し、箔が破断するまでに計測された最大荷重(N/15mm)を算出した。その結果を表1に記載する。   A strip test piece having a width of 15 mm and a length of 200 mm was prepared for each of the aluminum foils before Examples 1 to 5, the comparative example, and the holes were formed. The distance between chucks of the universal tensile testing machine (manufactured by Shimadzu Corporation) was set to 100 mm, and the maximum load (N / 15 mm) measured until the foil broke was calculated. The results are listed in Table 1.

一定の個数の貫通孔を上述のアルミニウム箔に開けた際のアルミニウム片の発生個数を計測し、発生のし難さを評価した。
貫通孔の形態は孔開けに使用した刃の種類に依存しており、ここでは「実施例1、2」、「実施例3、5」そして比較例の3種類である。各3種類の寸法の貫通孔を厚さ15μmのJIS A 1085合金 調質H18のアルミニウム箔に1000個作製し、その際に発生したアルミニウム片の個数をカウントした。この際、目視での観察が困難な非常に微細なアルミニウム粉も発生している可能性はあるが、ここでは直径約0.1μm以上のアルミニウム片のみをカウントした。
50個未満を◎、50個以上200個未満を○、200個以上500個未満を△、そして500個以上を×とした。その結果を表1に記載する。
The number of aluminum pieces generated when a certain number of through-holes were opened in the aluminum foil was measured to evaluate the difficulty of the generation.
The form of the through hole depends on the type of blade used for drilling, and here, there are three types of “Examples 1 and 2”, “Examples 3 and 5”, and a comparative example. Thousands of through-holes each having three types of dimensions were prepared on an aluminum foil of JIS A 1085 alloy tempered H18 having a thickness of 15 μm, and the number of aluminum pieces generated at that time was counted. At this time, there is a possibility that very fine aluminum powder that is difficult to observe visually is also generated, but here, only aluminum pieces having a diameter of about 0.1 μm or more were counted.
Less than 50 was evaluated as ◎, 50 or more and less than 200 as ○, 200 or more and less than 500 as Δ, and 500 or more as ×. The results are listed in Table 1.

表1に示す如く長方形状の貫通孔においてアスペクト比(長辺/短辺)が12〜338の貫通孔を形成した実施例1〜8の金属箔は引張り強さが大きく、活物質層の密着性に優れ、アルミニウム片の発生も見られなかった。活物質の密着性については、集電体の両面に塗工しているので、剥離強度が増加している。
これらに対し、比較例1の金属箔はアスペクト比が1の試料であるが、引張り強さが若干低下し、アルミニウム片の発生が見られた。
なお、実施例4の試料と比較例1の試料において活物質密着性がいずれも○であるのは、短辺方向のピッチの差による影響が出たものと推定できる。
実施例6の試料は貫通孔のピッチを小さくした例であるが引張り強さが若干低下傾向になった。実施例7の試料は貫通孔の長辺と短辺を大きくした例であるが、良好な範囲内ではあるもののアルミニウム片の発生が増加傾向となった。実施例8の試料は長辺を大きくした試料であるが実施例1〜5に比較すると引張り強さが低下傾向となった。
比較例2はアスペクト比が7の試料であるがアルミニウム片の発生が見られた。
As shown in Table 1, the metal foils of Examples 1 to 8 in which through holes having an aspect ratio (long side / short side) of 12 to 338 were formed in rectangular through holes had high tensile strength, and the active material layer was closely attached. It was excellent in properties and no aluminum pieces were observed. About the adhesiveness of the active material, since it has applied on both surfaces of the electrical power collector, the peeling strength has increased.
On the other hand, the metal foil of Comparative Example 1 was a sample having an aspect ratio of 1, but the tensile strength was slightly reduced and generation of aluminum pieces was observed.
In addition, it can be presumed that the active material adhesion in the sample of Example 4 and the sample of Comparative Example 1 is both ◯ because of the influence of the pitch difference in the short side direction.
The sample of Example 6 was an example in which the pitch of the through holes was reduced, but the tensile strength tended to decrease slightly. The sample of Example 7 is an example in which the long side and the short side of the through-hole are enlarged, but the generation of aluminum pieces tends to increase although it is within a good range. The sample of Example 8 was a sample with a long side increased, but the tensile strength tended to decrease compared to Examples 1-5.
Comparative Example 2 was a sample having an aspect ratio of 7, but generation of aluminum pieces was observed.

図15は表1に示す実施例1の試料の貫通孔について表面側から見た3D画像検査結果(キーエンス株式会社製VK−X100による)を示し、図16は同実施例の貫通孔について裏面側から見た3D画像検査結果を示し、図17は同実施例の貫通孔を平面視した場合の拡大図(倍率100倍)を示す。なお、実施例2についても実施例1とほぼ同等の3D画像結果が得られた。
図15〜図17に示す貫通孔は、長さ2.7mm(2700μm)、幅8μmのスリット状の貫通孔であり、高さ約70μmのバリが貫通孔開口部全周に形成されている。
なお、各実施例についてバリ高さを調べてみたところ、実施例2(70μm)、実施例3、4(120μm)、実施例5(130μm)、実施例6(120μm)、実施例7(150〜250μm)、実施例8(120μm)となった。
FIG. 15 shows the 3D image inspection result (by VK-X100 made by Keyence Corporation) of the through hole of the sample of Example 1 shown in Table 1 as viewed from the front side, and FIG. 16 shows the back side of the through hole of the same example. FIG. 17 shows an enlarged view (magnification 100 times) when the through hole of the same example is viewed in plan. In Example 2, a 3D image result almost equivalent to that in Example 1 was obtained.
The through-holes shown in FIGS. 15 to 17 are slit-like through-holes having a length of 2.7 mm (2700 μm) and a width of 8 μm, and burrs having a height of about 70 μm are formed all around the through-hole opening.
In addition, when the burr height was investigated about each Example, Example 2 (70 micrometers), Example 3, 4 (120 micrometers), Example 5 (130 micrometers), Example 6 (120 micrometers), Example 7 (150) To 250 μm) and Example 8 (120 μm).

図18は、厚さ15μmのJIS A 1085合金からなる幅220mm×長さ300mmのアルミニウム箔(調質:H18)をゴムマットの上に敷設し、このアルミニウム箔の左側半分の領域に比較例1試料と同等の貫通孔を形成し右側半分の領域に実施例1、2で用いた工具を用いて貫通孔を形成した状態を示す。
図18に示すアルミニウム箔の左側半分の領域には、比較例1を作成する場合に用いた図14に示すトレーシングホイールを用いてアスペクト比が1の丸孔を列ごとの間隔7mm、ピッチ2mmで形成した。アルミニウム箔の右側半分の領域には列ごとの間隔7mm、ピッチ1mmで実施例1、2と同様に略長方形状の貫通孔を形成した。
FIG. 18 shows a comparative example 1 sample in a left half region of an aluminum foil (tempered: H18) made of JIS A 1085 alloy having a thickness of 15 μm and having a width of 220 mm and a length of 300 mm on a rubber mat. A state in which a through hole is formed using the tool used in Examples 1 and 2 in the right half region is shown.
In the left half region of the aluminum foil shown in FIG. 18, round holes having an aspect ratio of 1 are formed by using the tracing wheel shown in FIG. Formed with. A substantially rectangular through-hole was formed in the right half region of the aluminum foil in the same manner as in Examples 1 and 2 with an interval of 7 mm for each row and a pitch of 1 mm.

図19は図18に示す貫通孔形成後のアルミニウム箔をゴムマット上から除去し、ゴムマットの表面に残留しているアルミニウム片を観察した結果を示すもので、図19(A)と図19(B)はゴムマット上の別々の位置を撮影した結果を示す。
図19(A)、(B)に示す右側に矩形枠で囲んだ領域が実施例1、2で用いた貫通孔を形成した領域を示し、各図の左側の領域が比較例1で用いた貫通孔を形成した領域を示す。
図19に示す対比から明らかなように、図8、図9で示すロータリー式の刃先部を有する工具を用いてアスペクト比10以上のスリット状の貫通孔を形成するならば、アルミニウム片が殆ど発生していないことがわかる。
FIG. 19 shows the result of observing the aluminum pieces remaining on the surface of the rubber mat by removing the aluminum foil after the formation of the through-hole shown in FIG. 18 and FIG. 19 (B). ) Shows the result of photographing different positions on the rubber mat.
19A and 19B, a region surrounded by a rectangular frame on the right side indicates a region where the through hole used in Examples 1 and 2 is formed, and a region on the left side of each drawing is used in Comparative Example 1. The area | region which formed the through-hole is shown.
As is clear from the comparison shown in FIG. 19, if a slit-shaped through-hole having an aspect ratio of 10 or more is formed using the rotary type cutting edge tool shown in FIGS. 8 and 9, almost all aluminum pieces are generated. You can see that they are not.

このことは、貫通孔を形成したアルミニウム箔にアルミニウム片の付着が発生しないので、このアルミニウム箔を二次電池などの蓄電デバイスの集電体として用いた場合、内部短絡の原因となり得るアルミニウム片を蓄電デバイス(電池)の内部に混入させることがないことを意味する。なお、図19に示すようにゴムマット上に多数のアルミニウム片が付着したことは、得られたアルミニウム箔の裏面側にも相当数のアルミニウム片が付着していることを意味する。
よって、強度が高く、活物質の密着性に優れ、アルミニウム片の発生もない集電体用の電極箔を提供できることが分かった。
This means that the aluminum piece does not adhere to the aluminum foil in which the through hole is formed. Therefore, when this aluminum foil is used as a current collector of an electricity storage device such as a secondary battery, an aluminum piece that may cause an internal short-circuit is removed. This means that it is not mixed into the electricity storage device (battery). In addition, as shown in FIG. 19, that many aluminum pieces adhered on the rubber mat means that a considerable number of aluminum pieces are also adhered to the back surface side of the obtained aluminum foil.
Therefore, it was found that an electrode foil for a current collector having high strength, excellent active material adhesion, and no generation of aluminum pieces can be provided.

ところで、これまで説明した図7〜図11に示す工具10の刃先部10Gの側面形状、ロータリー刃19の刃先部19aの側面形状は一例であって、本発明に係る貫通孔を形成するための刃先部の形状はこれらの例に限らない。例えば、図20(a)に示す各コーナー部分にRを形成した側面等脚台形状の刃先部40でも良いし、図20(b)に示す丸型の刃先を備えた側面蒲鉾型概形の刃先部41でも良い。刃先部の側面形状は必要な幅と長さの貫通孔を形成できるような形状であれば特に制限はない。
また、刃先部の断面形状は図21(A)に示すように両刃タイプで刃先角約90゜の刃先部42でも良いし、図21(B)に示すように2段刃タイプで第1段目の刃先角120゜程度、第2段目の刃先角50゜程度の刃先部43でも良い。更に、図21(C)に示すような両刃タイプで刃先角25゜程度の刃先部44、図21(D)に示すような2段刃タイプで第1段目の刃先角20゜程度、第2段目の刃先角70゜程度の刃先部45など、いずれの断面形状であっても良い。刃先の角度にしても特に制限はなく、刃先部の断面形状は必要な幅と長さの貫通孔を形成できるような形状であれば特に制限はない。
By the way, the side surface shape of the cutting edge part 10G of the tool 10 shown so far shown in FIGS. 7-11 and the side surface shape of the blade edge part 19a of the rotary blade 19 are examples, and are for forming the through-hole which concerns on this invention. The shape of the blade edge portion is not limited to these examples. For example, it may be a side isosceles trapezoidal cutting edge portion 40 in which R is formed at each corner portion shown in FIG. 20 (a), or a side hook-shaped outline having a round cutting edge shown in FIG. 20 (b). The cutting edge 41 may be used. The shape of the side surface of the blade edge portion is not particularly limited as long as it can form a through hole having a required width and length.
Further, the cross-sectional shape of the blade edge portion may be a double-blade type blade edge portion 42 as shown in FIG. 21 (A) or a blade edge portion 42 having a blade edge angle of about 90 °, or a two-stage blade type as shown in FIG. 21 (B). The blade edge portion 43 may have a blade edge angle of about 120 ° and a second blade edge angle of about 50 °. Furthermore, a double-edged blade type as shown in FIG. 21C and a blade edge part 44 having a cutting edge angle of about 25 °, and a two-stage blade type as shown in FIG. Any cross-sectional shape such as a blade edge portion 45 having a blade edge angle of about 70 ° at the second stage may be used. The angle of the blade edge is not particularly limited, and the cross-sectional shape of the blade edge portion is not particularly limited as long as it can form a through-hole having a required width and length.

また、金属箔に貫通孔を形成する工具として、先の例では工具10あるいはロータリー刃19を用いたが、貫通孔の形成手段として図22(A)に示す回転円盤46aの外周に複数の刃先部46bを備えたロータリー刃46を金属箔47に対し上下に移動自在に設けた構成を採用できる。なお、図22(A)においてはその外周に図20あるいは図21に示す刃先部が複数間欠的に形成されているが、図示では個々の刃先部の記載を略して概要のみ記載している。
ロータリー刃46の回転中心軸を上下に移動自在に軸支し、ロータリー刃46を上下に往復移動させながらテープ状の金属箔47をその長さ方向に移動させることで金属箔47に貫通孔47aを間欠的に形成することができる。
Further, in the previous example, the tool 10 or the rotary blade 19 was used as a tool for forming a through hole in the metal foil, but a plurality of cutting edges are provided on the outer periphery of the rotating disk 46a shown in FIG. A configuration in which the rotary blade 46 provided with the portion 46 b is provided so as to be movable up and down with respect to the metal foil 47 can be adopted. In FIG. 22 (A), a plurality of cutting edge portions shown in FIG. 20 or FIG. 21 are intermittently formed on the outer periphery, but in the drawing, the description of each cutting edge portion is omitted and only an outline is described.
The rotation center axis of the rotary blade 46 is supported so as to be movable up and down, and the tape-shaped metal foil 47 is moved in the length direction while the rotary blade 46 is reciprocated up and down, whereby a through hole 47a is formed in the metal foil 47. Can be formed intermittently.

また、ロータリー刃46は図22(B)に示すように中心軸部48aを備えた矩形ブロック部48bの一側にのみ刃先部48cを備えた構成の刃先工具48を用いても良く、図22(C)に示すように中心軸部49aを備えた柱状ブロック部49bの両端側にそれぞれ刃先部49cを備えた構成の刃先工具49を用いても良い。また、図22(D)に示すように中心軸部50aを備えた三角形状のブロック部50bの周囲に3つの刃先部50cを備えた構成の刃先工具50を用いても良い。
図22(C)、(D)に示す刃先工具49、50を用いてこれらを間欠回転させながら往復上下移動させ、それらの刃先部49c、50cをテープ状の金属箔47に間欠的に押し付けて貫通孔47aを形成することで目的の孔開き金属箔を製造することができる。
以上説明したように、金属箔に貫通孔を形成するための工具や刃先部は種々の形状を採用することができる。
Further, as shown in FIG. 22B, the rotary blade 46 may use a cutting edge tool 48 having a configuration in which a cutting edge portion 48c is provided only on one side of a rectangular block portion 48b having a central shaft portion 48a. As shown in (C), a cutting edge tool 49 having a cutting edge portion 49c on each end of a columnar block portion 49b having a central shaft portion 49a may be used. Further, as shown in FIG. 22D, a cutting edge tool 50 having a configuration in which three cutting edge portions 50c are provided around a triangular block portion 50b including a central shaft portion 50a may be used.
Using the cutting edge tools 49 and 50 shown in FIGS. 22 (C) and 22 (D), they are reciprocated up and down while intermittently rotating, and the cutting edge portions 49c and 50c are intermittently pressed against the tape-shaped metal foil 47. A desired perforated metal foil can be manufactured by forming the through-hole 47a.
As described above, various shapes can be adopted for the tool and the blade edge portion for forming the through hole in the metal foil.

1…金属箔、2…貫通孔、2A…開口部、2B…長辺部、2C…短辺部、2a…長辺、2b…短辺、3…バリ、3A…長辺バリ部、3B…短辺バリ部、10…工具、10F…切断刃、10G…刃先部、15、21…製造装置、16…巻出リール、17…巻取リール、18…押当ロール、19…ロータリー刃、19a…刃先部、19b…凹部、23…金属箔、24…貫通孔、25…二次電池、26、27…タブリード、28、29…セパレータ、30…負極集電体、31…正極集電体、32…負極活物質、33…正極活物質、40、41…刃先部、42、43、44、45…刃先部、46…ロータリー刃、48c、49c、50c…刃先部。 DESCRIPTION OF SYMBOLS 1 ... Metal foil, 2 ... Through-hole, 2A ... Opening part, 2B ... Long side part, 2C ... Short side part, 2a ... Long side, 2b ... Short side, 3 ... Burr, 3A ... Long side burr part, 3B ... Short side burr section, 10 ... tool, 10F ... cutting blade, 10G ... cutting edge section, 15, 21 ... manufacturing device, 16 ... unwinding reel, 17 ... take-up reel, 18 ... pushing roll, 19 ... rotary blade, 19a ... blade edge part, 19b ... concave part, 23 ... metal foil, 24 ... through-hole, 25 ... secondary battery, 26, 27 ... tab lead, 28, 29 ... separator, 30 ... negative electrode current collector, 31 ... positive electrode current collector, 32 ... Negative electrode active material layer , 33 ... Positive electrode active material layer , 40, 41 ... Blade edge part, 42, 43, 44, 45 ... Blade edge part, 46 ... Rotary blade, 48c, 49c, 50c ... Blade edge part.

Claims (16)

長辺/短辺で規定されるアスペクト比10以上のスリット状の貫通孔が複数各々の長さ方向を揃えて箔本体に形成され、前記各貫通孔の開口部周縁全周に前記貫通孔のスリット幅の1/2より長いバリが形成されたことを特徴とする蓄電デバイス集電体用孔開き金属箔。   A plurality of slit-shaped through-holes having an aspect ratio of 10 or more defined by the long side / short side are formed in the foil body with the length direction of each being aligned, and the through-holes are formed around the entire periphery of the opening of each through-hole. A perforated metal foil for an electricity storage device current collector, wherein burrs longer than 1/2 of the slit width are formed. 前記箔本体が帯状であり、その長さ方向に前記複数の貫通孔の長さ方向が揃えられたことを特徴とする請求項1に記載の蓄電デバイス集電体用孔開き金属箔。   2. The perforated metal foil for an electricity storage device current collector according to claim 1, wherein the foil main body has a strip shape, and the length direction of the plurality of through holes is aligned in the length direction thereof. 前記箔本体の前記開口部周縁全周を囲んで前記バリが形成され、前記貫通孔の長さ方向端部側のバリ高さが、前記貫通孔の長さ方向中央部のバリ高さより高くされたことを特徴とする請求項1または請求項2に記載の蓄電デバイス集電体用孔開き金属箔。   The burr is formed so as to surround the entire periphery of the opening of the foil body, and the burr height at the end in the longitudinal direction of the through hole is made higher than the burr height at the center in the length direction of the through hole. The perforated metal foil for an electricity storage device current collector according to claim 1 or 2, wherein the metal foil is perforated. 前記バリに塑性変形部分を有することを特徴とする請求項1〜請求項3のいずれか一項に記載の蓄電デバイス集電体用孔開き金属箔。   The perforated metal foil for an electricity storage device current collector according to any one of claims 1 to 3, wherein the burr has a plastically deformed portion. 前記複数の貫通孔が前記箔本体に0.5mm以上のピッチで間欠形成されたことを特徴とする請求項1〜請求項4のいずれか一項に記載の蓄電デバイス集電体用孔開き金属箔。   5. The perforated metal for an electricity storage device current collector according to claim 1, wherein the plurality of through holes are intermittently formed in the foil body at a pitch of 0.5 mm or more. Foil. 前記貫通孔の短辺が1〜500μm、長辺が10〜5000μmであることを特徴とする請求項1〜請求項5のいずれか一項に記載の蓄電デバイス集電体用孔開き金属箔。   The perforated metal foil for an electricity storage device current collector according to any one of claims 1 to 5, wherein the through-hole has a short side of 1 to 500 µm and a long side of 10 to 5000 µm. 前記貫通孔がその長さ方向に延在する平行な一対の長辺部と該一対の長辺部の長さ方向両端側に形成されて先窄まり状に形成された端縁部からなることを特徴とする請求項1〜請求項6のいずれか一項に記載の蓄電デバイス集電体用孔開き金属箔。   The through-hole is composed of a pair of parallel long side portions extending in the length direction and edge portions formed in a tapered shape on both ends in the length direction of the pair of long side portions. A perforated metal foil for an electricity storage device current collector according to any one of claims 1 to 6, wherein: 円板型の本体部の外周縁に沿って凹部を介し間欠的に複数の刃先部を備えた回転刃を用い、該回転刃を金属箔に押し付けつつ回転させて前記個々の刃先部で前記金属箔に回転方向に並行で間欠的に、長辺/短辺で規定されるアスペクト比10以上のスリット状の貫通孔であって、その長辺側の開口部周縁にスリット幅の1/2より長いバリを有する貫通孔を形成することを特徴とする蓄電デバイス集電体用孔開き金属箔の製造方法。 Using a rotary blade having a plurality of cutting edge portions intermittently through a recess along the outer peripheral edge of the disk-shaped main body, the metal blade is rotated by pressing the rotating blade against a metal foil and the individual cutting edge portions A slit-shaped through-hole having an aspect ratio of 10 or more, which is defined by the long side / short side, intermittently in parallel with the rotation direction of the foil, and the opening side periphery of the long side has a slit width of ½ A method for producing a perforated metal foil for an electricity storage device current collector , wherein a through-hole having a long burr is formed. 前記刃先部を前記箔本体の厚さ方向に押し付けて前記刃先部で前記箔本体に塑性変形を加えつつ前記箔本体に前記刃先部を突き通すことにより、前記突き通し側に前記箔本体の一部を塑性変形させた塑性変形部分を有するバリを形成しながら前記貫通孔を形成することを特徴とする請求項8記載の蓄電デバイス集電体用孔開き金属箔の製造方法。 A part of the foil body on the piercing side by pressing the blade edge part in the thickness direction of the foil body and passing the blade edge part through the foil body while plastic deformation of the foil body at the blade edge part. 9. The method for producing a perforated metal foil for an electricity storage device current collector according to claim 8 , wherein the through-hole is formed while forming a burr having a plastically deformed portion obtained by plastically deforming the material. 前記複数の貫通孔を前記箔本体に0.5mm以上のピッチで間欠形成することを特徴とする請求項8または請求項に記載の蓄電デバイス集電体用孔開き金属箔の製造方法。 The method for producing a perforated metal foil for an electricity storage device current collector according to claim 8 or 9 , wherein the plurality of through holes are intermittently formed in the foil body at a pitch of 0.5 mm or more. 前記貫通孔の短辺を1〜500μm、長辺を10〜5000μmとすることを特徴とする請求項8〜請求項10のいずれか一項に記載の蓄電デバイス集電体用孔開き金属箔の製造方法。 The short side of the through-hole 1 to 500 [mu] m, the long sides of the electric storage device current collector perforated metal foil according to any one of claims 8 to claim 10, characterized in that the 10~5000μm Production method. 長辺/短辺で規定されるアスペクト比10以上のスリット状の貫通孔が複数各々の長さ方向を揃えて箔本体に形成され、前記各貫通孔の開口部周縁全周に前記貫通孔のスリット幅の1/2より長いバリが形成され、前記バリが押し潰され、平滑化された金属箔と、該金属箔の表裏両面に塗布された活物質層とを備えたことを特徴とする電極。 A plurality of slit-shaped through-holes having an aspect ratio of 10 or more defined by the long side / short side are formed in the foil body with the length direction of each being aligned, and the through-holes are formed around the entire periphery of the opening of each through-hole. A burr longer than ½ of the slit width is formed, and the burr is crushed and smoothed , and the metal foil is provided with an active material layer applied to both the front and back surfaces of the metal foil. electrode. 前記箔本体の表裏両面に形成された前記活物質層が前記貫通孔を介し密着されたことを特徴とする請求項12に記載の電極。 The electrode according to claim 12 , wherein the active material layers formed on both front and back surfaces of the foil main body are in close contact with each other through the through hole. 前記複数の貫通孔が前記箔本体に0.5mm以上のピッチで間欠形成されたことを特徴とする請求項12または請求項13に記載の電極。 The electrode according to claim 12 or 13 , wherein the plurality of through holes are intermittently formed in the foil body at a pitch of 0.5 mm or more. 前記貫通孔の短辺が1〜500μm、長辺が10〜5000μmであることを特徴とする請求項12〜請求項14のいずれか一項に記載の電極。 The short side of the through hole is 1 to 500 [mu] m, the electrode according to any one of claims 12 to claim 14 in which the long side is characterized in that it is a 10~5000Myuemu. 請求項12〜請求項15の何れか一項に記載の電極を備えた電池。 A battery comprising the electrode according to any one of claims 12 to 15 .
JP2017065045A 2017-03-29 2017-03-29 Perforated metal foil for power storage device current collector, manufacturing method thereof, electrode, and battery including the electrode Expired - Fee Related JP6351050B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017065045A JP6351050B1 (en) 2017-03-29 2017-03-29 Perforated metal foil for power storage device current collector, manufacturing method thereof, electrode, and battery including the electrode
PCT/JP2018/012362 WO2018181278A1 (en) 2017-03-29 2018-03-27 Porous metal foil for storage device utilizing current collector and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017065045A JP6351050B1 (en) 2017-03-29 2017-03-29 Perforated metal foil for power storage device current collector, manufacturing method thereof, electrode, and battery including the electrode

Publications (2)

Publication Number Publication Date
JP6351050B1 true JP6351050B1 (en) 2018-07-04
JP2018170106A JP2018170106A (en) 2018-11-01

Family

ID=62779840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017065045A Expired - Fee Related JP6351050B1 (en) 2017-03-29 2017-03-29 Perforated metal foil for power storage device current collector, manufacturing method thereof, electrode, and battery including the electrode

Country Status (2)

Country Link
JP (1) JP6351050B1 (en)
WO (1) WO2018181278A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066956A (en) * 2021-03-17 2021-07-02 宁德新能源科技有限公司 Electrochemical device and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7120198B2 (en) * 2018-12-05 2022-08-17 トヨタ自動車株式会社 ELECTRODE LAMINATE FOR ALL-SOLID BATTERY AND MANUFACTURING METHOD THEREOF

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142787A (en) * 1992-09-21 1994-05-24 Obara Kinzoku Kogyo Kk Metallic foil with many holes and manufacture thereof and laminated body using the same
JP2000153322A (en) * 1998-06-18 2000-06-06 Toyo Kohan Co Ltd Disk-like roll for punching metallic sheet, device and method for punching metallic sheet using the roll, and punched metallic sheet
JP2010080294A (en) * 2008-09-26 2010-04-08 Panasonic Corp Secondary battery
WO2015107893A1 (en) * 2014-01-15 2015-07-23 パナソニックIpマネジメント株式会社 Electrochemical element and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142787A (en) * 1992-09-21 1994-05-24 Obara Kinzoku Kogyo Kk Metallic foil with many holes and manufacture thereof and laminated body using the same
JP2000153322A (en) * 1998-06-18 2000-06-06 Toyo Kohan Co Ltd Disk-like roll for punching metallic sheet, device and method for punching metallic sheet using the roll, and punched metallic sheet
JP2010080294A (en) * 2008-09-26 2010-04-08 Panasonic Corp Secondary battery
WO2015107893A1 (en) * 2014-01-15 2015-07-23 パナソニックIpマネジメント株式会社 Electrochemical element and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066956A (en) * 2021-03-17 2021-07-02 宁德新能源科技有限公司 Electrochemical device and electronic device
CN113066956B (en) * 2021-03-17 2022-06-10 宁德新能源科技有限公司 Electrochemical device and electronic device

Also Published As

Publication number Publication date
WO2018181278A1 (en) 2018-10-04
JP2018170106A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US8273482B2 (en) Electrode
US6447957B1 (en) Metal foil for collector and method of manufacturing the same, collector for secondary battery and secondary battery
JP7113747B2 (en) Electrode, method for manufacturing the electrode, and roller for manufacturing the electrode
DE112015000539T5 (en) CYLINDRICAL ELECTROCHEMICAL CELLS AND METHOD OF PREPARING THEM
US10340527B2 (en) Lithium-ion secondary battery and method of manufacturing the same
JP6351050B1 (en) Perforated metal foil for power storage device current collector, manufacturing method thereof, electrode, and battery including the electrode
JP2013211575A (en) Process of manufacturing electrode for power storage device
JP5011632B2 (en) Slitting apparatus and electrode manufacturing method
JPH10214616A (en) Manufacture of stacked battery electrode
CN207504104U (en) A kind of collector and the secondary cell using the collector
CN101369647B (en) Non aqueous electrolyte secondary batteries
JP2005190787A (en) Electrode plate for nonaqueous electrolyte secondary battery and its manufacturing method
JP5550091B2 (en) Method for producing electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2639620B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH1186869A (en) Perforated current collecting body used for secondary battery
CN110224178B (en) Flexible battery and preparation method thereof
US6666899B2 (en) Method of manufacturing electrode plates for batteries
JP6959054B2 (en) Perforated metal foil
JP2015193233A (en) Coated aluminum material and production method thereof
JP7015977B2 (en) Power storage device
JP2011165930A (en) Power storage device, and method of manufacturing shared negative electrode of the same
CN112133877B (en) Pole piece, winding type battery and coating method of pole piece
JP5573419B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and battery equipped with hydrogen storage alloy electrode
JP5369988B2 (en) Method and apparatus for manufacturing electrode current collector of power storage device
JP2019067491A (en) Power storage device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180404

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180530

R150 Certificate of patent or registration of utility model

Ref document number: 6351050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees