JP2010278300A - Method of manufacturing lithium ion capacitor - Google Patents

Method of manufacturing lithium ion capacitor Download PDF

Info

Publication number
JP2010278300A
JP2010278300A JP2009130503A JP2009130503A JP2010278300A JP 2010278300 A JP2010278300 A JP 2010278300A JP 2009130503 A JP2009130503 A JP 2009130503A JP 2009130503 A JP2009130503 A JP 2009130503A JP 2010278300 A JP2010278300 A JP 2010278300A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
electrode layer
lithium ion
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009130503A
Other languages
Japanese (ja)
Inventor
Makiko Kichise
万希子 吉瀬
Kenro Mitsuta
憲朗 光田
Daigo Takemura
大吾 竹村
Shigeru Aihara
茂 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009130503A priority Critical patent/JP2010278300A/en
Publication of JP2010278300A publication Critical patent/JP2010278300A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a lithium ion capacitor capable of acquiring a low internal resistance and a flat and smooth electrode layer at low cost. <P>SOLUTION: The manufacturing method includes a step of forming a positive electrode layer 3 containing a positive electrode active material capable of adsorbing/desorbing lithium ions or anions on at least one surface of a positive electrode collector base material 2 and forming a first electrode and a second electrode, respectively, a step of forming a negative electrode layer 6 containing a negative electrode active material capable of absorbing/releasing lithium ions on both surfaces of a negative electrode collector base material 5 and forming a through hole passing through the negative electrode collector base material from a negative electrode layer formed on one surface of the negative collector base material and reaching the negative electrode layer formed on the other surface to form a negative electrode, a step of forming a battery body by laminating a first separator, a source of supplying lithium ions, a negative electrode, and second separator in order on a surface of the positive electrode layer of the first positive electrode and laminating a second positive electrode facing the positive electrode layer on the second separator side, and a step of immersing the battery body in an electrolysis solution with lithium salt dissolved in a nonaqueous solvent. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、リチウム二次電池と電気二重層キャパシタとを複合した構成をもつリチウムイオンキャパシタの製造方法に関する。   The present invention relates to a method of manufacturing a lithium ion capacitor having a configuration in which a lithium secondary battery and an electric double layer capacitor are combined.

電気二重層キャパシタは、活性炭などのカーボン材料とバインダとからなるシート状の電極層をもつ正極および負極と、この両極を電気的に絶縁する多孔質セパレータと、これらに含浸された電解液とで構成されており、両極と電解液との界面に発生する電気二重層の静電容量を電解液中のイオンが電極間を移動することにより充放電を行なうものである。このような充放電動作を行なう電気二重層キャパシタは、電気化学反応を伴わないため、充放電レート特性、サイクル特性に優れている。このため、電子機器のバックアップ電源や自動車を始めとした各種輸送機の電源として用いられている。しかし、リチウムイオン電池に比べるとエネルギー密度が低い。   An electric double layer capacitor is composed of a positive electrode and a negative electrode having a sheet-like electrode layer made of a carbon material such as activated carbon and a binder, a porous separator that electrically insulates both electrodes, and an electrolyte solution impregnated in these. It is configured to charge / discharge the capacitance of the electric double layer generated at the interface between the two electrodes and the electrolytic solution as ions in the electrolytic solution move between the electrodes. An electric double layer capacitor that performs such a charge / discharge operation does not involve an electrochemical reaction, and therefore has excellent charge / discharge rate characteristics and cycle characteristics. For this reason, it is used as a backup power source for electronic devices and as a power source for various transport equipment including automobiles. However, the energy density is lower than that of a lithium ion battery.

一方、リチウム二次電池は、一般にLiCoO等のリチウム含有金属酸化物を正極に、グラファイト等の炭素材料を負極に使用しており、充電時には正極のリチウム含有金属酸化物から負極にリチウムが供給され、放電時には負極中のリチウムが正極に戻されるという、リチウムイオンの挿入、脱離反応が利用されている。このリチウム二次電池は、電圧が高く高エネルギー密度であるため、携帯機器用電源や電動工具、家電製品などに広く使用されている。しかし、エネルギー密度が高い反面、出力特性やサイクル特性などに課題がある。 On the other hand, lithium secondary batteries generally use a lithium-containing metal oxide such as LiCoO 2 as a positive electrode and a carbon material such as graphite as a negative electrode. During charging, lithium is supplied from the lithium-containing metal oxide of the positive electrode to the negative electrode. In addition, lithium ion insertion and desorption reactions in which lithium in the negative electrode is returned to the positive electrode during discharge are used. Since this lithium secondary battery has a high voltage and a high energy density, it is widely used in power supplies for portable devices, electric tools, home appliances, and the like. However, while the energy density is high, there are problems in output characteristics and cycle characteristics.

近年リチウム電池と電気二重層キャパシタとを組み合わせたリチウムイオンキャパシタ(以下、LICと記す)の開発が盛んに行われている。このLICは、正極活物質に電気二重層キャパシタ用活性炭、負極活物質にリチウムイオン電池用炭素材料が用いられたハイブリッド型のキャパシタである。このLICは、負極活物質にリチウムイオンをドープすることにより負極電位を低くして高いセル電圧を得ることができるため、エネルギー密度の向上が図ることができる。   In recent years, a lithium ion capacitor (hereinafter referred to as LIC) in which a lithium battery and an electric double layer capacitor are combined has been actively developed. This LIC is a hybrid type capacitor in which activated carbon for an electric double layer capacitor is used as a positive electrode active material and a carbon material for a lithium ion battery is used as a negative electrode active material. In this LIC, since the negative electrode potential can be lowered and a high cell voltage can be obtained by doping lithium ions into the negative electrode active material, the energy density can be improved.

従来のLICにおいては、正極および負極の集電体がそれぞれ表裏面を貫通する孔を備え、これらの電極にリチウムイオンをドープするために金属リチウム箔を接触させ、リチウムイオンが電気化学的接触により正極あるいは負極を透過することによりリチウムイオンがドープされている。このため集電体にはリチウムイオンを透過する孔が開いたエキスパンドメタルやパンチングメタル等が用いられている(例えば、特許文献1参照)。   In a conventional LIC, the positive and negative electrode current collectors each have a hole penetrating the front and back surfaces, and a metal lithium foil is brought into contact with these electrodes to dope lithium ions, and the lithium ions are brought into contact by electrochemical contact. Lithium ions are doped by passing through the positive electrode or the negative electrode. For this reason, an expanded metal, a punching metal, or the like having a hole through which lithium ions are transmitted is used as the current collector (see, for example, Patent Document 1).

特開2006−286919号公報(4頁、図3)JP 2006-286919 A (page 4, FIG. 3)

従来のLICにおいては、エキスパンドメタルやパンチングメタルなどの多孔金属シートを集電体として用いているので、一般の電気二重層キャパシタに用いるような平滑金属箔を集電体として使用した場合に比較して導電部断面積が著しく小さくなるという問題がある。エキスパンドメタルやパンチングメタルといった多孔金属シートは、導電体の断面積が加工前の金属シートに比較して著しく減少している。そのため平滑金属箔を用いた場合に比較して集電体の電気抵抗が高くなる。その結果、LICの内部抵抗が高くなり、大電流の入出力が困難になったり、内部で発熱が生じてLICの温度が上昇したりするといった問題がある。また、集電体上に電極層を塗工形成する工程が複雑になるという問題もある。ペースト状の電極層材を集電体上に塗工する際に集電体が開口率の大きなエキスパンドメタルやパンチングメタルといった多孔体である場合、一度の塗工では平滑な電極層が得られず、電極層の表面に凹凸ができ、充放電特性低下の原因となる。これに対して、1度目の塗工で多孔金属シートの穴部を埋め、2度目以降の重ね塗工で所定厚さの平滑な電極層を得るといった複数回塗工も考えられるが、これは製造工程数の増加にともなう良品率の低下、コスト増大の要因となる。   In a conventional LIC, a porous metal sheet such as expanded metal or punching metal is used as a current collector. Compared to the case where a smooth metal foil used for a general electric double layer capacitor is used as a current collector. As a result, there is a problem that the cross-sectional area of the conductive portion is remarkably reduced. In a porous metal sheet such as an expanded metal or a punching metal, the cross-sectional area of the conductor is significantly reduced as compared with a metal sheet before processing. Therefore, the electrical resistance of the current collector is higher than when a smooth metal foil is used. As a result, there is a problem that the internal resistance of the LIC becomes high and it becomes difficult to input / output a large current, or heat is generated inside and the temperature of the LIC rises. There is also a problem that the process of coating and forming the electrode layer on the current collector becomes complicated. When applying a paste-like electrode layer material on a current collector, if the current collector is a porous material such as expanded metal or punched metal having a large aperture ratio, a smooth electrode layer cannot be obtained by a single application. The surface of the electrode layer is uneven, which causes a decrease in charge / discharge characteristics. On the other hand, it is conceivable to apply a plurality of times such as filling the hole portion of the porous metal sheet by the first coating and obtaining a smooth electrode layer having a predetermined thickness by the second and subsequent coatings. As the number of manufacturing processes increases, the yield rate decreases and the cost increases.

この発明は、上述のような課題を解決するためになされたもので、低い内部抵抗が得られるとともに、低コストで平滑な電極層を得ることができるリチウムイオンキャパシタの製造方法を提供することができる。   The present invention has been made to solve the above-described problems, and provides a method for manufacturing a lithium ion capacitor capable of obtaining a low internal resistance and obtaining a smooth electrode layer at low cost. it can.

この発明に係るリチウムイオンキャパシタの製造方法は、正極集電基材の少なくとも一方の面にリチウムイオンまたはアニオンの吸着および脱着可能な正極活物質を含む正極層を形成して第1の正極および第2の正極をそれぞれ作製する工程と、負極集電基材の両面にリチウムイオンの吸蔵および放出可能な負極活物質を含む負極層を形成し、負極集電基材の一方の面に形成された負極層から前記負極集電基材を貫通して他方の面に形成された負極層まで到達する穿孔を形成して負極を作製する工程と、第1の正極の正極層の表面から順に第1のセパレータ、リチウムイオン供給源、負極、第2のセパレータおよび第2のセパレータ側に正極層を対向させて第2の正極を積層して電池体を作製する工程と、電池体を非水系溶媒にリチウム塩が溶解した電解液に含浸する工程とを備えたものである。   The method of manufacturing a lithium ion capacitor according to the present invention includes forming a positive electrode layer containing a positive electrode active material capable of adsorbing and desorbing lithium ions or anions on at least one surface of a positive electrode current collector substrate, and And forming a negative electrode layer containing a negative electrode active material capable of occluding and releasing lithium ions on both surfaces of the negative electrode current collector substrate, and formed on one surface of the negative electrode current collector substrate. A step of forming a negative electrode by forming a perforation that penetrates the negative electrode current collecting base material from the negative electrode layer to reach the negative electrode layer formed on the other surface, and a first in order from the surface of the positive electrode layer of the first positive electrode A battery body by stacking the second positive electrode with the positive electrode layer facing the separator, the lithium ion supply source, the negative electrode, the second separator, and the second separator, and the battery body in a non-aqueous solvent Lithium salt Is obtained by a step of impregnating the solution was an electrolytic solution.

この発明に係るリチウムイオンキャパシタの製造方法においては、負極集電基材の両面にリチウムイオンまたはアニオンの吸蔵および放出可能な負極活物質を含む負極層を形成し、負極集電基材の一方の面に形成された負極層から前記負極集電基材を貫通して他方の面に形成された負極層まで到達する穿孔を形成する負極を作製する工程を備えているので、負極集電基材は多孔金属シートに比べて大きな断面積を有するために低い内部抵抗が得られるとともに、負極層を形成するときには負極集電基材は平滑であることから、低コストで平滑な電極層を得ることができる。また、正極集電基材には穿孔が形成されていないので、大電流での充放電においても、正極および負極ともに高い容量が得られる。   In the method for producing a lithium ion capacitor according to the present invention, a negative electrode layer containing a negative electrode active material capable of occluding and releasing lithium ions or anions is formed on both sides of the negative electrode current collector substrate, and one of the negative electrode current collector substrates is formed. A negative electrode current collecting base material comprising a step of forming a negative electrode that forms perforations that penetrate the negative electrode current collecting base material from the negative electrode layer formed on the surface and reach the negative electrode layer formed on the other surface. Has a large cross-sectional area compared to the porous metal sheet, so that a low internal resistance is obtained, and when the negative electrode layer is formed, the negative electrode current collecting substrate is smooth, so that a smooth electrode layer can be obtained at low cost. Can do. Moreover, since the positive electrode current collecting base material is not perforated, high capacity can be obtained for both the positive electrode and the negative electrode even in charge / discharge with a large current.

この発明の実施の形態1におけるリチウムイオンキャパシタの断面模式図である。It is a cross-sectional schematic diagram of the lithium ion capacitor in Embodiment 1 of this invention. この発明の実施の形態1に金型の模式図である。It is a schematic diagram of a metal mold | die in Embodiment 1 of this invention. この発明の実施の形態1における負極に穿孔を形成する工程を示す模式図である。It is a schematic diagram which shows the process of forming perforation in the negative electrode in Embodiment 1 of this invention. この発明の実施の形態2におけるロールプレスの模式図である。It is a schematic diagram of the roll press in Embodiment 2 of this invention. この発明の実施の形態4における捲回型リチウムイオンキャパシタの断面模式図である。It is a cross-sectional schematic diagram of the winding type lithium ion capacitor in Embodiment 4 of this invention. この発明の実施の形態4における捲回型リチウムイオンキャパシタの断面模式図である。It is a cross-sectional schematic diagram of the winding type lithium ion capacitor in Embodiment 4 of this invention.

実施の形態1.
図1は、この発明を実施するための実施の形態1におけるリチウムイオンキャパシタ(LIC)の断面を模式的に示したものである。図1は、LICの単一ユニットを模式的に示しているが、LICのセル全体としては必要な容量に達するように、図1の構造を積層もしくは長尺の電極を捲回した構造とすることも可能である。
Embodiment 1 FIG.
FIG. 1 schematically shows a cross section of a lithium ion capacitor (LIC) according to Embodiment 1 for carrying out the present invention. FIG. 1 schematically shows a single unit of the LIC, but the structure of FIG. 1 is laminated or a structure in which long electrodes are wound so as to reach a necessary capacity for the entire LIC cell. It is also possible.

まず正極の作製方法について述べる。正極1は通常の電気二重層キャパシタと同様の構成であり、例えば平滑なアルミニウム箔で構成された正極集電基材2の表面に正極活物質を含む正極層3が塗布形成されている。正極活物質としては、表面積が広く静電容量が大きいカーボン材料を用いることができる。カーボン材料としては、例えば直径10μm程度の粒子状の活性炭、水蒸気賦活活性炭、アルカリ活性炭およびナノゲートカーボンなどを用いることができる。即ち、正極活物質は、リチウムイオンまたはアニオンを吸着、脱着可能な材料であればこれらに限るものではない。ここでいう吸着、脱着とは、リチウムイオン又はアニオンを可逆的に担持することを示している。正極層3は、圧延法、塗布法およびモールド成形法などにより、正極活物質をバインダに均一分散させたペーストを用いて正極集電基材2の片面の全域に結着して形成する。したがって、正極層3の外形形状は、電流端子部を除いて正極集電基材2と同じである。なお、バインダにはPTFE(ポリテトラフルオロエチレン)などのフッ素樹脂やSBR(スチレンブタジエンラバー)系やアクリル系合成ゴム、PVDF(ポリフッ化ビニリデン)などを用いることができる。また、正極層3の厚さは、約100μmであり、一般に50〜150μmの範囲である。   First, a method for producing a positive electrode will be described. The positive electrode 1 has the same configuration as that of a normal electric double layer capacitor. For example, a positive electrode layer 3 containing a positive electrode active material is applied and formed on the surface of a positive electrode current collector substrate 2 made of a smooth aluminum foil. As the positive electrode active material, a carbon material having a large surface area and a large capacitance can be used. As the carbon material, for example, particulate activated carbon having a diameter of about 10 μm, water vapor activated activated carbon, alkaline activated carbon, nanogate carbon, and the like can be used. That is, the positive electrode active material is not limited to these as long as the material can adsorb and desorb lithium ions or anions. Here, adsorption and desorption indicate that lithium ions or anions are reversibly supported. The positive electrode layer 3 is formed by binding to the entire area of one surface of the positive electrode current collector substrate 2 using a paste in which a positive electrode active material is uniformly dispersed in a binder by a rolling method, a coating method, a molding method, or the like. Therefore, the outer shape of the positive electrode layer 3 is the same as that of the positive electrode current collector substrate 2 except for the current terminal portion. The binder may be a fluororesin such as PTFE (polytetrafluoroethylene), SBR (styrene butadiene rubber), acrylic synthetic rubber, PVDF (polyvinylidene fluoride), or the like. Moreover, the thickness of the positive electrode layer 3 is about 100 μm, and is generally in the range of 50 to 150 μm.

次に負極の製造方法について述べる。負極4は、例えば平滑な銅箔で構成された負極集電基材5の両面に負極活物質を含む負極層6が塗布形成されている。負極集電基材5の代表的な厚さは10〜50μmであるが、電気二重層キャパシタを充放電する際の充放電電流によって適宜決められる。充放電電流が大電流の場合には、内部抵抗を小さくするために厚い負極集電基材が用いられ、充放電電流が小さい場合には、エネルギー密度を向上する観点から、できるだけ薄いものが用いられる。負極活物質としては、リチウムイオンを吸蔵、放出することが可能な材料を用いることができる。ここでいう吸蔵、放出とは、電気化学反応によるリチウムの脱挿入を示す。負極活物質としては、電気化学反応によってリチウムの脱挿入が可能な材料を用いることができる。本実施の形態においては黒鉛を用いている。それ以外に、例えばアモルファス状のカーボン、スズやシリコン系の合金など、リチウムイオン電池の負極として用いられている負極活物質などが使用可能である。また、正極と負極とでは使用するカーボンの種類などで電極層(正極層および負極層)の最適な厚さが異なる。ここでは、負極層6の厚さを約70μmとしている。   Next, a method for manufacturing the negative electrode will be described. As for the negative electrode 4, the negative electrode layer 6 containing a negative electrode active material is apply | coated and formed on both surfaces of the negative electrode current collection base material 5 comprised, for example with smooth copper foil. The typical thickness of the negative electrode current collecting base material 5 is 10 to 50 μm, and is appropriately determined depending on the charge / discharge current when charging / discharging the electric double layer capacitor. When the charge / discharge current is large, a thick negative electrode current collector is used to reduce the internal resistance. When the charge / discharge current is small, the thinnest possible one is used from the viewpoint of improving the energy density. It is done. As the negative electrode active material, a material capable of inserting and extracting lithium ions can be used. Occlusion and release as used herein refer to lithium desorption by an electrochemical reaction. As the negative electrode active material, a material capable of removing and inserting lithium by an electrochemical reaction can be used. In the present embodiment, graphite is used. In addition, for example, negative electrode active materials used as negative electrodes of lithium ion batteries, such as amorphous carbon, tin, and silicon alloys, can be used. Moreover, the optimal thickness of an electrode layer (a positive electrode layer and a negative electrode layer) changes with the kind etc. of carbon to be used by a positive electrode and a negative electrode. Here, the thickness of the negative electrode layer 6 is about 70 μm.

正極および負極の電極層は、塗工後の気孔率が高く、かさ密度が低すぎるため適正な気孔率に調整するため、所定の温度で平滑ロール(カレンダーロール)プレス加工が施される。   Since the positive electrode layer and the negative electrode layer have high porosity after coating and the bulk density is too low, smooth roll (calendar roll) pressing is performed at a predetermined temperature in order to adjust the porosity to an appropriate one.

さらに負極においては、リチウムイオンを透過させるために負極集電基材および負極層にイオンが拡散する経路として多数の穿孔を形成する。図2は、本実施の形態における負極に穿孔を形成するための金型10の模式図である。図2において、金型台11には、穿孔をあけるための多数の突起12が林立している。図3は、図2に示す金型10を用いて負極に穿孔を形成する工程を示す模式図である。金型台11の一方の面に林立する突起12の上に負極4を配置し、さらにその上にアクリル板13を配置し、このアクリル板13の上に配置した平滑金型14を配置し、金型10と平滑金型14とを加圧して負極4に穿孔を形成する。突起12の形状は、円柱、四角柱、円錐、四角錐などの形状が好ましいがこれらに限定されるものではなく、負極に効率よく穿孔できればどんな形状でもよい。また、突起の先端は尖っている必要はなく、丸みを帯びた形状、平らな形状となっていてもよい。   Further, in the negative electrode, a large number of perforations are formed as a path for ions to diffuse into the negative electrode current collector base and the negative electrode layer in order to allow lithium ions to permeate. FIG. 2 is a schematic diagram of a mold 10 for forming perforations in the negative electrode in the present embodiment. In FIG. 2, a large number of protrusions 12 for making perforations are erected on the mold base 11. FIG. 3 is a schematic diagram showing a step of forming perforations in the negative electrode using the mold 10 shown in FIG. The negative electrode 4 is disposed on the projection 12 that stands on one surface of the mold base 11, the acrylic plate 13 is further disposed thereon, and the smooth die 14 disposed on the acrylic plate 13 is disposed, The mold 10 and the smooth mold 14 are pressurized to form perforations in the negative electrode 4. The shape of the protrusion 12 is preferably a shape such as a cylinder, a quadrangular prism, a cone, or a quadrangular pyramid. However, the shape is not limited thereto, and any shape may be used as long as the negative electrode can be efficiently drilled. Further, the tip of the protrusion does not need to be sharp, and may have a rounded shape or a flat shape.

このように、負極層の気孔率を調整するためのプレス加工の後に、負極に穿孔を形成する場合もあるが、プレス加工前の塗工完了後の負極を所定の温度および圧力でプレスすることによって負極層の気孔率調整と負極の穿孔形成とを同時に行うことも可能である。また、プレス加工前の塗工完了後の負極に穿孔を形成した後にプレス加工を行なって負極層の気孔率を適正な気孔率に調整することも可能である。   As described above, after the press working for adjusting the porosity of the negative electrode layer, the negative electrode may be perforated, but the negative electrode after the coating before the press working is pressed at a predetermined temperature and pressure. Therefore, the porosity adjustment of the negative electrode layer and the perforation formation of the negative electrode can be simultaneously performed. It is also possible to adjust the porosity of the negative electrode layer to an appropriate porosity by forming the perforations in the negative electrode after completion of the coating before the press work and then performing the press work.

上述の正極および負極の電極層のプレス加工や負極の穿孔を形成するためのプレスは、平板プレスで行うこともできるが、ロール型の金型のロールプレスで実施すれば、より大面積の電極を効率よくプレス加工することができる。いずれのプレス方式においても、プレス圧力、温度、ロール間のギャップ、プレス回数、および金型と電極との間のスペーサの材質および厚さの調節により、電極層の気孔率や厚さのコントロール、穿孔を形成する場合は負極の穿孔の開口率を自由に調節することが可能である。なお、本実施の形態においては、正極に穿孔は形成していない。このため、正極の容量を損なうことなく、大電流での入出力が可能である。   The press working of the positive electrode layer and the negative electrode layer and the press for forming the perforations of the negative electrode can be performed by a flat plate press. However, if performed by a roll press of a roll mold, an electrode having a larger area is used. Can be efficiently pressed. In any pressing method, the porosity and thickness of the electrode layer can be controlled by adjusting the pressing pressure, temperature, gap between rolls, number of presses, and the material and thickness of the spacer between the mold and the electrode. When forming the perforations, it is possible to freely adjust the aperture ratio of the perforations of the negative electrode. In this embodiment, no perforation is formed in the positive electrode. For this reason, input / output with a large current is possible without impairing the capacity of the positive electrode.

図1に示すように、穿孔7が形成された負極4の上下面に金属リチウム箔8を配置し、さらにその上下面にセパレータ9を配置し、さらにその上下面に正極層3を対向させて正極1を配置して積層することにより、本実施の形態のリチウムイオンキャパシタの電池体を構成する。さらに、この電池体を非水系溶媒にリチウム塩が溶解した電解液に含浸してアルミニウム製のラミネートフィルムなどの外装容器で封止することにより、本実施の形態のリチウムイオンキャパシタを作製した。   As shown in FIG. 1, metal lithium foils 8 are disposed on the upper and lower surfaces of the negative electrode 4 in which the perforations 7 are formed, separators 9 are disposed on the upper and lower surfaces thereof, and the positive electrode layer 3 is opposed to the upper and lower surfaces thereof. The battery body of the lithium ion capacitor of the present embodiment is configured by arranging and laminating the positive electrode 1. Further, the battery body was impregnated with an electrolytic solution in which a lithium salt was dissolved in a non-aqueous solvent and sealed with an exterior container such as an aluminum laminate film, whereby a lithium ion capacitor of the present embodiment was produced.

負極の電位を下げてリチウムイオンキャパシタを使用可能な状態にするにはリチウムを負極にドープする必要があるが、本実施の形態においては、負極へのリチウムイオンドープを負極表面に貼付した金属リチウム箔8をリチウムイオン供給源として、電解液中にリチウムイオンを拡散させて負極にドープを行なった。なお、金属リチウムの代わりにコバルト酸リチウム等のリチウム金属酸化物をリチウムイオン供給源として使用し、外部電源より充電を行うことにより強制的にドープする場合もある。金属リチウム以外のリチウムイオン供給源としては、例えばリチウムを吸蔵および放出することが可能な正極活物質のいずれか1種または2種以上を含んでおり、必要に応じて炭素材料などの導電材およびポリフッ化ビニリデンなどのバインダを含んでいてもよい。リチウムを吸蔵および放出することが可能な正極活物質としては、オリビン型リン酸鉄リチウムなどのリチウム含有リン酸塩、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウムなどのリチウム複合酸化物など、少なくとも1種類の遷移金属元素を含むリチウム含有遷移金属酸化物、リチウム含有硫酸塩等を少なくとも1種類以上含むことが好ましいがこれに限るものではない。   In order to lower the potential of the negative electrode and make the lithium ion capacitor usable, it is necessary to dope lithium into the negative electrode. However, in this embodiment, metallic lithium with lithium ion dope applied to the negative electrode surface is attached. Using the foil 8 as a lithium ion supply source, lithium ions were diffused in the electrolytic solution to dope the negative electrode. In some cases, lithium metal oxide such as lithium cobalt oxide is used as a lithium ion supply source in place of metal lithium, and forcible doping is performed by charging from an external power source. The lithium ion supply source other than metallic lithium includes, for example, any one or more of positive electrode active materials capable of occluding and releasing lithium, and if necessary, a conductive material such as a carbon material and A binder such as polyvinylidene fluoride may be included. The positive electrode active material capable of occluding and releasing lithium includes at least lithium-containing phosphates such as olivine-type lithium iron phosphate, lithium composite oxides such as lithium cobaltate, lithium manganate, and lithium nickelate. It is preferable to include at least one lithium-containing transition metal oxide containing one kind of transition metal element, lithium-containing sulfate, or the like, but is not limited thereto.

セパレータは、負極と正極とを隔離し、両極間の電気的絶縁性を確保しつつ、リチウムイオンを通過させるものである。セパレータの材料としては、例えばポリエチレンやポリプロピレンを用いることができる。また、セルロース系の紙セパレータも適している。   The separator separates the negative electrode and the positive electrode and allows lithium ions to pass through while ensuring electrical insulation between the two electrodes. As the material of the separator, for example, polyethylene or polypropylene can be used. Cellulosic paper separators are also suitable.

本実施の形態において、電解液としては、例えばLiPF、LiClO、LiBF、LiAsF、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSOなどの電解質を有機溶媒に溶解したもの用いることができる。有機溶媒としては、ジメトキシエタン、ジエチルエーテル等のエーテル系溶媒、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、エチルメチルカーボネート(MEC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)等のエステル系溶媒、γ―ブチロラクトン(GBL)、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、1,3−ジオキサン(DOX)、リン酸エチルジメチル(EDMP)、リン酸トリメチル(TMP)、リン酸プロピルジメチル(PDMP)などの溶媒を用いることができ、これらを単独でまたは二種以上を組み合わせて用いることができる。さらに、電解液には、他の添加物が含まれていてもよい。電解質と電解液との組合せとしては、例えばLiPF/EC+DEC、LiBF/EC+DEC、LiN(CFSO/EC+DEC、LiN(CSO/EC+DEC、LiPF/EC+PC、LiPF/EC+GBL、LiBF/EC+PC、LiBF/EC+GBL、LiBF/EDMP、LiBF/EC+EDMP、LiN(CFSO/EC+GBL、LiN(CSO/EC+GBL、LiN(CFSO/EC+EDMP、LiN(CSO/EC+EDMP等が挙げられるが、これらに限定されるものではない。また、100℃以上の高温においても、イオン伝導性を有するために、有機溶媒はEC、PC,GBLなどの高沸点溶媒を含むことが望ましい。 In the present embodiment, examples of the electrolytic solution include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC An electrolyte such as (CF 3 SO 2 ) 3 dissolved in an organic solvent can be used. Examples of organic solvents include ether solvents such as dimethoxyethane and diethyl ether, and ester solvents such as ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (MEC), dimethyl carbonate (DMC), and diethyl carbonate (DEC). Solvent, γ-butyrolactone (GBL), tetrahydrofuran (THF), tetrahydropyran (THP), 1,3-dioxane (DOX), ethyl dimethyl phosphate (EDMP), trimethyl phosphate (TMP), propyl dimethyl phosphate (PDMP) ) And the like, and these can be used alone or in combination of two or more. Furthermore, the electrolyte solution may contain other additives. Examples of combinations of the electrolyte and the electrolyte include LiPF 6 / EC + DEC, LiBF 4 / EC + DEC, LiN (CF 3 SO 2 ) 2 / EC + DEC, LiN (C 2 F 5 SO 2 ) 2 / EC + DEC, LiPF 6 / EC + PC, LiPF 6 / EC + GBL, LiBF 4 / EC + PC, LiBF 4 / EC + GBL, LiBF 4 / EDMP, LiBF 4 / EC + EDMP, LiN (CF 3 SO 2 ) 2 / EC + GBL, LiN (C 2 F 5 SO 2 ) 2 / EC + G (CF 3 SO 2) 2 / EC + EDMP, LiN (C 2 F 5 SO 2) 2 / EC + but EDMP like, but is not limited thereto. Further, in order to have ionic conductivity even at a high temperature of 100 ° C. or higher, the organic solvent desirably contains a high boiling point solvent such as EC, PC, GBL.

本実施の形態においては、外装容器としてアルミニウム製のラミネートフィルムの例を示したが、それ以外にステンレスなどの金属からなる円筒型または角型の容器、金属と樹脂により構成されるラミネートフィルムからなる袋状または箱型の容器でもよい。このラミネートフィルムによる外装容器は、熱融着(ヒートシール)によってシールすることができ、LICの内部からの電解液の漏出やLIC外部からの水分の侵入を防げるものであればよい。シール部に熱融着性を有する樹脂フィルムを用いることもできるが、金属を蒸着したり、金属めっきでコートしたり、アルミニウム等の金属箔をラミネートしたりしたものが好ましい。金属箔を用いる場合、十分な厚さがあれば単独で用いることもできるが、軽量化のために、数ミクロンから数十ミクロンの厚さの金属箔に樹脂がラミネートコートされたものが一般に用いられる。さらに、その内面には熱融着性を付与するためのポリエチレンやポリプロピレンのフィルム、外面には強度向上のためのポリエチレンテレフタレートや延伸ナイロンフィルムを積層させることが好ましい。   In the present embodiment, an example of an aluminum laminate film is shown as an exterior container, but other than that, a cylindrical or square container made of a metal such as stainless steel, or a laminate film made of a metal and a resin. It may be a bag-shaped or box-shaped container. The outer packaging container made of this laminate film may be sealed by heat fusion (heat sealing) and can prevent leakage of the electrolytic solution from the inside of the LIC and intrusion of moisture from the outside of the LIC. Although a resin film having heat-fusibility can be used for the seal portion, it is preferable to deposit a metal, coat with metal plating, or laminate a metal foil such as aluminum. When a metal foil is used, it can be used alone if it has a sufficient thickness. However, in order to reduce weight, a metal foil with a thickness of several to several tens of microns is generally used. It is done. Furthermore, it is preferable to laminate a polyethylene or polypropylene film for imparting heat-fusibility on the inner surface and a polyethylene terephthalate or stretched nylon film for improving the strength on the outer surface.

袋状の外装容器の加工方法は各種のものが適用可能であり、例えば、角形に裁断したフィルムを二つ折りにして3方をヒートシールする方法、円筒型に形成したフィルムの両開口部をヒートシールする方法等を挙げることができる。容器材料は裁断したままのものを用いる場合もあるが、LICの電池体に対応した部分に凹部をプレス加工してから用いることもできる。ヒートシールした後に外装容器の余分な部分を切断したり、曲げ加工を施したりしてもよい。   Various processing methods can be applied to the bag-shaped exterior container. For example, a film cut into a square shape is folded in half and heat-sealed in three directions, and both openings of the film formed into a cylindrical shape are heated. A sealing method and the like can be given. Although the container material may be used after being cut, it may be used after a recess is pressed in a portion corresponding to the battery body of LIC. After heat sealing, an extra portion of the outer container may be cut or subjected to bending.

本実施の形態におけるリチウムイオンキャパシタは、負極に対して正極が対向しており、この正極と負極との間に電解液を含浸されたセパレータが存在している構造であればよく、平板状の電極を複数枚重ね合わせた積層型構造、帯状の電極を捲回した捲き型構造、帯状の電極を折り畳みながら重ねた折り畳み型構造、またはこれらを組み合わせた複合構造にしてもよい。負極に対向する正極の面積を少し小さく(1〜10面積%狭くする)することにより、正極と負極との間のイオン伝導性を向上させることができる。   The lithium ion capacitor in this embodiment may have a structure in which a positive electrode is opposed to a negative electrode and a separator impregnated with an electrolyte exists between the positive electrode and the negative electrode. A stacked structure in which a plurality of electrodes are stacked, a rolled structure in which strip-shaped electrodes are wound, a folded structure in which strip-shaped electrodes are stacked while being folded, or a composite structure in which these are combined may be used. The ion conductivity between the positive electrode and the negative electrode can be improved by slightly reducing the area of the positive electrode facing the negative electrode (by 1 to 10% by area).

また、本実施の形態におけるリチウムイオンキャパシタには、電池体の正極および負極とそれぞれ電気的に接続された正極集電端子および負極集電端子が外装容器と電気的に絶縁されて外部に導出されているが(図示せず)。正極集電端子はアルミニウム、負極集電端子はニッケルまたは銅などの金属やニッケルメッキ銅のようなメッキ金属で形成されたものを用いることができる。これらの材料は、LIC内で安定に存在する導電性の材質であればよい。また、活物質が塗布されていない部分の正極または負極集電基材を外装容器の外部まで導出させて正極または負極集電端子としてもよい。   Further, in the lithium ion capacitor according to the present embodiment, the positive electrode collector terminal and the negative electrode collector terminal electrically connected to the positive electrode and the negative electrode of the battery body are electrically insulated from the outer container and led out to the outside. (Not shown). The positive electrode current collector terminal can be made of aluminum, and the negative electrode current collector terminal can be made of a metal such as nickel or copper or a plated metal such as nickel plated copper. These materials may be conductive materials that exist stably in the LIC. Alternatively, the positive electrode or negative electrode current collecting substrate in a portion where the active material is not applied may be led out to the outside of the outer container to serve as a positive electrode or negative electrode current collecting terminal.

以下、本実施の形態におけるLICの製造方法において、実施例を具体的な数値を挙げて説明すると共に、得られたLICの性能について後述の複数の比較例と比較した結果を説明する。   Hereinafter, in the LIC manufacturing method according to the present embodiment, examples will be described with specific numerical values, and the results of comparing the performance of the obtained LIC with a plurality of comparative examples described later will be described.

実施例1
[負極の作製]
負極活物質としての黒鉛と、バインダとしてのポリフッ化ビニリデンと、溶媒としてのn-メチルピロリドンとからなる電極ペーストを混合調製した。次にこの電極ペーストを負極集電基材としての幅300mm、厚さ20μmの銅箔の両面に塗工形成して負極原反とした。この負極原反をカレンダーロールプレスにて105℃で加圧して負極層の気孔率を調整した。
Example 1
[Production of negative electrode]
An electrode paste composed of graphite as a negative electrode active material, polyvinylidene fluoride as a binder, and n-methylpyrrolidone as a solvent was mixed and prepared. Next, this electrode paste was coated on both sides of a copper foil having a width of 300 mm and a thickness of 20 μm as a negative electrode current collecting base material to obtain a negative electrode original fabric. This negative electrode original fabric was pressurized at 105 ° C. with a calender roll press to adjust the porosity of the negative electrode layer.

[負極の穴開け加工]
底辺0.4mm、高さ0.7mmの四角錐の突起が0.8mm間隔で形成されている平板型の金属金型と、表面が平滑な金属板の間に負極原反を設置し、さらにその上にアクリル板を乗せて0.3MPaの圧力でプレスする操作を2回繰り返した。1回目と2回目でプレスする向きを45°ずらし、穴の位置が重ならないようにして穴開け処理を行った。穴開け後の負極原反の表面(穿孔面)を観察したところ、一辺約100μmの正方形の穴が多数形成されていた。また、負極原反の裏面(穿孔面と逆側の面)に穴は観察されなかった。なお、参考のため穴開け後の負極原反の不要な一部を切り出し、N−メチルピロリドン溶媒中に浸漬し、負極層を剥離除去したところ、負極集電基材の穿孔の開口率は0.6%であった。このようにして作製した負極原反から一辺30mm×37mmの長方形の負極を切り出し、長尺方向の端部7mmの負極層を剥がして負極集電タブとした。この負極の負極層の両面に、不活性雰囲気下で厚さ30μmのリチウム金属箔をプレスすることにより貼り付けた。その後負極集電タブにNiメッキ銅箔を超音波溶接により接続して負極集電端子とした。
[Negative hole drilling]
A negative electrode raw material is placed between a flat metal mold in which quadrangular pyramid protrusions with a base of 0.4 mm and a height of 0.7 mm are formed at intervals of 0.8 mm, and a metal plate with a smooth surface, The operation of placing an acrylic plate on the substrate and pressing it at a pressure of 0.3 MPa was repeated twice. The direction of pressing in the first time and the second time was shifted by 45 °, and the hole was drilled so that the positions of the holes did not overlap. When the surface (perforated surface) of the negative electrode original fabric after drilling was observed, many square holes each having a side of about 100 μm were formed. Moreover, no hole was observed on the back surface (surface opposite to the perforated surface) of the negative electrode original fabric. For reference, an unnecessary part of the negative electrode raw material after drilling was cut out, dipped in an N-methylpyrrolidone solvent, and the negative electrode layer was peeled and removed. It was 6%. A rectangular negative electrode having a side of 30 mm × 37 mm was cut out from the negative electrode raw material thus prepared, and the negative electrode layer having an end portion of 7 mm in the longitudinal direction was peeled off to obtain a negative electrode current collecting tab. The negative electrode layer was attached to both surfaces of the negative electrode layer by pressing a 30 μm thick lithium metal foil under an inert atmosphere. Thereafter, Ni-plated copper foil was connected to the negative electrode current collecting tab by ultrasonic welding to obtain a negative electrode current collecting terminal.

[正極の作製]
正極活物質としての活性炭と、バインダとしてのアクリル系ポリマーと、溶媒としての水からなる電極ペーストとを混合調製した。次にこの電極ペーストを正極集電基材としての幅300mm、厚さ50μmのアルミニウム箔の片面に塗工形成して正極原反とした。この正極原反をカレンダーロールプレスにて加圧して正極層の気孔率を調整した。この正極原反から29mm×36mmの長方形の正極を切り出し、長尺方向の端部7mmの活物質層を剥がして正極集電タブとした。
[Production of positive electrode]
Activated carbon as a positive electrode active material, an acrylic polymer as a binder, and an electrode paste made of water as a solvent were mixed and prepared. Next, this electrode paste was applied and formed on one surface of an aluminum foil having a width of 300 mm and a thickness of 50 μm as a positive electrode current collecting base material to obtain a positive electrode original fabric. This positive electrode original fabric was pressurized with a calender roll press to adjust the porosity of the positive electrode layer. A 29 mm × 36 mm rectangular positive electrode was cut out from the positive electrode raw material, and the active material layer having an end portion of 7 mm in the longitudinal direction was peeled off to obtain a positive electrode current collecting tab.

[セルの作製]
正極、セパレータ、負極、セパレータ、正極の順に互いの電極の電極層が対向するように中心を揃えて積層して電池体とした。セパレータには、厚さ40μmのセルロース系の紙セパレータを用いた。上下の正極の正極集電タブを重ねてこの正極集電タブにアルミニウム箔を超音波溶接により接続して正極集電端子とした。
[Production of cell]
A positive electrode, a separator, a negative electrode, a separator, and a positive electrode were laminated in order of the center so that the electrode layers of the electrodes face each other in order. As the separator, a cellulosic paper separator having a thickness of 40 μm was used. The upper and lower positive electrode current collecting tabs were overlapped and an aluminum foil was connected to the positive electrode current collecting tabs by ultrasonic welding to form a positive electrode current collecting terminal.

この電池体をアルミラミネートフィルムの外装に収納し、この外装の内部に1.2mol/lのLiPF電解液を含むエチレンカーボネート−ジエチルカーボネート3:7混合溶媒を注液し、最後にアルミラミネート外装を封口して外装容器として本実施の形態の実施例1のリチウムイオンキャパシタセルを作製した。その後、LICセル内部で負極へのリチウム挿入を促進するために、LICセルを30℃の恒温槽内で3日間のエージングを行なった。
実施例2
実施例2においては、負極と相対する側にセパレータを介して、片側には正極活物質層を含んだ正極層を形成した正極を、もう一方の側にはリチウムイオン供給層を形成した場合である。
The battery body is housed in an aluminum laminate film exterior, and an ethylene carbonate-diethyl carbonate 3: 7 mixed solvent containing 1.2 mol / l LiPF 6 electrolyte is injected into the exterior, and finally the aluminum laminate exterior is filled. The lithium ion capacitor cell of Example 1 of the present embodiment was manufactured as an outer container. Thereafter, in order to promote lithium insertion into the negative electrode inside the LIC cell, the LIC cell was aged for 3 days in a thermostat at 30 ° C.
Example 2
In Example 2, a positive electrode in which a positive electrode layer including a positive electrode active material layer is formed on one side through a separator on the side opposite to the negative electrode, and a lithium ion supply layer is formed on the other side. is there.

[負極の作製]
実施例1と同様に作製した。
[Production of negative electrode]
It was produced in the same manner as in Example 1.

[負極の加工]
実施例1と同様に作製した。
[Negative electrode processing]
It was produced in the same manner as in Example 1.

[正極の作製]
正極活物質としての活性炭と、バインダとしてのアクリル系ポリマーと、溶媒としての水とからなる電極ペーストを混合調製した。この電極ペーストを幅300mm、厚さ50μmのアルミニウム箔の正極集電基材の一方の面に塗工形成して正極層とした。次に、リチウム供給層を作製した。リチウムイオン供給層は、リチウムイオン供給源としてのコバルト酸リチウムと、アセチレンブラックと、PVDFとをNMPに分散させコバルト酸リチウムペーストを混合調整した。このコバルト酸リチウムペーストをアルミニウム箔の集電基材の片側面に塗工形成してリチウムイオン供給層とした。このようにして作製した正極原反及びリチウムイオン供給層原反を100℃で乾燥させた後、カレンダーロールプレスして気孔率を調整した。この正極、及びリチウムイオン供給層から29mm×36mmの長方形の短冊を切り出し、長尺方向の端部7mmの正極層およびリチウムイオン供給層を剥がし、各々集電基材を露出させて集電タブとした。その後これらの集電タブにアルミニウム箔を超音波溶接により接続して正極集電端子、およびリチウムイオン供給層集電端子とした。
[Production of positive electrode]
An electrode paste composed of activated carbon as a positive electrode active material, an acrylic polymer as a binder, and water as a solvent was mixed and prepared. This electrode paste was applied and formed on one surface of a positive electrode current collector base material made of aluminum foil having a width of 300 mm and a thickness of 50 μm to form a positive electrode layer. Next, a lithium supply layer was produced. The lithium ion supply layer was prepared by dispersing lithium cobalt oxide as a lithium ion supply source, acetylene black, and PVDF in NMP, and mixing and adjusting a lithium cobalt oxide paste. This lithium cobaltate paste was applied to one side of an aluminum foil current collecting base material to form a lithium ion supply layer. The positive electrode raw material and the lithium ion supply layer raw material thus prepared were dried at 100 ° C., and then the porosity was adjusted by calendar roll pressing. A rectangular strip of 29 mm × 36 mm is cut out from the positive electrode and the lithium ion supply layer, the positive electrode layer and the lithium ion supply layer at the end 7 mm in the longitudinal direction are peeled off, and the current collecting base is exposed to form a current collecting tab. did. Thereafter, an aluminum foil was connected to these current collecting tabs by ultrasonic welding to form a positive electrode current collecting terminal and a lithium ion supply layer current collecting terminal.

[セルの作製]
正極、セパレータ、負極、セパレータ、リチウムイオン供給層の順に互いの正極層およびリチウムイオン供給層が対向するように中心を揃えて積層して電池体とした。セパレータには、厚さ40μmのセルロース系の紙セパレータを用いた。
[Production of cell]
The positive electrode, the separator, the negative electrode, the separator, and the lithium ion supply layer were stacked in order with the center aligned so that the positive electrode layer and the lithium ion supply layer face each other. As the separator, a cellulosic paper separator having a thickness of 40 μm was used.

この電池体をアルミラミネートフィルムの外装に収納し、この外装の内部に1.2mol/lのLiPF電解液を含むエチレンカーボネート−ジエチルカーボネート3:7混合溶媒を注液し、最後にアルミラミネート外装を封口して外装容器として本実施の形態の実施例1のリチウムイオンキャパシタセルを作製した。その後、負極へのリチウムイオン挿入を促進するために、正極集電端子を充放電装置の正極端子に、負極集電端子を充放電装置の負極端子にそれぞれ接続して、1mAで4.0VまでのCC−CV充電を行って負極へのリチウムイオンのドープを行った。その後、正極端子とリチウムイオン供給層端子を短絡させ、実施例2のリチウムイオンキャパシタセルを完成させた。 The battery body is housed in an aluminum laminate film exterior, and an ethylene carbonate-diethyl carbonate 3: 7 mixed solvent containing 1.2 mol / l LiPF 6 electrolyte is injected into the exterior, and finally the aluminum laminate exterior is filled. The lithium ion capacitor cell of Example 1 of the present embodiment was manufactured as an outer container. Thereafter, in order to promote the insertion of lithium ions into the negative electrode, the positive electrode current collector terminal is connected to the positive electrode terminal of the charge / discharge device, and the negative electrode current collector terminal is connected to the negative electrode terminal of the charge / discharge device to 4.0 V at 1 mA. CC-CV charging was performed to dope lithium ions into the negative electrode. Thereafter, the positive electrode terminal and the lithium ion supply layer terminal were short-circuited to complete the lithium ion capacitor cell of Example 2.

なお、本実施例においては、負極の両側にそれぞれ正極、リチウムイオン供給層を配置したユニットを形成した場合を示したが、これらのユニットを多層積層する場合には、アルミニウム集電箔の一方の面に正極活物質層を、もう一方の面にリチウムイオン供給層を形成したものを負極と交互にセパレータを介して多層配置してもよい。   In the present embodiment, the case where the unit in which the positive electrode and the lithium ion supply layer are arranged on both sides of the negative electrode is formed is shown. However, when these units are laminated in multiple layers, one of the aluminum current collector foils is formed. A layer in which a positive electrode active material layer is formed on one surface and a lithium ion supply layer is formed on the other surface may be arranged in multiple layers alternately with a negative electrode through a separator.

比較例1
比較例1においては、従来のリチウムイオンキャパシタを模擬するために、負極集電基材にエキスパンドメタルを用いた場合である。
Comparative Example 1
In Comparative Example 1, in order to simulate a conventional lithium ion capacitor, an expanded metal is used for the negative electrode current collecting base material.

[負極の作製]
負極集電箔として、幅300mm、厚さ30μm、開口率55%のエキスパンドメタルを使用し、実施例1と同様に作製した電極ペーストを両面に塗工したが、電極ペーストがエキスパンドメタルの開口部に浸透し、所定厚さの負極層が得られなかった。再度塗工を行うことにより所定厚さの負極層となったため、この負極原反をカレンダーロールプレスにて105℃で加圧して負極層の気孔率を調整した。この負極原反から一辺30mm×37mmの長方形の負極を切り出し、長尺方向の端部7mmの活物質層を剥がして負極集電タブとした。この負極を十分に真空乾燥させた後、負極層の両面に、不活性雰囲気下で厚さ30μmのリチウム金属箔をプレスすることにより貼り付けた。その後負極集電タブにNiメッキ銅箔を超音波溶接により接続して負極集電端子とした。
[Production of negative electrode]
As the negative electrode current collector foil, an expanded metal having a width of 300 mm, a thickness of 30 μm, and an aperture ratio of 55% was used, and an electrode paste produced in the same manner as in Example 1 was applied on both sides. The negative electrode layer having a predetermined thickness was not obtained. Since the negative electrode layer having a predetermined thickness was formed by coating again, the negative electrode original fabric was pressurized at 105 ° C. with a calender roll press to adjust the porosity of the negative electrode layer. A rectangular negative electrode having a side of 30 mm × 37 mm was cut out from the negative electrode raw material, and the active material layer having an end portion of 7 mm in the longitudinal direction was peeled to form a negative electrode current collecting tab. After sufficiently drying this negative electrode in vacuum, it was attached to both surfaces of the negative electrode layer by pressing a lithium metal foil having a thickness of 30 μm in an inert atmosphere. Thereafter, Ni-plated copper foil was connected to the negative electrode current collecting tab by ultrasonic welding to obtain a negative electrode current collecting terminal.

負極の作製以外は実施例1と同様な正極の作製およびセルの作製を行い、比較例1のリチウムイオンキャパシタセルを作製した。   A positive electrode and a cell were produced in the same manner as in Example 1 except for the production of the negative electrode, and a lithium ion capacitor cell of Comparative Example 1 was produced.

実施例1、実施例2、および比較例1のリチウムイオンキャパシタセルにおいて、放電電流を変化させた充放電試験を行った。試験は、24mAで4VまでCC−CV(定電流-定電圧)充電を行った後、表1に示す各放電電流値で放電した場合の放電容量を測定した。なお、充放電試験は25℃の環境下で行った。表1は、本実施の形態におけるリチウムイオンキャパシタセルの特性を示したものである。   In the lithium ion capacitor cells of Example 1, Example 2, and Comparative Example 1, a charge / discharge test was performed by changing the discharge current. In the test, CC-CV (constant current-constant voltage) charge was performed up to 4 V at 24 mA, and then the discharge capacity when discharged at each discharge current value shown in Table 1 was measured. The charge / discharge test was performed in an environment of 25 ° C. Table 1 shows the characteristics of the lithium ion capacitor cell in the present embodiment.

Figure 2010278300
Figure 2010278300

表1から、実施例1と実施例2とを比較すると、正極の両面が正極活物質層を含む正極層の場合と、正極の一方の面が正極活物質層を含む正極層で他方の面がリチウム遷移金属酸化物を含んだリチウムイオン供給層の場合では、実施例2でリチウムイオン供給層がリチウムイオンの正極への供給のみでなく、リチウムイオン供給層と負極との間で充放電を行うため、得られる放電容量が大きくなる。   From Table 1, when Example 1 and Example 2 are compared, when both surfaces of the positive electrode are positive electrode layers including a positive electrode active material layer, one surface of the positive electrode is a positive electrode layer including a positive electrode active material layer and the other surface In the case of a lithium ion supply layer containing a lithium transition metal oxide, in Example 2, the lithium ion supply layer is not only supplied to the positive electrode of lithium ions but also charged and discharged between the lithium ion supply layer and the negative electrode. As a result, the discharge capacity obtained is increased.

また、比較例1のリチウムイオンキャパシタセルでは、負極集電基材としてエキスパンドメタルを使用しているため集電基材の電気抵抗が高く、大電流を流した場合に電圧降下が大きく十分な放電容量が得られなかった。一方、実施例1のチウムイオンキャパシタセルでは、集電箔の開口率が低く電気抵抗が低いため、高電流でも高い放電容量が得られることがわかる。   Further, in the lithium ion capacitor cell of Comparative Example 1, since the expanded metal is used as the negative electrode current collecting base material, the current collecting base material has a high electric resistance, and a large voltage drop occurs when a large current flows. The capacity could not be obtained. On the other hand, in the lithium ion capacitor cell of Example 1, it can be seen that since the aperture ratio of the current collector foil is low and the electric resistance is low, a high discharge capacity can be obtained even at a high current.

実施の形態2.
実施の形態1においては、負極の穴あけ加工に平板型の金属金型を用いたが、実施の形態2においては、ロールプレスによって負極の穴開け加工を行なうものである。本実施の形態においては、実施の形態1の実施例1との違いを主に説明する。負極の作製、正極の作製およびセルの作製は実施の形態1の実施例1と同様で、下記の穴開け加工のみ異なる実施例2のチウムイオンキャパシタセルを作製した。
Embodiment 2. FIG.
In the first embodiment, a flat metal mold is used for drilling the negative electrode, but in the second embodiment, drilling of the negative electrode is performed by a roll press. In the present embodiment, the difference between the first embodiment and the first embodiment will be mainly described. The production of the negative electrode, the production of the positive electrode, and the production of the cell were the same as in Example 1 of the first embodiment, and a lithium ion capacitor cell of Example 2 was produced, which was different only in the drilling process described below.

実施例3
[負極の穴開け加工]
図4は、本実施の形態における、ロールプレスの概略模式図である。実施例1と同様に作製した負極原反15を、図4に示すような底辺0.4mm、高さ0.7mmの四角錐の突起16が0.8mm間隔で金属性ロールの表面に形成されている突起ロール17と表面が平滑な金属性の平滑ロール18の間を通し、負極原反15への穴開け加工を行った。穴開け後の突起ロール17側を通過した負極層の表面を観察したところ、一辺約80μmの正方形の穴が多数形成されていた。また、金属性の平滑ロール18側を通過した負極層には、穴は観察されなかった。なお、参考のため穴開け後の負極原反の不要な一部を切り出し、N−メチルピロリドン溶媒中に浸漬し、負極層を剥離除去したところ、負極集電基材の開口率は0.12%であった。このようにして作製した負極原反から一辺30mm×37mmの長方形の負極を切り出し、長尺方向の端部7mmの負極層を剥がして負極集電タブとした。この負極層の両面に、不活性雰囲気下で厚さ30μmのリチウム金属箔をプレスすることにより貼り付けた。その後負極集電タブにNiメッキ銅箔を超音波溶接により接続して負極集電端子とした。
Example 3
[Negative hole drilling]
FIG. 4 is a schematic diagram of a roll press in the present embodiment. As shown in FIG. 4, the negative electrode raw material 15 produced in the same manner as in Example 1 is formed with quadrangular pyramid projections 16 having a base of 0.4 mm and a height of 0.7 mm on the surface of the metallic roll at intervals of 0.8 mm. The negative electrode raw material 15 was punched by passing between the protruding roll 17 and the metallic smooth roll 18 having a smooth surface. When the surface of the negative electrode layer that passed through the protruding roll 17 side after drilling was observed, many square holes with sides of about 80 μm were formed. Moreover, no hole was observed in the negative electrode layer that passed through the metallic smooth roll 18 side. For reference, an unnecessary part of the negative electrode raw material after perforation was cut out, immersed in an N-methylpyrrolidone solvent, and the negative electrode layer was peeled and removed. As a result, the aperture ratio of the negative electrode current collector substrate was 0.12. %Met. A rectangular negative electrode having a side of 30 mm × 37 mm was cut out from the negative electrode raw material thus prepared, and the negative electrode layer having an end portion of 7 mm in the longitudinal direction was peeled off to obtain a negative electrode current collecting tab. The negative electrode layer was attached to both surfaces by pressing a lithium metal foil having a thickness of 30 μm in an inert atmosphere. Thereafter, Ni-plated copper foil was connected to the negative electrode current collecting tab by ultrasonic welding to obtain a negative electrode current collecting terminal.

実施例3のリチウムイオンキャパシタセルにおいて、放電電流を変化させた充放電試験を行った。試験は、24mAで4VまでCC−CV(定電流-定電圧)充電を行った後、表2に示す各放電電流値で放電した場合の放電容量を測定した。なお、充放電試験は25℃の環境下で行った。表2は、本実施の形態におけるリチウムイオンキャパシタセルの特性を示したものである。参考のため、実施例1も併せて示している。   The lithium ion capacitor cell of Example 3 was subjected to a charge / discharge test in which the discharge current was changed. In the test, CC-CV (constant current-constant voltage) charge was performed up to 4 V at 24 mA, and then the discharge capacity when discharged at each discharge current value shown in Table 2 was measured. The charge / discharge test was performed in an environment of 25 ° C. Table 2 shows the characteristics of the lithium ion capacitor cell in the present embodiment. Example 1 is also shown for reference.

Figure 2010278300
Figure 2010278300

表2から、実施例3のリチウムイオンキャパシタセルも、実施例1と同様に、負極集電基材の開口率が低く電気抵抗が低いため、大電流放電時でも高い放電容量が得られることがわかる。   From Table 2, the lithium ion capacitor cell of Example 3 also has a low opening ratio of the negative electrode current collector base material and low electrical resistance, as in Example 1, so that a high discharge capacity can be obtained even during large current discharge. Recognize.

なお、本実施の形態で説明したロールプレスを用いた負極の穴開け加工は、大面積の負極や後述する捲回構造のリチウムイオンキャパシタで必要となる長尺形の負極に適用すれば生産効率の高い加工を行なうことができる。   If the negative electrode drilling process using the roll press described in this embodiment is applied to a large-area negative electrode or a long negative electrode required for a lithium ion capacitor having a wound structure described later, the production efficiency High processing can be performed.

実施の形態3.
実施の形態1の実施例1においては、穿孔面側の負極層で一辺120μmの穿孔が0.8mm間隔で形成されており、この穿孔は負極集電基材の反対側の負極層の表面までは貫通していないが、実施の形態3においては、これらの条件が異なるリチウムイオンキャパシタセルを作製したものである。本実施の形態においても、実施の形態2と同様に、実施の形態1の実施例1との違いを主に説明する。負極の作製、正極の作製およびセルの作製は実施の形態1の実施例1と同様で、下記の穴開け加工のみ異なるリチウムイオンキャパシタセルを作製した。
Embodiment 3 FIG.
In Example 1 of Embodiment 1, perforations with sides of 120 μm are formed at intervals of 0.8 mm in the negative electrode layer on the perforated surface side, and the perforations extend to the surface of the negative electrode layer on the opposite side of the negative electrode current collector substrate. However, in the third embodiment, lithium ion capacitor cells having different conditions are manufactured. Also in the present embodiment, as in the second embodiment, differences from the first embodiment of the first embodiment will be mainly described. The production of the negative electrode, the production of the positive electrode, and the production of the cell were the same as in Example 1 of the first embodiment, and lithium ion capacitor cells differing only in the drilling process described below were produced.

実施例4
実施例4は、穿孔が負極集電基材の反対側の負極層の表面まで貫通している場合である。
Example 4
Example 4 is a case where the perforation penetrates to the surface of the negative electrode layer on the opposite side of the negative electrode current collector substrate.

[負極の穴開け加工]
実施例1と同様に作製したプレス後の負極原反に、実施例1と同様に平板プレスにより穴開け加工を行った。実施例1と異なる点として、プレス時に負極原反上に厚さ200μmのシリコンゴムを乗せてプレスを行った。穿孔後の負極原反の表面を観察したところ、約300μmの正方形の穴が多数形成されていた。穿孔後の負極原反の裏面には多数の穴が形成されおり、穴の周辺に押し出された負極層が堆積していた。この負極原反の断面観察の結果より、負極原反の裏面における貫通による凹凸差は約40μmであった。この負極原反から一辺30mm×37mmの長方形の負極を切り出し、長尺方向の端部7mmの活物質層を剥がして負極集電タブとした。この負極を十分に真空乾燥させた後、負極層の両面に、不活性雰囲気下で厚さ30μmのリチウム金属箔をプレスすることにより貼り付けた。その後負極集電タブにNiメッキ銅箔を超音波溶接により接続して負極集電端子とした。
[Negative hole drilling]
The negative electrode raw material after pressing produced in the same manner as in Example 1 was punched with a flat plate press in the same manner as in Example 1. The difference from Example 1 was that pressing was carried out by placing 200 μm thick silicon rubber on the negative electrode original fabric during pressing. When the surface of the negative electrode original fabric after perforation was observed, many square holes of about 300 μm were formed. A large number of holes were formed on the back surface of the negative electrode raw material after drilling, and the negative electrode layer pushed out was deposited around the holes. From the result of cross-sectional observation of the negative electrode original fabric, the unevenness difference due to penetration on the back surface of the negative electrode original fabric was about 40 μm. A rectangular negative electrode having a side of 30 mm × 37 mm was cut out from the negative electrode raw material, and the active material layer having an end portion of 7 mm in the longitudinal direction was peeled to form a negative electrode current collecting tab. After sufficiently drying this negative electrode in vacuum, it was attached to both surfaces of the negative electrode layer by pressing a lithium metal foil having a thickness of 30 μm in an inert atmosphere. Thereafter, Ni-plated copper foil was connected to the negative electrode current collecting tab by ultrasonic welding to obtain a negative electrode current collecting terminal.

正極の作製およびセルの作製方法は実施例1と同様に行い実施例4のリチウムイオンキャパシタセルを作製した。   The production of the positive electrode and the production method of the cell were performed in the same manner as in Example 1, and the lithium ion capacitor cell of Example 4 was produced.

実施例5
実施例5は、穿孔の開孔率が小さい場合である。
Example 5
Example 5 is a case where the aperture ratio of perforation is small.

[負極の穴開け加工]
実施例1と同様に作製したプレス後の負極原反を、厚さ50μmのポリエチレンテレフタレート製のシートの間に挟み、底辺0.4mm、高さ0.7mmの四角錐の突起が多数形成されている金属ロールと表面が平滑な金属ロールの間を通し、負極原反への穴開け加工を行った。穴開け後の負極原反の表面を観察したところ、一辺約80μmの正方形の穴が多数形成されていた。また負極原反の裏面に穴は観察されなかった。なお、参考のため穴開け後の負極原反の不要な一部を切り出し、N−メチルピロリドン溶媒中に浸漬し、負極層を剥離除去したところ、負極集電基材の開口率は0.08%であった。このようにして作製した負極原反から一辺30mm×37mmの長方形の負極を切り出し、長尺方向の端部7mmの負極層を剥がして負極集電タブとした。この負極を十分に真空乾燥させた後、負極層の両面に、不活性雰囲気下で厚さ30μmのリチウム金属箔をプレスすることにより貼り付けた。その後負極集電タブにNiメッキ銅箔を超音波溶接により接続して負極集電端子とした。
[Negative hole drilling]
The negative electrode raw material after pressing produced in the same manner as in Example 1 was sandwiched between sheets of polyethylene terephthalate having a thickness of 50 μm, and a large number of quadrangular pyramid projections having a base of 0.4 mm and a height of 0.7 mm were formed. The metal roll having a smooth surface was passed between the metal roll and the surface of the negative electrode raw material. When the surface of the negative electrode original fabric after drilling was observed, many square holes each having a side of about 80 μm were formed. Moreover, no hole was observed on the back surface of the negative electrode original fabric. For reference, an unnecessary part of the negative electrode raw material after drilling was cut out, immersed in an N-methylpyrrolidone solvent, and the negative electrode layer was peeled and removed. As a result, the aperture ratio of the negative electrode current collector substrate was 0.08. %Met. A rectangular negative electrode having a side of 30 mm × 37 mm was cut out from the negative electrode raw material thus prepared, and the negative electrode layer having an end portion of 7 mm in the longitudinal direction was peeled off to obtain a negative electrode current collecting tab. After sufficiently drying this negative electrode in vacuum, it was attached to both surfaces of the negative electrode layer by pressing a lithium metal foil having a thickness of 30 μm in an inert atmosphere. Thereafter, Ni-plated copper foil was connected to the negative electrode current collecting tab by ultrasonic welding to obtain a negative electrode current collecting terminal.

正極の作製およびセルの作製方法は実施例1と同様に行い実施例5のリチウムイオンキャパシタセルを作製した。   The production of the positive electrode and the production method of the cell were performed in the same manner as in Example 1, and the lithium ion capacitor cell of Example 5 was produced.

実施例6
実施例6は、穿孔の開孔率が大きい場合である。
Example 6
Example 6 is a case where the aperture ratio of perforation is large.

[負極の穴開け加工]
実施例1と同様に作製したプレス後の負極原反に、実施例1と同様に平板プレスにより穴開け加工を行った。実施例1と異なる点として、0.3MPaの圧力でプレスする操作を20回繰り返し、各回でプレスする向きを少しずつずらし、穴の位置が重ならないようにして穴開け処理を行った点である。穿孔後の負極原反の表面を観察したところ、一辺約120μmの正方形の穴が多数形成されていた。また、負極原反の裏面(穿孔面と逆側の面)に穴は観察されなかった。なお、参考のため穴開け後の負極原反の不要な一部を切り出し、N−メチルピロリドン溶媒中に浸漬し、負極層を剥離除去したところ、負極集電基材の開口率は5.5%であった。このようにして作製した負極原反から一辺30mm×37mmの長方形の負極を切り出し、長尺方向の端部7mmの活物質層を剥がして負極集電タブとした。この負極を十分に真空乾燥させた後、負極層の両面に、不活性雰囲気下で厚さ30μmのリチウム金属箔をプレスすることにより貼り付けた。その後負極集電タブにNiメッキ銅箔を超音波溶接により接続して負極集電端子とした。
[Negative hole drilling]
The negative electrode raw material after pressing produced in the same manner as in Example 1 was punched with a flat plate press in the same manner as in Example 1. The difference from Example 1 is that the operation of pressing at a pressure of 0.3 MPa was repeated 20 times, the pressing direction was slightly shifted each time, and the drilling process was performed so that the positions of the holes did not overlap. . When the surface of the negative electrode original fabric after perforation was observed, many square holes with sides of about 120 μm were formed. Moreover, no hole was observed on the back surface (surface opposite to the perforated surface) of the negative electrode original fabric. For reference, an unnecessary part of the negative electrode raw material after drilling was cut out, immersed in an N-methylpyrrolidone solvent, and the negative electrode layer was peeled and removed. As a result, the aperture ratio of the negative electrode current collector substrate was 5.5. %Met. A rectangular negative electrode having a side of 30 mm × 37 mm was cut out from the negative electrode raw material thus produced, and the active material layer having an end portion of 7 mm in the longitudinal direction was peeled off to obtain a negative electrode current collecting tab. After sufficiently drying this negative electrode in vacuum, it was attached to both surfaces of the negative electrode layer by pressing a lithium metal foil having a thickness of 30 μm in an inert atmosphere. Thereafter, Ni-plated copper foil was connected to the negative electrode current collecting tab by ultrasonic welding to obtain a negative electrode current collecting terminal.

正極の作製およびセルの作製方法は実施例1と同様に行い、実施例6のリチウムイオンキャパシタセルを作製した。   The production of the positive electrode and the production method of the cell were performed in the same manner as in Example 1, and the lithium ion capacitor cell of Example 6 was produced.

実施例7
実施例7は、穿孔の間隔が5mm以上の場合である。
Example 7
Example 7 is a case where the interval between perforations is 5 mm or more.

[負極の穴開け加工]
実施例1と同様に作製したプレス後の負極原反を、底辺0.4mm、高さ0.7mmの四角錐の突起が7mm間隔で形成されている金属金型と、表面が平滑な金属板の間に負極原反を設置し、さらにその上にアクリル板を乗せて0.3MPaの圧力でプレスを行った。穴開け後の負極原反の表面(穿孔面)を観察したところ、一辺約100μmの正方形の穴が多数形成されていた。また、負極原反の裏面(穿孔面と逆側の面)に穴は観察されなかった。なお、参考のため穴開け後の負極原反の不要な一部を切り出し、N−メチルピロリドン溶媒中に浸漬し、活物質層を剥離除去したところ、負極集電基材には約7mm間隔で穴が形成されており、負極集電基材の開口率は0.1%であった。このようにして作製した負極原反から一辺30mm×37mmの長方形の負極を切り出し、長尺方向の端部7mmの活物質層を剥がして負極集電タブとした。この負極を十分に真空乾燥させた後、活物質層の両面に、不活性雰囲気下で厚さ30μmのリチウム金属箔をプレスすることにより貼り付けた。その後負極集電タブにNiメッキ銅箔を超音波溶接により接続して負極集電端子とした。
[Negative hole drilling]
The negative electrode raw material after pressing produced in the same manner as in Example 1 is formed between a metal mold in which quadrangular pyramid projections having a base of 0.4 mm and a height of 0.7 mm are formed at intervals of 7 mm, and a metal plate having a smooth surface. A negative electrode original fabric was placed on the substrate, and an acrylic plate was placed thereon and pressed at a pressure of 0.3 MPa. When the surface (perforated surface) of the negative electrode original fabric after drilling was observed, many square holes each having a side of about 100 μm were formed. Moreover, no hole was observed on the back surface (surface opposite to the perforated surface) of the negative electrode original fabric. For reference, an unnecessary part of the negative electrode raw material after drilling was cut out, dipped in an N-methylpyrrolidone solvent, and the active material layer was peeled and removed. A hole was formed, and the aperture ratio of the negative electrode current collector base material was 0.1%. A rectangular negative electrode having a side of 30 mm × 37 mm was cut out from the negative electrode raw material thus produced, and the active material layer having an end portion of 7 mm in the longitudinal direction was peeled off to obtain a negative electrode current collecting tab. After sufficiently drying this negative electrode in vacuum, it was attached to both surfaces of the active material layer by pressing a lithium metal foil having a thickness of 30 μm in an inert atmosphere. Thereafter, Ni-plated copper foil was connected to the negative electrode current collecting tab by ultrasonic welding to obtain a negative electrode current collecting terminal.

正極の作製およびセルの作製方法は実施例1と同様に行い実施例7のリチウムイオンキャパシタセルを作製した。   The production of the positive electrode and the production method of the cell were performed in the same manner as in Example 1, and the lithium ion capacitor cell of Example 7 was produced.

実施例4〜7のリチウムイオンキャパシタセルにおいて、放電電流を変化させた充放電試験を行った。試験は、24mAで4VまでCC−CV(定電流-定電圧)充電を行った後、表3に示す各放電電流値で放電した場合の放電容量を測定した。なお、充放電試験は25℃の環境下で行った。表3は、本実施の形態におけるリチウムイオンキャパシタセルの特性を示したものである。参考のため、実施例1も併せて示している。   In the lithium ion capacitor cells of Examples 4 to 7, charge / discharge tests were performed by changing the discharge current. In the test, CC-CV (constant current-constant voltage) charge was performed up to 4 V at 24 mA, and then the discharge capacity when discharged at each discharge current value shown in Table 3 was measured. The charge / discharge test was performed in an environment of 25 ° C. Table 3 shows the characteristics of the lithium ion capacitor cell in the present embodiment. Example 1 is also shown for reference.

Figure 2010278300
Figure 2010278300

表3において、実施例1と実施例4とを比較した場合、穿孔が負極集電基材の反対側の負極層の表面まで貫通していると、穿孔時に突起が負極表面を押し破り、押し出された活物質が付着したり、表面の凹凸が大きくなったりするため、内部ショートが発生する場合がある。したがって、穿孔が負極集電基材の反対側の負極層の表面まで貫通していないことが好ましい。また、本実施の形態のように、穿孔時の突起の形状が四角錐の場合、穿孔により貫通孔を形成すると、孔が貫通していない場合に比べて負極反応面積が減少するため、得られる容量が若干減少する。   In Table 3, when Example 1 and Example 4 are compared, if the perforation penetrates to the surface of the negative electrode layer on the opposite side of the negative electrode current collecting substrate, the protrusions push the negative electrode surface during the perforation and are extruded. An internal short circuit may occur due to the adhering active material or surface irregularities. Therefore, it is preferable that the perforation does not penetrate to the surface of the negative electrode layer on the opposite side of the negative electrode current collecting substrate. Further, as in the present embodiment, when the shape of the protrusion at the time of drilling is a quadrangular pyramid, when the through hole is formed by drilling, the negative electrode reaction area is reduced compared to the case where the hole does not penetrate, and thus obtained. The capacity is slightly reduced.

また、実施例1(開孔率0.6%)、実施例5(開孔率0.08%)および実施例6(開孔率5.5%)を比較した場合、開孔率が0.08%以下になるとドープが不十分となるため放電容量が減少し、開孔率が5.5%以上になると電極反応面積が減少するため、放電容量が減少することから、穿孔の開孔率はそれらの間で概ね0.1%以上5%以下が好ましい。   Further, when Example 1 (aperture ratio 0.6%), Example 5 (aperture ratio 0.08%) and Example 6 (aperture ratio 5.5%) were compared, the aperture ratio was 0. When the ratio is less than 0.08%, the dope becomes insufficient, and thus the discharge capacity is reduced. When the hole area ratio is 5.5% or more, the electrode reaction area is reduced, and the discharge capacity is reduced. The rate is preferably about 0.1% to 5% between them.

さらに、実施例1と実施例7とを比較した場合、負極集電基材の穿孔の間隔が7mmになると孔から離れた負極層部分へのドープが不十分となり、放電容量が減少することから、穿孔の間隔は5mm以下であることが好ましい。   Furthermore, when Example 1 and Example 7 are compared, when the interval between the perforations of the negative electrode current collector substrate becomes 7 mm, the doping to the negative electrode layer portion away from the holes becomes insufficient, and the discharge capacity decreases. The perforation interval is preferably 5 mm or less.

実施の形態4.
実施の形態1および2では、正極や陽極などを単に積層した構造のリチウムイオンキャパシタの例を示したが、実施の形態4においては、捲回構造を有するリチウムイオンキャパシタを作製するものである。本実施の形態においても、実施の形態1の実施例1との違いを主に説明する。
Embodiment 4 FIG.
In Embodiments 1 and 2, an example of a lithium ion capacitor having a structure in which a positive electrode, an anode, and the like are simply laminated is shown. However, in Embodiment 4, a lithium ion capacitor having a wound structure is manufactured. Also in the present embodiment, the difference between the first embodiment and the first embodiment will be mainly described.

実施例8
実施例8は、正極の正極集電基材の両面に正極活物質を含んだ正極層を形成した場合である。
Example 8
Example 8 is a case where the positive electrode layer containing the positive electrode active material was formed on both surfaces of the positive electrode current collecting base material of the positive electrode.

[負極の作製]
実施の形態1の実施例1と同様に作製した。
[Production of negative electrode]
It was manufactured in the same manner as in Example 1 of Embodiment Mode 1.

[負極の加工]
負極原反の穴開け加工は実施の形態1の実施例1と同様に行った。この負極原反から262mm×50mmの短冊状の負極を切断し、長尺方向の端部10mmの負極層を一辺のみ剥して、負極集電基材を露出させて負極集電タブとした。この負極を十分に真空乾燥させた後、負極層の両面に、不活性雰囲気下で厚さ30μmのリチウム金属箔をプレスすることにより貼り付けた。その後負極集電タブにNiメッキ銅箔を超音波溶接により接続して負極集電端子とした。
[Negative electrode processing]
The negative electrode raw material was punched in the same manner as in Example 1 of the first embodiment. A strip-shaped negative electrode of 262 mm × 50 mm was cut from the negative electrode original fabric, and the negative electrode layer having an end portion of 10 mm in the longitudinal direction was peeled only on one side to expose the negative electrode current collecting base material to obtain a negative electrode current collecting tab. After sufficiently drying this negative electrode in vacuum, it was attached to both surfaces of the negative electrode layer by pressing a lithium metal foil having a thickness of 30 μm in an inert atmosphere. Thereafter, Ni-plated copper foil was connected to the negative electrode current collecting tab by ultrasonic welding to obtain a negative electrode current collecting terminal.

[正極の作製]
正極活物質としての活性炭とバインダとしてのアクリル系ポリマーと、溶媒としての水とからなる電極ペーストを混合調製した。次にこの電極ペーストを幅300mm、厚さ50μmのアルミニウム箔の正極集電基材の両面に塗工形成して正極原反とした。この正極原反をカレンダーロールプレスにて加圧して正極層の気孔率を調整した。この正極原反から248mm×46mmの短冊状の正極を切断し、長尺方向の端部10mmの両面の正極層を一辺のみ剥がし、正極集電基材を露出させて正極集電タブとした。その後正極集電タブにアルミニウム箔を超音波溶接により接続して正極集電端子とした。
[Production of positive electrode]
An electrode paste made of activated carbon as a positive electrode active material, an acrylic polymer as a binder, and water as a solvent was mixed and prepared. Next, this electrode paste was applied and formed on both surfaces of a positive electrode current collector substrate of aluminum foil having a width of 300 mm and a thickness of 50 μm to obtain a positive electrode raw material. This positive electrode original fabric was pressurized with a calender roll press to adjust the porosity of the positive electrode layer. A strip-shaped positive electrode of 248 mm × 46 mm was cut from the positive electrode original fabric, the positive electrode layers on both sides of the end portion of 10 mm in the longitudinal direction were peeled off, and the positive electrode current collecting substrate was exposed to form a positive electrode current collecting tab. Thereafter, an aluminum foil was connected to the positive electrode current collecting tab by ultrasonic welding to form a positive electrode current collecting terminal.

[セルの作製]
図5は、本実施の形態の実施例8の捲回型リチウムイオンキャパシタセルの断面模式図である。各部材を十分に乾燥させた後、正極集電端子19と負極集電端子20とを中心部に配置し、正極層3と負極層6とが対向するように短冊状の正極と負極とをセパレータ9を挟んで向かい合わせ、長尺方向の端部より捲き回して接着テープで固定して捲回体21を作製した。この捲回体21をアルミラミネートシートで構成された外装袋に入れ、電解液として、1.2mol/lのLiPFを含む、エチレンカーボネート−ジエチルカーボネート3:7混合溶媒を注液し、最後にアルミラミネートシートの外装袋の開口部を封口し、本実施の形態における実施例7の捲回型リチウムイオンキャパシタセルを作製した。その後、負極へのリチウムイオン挿入を促進するために、正極集電端子を充放電装置の正極端子に、負極集電端子を充放電装置の負極端子にそれぞれ接続して、15mAで4.0VまでのCC−CV充電を行って負極へのリチウムイオンのドープを行い、実施例8の捲回型リチウムイオンキャパシタセルを完成させた。
[Production of cell]
FIG. 5 is a schematic cross-sectional view of a wound lithium ion capacitor cell according to Example 8 of the present embodiment. After sufficiently drying each member, the positive electrode current collector terminal 19 and the negative electrode current collector terminal 20 are arranged in the center, and the strip-shaped positive electrode and negative electrode are placed so that the positive electrode layer 3 and the negative electrode layer 6 face each other. Faced across the separator 9, wound around from the end in the long direction and fixed with adhesive tape to produce a wound body 21. This wound body 21 is put in an outer bag made of an aluminum laminate sheet, and an ethylene carbonate-diethyl carbonate 3: 7 mixed solvent containing 1.2 mol / l LiPF 6 is injected as an electrolytic solution. The opening part of the exterior bag of the aluminum laminate sheet was sealed, and the wound type lithium ion capacitor cell of Example 7 in the present embodiment was produced. Thereafter, in order to promote the insertion of lithium ions into the negative electrode, the positive electrode current collector terminal is connected to the positive electrode terminal of the charge / discharge device, and the negative electrode current collector terminal is connected to the negative electrode terminal of the charge / discharge device. The wound type lithium ion capacitor cell of Example 8 was completed by performing CC-CV charging of lithium ion doping to the negative electrode.

実施例9
実施例9は、正極の正極集電基材の一方の面に正極活物質を含んだ正極層を形成し、他方の面にリチウム遷移金属酸化物を含んだリチウム供給層を形成した場合である。
Example 9
Example 9 is a case where a positive electrode layer containing a positive electrode active material is formed on one surface of a positive electrode current collecting base material of a positive electrode, and a lithium supply layer containing a lithium transition metal oxide is formed on the other surface. .

[負極の作製]
実施の形態1の実施例1と同様に作製した。
[Production of negative electrode]
It was manufactured in the same manner as in Example 1 of Embodiment Mode 1.

[負極の加工]
実施例8と同様に作製した。
[Negative electrode processing]
It was produced in the same manner as in Example 8.

[正極の作製]
正極活物質としての活性炭と、バインダとしてのアクリル系ポリマーと、溶媒としての水とからなる電極ペーストを混合調製した。この電極ペーストを幅300mm、厚さ20μmのアルミニウム箔の正極集電基材の一方の面に塗工形成して正極層とした。次に、リチウムドープ源としてのコバルト酸リチウムと、アセチレンブラックと、PVDFとをNMPに分散させコバルト酸リチウムペーストを混合調整した。このコバルト酸リチウムペーストを正極集電基材の他方の面に塗工形成してリチウムイオン供給層とした。このようにして作製した正極原反を100℃で乾燥させた後、ロールプレスして気孔率を調整した。この正極原反から248mm×46mmの短冊状の正極を切断し、長尺方向の端部10mmの正極層およびリチウムイオン供給層を一辺のみ剥がし、正極集電基材を露出させて正極集電タブとした。その後正極集電タブにアルミニウム箔を超音波溶接により接続して正極集電端子とした。
[Production of positive electrode]
An electrode paste composed of activated carbon as a positive electrode active material, an acrylic polymer as a binder, and water as a solvent was mixed and prepared. This electrode paste was applied and formed on one surface of a positive electrode current collector substrate of aluminum foil having a width of 300 mm and a thickness of 20 μm to form a positive electrode layer. Next, lithium cobaltate as a lithium doping source, acetylene black, and PVDF were dispersed in NMP, and a lithium cobaltate paste was mixed and adjusted. This lithium cobaltate paste was applied and formed on the other surface of the positive electrode current collector substrate to form a lithium ion supply layer. The positive electrode fabric thus produced was dried at 100 ° C. and then roll-pressed to adjust the porosity. A strip-shaped positive electrode of 248 mm × 46 mm is cut from this positive electrode raw material, and the positive electrode layer and the lithium ion supply layer having an end portion of 10 mm in the longitudinal direction are peeled off to expose one side of the positive electrode current collecting substrate to expose the positive electrode current collecting tab. It was. Thereafter, an aluminum foil was connected to the positive electrode current collecting tab by ultrasonic welding to form a positive electrode current collecting terminal.

[セルの作製]
図6は、本実施の形態の実施例9の捲回型リチウムイオンキャパシタセルの断面模式図である。各部材を十分に乾燥させた後、正極集電端子19と負極集電端子20とを中心部に配置し、正極層3およびリチウムイオン供給層22と負極層6とが対向するように正極と負極とをセパレータ9を挟んで向かい合わせ、長尺方向の端部より捲き回して接着テープで固定して捲回体を作製した。この捲回体をアルミラミネートシートで構成された外装袋に入れ、電解液として、1.2mol/lのLiPFを含む、エチレンカーボネート−ジエチルカーボネート3:7混合溶媒を注液し、最後にアルミラミネートシートの外装袋の開口部を封口し、本実施の形態における実施例9の捲回型リチウムイオンキャパシタセルを完成させた。その後、負極へのリチウムイオン挿入を促進するために、リチウムイオン供給極およびの正極端子を充放電装置の正極端子に、負極端子を充放電装置の負極端子にそれぞれ接続して、25mAで4.0VまでのCC−CV充電を行って負極へのリチウムイオンのドープを行い、実施例9の捲回型リチウムイオンキャパシタセルを完成させた。
[Production of cell]
FIG. 6 is a schematic cross-sectional view of a wound lithium ion capacitor cell according to Example 9 of the present embodiment. After each member is sufficiently dried, the positive electrode current collector terminal 19 and the negative electrode current collector terminal 20 are arranged in the center, and the positive electrode layer 3 and the lithium ion supply layer 22 and the negative electrode layer 6 are opposed to each other. The negative electrode was faced across the separator 9 and rolled from the end in the longitudinal direction and fixed with an adhesive tape to produce a wound body. This wound body is put in an outer bag made of an aluminum laminate sheet, and an electrolyte solution containing 1.2 mol / l LiPF 6 and a mixed solvent of ethylene carbonate-diethyl carbonate 3: 7 is poured into the outer bag. The opening of the laminate sheet outer bag was sealed to complete the wound lithium ion capacitor cell of Example 9 in the present embodiment. Thereafter, in order to promote the insertion of lithium ions into the negative electrode, the lithium ion supply electrode and the positive electrode terminal thereof are connected to the positive electrode terminal of the charge / discharge device, and the negative electrode terminal is connected to the negative electrode terminal of the charge / discharge device. CC-CV charge up to 0 V was performed to dope lithium ions into the negative electrode, and the wound type lithium ion capacitor cell of Example 9 was completed.

実施例10
実施例10は、負極の穴開け加工において、穿孔側と反対側の負極層の表面に凸凹が形成されて正極層と対向した場合である。
Example 10
Example 10 is a case where unevenness is formed on the surface of the negative electrode layer on the side opposite to the perforated side in the drilling process of the negative electrode to face the positive electrode layer.

[負極の作製]
実施の形態1の実施例1と同様に作製した。
[Production of negative electrode]
It was manufactured in the same manner as in Example 1 of Embodiment Mode 1.

[負極の加工]
実施例1と同様に作製したプレス後の負極原反に、実施例1と同様に平板プレスにより穴開け加工を行った。実施例1と異なる点として、プレス時に負極原反上に厚さ70μmのシリコンゴムを載せてプレスを行った。穿孔後の負極原反の表面を観察したところ、約150μmの正方形の穴が多数形成されていた。穿孔後の負極原反の裏面には穴は観察されなかったが、表面に凹凸が多数形成され、断面観察の結果より、凹凸差は約30μmであった。この負極原反から262mm×50mmの短冊状の負極を切断し、長尺方向の端部10mmの負極層を一辺のみ剥して、負極集電基材を露出させて負極集電タブとした。この負極を十分に真空乾燥させた後、負極層の両面に、不活性雰囲気下で厚さ30μmのリチウム金属箔をプレスすることにより貼り付けた。その後負極集電タブにNiメッキ銅箔を超音波溶接により接続して負極集電端子とした。
[Negative electrode processing]
The negative electrode raw material after pressing produced in the same manner as in Example 1 was punched with a flat plate press in the same manner as in Example 1. The difference from Example 1 was that pressing was carried out by placing silicon rubber having a thickness of 70 μm on the negative electrode raw material during pressing. When the surface of the negative electrode original fabric after perforation was observed, many square holes of about 150 μm were formed. Although no holes were observed on the back surface of the negative electrode after the perforation, many irregularities were formed on the surface, and from the results of cross-sectional observation, the irregularity difference was about 30 μm. A strip-shaped negative electrode of 262 mm × 50 mm was cut from the negative electrode original fabric, and the negative electrode layer having an end portion of 10 mm in the longitudinal direction was peeled only on one side to expose the negative electrode current collecting base material to obtain a negative electrode current collecting tab. After sufficiently drying this negative electrode in vacuum, it was attached to both surfaces of the negative electrode layer by pressing a lithium metal foil having a thickness of 30 μm in an inert atmosphere. Thereafter, Ni-plated copper foil was connected to the negative electrode current collecting tab by ultrasonic welding to obtain a negative electrode current collecting terminal.

[正極の作製]
本実施の形態の実施例9と同様に行なった。したがって、本実施例の短冊状の正極は、正極集電基材の一方の面に正極活物質を含んだ正極層が、他方の面にリチウム遷移金属酸化物を含んだリチウムイオン供給層が形成されたものである。
[Production of positive electrode]
It carried out similarly to Example 9 of this Embodiment. Therefore, in the strip-like positive electrode of this example, the positive electrode layer containing the positive electrode active material is formed on one surface of the positive electrode current collecting base material, and the lithium ion supply layer containing the lithium transition metal oxide is formed on the other surface. It has been done.

[セルの作製]
各部材を十分に乾燥させた後、正極層およびリチウムイオン供給層と負極層とが対向するように短冊状の正極と負極とをセパレータを挟んで向かい合わせ、長尺方向の端部より捲き回して接着テープで固定して捲回体を作製した。この際、負極の穿孔面(負極表面)はリチウムイオン供給層と対向させ、凹凸が形成された面(負極裏面)は正極層に対向させた。この捲回体をアルミラミネートシートで構成された外装袋に入れ、電解液として、1.2mol/lのLiPFを含む、エチレンカーボネート−ジエチルカーボネート3:7混合溶媒を注液し、最後にアルミラミネートシートの外装袋の開口部を封口し、本実施の形態における実施例10の捲回型リチウムイオンキャパシタセルを作製した。その後、負極へのリチウムイオン挿入を促進するために、リチウムイオン供給極およびの正極端子を充放電装置の正極端子に、負極端子を充放電装置の負極端子にそれぞれ接続して、25mAで4.0VまでのCC−CV充電を行い、負極へのリチウムイオンのドープを行い、実施例10の捲回型リチウムイオンキャパシタセルを完成させた。
[Production of cell]
After each member is sufficiently dried, the strip-shaped positive electrode and negative electrode face each other across the separator so that the positive electrode layer, the lithium ion supply layer, and the negative electrode layer face each other, and are wound around from the end in the long direction. Then, the wound body was prepared by fixing with an adhesive tape. At this time, the perforated surface (negative electrode surface) of the negative electrode was opposed to the lithium ion supply layer, and the surface on which the irregularities were formed (negative electrode back surface) was opposed to the positive electrode layer. This wound body is put in an outer bag made of an aluminum laminate sheet, and an electrolyte solution containing 1.2 mol / l LiPF 6 and a mixed solvent of ethylene carbonate-diethyl carbonate 3: 7 is poured into the outer bag. The opening part of the exterior bag of a laminate sheet was sealed, and the wound type lithium ion capacitor cell of Example 10 in this Embodiment was produced. Thereafter, in order to promote the insertion of lithium ions into the negative electrode, the lithium ion supply electrode and the positive electrode terminal thereof are connected to the positive electrode terminal of the charge / discharge device, and the negative electrode terminal is connected to the negative electrode terminal of the charge / discharge device. CC-CV charge up to 0V was performed, lithium ions were doped into the negative electrode, and the wound type lithium ion capacitor cell of Example 10 was completed.

実施例11
実施例11は、負極の穴開け加工において、穿孔側と反対側の負極層の表面に凸凹が形成されて正極層と対向した場合である。ただし、実施例10においては、表面に凸凹が形成された負極層を正極層に対向させたが、実施例11においては、表面に凸凹が形成された負極層をリチウムイオンドープ層に対向させた場合である。
Example 11
Example 11 is a case in which irregularities are formed on the surface of the negative electrode layer opposite to the perforated side and face the positive electrode layer in the drilling process of the negative electrode. However, in Example 10, the negative electrode layer with the irregularities formed on the surface was opposed to the positive electrode layer, but in Example 11, the negative electrode layer with the irregularities formed on the surface was opposed to the lithium ion doped layer. Is the case.

実施例11においては、セルの作製時の捲回体を作製する際、負極の穿孔面(負極表面)は正極層と対向させ、凹凸が形成された面(負極裏面)はリチウムイオンドープ層に対向させたこと以外は、実施例10と同様に行い、実施例11の捲回型リチウムイオンキャパシタセルを完成させた。   In Example 11, when the wound body for the production of the cell was produced, the perforated surface (negative electrode surface) of the negative electrode was opposed to the positive electrode layer, and the surface on which the irregularities were formed (negative electrode back surface) was the lithium ion doped layer. The wound lithium ion capacitor cell of Example 11 was completed in the same manner as in Example 10 except that it was opposed.

実施例8〜11の捲回型リチウムイオンキャパシタセルにおいて、放電電流を変化させた充放電試験を行った。試験は、300mAで4VまでCC−CV(定電流-定電圧)充電を行った後、表4に示す各放電電流値で放電した場合の放電容量を測定した。なお、充放電試験は25℃の環境下で行った。表4は、本実施の形態における捲回型リチウムイオンキャパシタセルの特性を示したものである。   In the wound type lithium ion capacitor cells of Examples 8 to 11, charge / discharge tests were performed by changing the discharge current. In the test, after performing CC-CV (constant current-constant voltage) charging up to 4 V at 300 mA, the discharge capacity was measured when discharged at each discharge current value shown in Table 4. The charge / discharge test was performed in an environment of 25 ° C. Table 4 shows the characteristics of the wound lithium ion capacitor cell according to the present embodiment.

Figure 2010278300
Figure 2010278300

表4において、正極集電基材の両面が正極活物質を含んだ正極層で構成された実施例8と、正極集電基材の一方の面が正極活物質を含んだ正極層、他方の面がリチウム遷移金属酸化物を含んだリチウムイオン供給層で構成された実施例9とを比較すると、片側面がリチウムイオン供給層で形成された実施例9の方が低電流放電時には高い放電容量が得られるが、これは供給源としてのコバルト酸リチウムの容量が正極活物質である活性炭よりも大きいためである。   In Table 4, Example 8 in which both surfaces of the positive electrode current collecting substrate were constituted by a positive electrode layer containing a positive electrode active material, and one surface of the positive electrode current collecting substrate was a positive electrode layer containing a positive electrode active material, the other Comparing with Example 9 in which the surface is constituted by a lithium ion supply layer containing a lithium transition metal oxide, Example 9 having one side formed by a lithium ion supply layer has a higher discharge capacity at the time of low current discharge. This is because the capacity of lithium cobaltate as a supply source is larger than that of activated carbon which is a positive electrode active material.

た、負極の穴開け加工において、穿孔側と反対側の負極層の表面に凸凹が形成された場合でも、その凸凹が形成された負極層を正極層と対向させた場合は(実施例10)、平坦な負極層の場合(実施例9)とほぼ同等な放電容量が得られるが、凸凹が形成された負極層をリチウムイオン供給層と対向させた場合は(実施例11)、若干高電流で放電容量の低下が見られる。この原因は、凹凸が形成された負極層がリチウムイオン供給層に対向していると、放電電流が大きくなるにしたがって負極層表面における電極反応が不均一になり、電極反応抵抗が増加して放電容量が減少したためと予想される。   In addition, in the drilling process of the negative electrode, even when irregularities are formed on the surface of the negative electrode layer opposite to the perforated side, when the negative electrode layer having the irregularities is opposed to the positive electrode layer (Example 10) In the case of a flat negative electrode layer (Example 9), a discharge capacity almost equal to that of Example 9 can be obtained. However, when the negative electrode layer having irregularities formed is opposed to the lithium ion supply layer (Example 11), a slightly higher current is obtained. The discharge capacity decreases. This is because when the negative electrode layer with irregularities is facing the lithium ion supply layer, the electrode reaction on the negative electrode layer surface becomes non-uniform as the discharge current increases, and the electrode reaction resistance increases and discharge occurs. It is expected that the capacity has decreased.

なお、本実施の形態において、リチウムイオン供給層の材料として、コバルト酸リチウムを含んだペーストを用いて形成したが、コバルト酸リチウムに限らず、リチウムイオンを吸蔵、脱離することが可能な材料を選択することにより本実施の形態は可能となる。   In this embodiment, the lithium ion supply layer is formed using a paste containing lithium cobaltate, but is not limited to lithium cobaltate, and is a material capable of inserting and extracting lithium ions. This embodiment is possible by selecting.

また、本実施の形態においては、負極の穴開け加工を平板プレスで行なっているが、さらに大面積な負極やさらに長尺形状の大きな負極に穴開け加工を行なう場合は、実施の形態1でも説明したように、ロール型の金型のロールプレスで行なう方が効率よく穴開け加工ができる。   Further, in the present embodiment, the drilling of the negative electrode is performed by a flat plate press. However, in the case of drilling a larger-area negative electrode or a longer negative electrode, the first embodiment is also used. As explained, drilling can be carried out more efficiently with a roll press of a roll mold.

1 正極、 2 正極集電基材、 3 正極層、 4 負極、 5 負極集電基材、 6 負極層、 7穿孔、 8 金属リチウム箔、9 セパレータ、 10 金型、 11 金型台、 12 突起、 13 アクリル板、 14 平滑金型、 15 負極原反、 16 突起、17 突起ロール、18 平滑ロール、19 正極集電端子、 20 負極集電端子、 21 捲回体、22 リチウムイオン供給層 DESCRIPTION OF SYMBOLS 1 Positive electrode, 2 Positive electrode current collection base material, 3 Positive electrode layer, 4 Negative electrode, 5 Negative electrode current collection base material, 6 Negative electrode layer, 7 Perforation, 8 Metal lithium foil, 9 Separator, 10 Mold, 11 Mold stand, 12 Protrusion , 13 Acrylic plate, 14 Smooth mold, 15 Negative electrode raw material, 16 Protrusion, 17 Protrusion roll, 18 Smooth roll, 19 Positive electrode current collector terminal, 20 Negative electrode current collector terminal, 21 Winding body, 22 Lithium ion supply layer

Claims (10)

正極集電基材の少なくとも一方の面にリチウムイオンまたはアニオンの吸着および脱着可能な正極活物質を含む正極層を形成して第1の正極および第2の正極をそれぞれ作製する工程と、
負極集電基材の両面にリチウムイオンの吸蔵および放出可能な負極活物質を含む負極層を形成し、前記負極集電基材の一方の面に形成された負極層から前記負極集電基材を貫通して他方の面に形成された負極層まで到達する穿孔を形成して負極を作製する工程と、
前記第1の正極の正極層の表面から順に第1のセパレータ、リチウムイオン供給源、前記負極、第2のセパレータおよび第2のセパレータ側に正極層を対向させた前記第2の正極を積層して電池体を作製する工程と、
前記電池体を非水系溶媒にリチウム塩が溶解した電解液に含浸する工程と
を備えたことを特徴とするリチウムイオンキャパシタの製造方法。
Forming a positive electrode layer containing a positive electrode active material capable of adsorbing and desorbing lithium ions or anions on at least one surface of a positive electrode current collector base material to produce a first positive electrode and a second positive electrode, respectively;
A negative electrode layer containing a negative electrode active material capable of occluding and releasing lithium ions is formed on both surfaces of the negative electrode current collector substrate, and the negative electrode current collector substrate is formed from the negative electrode layer formed on one surface of the negative electrode current collector substrate. Forming a perforation reaching the negative electrode layer formed on the other surface through the negative electrode; and
The first positive electrode, the lithium ion source, the negative electrode, the second separator, and the second positive electrode with the positive electrode layer facing the second separator are laminated in order from the surface of the positive electrode layer of the first positive electrode. Manufacturing the battery body,
And a step of impregnating the battery body with an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent.
正極集電基材の少なくとも一方の面にリチウムイオンまたはアニオンの吸着および脱着可能な正極活物質を含む正極層を形成して正極を作製する工程と、正極集電基材の少なくとも一方の面にリチウムイオンの吸蔵および放出可能な正極活物質を含むリチウムイオン供給層を作製する工程と、負極集電基材の両面にリチウムイオンの吸蔵および放出可能な負極活物質を含む負極層を形成し、前記負極集電基材の一方の面に形成された負極層から前記負極集電基材を貫通して他方の面に形成された負極層まで到達する穿孔を形成して負極を作製する工程と、
前記第1の正極の正極層の表面から順に第1のセパレータ、前記負極、第2のセパレータおよび第2のセパレータ側にリチウムイオン供給層を対向させた前記第2の正極を積層して電池体を作製する工程と、
前記電池体を非水系溶媒にリチウム塩が溶解した電解液に含浸する工程と
を備えたことを特徴とするリチウムイオンキャパシタの製造方法。
Forming a positive electrode layer containing a positive electrode active material capable of adsorbing and desorbing lithium ions or anions on at least one surface of the positive electrode current collector substrate, and forming a positive electrode on at least one surface of the positive electrode current collector substrate; Forming a lithium ion supply layer containing a positive electrode active material capable of occluding and releasing lithium ions, and forming a negative electrode layer containing a negative electrode active material capable of occluding and releasing lithium ions on both sides of the negative electrode current collecting base; A step of forming a negative electrode by forming perforations that penetrate from the negative electrode layer formed on one surface of the negative electrode current collector substrate to the negative electrode layer formed on the other surface through the negative electrode current collector substrate; ,
A battery body in which the first separator, the negative electrode, the second separator, and the second positive electrode with the lithium ion supply layer opposed to the second separator are stacked in order from the surface of the positive electrode layer of the first positive electrode. A step of producing
And a step of impregnating the battery body with an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent.
長尺状の正極集電基材の少なくとも一方の面にリチウムイオンまたはアニオンの吸着および脱着可能な正極活物質を含む正極層を形成して第1の正極および第2の正極をそれぞれ作製する工程と、
長尺状の負極集電基材の両面にリチウムイオンの吸蔵および放出可能な負極活物質を含む負極層を形成し、前記負極集電基材の一方の面に形成された負極層から前記負極集電基材を貫通して他方の面に形成された負極層まで到達する穿孔を形成して負極を作製する工程と、
前記第1の正極の正極層の表面から順に第1のセパレータ、金属リチウム箔、前記負極、第2のセパレータおよび第2のセパレータ側に正極層を対向させた前記第2の正極を積層したのち捲き回して捲回体を作製する工程と、
前記捲回体を非水系溶媒にリチウム塩が溶解した電解液に含浸する工程と
を備えたことを特徴とするリチウムイオンキャパシタの製造方法。
Forming a positive electrode layer containing a positive electrode active material capable of adsorbing and desorbing lithium ions or anions on at least one surface of a long positive electrode current collecting base material to produce a first positive electrode and a second positive electrode, respectively; When,
A negative electrode layer containing a negative electrode active material capable of occluding and releasing lithium ions is formed on both sides of a long negative electrode current collecting base material, and the negative electrode layer is formed on one surface of the negative electrode current collecting base material and the negative electrode is formed. Forming a negative electrode by forming a perforation that penetrates the current collector substrate and reaches the negative electrode layer formed on the other surface;
After laminating the first separator, the metallic lithium foil, the negative electrode, the second separator, and the second positive electrode with the positive electrode layer facing the second separator in order from the surface of the positive electrode layer of the first positive electrode Whirling to make a wound body;
And a step of impregnating the wound body with an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent.
長尺状の正極集電基材の一方の面にリチウムイオンまたはアニオンの吸着および脱着可能な正極活物質を含む正極層を形成して第1の正極を作製する工程と、
正極集電基材の一方の面にリチウムイオンの吸蔵および放出可能な正極活物質を含むリチウムイオン供給層を形成して第2の正極を作製する工程と、
長尺状の負極集電基材の両面にリチウムイオンの吸蔵および放出可能な負極活物質を含む負極層を形成し、前記負極集電基材の一方の面に形成された負極層から前記負極集電基材を貫通して他方の面に形成された負極層まで到達する穿孔を形成して負極を作製する工程と、
前記第1の正極の正極層の表面から順に第1のセパレータ、金属リチウム箔、前記負極、第2のセパレータおよび第2のセパレータ側にリチウムイオン供給層を対向させた前記第2の正極を積層したのち捲き回して捲回体を作製する工程と、
前記捲回体を非水系溶媒にリチウム塩が溶解した電解液に含浸する工程と
を備えたことを特徴とするリチウムイオンキャパシタの製造方法。
Forming a positive electrode layer containing a positive electrode active material capable of adsorbing and desorbing lithium ions or anions on one surface of a long positive electrode current collecting base material, and producing a first positive electrode;
Forming a second positive electrode by forming a lithium ion supply layer containing a positive electrode active material capable of occluding and releasing lithium ions on one surface of the positive electrode current collector base;
A negative electrode layer containing a negative electrode active material capable of occluding and releasing lithium ions is formed on both sides of a long negative electrode current collecting base material, and the negative electrode layer is formed on one surface of the negative electrode current collecting base material and the negative electrode is formed. Forming a negative electrode by forming a perforation that penetrates the current collector substrate and reaches the negative electrode layer formed on the other surface;
The first positive electrode having the lithium ion supply layer facing the first separator, the metal lithium foil, the negative electrode, the second separator, and the second separator is laminated in order from the surface of the positive electrode layer of the first positive electrode. And then rolling and producing a wound body,
And a step of impregnating the wound body with an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent.
穿孔の先端部が、他方の面に形成された負極層の内部にあることを特徴とする請求項1および4のいずれかに1項に記載のリチウムイオンキャパシタの製造方法。 5. The method of manufacturing a lithium ion capacitor according to claim 1, wherein the tip of the perforation is inside a negative electrode layer formed on the other surface. 6. 積層体を作製する工程において、
負極と第2のセパレータとの間に金属リチウム箔を挟んだことを特徴とする請求項1まおよび4のいずれかに1項に記載のリチウムイオンキャパシタの製造方法。
In the process of producing the laminate,
5. The method for producing a lithium ion capacitor according to claim 1, wherein a metal lithium foil is sandwiched between the negative electrode and the second separator. 6.
負極を作製する工程において、
両面に負極活物質層が形成された負極集電基材を、複数の針状突起を有する第1の平板と平滑面を有する第2の平板との間に設置して、前記第1の平板と第2の平板と加圧して前記複数の針状突起によって穿孔を形成することを特徴とする請求項1および4のいずれかに1項に記載のリチウムイオンキャパシタの製造方法。
In the process of making the negative electrode,
A negative electrode current collecting base material having a negative electrode active material layer formed on both sides is disposed between a first flat plate having a plurality of needle-like protrusions and a second flat plate having a smooth surface, and the first flat plate 5. The method of manufacturing a lithium ion capacitor according to claim 1, wherein the perforations are formed by pressurizing the second flat plate and the plurality of needle-like protrusions.
負極を作製する工程において、
両面に負極活物質層が形成された負極集電基材を、複数の針状突起を有する突起ロールと平滑面を有する平滑ロールとの間でロールプレスして前記複数の針状突起によって穿孔を形成することを特徴とする請求項1および4のいずれかに1項に記載のリチウムイオンキャパシタの製造方法。
In the process of making the negative electrode,
A negative electrode current collecting base material having a negative electrode active material layer formed on both sides is roll-pressed between a protruding roll having a plurality of needle-like protrusions and a smooth roll having a smooth surface, and perforated by the plurality of needle-like protrusions. The method for producing a lithium ion capacitor according to claim 1, wherein the lithium ion capacitor is formed.
負極集電基材の穿孔の開孔率が、0.1%以上5%以下であることを特徴とする請求項1および4のいずれかに1項に記載のリチウムイオンキャパシタの製造方法。 5. The method for producing a lithium ion capacitor according to claim 1, wherein an aperture ratio of perforations of the negative electrode current collecting base material is 0.1% or more and 5% or less. 負極集電基材の穿孔の間隔が、5mm以下であることを特徴とする請求項1および4のいずれかに1項に記載のリチウムイオンキャパシタの製造方法。 The method for producing a lithium ion capacitor according to any one of claims 1 and 4, wherein the interval between perforations of the negative electrode current collecting base material is 5 mm or less.
JP2009130503A 2009-05-29 2009-05-29 Method of manufacturing lithium ion capacitor Pending JP2010278300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009130503A JP2010278300A (en) 2009-05-29 2009-05-29 Method of manufacturing lithium ion capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130503A JP2010278300A (en) 2009-05-29 2009-05-29 Method of manufacturing lithium ion capacitor

Publications (1)

Publication Number Publication Date
JP2010278300A true JP2010278300A (en) 2010-12-09

Family

ID=43424982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130503A Pending JP2010278300A (en) 2009-05-29 2009-05-29 Method of manufacturing lithium ion capacitor

Country Status (1)

Country Link
JP (1) JP2010278300A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057607A (en) * 2015-11-26 2021-04-08 株式会社ジェイテクト Power storage device and manufacturing method thereof
CN112635200A (en) * 2020-12-17 2021-04-09 中国电子科技集团公司第十八研究所 Preparation method of lithium ion capacitor based on novel positive electrode pre-lithium-intercalation process
WO2023033113A1 (en) * 2021-09-01 2023-03-09 クロステクノロジーラボ株式会社 Battery having electronic conduction function via electric double layer capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057607A (en) * 2015-11-26 2021-04-08 株式会社ジェイテクト Power storage device and manufacturing method thereof
JP7024850B2 (en) 2015-11-26 2022-02-24 株式会社ジェイテクト Power storage device and manufacturing method of power storage device
CN112635200A (en) * 2020-12-17 2021-04-09 中国电子科技集团公司第十八研究所 Preparation method of lithium ion capacitor based on novel positive electrode pre-lithium-intercalation process
WO2023033113A1 (en) * 2021-09-01 2023-03-09 クロステクノロジーラボ株式会社 Battery having electronic conduction function via electric double layer capacitor

Similar Documents

Publication Publication Date Title
JP4842633B2 (en) Method for producing lithium metal foil for battery or capacitor
US6912116B2 (en) Electrochemical device and process for producing same
CN102771007B (en) Power storage device cell, process for producing same, method for storing same, and electricity storage device
US8520367B2 (en) Method of manufacturing lithium ion capacitor and lithium ion capacitor manufactured using the same
JP4994205B2 (en) Electric double layer capacitor and manufacturing method thereof
JP4041044B2 (en) Method for manufacturing electrochemical device
JP2012059396A (en) Negative electrode for power storage device and power storage device, and method of manufacturing them
JP2010135361A (en) Negative electrode, lithium ion capacitor, and manufacturing method of them
JP2008300667A (en) Accumulation device
JP5317687B2 (en) Winding type power storage
JP2012138408A (en) Electrochemical device and manufacturing method thereof
WO2012117794A1 (en) Lithium-ion capacitor
JP2012004491A (en) Power storage device
JP5308646B2 (en) Lithium ion capacitor
JP2008300214A (en) Electrode, power storage device, and manufacturing method of these
JP2005243455A (en) Electrochemical device
WO2012127991A1 (en) Power storage device
JP2011165930A (en) Power storage device, and method of manufacturing shared negative electrode of the same
JP2010278300A (en) Method of manufacturing lithium ion capacitor
JP5921897B2 (en) Lithium ion capacitor
JP2011159642A (en) Electrochemical device
JP2009199962A (en) Separator-incorporated electrode, its manufacturing method, and power storage device using the same
JP2013089606A (en) Electrode sheet, method of manufacturing the same and power storage device using the same
JP2011258798A (en) Electrochemical device
WO2015005294A1 (en) Power storage device