JP7015977B2 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP7015977B2
JP7015977B2 JP2017235010A JP2017235010A JP7015977B2 JP 7015977 B2 JP7015977 B2 JP 7015977B2 JP 2017235010 A JP2017235010 A JP 2017235010A JP 2017235010 A JP2017235010 A JP 2017235010A JP 7015977 B2 JP7015977 B2 JP 7015977B2
Authority
JP
Japan
Prior art keywords
hole
current collector
holes
length
length direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017235010A
Other languages
Japanese (ja)
Other versions
JP2019102379A (en
Inventor
順 秋草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017235010A priority Critical patent/JP7015977B2/en
Publication of JP2019102379A publication Critical patent/JP2019102379A/en
Application granted granted Critical
Publication of JP7015977B2 publication Critical patent/JP7015977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、蓄電デバイスに関する。 The present invention relates to a power storage device.

リチウムイオン電池、リチウムイオンキャパシタ、電気二重層キャパシタ、そして全固体電池などの蓄電デバイスは、集電体に金属箔が用いられている。例えばリチウムイオン電池は、正極集電体としてアルミニウム箔、負極集電体として銅箔が主に用いられている。 In power storage devices such as lithium ion batteries, lithium ion capacitors, electric double layer capacitors, and all-solid-state batteries, metal foil is used for the current collector. For example, in a lithium ion battery, an aluminum foil is mainly used as a positive electrode current collector and a copper foil is mainly used as a negative electrode current collector.

これら蓄電デバイスにおいて、リチウムイオンのプレドープ効率の向上、活物質層の脱落防止等を目的に貫通孔を設けた孔開き金属箔が集電体として用いられる場合がある。 In these power storage devices, a perforated metal foil provided with through holes may be used as a current collector for the purpose of improving the predoping efficiency of lithium ions and preventing the active material layer from falling off.

例えば特許文献1や特許文献2に記載のように、表面に凹凸を有するロールと平滑ロールとの間に金属箔を通すことで金属箔に貫通孔を複数形成し、金属箔と活物質の密着性を改善することが提案されている。特許文献3には、エッチング処理により金属箔に多数の貫通孔を形成する手法が開示されている。 For example, as described in Patent Document 1 and Patent Document 2, a plurality of through holes are formed in the metal foil by passing the metal foil between the roll having an uneven surface and the smooth roll, and the metal foil and the active material adhere to each other. It has been proposed to improve sex. Patent Document 3 discloses a method of forming a large number of through holes in a metal foil by an etching process.

特許第4074689号公報Japanese Patent No. 4074689 特許第5830080号公報Japanese Patent No. 583080 特開2011-216364号公報Japanese Unexamined Patent Publication No. 2011-216364

特許文献2には、表面に凹凸を有するロールと平滑ロールとの間に金属箔を通すという物理的な手法で孔開け加工を行った場合、孔開け加工時に微細金属片が発生することが記載されている。ある程度の大きさの金属片が電池に混入した場合、内部で短絡を生じるおそれがある。一部の文献では発生した金属片を後で除去する手法も報告されているものの、内部短絡は電池の安全面において致命的な現象であり、発生そのものを抑制することが望ましい。 Patent Document 2 describes that when a metal foil is passed between a roll having an uneven surface and a smooth roll to perform a hole drilling process, fine metal pieces are generated during the hole drilling process. Has been done. If a metal piece of a certain size gets mixed in the battery, a short circuit may occur inside. Although some documents have reported a method of removing the generated metal pieces later, an internal short circuit is a fatal phenomenon in terms of battery safety, and it is desirable to suppress the generation itself.

特許文献3に記載の手法では、前述の金属片が発生するリスクは少ないが、レジスト膜の形成、エッチング、レジスト膜の除去といった製法であるため、物理的な孔開け加工方法に比べ生産性が著しく低く、集電体としての製造コストが極めて大きくなるという懸念がある。 The method described in Patent Document 3 has a low risk of generating the above-mentioned metal pieces, but is more productive than the physical drilling method because it is a manufacturing method such as forming a resist film, etching, and removing the resist film. It is extremely low, and there is a concern that the manufacturing cost as a current collector will be extremely high.

本発明は、破断や変形などの支障を生じることなく電極を製造することができる蓄電デバイスを提供することを目的とする。 An object of the present invention is to provide a power storage device capable of manufacturing an electrode without causing troubles such as breakage and deformation.

本発明の第1の観点は、箔状の集電体と、前記集電体の一辺に接続された電流端子とを備え、スリット状の複数の貫通孔が、前記集電体に形成されており、前記貫通孔は、長さ方向の長さ(L)と、前記貫通孔の長さ方向に隣接する貫通孔同士の間隔(D)の比(L/D)が1.0以下であることを特徴とする。 The first aspect of the present invention includes a foil-shaped current collector and a current terminal connected to one side of the current collector, and a plurality of slit-shaped through holes are formed in the current collector. The ratio (L / D) of the through hole to the length (L) in the length direction and the distance (D) between the through holes adjacent to each other in the length direction of the through hole is 1.0 or less. It is characterized by that.

本発明の第2の観点は、第1の観点に基づく発明であって、前記貫通孔が前記貫通孔の長さ方向をそろえて一列に並んだ第1貫通孔列と、前記第1貫通孔列より前記比(L/D)が小さい第2貫通孔列とを有し、前記第1貫通孔列と前記第2貫通孔列が、前記貫通孔の幅方向に交互に配置されていることを特徴とする。 A second aspect of the present invention is an invention based on the first aspect, in which the first through-hole row in which the through-holes are arranged in a row in the same length direction of the through-holes and the first through-holes are aligned. It has a second through-hole row having a smaller ratio (L / D) than the row, and the first through-hole row and the second through-hole row are alternately arranged in the width direction of the through-hole. It is characterized by.

本発明の第3の観点は、第1又は第2の観点に基づく発明であって、前記間隔Dが0.5mm以上であることを特徴とする。 The third aspect of the present invention is the invention based on the first or second aspect, and is characterized in that the interval D is 0.5 mm or more.

本発明の第4の観点は、第1~第3のいずれかの観点に基づく発明であって、前記貫通孔は、幅方向の長さWが1~500μm、前記長さ方向の長さLが10~5000μmであることを特徴とする。 A fourth aspect of the present invention is an invention based on any one of the first to third aspects, wherein the through hole has a length W in the width direction of 1 to 500 μm and a length L in the length direction. Is 10 to 5000 μm.

本発明の第5の観点は、第1~第4のいずれかの観点に基づく発明であって、前記貫通孔は、前記貫通孔の長さ方向に平行な一対の長辺部と、前記一対の長辺部の両端側に先窄まり状に形成された短辺部とからなることを特徴とする。 A fifth aspect of the present invention is an invention based on any one of the first to fourth aspects, wherein the through hole is a pair of long sides parallel to the length direction of the through hole and the pair. It is characterized by having short sides formed in a constricted shape on both ends of the long side of the.

本発明の第1の観点によれば、貫通孔は、長さ方向の長さLと、貫通孔の長さ方向の間隔Dの比(L/D)が、1.0以下となるように形成されているので、巻き出しや巻き取りに必要な強度が維持されているから、破断や変形などの支障を生じることなく電極を製造することができる。 According to the first aspect of the present invention, the through hole has a ratio (L / D) of the length L in the length direction and the distance D in the length direction of the through hole to be 1.0 or less. Since it is formed, the strength required for unwinding and winding is maintained, so that the electrode can be manufactured without causing problems such as breakage and deformation.

本発明の第2の観点によれば、貫通孔を有するので合材層の密着性が得られ、全体として抵抗の増加を抑制することができると共に、第2貫通孔列を含むことで、より確実に強度を向上することができる。 According to the second aspect of the present invention, since it has through holes, the adhesiveness of the mixture layer can be obtained, the increase in resistance can be suppressed as a whole, and by including the second through hole row, it is possible to obtain more. The strength can be surely improved.

本発明の第3及び第4の観点によれば、二次電池製造時の巻き出しや巻き取りの際に印加される張力に耐えることができる。 According to the third and fourth viewpoints of the present invention, it is possible to withstand the tension applied at the time of unwinding and winding at the time of manufacturing a secondary battery.

本発明の第5の観点によれば、不要な金属片を発生させることなく貫通孔を形成できるため、金属片の付着が生じていない集電体を得ることができる。 According to the fifth aspect of the present invention, since the through hole can be formed without generating an unnecessary metal piece, it is possible to obtain a current collector in which the metal piece does not adhere.

本実施形態に係るリチウムイオン二次電池の構成を示す模式図である。It is a schematic diagram which shows the structure of the lithium ion secondary battery which concerns on this embodiment. 本実施形態に係るリチウムイオン二次電池の集電体を示す平面図であり、図2Aは正極集電体、図2Bは負極集電体である。It is a top view which shows the current collector of the lithium ion secondary battery which concerns on this embodiment, FIG. 2A is a positive electrode current collector, and FIG. 2B is a negative electrode current collector. 本実施形態に係る集電体の部分拡大平面図である。It is a partially enlarged plan view of the current collector which concerns on this embodiment. 本実施形態に係る貫通孔の拡大平面図である。It is an enlarged plan view of the through hole which concerns on this embodiment. 本実施形態に係る貫通孔の表面側から見た拡大斜視図である。It is an enlarged perspective view seen from the surface side of the through hole which concerns on this embodiment. 本実施形態に係る貫通孔の裏面側から見た拡大斜視図である。It is an enlarged perspective view seen from the back surface side of the through hole which concerns on this embodiment. 本実施形態に係る貫通孔を形成する状態を説明するための端面図である。It is an end view for demonstrating the state which forms the through hole which concerns on this embodiment. 本実施形態に係る貫通孔を形成する方法を示す斜視図である。It is a perspective view which shows the method of forming the through hole which concerns on this embodiment. 本実施形態に係る貫通孔を形成する製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing apparatus which forms the through hole which concerns on this embodiment. 本実施形態に係る集電体の製造に用いる金属箔の平面図である。It is a top view of the metal foil used for manufacturing the current collector which concerns on this embodiment. 本実施形態に係る貫通孔を形成する製造装置の変形例を示す模式図である。It is a schematic diagram which shows the modification of the manufacturing apparatus which forms the through hole which concerns on this embodiment. 本実施形態に係る集電体の製造に用いる金属箔の変形例(1)を示す平面図である。It is a top view which shows the modification (1) of the metal foil used for manufacturing the current collector which concerns on this embodiment. 本実施形態に係るリチウムイオン二次電池の集電体の変形例を示す平面図であり、図13Aは正極集電体、図13Bは負極集電体である。It is a top view which shows the modification of the current collector of the lithium ion secondary battery which concerns on this embodiment, FIG. 13A is a positive electrode current collector, and FIG. 13B is a negative electrode current collector. 本実施形態に係る集電体の製造に用いる金属箔の変形例(2)を示す平面図である。It is a top view which shows the modification (2) of the metal foil used for manufacturing the current collector which concerns on this embodiment.

以下、図面を参照して本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

1.全体構成
図1に示すように、蓄電デバイスとしてのリチウムイオン二次電池10は、正極12、負極14、セパレータ16、及びこれらを収容するケース17を備える。本図に示すリチウムイオン二次電池10は、セパレータ16を間に挟んで正極12及び負極14が交互に5個ずつ重ねられている。正極12、負極14及びセパレータ16は、例えば、エチレンカーボネート(EC)やジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ジメチルカーボネート(DMC)などを含む非水溶媒にLiPFやLiBF、LiClOなどのリチウム塩を混合した電解液(図示しない)に浸されている。
1. 1. Overall Configuration As shown in FIG. 1, the lithium ion secondary battery 10 as a power storage device includes a positive electrode 12, a negative electrode 14, a separator 16, and a case 17 for accommodating them. In the lithium ion secondary battery 10 shown in this figure, five positive electrodes 12 and five negative electrodes 14 are alternately stacked with a separator 16 interposed therebetween. The positive electrode 12, the negative electrode 14, and the separator 16 are prepared in a non-aqueous solvent containing, for example, ethylene carbonate (EC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), dimethyl carbonate (DMC), and LiPF 6 , LiBF 4 , and LiClO. It is immersed in an electrolytic solution (not shown) mixed with a lithium salt such as 4 .

正極12は、箔状の正極集電体18と、正極集電体18の一側又は両側表面に設けられた正極合材層20とを有する。正極集電体18は、例えばアルミニウムまたはアルミニウム合金の箔を用いることができる。正極合材層20は、LiCoO(LCO)などの活物質及びポリフッ化ビニリデンやポリアミドイミドなどのバインダーを含む。 The positive electrode 12 has a foil-shaped positive electrode current collector 18 and a positive electrode mixture layer 20 provided on one side or both side surfaces of the positive electrode current collector 18. For the positive electrode current collector 18, for example, an aluminum or aluminum alloy foil can be used. The positive electrode mixture layer 20 contains an active material such as LiCoO 2 (LCO) and a binder such as polyvinylidene fluoride or polyamide-imide.

負極14は、箔状の負極集電体22と、負極集電体22の一側又は両側表面に設けられた負極合材層24とを有する。負極集電体22は、例えば銅または銅合金の箔を用いることができる。負極合材層24は、天然黒鉛などの活物質及びスチレン・ブタジエン・ラバーなどのバインダーを含む。 The negative electrode 14 has a foil-shaped negative electrode current collector 22 and a negative electrode mixture layer 24 provided on one side or both side surfaces of the negative electrode current collector 22. For the negative electrode current collector 22, for example, a copper or copper alloy foil can be used. The negative electrode mixture layer 24 contains an active material such as natural graphite and a binder such as styrene, butadiene, and rubber.

正極合材層20及び負極合材層24は、さらに、アセチレンブラック、ケッチェンブラック、カーボンナノチューブなどの導電助剤やカルボキシメチルセルロースなどの増粘剤を含んでもよい。 The positive electrode mixture layer 20 and the negative electrode mixture layer 24 may further contain a conductive auxiliary agent such as acetylene black, ketjen black, and carbon nanotube, and a thickener such as carboxymethyl cellulose.

複数の正極12は、端子接続部19において束ねられ、正極電流端子26の一側表面に配置され、溶接によって固定されている。溶接は、例えば超音波溶接を用いることができる。溶接する際は、束ねた端子接続部19の表面に当て板30を配置し、正極電流端子26の他側表面から超音波を照射して、当て板30とともに束ねた端子接続部19を正極電流端子26の一側表面に固定する。当て板30は、正極集電体18と同じアルミニウム又はアルミニウム合金の板を用いる。 The plurality of positive electrodes 12 are bundled at the terminal connection portion 19, arranged on one side surface of the positive electrode current terminal 26, and fixed by welding. For welding, for example, ultrasonic welding can be used. When welding, a backing plate 30 is placed on the surface of the bundled terminal connection portion 19, ultrasonic waves are irradiated from the other side surface of the positive electrode current terminal 26, and the terminal connection portion 19 bundled together with the backing plate 30 is subjected to a positive electrode current. It is fixed to one side surface of the terminal 26. As the backing plate 30, the same aluminum or aluminum alloy plate as the positive electrode current collector 18 is used.

複数の負極14も、端子接続部23において束ねられ、上記正極12と同様に当て板32とともに、負極電流端子28の一側表面に、溶接によって固定する。当て板32は、ニッケル板又はニッケルめっきを施した銅板を用いる。 The plurality of negative electrodes 14 are also bundled at the terminal connection portion 23, and are fixed to one side surface of the negative electrode current terminal 28 together with the backing plate 32 by welding in the same manner as the positive electrode 12. As the backing plate 32, a nickel plate or a nickel-plated copper plate is used.

正極12及び負極14における上記溶接は、超音波溶接に限定されず、例えば、抵抗溶接、レーザー溶接を用いることができる。 The welding in the positive electrode 12 and the negative electrode 14 is not limited to ultrasonic welding, and for example, resistance welding and laser welding can be used.

図2に示すように、正極集電体18は、合材形成領域36を含む箔本体18Aを有する。当該箔本体18Aには、端子接続部19が一体に形成されている。箔本体18Aは、矩形状であり、周縁を除く中心部分が合材形成領域36である。合材形成領域36には、上記正極合材層20が設けられる。端子接続部19は、箔本体18Aの一辺の一側よりに形成されている。本図の場合、端子接続部19は箔本体18Aの上辺の左側寄りに設けられており、上辺から突出している。正極集電体18は、厚さ方向に貫通したスリット状の貫通孔34が、多数形成されている。 As shown in FIG. 2, the positive electrode current collector 18 has a foil body 18A including a mixture forming region 36. A terminal connection portion 19 is integrally formed on the foil body 18A. The foil body 18A has a rectangular shape, and the central portion excluding the peripheral edge is the composite material forming region 36. The positive electrode mixture layer 20 is provided in the mixture forming region 36. The terminal connection portion 19 is formed on one side of the foil body 18A. In the case of this figure, the terminal connection portion 19 is provided on the left side of the upper side of the foil main body 18A and protrudes from the upper side. The positive electrode current collector 18 is formed with a large number of slit-shaped through holes 34 penetrating in the thickness direction.

負極集電体22は、正極集電体18と同様に、合材形成領域38を含む箔本体22A及び端子接続部23を有し、スリット状の貫通孔34が多数形成されている。合材形成領域38には、上記負極合材層24が設けられる。端子接続部23は、正極集電体18と逆側である、箔本体22Aの上辺の右側寄りに設けられており、上辺から突出している。 Like the positive electrode current collector 18, the negative electrode current collector 22 has a foil body 22A including a composite material forming region 38 and a terminal connection portion 23, and a large number of slit-shaped through holes 34 are formed. The negative electrode mixture layer 24 is provided in the mixture forming region 38. The terminal connection portion 23 is provided on the right side of the upper side of the foil main body 22A, which is on the opposite side of the positive electrode current collector 18, and protrudes from the upper side.

本明細書では、正極集電体18と負極集電体22を区別しない場合、総称して集電体と呼ぶ。貫通孔34の向きは、特に限定されないが、本図の場合、貫通孔34の長さ方向が、箔本体18A,22Aの前記一辺に平行となるように形成されている。 In the present specification, when the positive electrode current collector 18 and the negative electrode current collector 22 are not distinguished, they are collectively referred to as a current collector. The orientation of the through hole 34 is not particularly limited, but in the case of this figure, the length direction of the through hole 34 is formed so as to be parallel to the one side of the foil bodies 18A and 22A.

図3に示すように、貫通孔34は、長さ方向に隣接している。貫通孔34は、貫通孔34の長さ方向に間隔Dをあけて列をなしており、幅方向に間隔Tをあけて配置されている。貫通孔同士の長さ方向の間隔Dは、例えば、0.5mm以上であるのが好ましい。0.5mm未満の場合、直径の小さなロータリー刃で開孔しても、貫通孔34と貫通孔34が繋がってしまう不具合が生じる。本図の場合、幅方向に隣り合う貫通孔34は、貫通孔34の長さ方向の位置が揃った状態で、配置されている。貫通孔34は、長さ方向の長さLと、長さ方向の間隔Dの比(L/D)が、1.0以下となるように形成されている。比(L/D)が、1.0を超える場合、間隔Dが狭すぎるため、製造工程において、集電体が変形したり破断したりする恐れがある。貫通孔34は、横長のスリット状であるために、間隔Dが狭すぎると、少しの力で貫通孔34間に存在する金属が破断してしまう。また、一旦破断すると、次の貫通孔34へ簡単に伝播して、ひいては、直線状の長い孔ができる不具合が生じる。本図の場合、間隔Dは、一定であるが、周期的に又はランダムに変化していてもよい。比(L/D)は、0.8以下が好ましく、0.5以下がより好ましい。比(L/D)は0.05以上であるのが好ましい。比(L/D)が0.05未満の場合、貫通孔34の長さLが短すぎるため、結着性、液浸透性、ガス透過性などの効果が得られ難くなる。 As shown in FIG. 3, the through holes 34 are adjacent to each other in the length direction. The through holes 34 are arranged in a row with an interval D in the length direction of the through holes 34, and are arranged with an interval T in the width direction. The distance D between the through holes in the length direction is preferably 0.5 mm or more, for example. If it is less than 0.5 mm, there is a problem that the through hole 34 and the through hole 34 are connected even if the hole is opened with a rotary blade having a small diameter. In the case of this figure, the through holes 34 adjacent to each other in the width direction are arranged in a state where the positions of the through holes 34 in the length direction are aligned. The through hole 34 is formed so that the ratio (L / D) of the length L in the length direction and the distance D in the length direction is 1.0 or less. If the ratio (L / D) exceeds 1.0, the interval D is too narrow, and the current collector may be deformed or broken in the manufacturing process. Since the through hole 34 has a horizontally long slit shape, if the interval D is too narrow, the metal existing between the through holes 34 will break with a small force. Further, once broken, it easily propagates to the next through hole 34, which in turn causes a problem that a long linear hole is formed. In the case of this figure, the interval D is constant, but may change periodically or randomly. The ratio (L / D) is preferably 0.8 or less, more preferably 0.5 or less. The ratio (L / D) is preferably 0.05 or more. When the ratio (L / D) is less than 0.05, the length L of the through hole 34 is too short, so that it becomes difficult to obtain effects such as binding property, liquid permeability, and gas permeability.

比(L/D)は、適用する蓄電デバイスの電気容量のサイズにより、異なる。例えば携帯電話、スマートフォン等、必要となる電気容量が小さい民生用の蓄電デバイスの場合、使用する電極の長さが短いので、電池を積層する際に電極を巻く回数が一般的に7~8回と少ない。このため集電体を含む電極板に掛かる引っ張り荷重は小さいので、比(L/D)を比較的大きく、すなわち長さLに対する間隔Dを比較的狭くすることができる。 The ratio (L / D) depends on the size of the electric capacity of the power storage device to be applied. For example, in the case of consumer power storage devices such as mobile phones and smartphones, which require a small amount of electric capacity, the length of the electrodes used is short, so the number of times the electrodes are wound when stacking batteries is generally 7 to 8 times. And few. Therefore, since the tensile load applied to the electrode plate including the current collector is small, the ratio (L / D) can be relatively large, that is, the interval D with respect to the length L can be relatively narrowed.

一方、必要となる電気容量が大きい車載用の蓄電デバイスの場合、使用する電極の長さが長いので、電池を積層する際に電極を巻く回数が数十回と多い。このため集電体を含む電極板により大きい引っ張り荷重がかかるので、比(L/D)を小さく、すなわち長さLに対する間隔Dを広くして、集電箔の強度を高める必要がある。 On the other hand, in the case of an in-vehicle power storage device that requires a large electric capacity, the length of the electrodes used is long, so that the number of times the electrodes are wound when stacking batteries is as many as several tens. Therefore, since a larger tensile load is applied to the electrode plate including the current collector, it is necessary to reduce the ratio (L / D), that is, widen the interval D with respect to the length L to increase the strength of the current collector foil.

以上のように蓄電デバイスのサイズにより、集電箔が破損しないための比(L/D)を適切に調整することにより、蓄電デバイスの製造段階において、不良なく製造することが可能になる。 As described above, by appropriately adjusting the ratio (L / D) for preventing the current collector foil from being damaged depending on the size of the power storage device, it becomes possible to manufacture the power storage device without defects at the manufacturing stage.

幅方向の間隔Tは、例えば、1mm~20mmの範囲で選択することができる。間隔Tが狭すぎる場合、機械的強度が低下するため、製造工程において貫通孔34の長さ方向に張力が印加された場合、集電体が変形する恐れがある。逆に間隔Tが大きすぎる場合、単位幅当たりの貫通孔34数が低下し、貫通孔34部分での結着性向上が期待できなくなる。貫通孔34の減少により両側表面の正極合材層20同士又は負極合材層24同士の液浸透性、ガス透過性が低下してしまう不具合が生じる。 The spacing T in the width direction can be selected, for example, in the range of 1 mm to 20 mm. If the interval T is too narrow, the mechanical strength is lowered, and therefore, if tension is applied in the length direction of the through hole 34 in the manufacturing process, the current collector may be deformed. On the contrary, when the interval T is too large, the number of through holes 34 per unit width is reduced, and improvement in binding property at the through holes 34 portion cannot be expected. Due to the decrease in the through holes 34, there is a problem that the liquid permeability and the gas permeability between the positive electrode mixture layers 20 and the negative electrode mixture layers 24 on both side surfaces are lowered.

図4に示すように、貫通孔34は、貫通孔34の長さ方向に平行な一対の長辺部34Bと、貫通孔34の長さ方向の両端側に先窄まり状に長辺部34Bと一体に形成された短辺部34Cとからなる開口部34Aを有する。長辺部34Bの間隔を貫通孔34の幅方向の長さ(スリット幅)W、短辺部34Cの間隔を貫通孔34の長さ方向の長さLとする。貫通孔34は、長さLと長さWで規定されるアスペクト比(L/W)が10以上であるのが好ましい。アスペクト比(L/W)が10未満の場合、貫通孔34が正方形に近い形状となり、後述する貫通孔形成時に金属箔が千切れて微細金属片を生じてしまうため、好ましくない。貫通孔34のアスペクト比(L/W)は、高い方が金属片の発生を低減できる効果をより向上することができる。アスペクト比(L/W)の上限は、特に限定されないが、加工や取扱いの容易さの観点から、200程度とするのがより好ましい。 As shown in FIG. 4, the through hole 34 has a pair of long side portions 34B parallel to the length direction of the through hole 34 and a long side portion 34B having a constricted tip on both ends in the length direction of the through hole 34. It has an opening 34A including a short side portion 34C integrally formed with the above. The distance between the long side portions 34B is defined as the length (slit width) W in the width direction of the through hole 34, and the distance between the short side portions 34C is defined as the length L in the length direction of the through hole 34. The through hole 34 preferably has an aspect ratio (L / W) defined by a length L and a length W of 10 or more. When the aspect ratio (L / W) is less than 10, the through hole 34 has a shape close to a square, and the metal foil is torn off when the through hole is formed, which will be described later, and fine metal pieces are generated, which is not preferable. The higher the aspect ratio (L / W) of the through hole 34, the more the effect of reducing the generation of metal pieces can be improved. The upper limit of the aspect ratio (L / W) is not particularly limited, but is more preferably about 200 from the viewpoint of ease of processing and handling.

貫通孔34の長さLは10μm以上5000μm以下の範囲であることが望ましく、長さWは1μm以上500μm以下の範囲であることが望ましい。前述の範囲において、長さLは500μm以上3000μm以下の範囲がより望ましく、長さWは5μm以上100μm以下の範囲であることがより望ましい。 The length L of the through hole 34 is preferably in the range of 10 μm or more and 5000 μm or less, and the length W is preferably in the range of 1 μm or more and 500 μm or less. In the above range, the length L is more preferably in the range of 500 μm or more and 3000 μm or less, and the length W is more preferably in the range of 5 μm or more and 100 μm or less.

集電体の厚さは1μm~40μmの範囲であることが望ましい。集電体が1μmより薄くなると強度が不足し、巻き取りや巻き出しの際に変形するおそれがあり、40μmを超えて厚い場合は集電体としてのメリットが少なくなる。 The thickness of the current collector is preferably in the range of 1 μm to 40 μm. If the current collector is thinner than 1 μm, the strength will be insufficient and there is a risk of deformation during winding and unwinding. If the current collector is thicker than 40 μm, the merit as a current collector will be reduced.

図5及び図6に示すように、貫通孔34は、開口部34Aのほぼ全周において、集電体の裏面側に突出したバリ35が形成されている。バリ35は、開口部34Aの長辺部34Bから突出した長辺バリ部35Aと短辺部34Cから突出された短辺バリ部35Bとからなり、2つの長辺バリ部35Aと2つの短辺バリ部35Bによって、集電体の裏面側における開口部34A周縁のほぼ全周が囲まれている。 As shown in FIGS. 5 and 6, the through hole 34 is formed with a burr 35 protruding from the back surface side of the current collector on substantially the entire circumference of the opening 34A. The burr 35 is composed of a long side burr portion 35A protruding from the long side portion 34B of the opening 34A and a short side burr portion 35B protruding from the short side portion 34C, and has two long side burr portions 35A and two short sides. The burr portion 35B surrounds almost the entire circumference of the periphery of the opening 34A on the back surface side of the current collector.

これらのバリ35は図7に示すように、刃先部40Gを厚さ方向に突き通された集電体が、部分的に塑性変形することによって形成されたものである。 As shown in FIG. 7, these burrs 35 are formed by partially plastically deforming a current collector penetrating the cutting edge portion 40G in the thickness direction.

このため、長辺バリ部35Aの高さ(長さ)Hは貫通孔のスリットの長さWの1/2より大きく形成されている。長辺バリ部35Aの高さ(長さ)Hと短辺バリ部35Bの高さ(長さ)Hはほぼ同等とされている。長辺バリ部35Aの高さHが貫通孔34の長さWの1/2より大きく形成されているのは、工具40の刃先部40Gで箔本体18A(22A)の一部をその厚さ方向に突き通す場合に箔本体18A(22A)を構成する金属材料が塑性変形により伸ばされた結果である。 Therefore, the height (length) H of the long side burr portion 35A is formed to be larger than 1/2 of the length W of the slit of the through hole. The height (length) H of the long side burr portion 35A and the height (length) H of the short side burr portion 35B are almost the same. The height H of the long side burr portion 35A is formed to be larger than 1/2 of the length W of the through hole 34 because the cutting edge portion 40G of the tool 40 has a part of the foil body 18A (22A) having a thickness thereof. This is the result of the metal material constituting the foil body 18A (22A) being stretched by plastic deformation when penetrating in the direction.

2.製造方法
次に集電体を形成する方法について説明する。集電体は、金属箔に貫通孔34を形成し、当該金属箔から所定の形状に切り出すことによって、形成することができる。金属箔は、正極集電体18を形成する場合はアルミニウムまたはアルミニウム合金の箔であり、負極集電体22を形成する場合は銅または銅合金の箔である。
2. 2. Manufacturing method Next, a method of forming a current collector will be described. The current collector can be formed by forming a through hole 34 in the metal foil and cutting the metal foil into a predetermined shape. The metal foil is an aluminum or aluminum alloy foil when forming the positive electrode current collector 18, and a copper or copper alloy foil when forming the negative electrode current collector 22.

貫通孔34は、図8に示す工具40を用いて形成することができる。工具40は、支持軸40Aの一部に軸部40Bにより回転自在に設けられた円板状の回転刃40Dを有する。この回転刃40Dの外周縁部には、円周方向に複数の凹部40Eを介して凸型の切断刃40Fが定間隔で交互に複数形成され、切断刃40Fの先端部分に刃先部40Gが形成されているロータリー式の隙間刃が形成されている。 The through hole 34 can be formed by using the tool 40 shown in FIG. The tool 40 has a disk-shaped rotary blade 40D rotatably provided on a part of the support shaft 40A by the shaft portion 40B. A plurality of convex cutting blades 40F are alternately formed at regular intervals on the outer peripheral edge portion of the rotary blade 40D via a plurality of concave portions 40E in the circumferential direction, and the cutting edge portion 40G is formed at the tip portion of the cutting blade 40F. A rotary type clearance blade is formed.

この工具40の回転刃40Dを金属箔41に対し直角に押し付けて個々の刃先部40Gで金属箔41を突き通すように加工しながら金属箔41の長さ方向に沿って回転刃40Dを回転移動することで、金属箔41に複数の貫通孔34を間欠的に1列形成することができる。この加工に先立ち、金属箔41の裏面側にゴムシートなどの受け材を配置し、刃先部40Gが金属箔41を貫通する場合のクッション材とすることが好ましい。 The rotary blade 40D of this tool 40 is pressed at a right angle to the metal foil 41, and the rotary blade 40D is rotationally moved along the length direction of the metal foil 41 while being processed so as to penetrate the metal foil 41 at each cutting edge portion 40G. As a result, a plurality of through holes 34 can be intermittently formed in a row in the metal foil 41. Prior to this processing, it is preferable to arrange a receiving material such as a rubber sheet on the back surface side of the metal foil 41 and use it as a cushioning material when the cutting edge portion 40G penetrates the metal foil 41.

このように回転刃40Dを備えた工具40を用いることにより、刃先部40Gを用いてバリ35を形成しながら金属箔41に貫通孔34を形成できるので、目的のアスペクト比で目的の大きさの貫通孔34を多数有する金属箔41を容易に製造することができる。刃先部40Gを用いて突き通しにより金属箔41にアスペクト比10以上の貫通孔34を形成することにより、金属箔41の材料を刃先部40Gで引き延ばして塑性変形させた後に貫通孔34を生成しバリ35を形成するので、微細金属片などの異物を個別に発生させることなく貫通孔34を形成できる。このため、微細金属片などの異物を有していない金属箔41はリチウムイオン二次電池10の集電体用として好適であり、内部短絡などのおそれのない高品質の集電体を提供できる。 By using the tool 40 provided with the rotary blade 40D in this way, it is possible to form the through hole 34 in the metal foil 41 while forming the burr 35 using the cutting edge portion 40G. A metal foil 41 having a large number of through holes 34 can be easily manufactured. By forming a through hole 34 having an aspect ratio of 10 or more in the metal foil 41 by penetrating using the cutting edge portion 40G, the material of the metal foil 41 is stretched by the cutting edge portion 40G and plastically deformed to generate the through hole 34. Since the burrs 35 are formed, the through holes 34 can be formed without individually generating foreign matters such as fine metal pieces. Therefore, the metal foil 41 having no foreign matter such as fine metal pieces is suitable for the current collector of the lithium ion secondary battery 10, and can provide a high-quality current collector without a risk of internal short circuit or the like. ..

図9は、長尺の帯状の金属箔41に対し複数列の貫通孔34を連続形成する場合に用いて好適な製造装置42を示す。 FIG. 9 shows a manufacturing apparatus 42 suitable for continuously forming a plurality of rows of through holes 34 in a long strip-shaped metal foil 41.

製造装置42は、帯状の金属箔41を巻き出し自在な巻出リール43と金属箔41を巻き取り自在な巻取リール44を有し、巻出リール43と巻取リール44の間に押当ロール45とロータリー刃46が設けられ、それらの前後に調整リール47が設けられている。 The manufacturing apparatus 42 has a winding reel 43 capable of unwinding the strip-shaped metal foil 41 and a take-up reel 44 capable of winding the metal foil 41, and is pressed between the unwinding reel 43 and the take-up reel 44. A roll 45 and a rotary blade 46 are provided, and adjustment reels 47 are provided before and after them.

ロータリー刃46は刃先部46aを外周部に複数、凹部46bを介して設けた回転刃46cを必要数だけ厚さ方向に積層した構成である。回転刃46cの積層数は金属箔41の幅方向に形成する貫通孔34の列数に対応する。 The rotary blade 46 has a configuration in which a plurality of blade edge portions 46a are provided on the outer peripheral portion and rotary blades 46c provided via recesses 46b are laminated in a required number in the thickness direction. The number of laminated rotary blades 46c corresponds to the number of rows of through holes 34 formed in the width direction of the metal foil 41.

押当ロール45は外周部に弾性体層を有する、又は、全体が弾性体からなるロールであり、ロータリー刃46の刃先部46aで帯状の金属箔41を突き通した場合に刃先部46aの先端を弾性的に受けるためのクッションロールである。 The pressing roll 45 has an elastic body layer on the outer peripheral portion, or is a roll made entirely of an elastic body, and the tip of the cutting edge portion 46a is formed when the strip-shaped metal foil 41 is pierced by the cutting edge portion 46a of the rotary blade 46. It is a cushion roll for elastically receiving.

巻出リール43に巻き付けておいた帯状の金属箔41を繰り出し、一方の調整リール47を介してロータリー刃46と押当ロール45との間を通過させ、他方の調整リール47を介して巻取リール44で巻き取る。この操作により、ロータリー刃46と押当ロール45との間を通過した金属箔41にロータリー刃46の複数の刃先部46aによって複数列の貫通孔34を間欠的に順次同時形成することができる。 The strip-shaped metal foil 41 wound around the unwinding reel 43 is unwound, passed between the rotary blade 46 and the pressing roll 45 via one adjusting reel 47, and wound through the other adjusting reel 47. Wind up on reel 44. By this operation, a plurality of rows of through holes 34 can be intermittently and sequentially simultaneously formed in the metal foil 41 that has passed between the rotary blade 46 and the pressing roll 45 by the plurality of cutting edge portions 46a of the rotary blade 46.

複数のロータリー刃46を並列した構成で金属箔41に貫通孔34を形成することにより、金属箔41の幅方向に所定の間隔で正確に整列した状態の複数の貫通孔34を形成できる。本図に示す製造装置42を用いることで、図10に示すように、貫通孔34の長さ方向が金属箔41の長さ方向に沿った貫通孔34が均一かつ正確に配列された帯状の金属箔41を形成することができる。本図に示す金属箔41から、所定形状に切り出すことにより、本実施形態に係る集電体が得られる。 By forming the through holes 34 in the metal foil 41 in a configuration in which a plurality of rotary blades 46 are arranged in parallel, it is possible to form a plurality of through holes 34 in a state of being accurately aligned at predetermined intervals in the width direction of the metal foil 41. By using the manufacturing apparatus 42 shown in this figure, as shown in FIG. 10, the through holes 34 are uniformly and accurately arranged in a strip shape along the length direction of the metal foil 41. The metal foil 41 can be formed. By cutting out the metal foil 41 shown in this figure into a predetermined shape, a current collector according to the present embodiment can be obtained.

3.作用及び効果
集電体は、両側表面に正極合材層20又は負極合材層24を設けた場合、両側表面の正極合材層20同士又は負極合材層24同士が貫通孔34を介して密着する。したがって正極12又は負極14は、集電体に対する正極合材層20又は負極合材層24のそれぞれの密着性が向上する。
3. 3. Actions and effects When the positive electrode mixture layer 20 or the negative electrode mixture layer 24 is provided on both side surfaces of the current collector, the positive electrode mixture layers 20 or the negative electrode mixture layers 24 on both side surfaces pass through the through hole 34. In close contact. Therefore, the positive electrode 12 or the negative electrode 14 improves the adhesion of the positive electrode mixture layer 20 or the negative electrode mixture layer 24 to the current collector.

金属箔41に合材スラリーを塗布して、正極合材層20、又は負極合材層24を形成する場合に金属箔41に対し長さ方向に張力が印加される。貫通孔34は、その長さ方向が金属箔41の長さ方向に沿って、長さ方向の長さLと、長さ方向の間隔Dの比(L/D)が、1.0以下となるように形成されているので、巻き出しや巻き取りに必要な強度が維持されているから、金属箔41の破断や変形などの支障を生じることなく合材スラリーを塗布できる。 When the mixed material slurry is applied to the metal foil 41 to form the positive electrode mixed material layer 20 or the negative electrode mixed material layer 24, tension is applied to the metal foil 41 in the length direction. The length direction of the through hole 34 is along the length direction of the metal foil 41, and the ratio (L / D) of the length L in the length direction and the distance D in the length direction is 1.0 or less. Since it is formed so as to be, the strength required for unwinding and winding is maintained, so that the mixed material slurry can be applied without causing problems such as breakage or deformation of the metal foil 41.

箔本体18A,22Aの貫通孔34は、アスペクト比(L/W)が10以上とされ、前述の工具40あるいは製造装置42で貫通孔34が形成されているので、箔本体18A,22Aに微細金属片などの不要な導電性の異物が付着しておらず、集電体の導電性異物に起因する内部短絡のおそれを生じない二次電池を得ることができる。 The through holes 34 of the foil bodies 18A and 22A have an aspect ratio (L / W) of 10 or more, and the through holes 34 are formed by the tool 40 or the manufacturing apparatus 42 described above. It is possible to obtain a secondary battery in which unnecessary conductive foreign matter such as a metal piece is not attached and there is no risk of internal short circuit due to the conductive foreign matter in the current collector.

集電体は、長さ方向の長さLと長さ方向の間隔Dの比(L/D)が1.0以下、アスペクト比(L/W)が10以上である貫通孔34を備えることにより、金属箔41の破断や変形、集電体の導電性異物に起因する内部短絡を防止でき、二次電池の不良率を低減することができる。 The current collector is provided with a through hole 34 in which the ratio (L / D) of the length L in the length direction to the distance D in the length direction is 1.0 or less and the aspect ratio (L / W) is 10 or more. As a result, it is possible to prevent breakage or deformation of the metal foil 41 and an internal short circuit caused by a conductive foreign substance in the current collector, and it is possible to reduce the defect rate of the secondary battery.

貫通孔34の長さLは10μm~5000μmの範囲、長さWは1μm~500μmの範囲であり、帯状の金属箔41の長さ方向に貫通孔34の長さ方向を揃え、金属箔41の厚さを1μm~40μm、貫通孔34を金属箔41に0.5mm以上の間隔Dで形成しているので、二次電池製造時の巻き出しや巻き取りの際の張力印加に耐える実用的な強度を有する。 The length L of the through hole 34 is in the range of 10 μm to 5000 μm, and the length W is in the range of 1 μm to 500 μm. Since the thickness is 1 μm to 40 μm and the through holes 34 are formed in the metal foil 41 at intervals D of 0.5 mm or more, it is practical to withstand the application of tension during unwinding and winding during secondary battery manufacturing. Has strength.

集電体は、貫通孔34が複数形成されていることにより、外周部から貫通孔34を介して内部へ電解液が浸透しやすく、中心部分の電極の抵抗が増加しにくい。したがってリチウムイオン二次電池は、全体として抵抗の増加を抑制することができる。 Since a plurality of through holes 34 are formed in the current collector, the electrolytic solution easily permeates from the outer peripheral portion to the inside through the through holes 34, and the resistance of the electrode in the central portion is unlikely to increase. Therefore, the lithium ion secondary battery can suppress the increase in resistance as a whole.

従来技術の凹凸ロールによって金属箔に貫通孔を開けた場合、凹凸ロールに挟まれた金属箔を引き千切るように打ち抜いて孔あけ加工しているので、必然的に微細な金属片が多数発生し、短絡のおそれが生じる。これに対し上述の工具40あるいは製造装置42で貫通孔34を形成することにより、金属箔41の一部を塑性加工はするが、塑性加工部分はバリ35としてそのまま残し、塑性加工した部分の一部を切断して貫通孔34を形成しているので、不要な金属片を発生させることなく貫通孔34を形成できる。このため、金属片の付着が生じていない金属箔41及び集電体を得ることができる。 When a through hole is made in a metal foil by a conventional concavo-convex roll, the metal foil sandwiched between the concavo-convex rolls is punched out so as to be torn off, so that a large number of fine metal pieces are inevitably generated. However, there is a risk of short circuit. On the other hand, by forming the through hole 34 with the above-mentioned tool 40 or the manufacturing apparatus 42, a part of the metal foil 41 is plastically worked, but the plastically worked part is left as a burr 35 and is one of the plastically machined parts. Since the through hole 34 is formed by cutting the portion, the through hole 34 can be formed without generating an unnecessary metal piece. Therefore, it is possible to obtain the metal foil 41 and the current collector to which the metal pieces do not adhere.

4.変形例
本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。
4. Modifications The present invention is not limited to the above embodiment, and can be appropriately modified within the scope of the gist of the present invention.

図11は、長尺の帯状の金属箔41に対し複数列の貫通孔34を連続形成する場合に好適な製造装置の他の例を示す側面図である。図11に示す製造装置48において図9に示す製造装置42と同等の構成要素には同一の符号を付し、同等の構成要素については説明を省略する。 FIG. 11 is a side view showing another example of a manufacturing apparatus suitable for continuously forming a plurality of rows of through holes 34 in a long strip-shaped metal foil 41. In the manufacturing apparatus 48 shown in FIG. 11, the components equivalent to those of the manufacturing apparatus 42 shown in FIG. 9 are designated by the same reference numerals, and the description of the equivalent components will be omitted.

製造装置48は、ロータリー刃46および押当ロール45の設置位置と巻取リール44側の調整リール47との間に軽圧下ロール49,49を配置した点に特徴を有する。これらの軽圧下ロール49,49は金属箔41に軽く圧延を施し、ロータリー刃46および押当ロール45によって金属箔41に形成した複数の貫通孔34に設けられているバリ35を押し潰して金属箔41を平滑化する機能を有する。 The manufacturing apparatus 48 is characterized in that the light reduction rolls 49 and 49 are arranged between the installation position of the rotary blade 46 and the pressing roll 45 and the adjustment reel 47 on the take-up reel 44 side. These light rolling rolls 49, 49 lightly roll the metal foil 41 and crush the burrs 35 provided in the plurality of through holes 34 formed in the metal foil 41 by the rotary blade 46 and the pressing roll 45 to crush the metal. It has a function of smoothing the foil 41.

上記実施形態の場合、幅方向に隣り合う貫通孔34は、貫通孔34の長さ方向の位置が揃った状態で、配置されている場合について説明したが、本発明はこれに限らず、例えば、貫通孔34の長さ方向の位置が互い違いになった状態で、配置されていてもよい。図12は変形例に係る金属箔50を示すもので、幅方向に隣り合う貫通孔52は、貫通孔52の長さ方向の位置が互い違いになった状態で、配置されている。本図に示す金属箔50から、所定形状に切り出すことにより、集電体が得られる。すなわち比(L/D)が、1.0以下となるように形成されているので、上記実施形態と同様の効果が得られる。 In the case of the above embodiment, the case where the through holes 34 adjacent to each other in the width direction are arranged in a state where the positions of the through holes 34 in the length direction are aligned has been described, but the present invention is not limited to this, for example. , The positions of the through holes 34 in the length direction may be staggered. FIG. 12 shows the metal leaf 50 according to the modified example, and the through holes 52 adjacent to each other in the width direction are arranged in a state where the positions of the through holes 52 in the length direction are staggered. A current collector can be obtained by cutting out the metal foil 50 shown in this figure into a predetermined shape. That is, since the ratio (L / D) is formed to be 1.0 or less, the same effect as that of the above embodiment can be obtained.

上記実施形態の場合、貫通孔34は、その長さ方向が箔本体18A,22Aの前記一辺に平行となるように形成されている場合について説明したが、本発明はこれに限らない。図13に示す正極集電体54及び負極集電体56は、貫通孔58が、箔本体54A,56Aの端子接続部19,23が設けられた一辺に直交する方向xと、貫通孔58の長さ方向とのなす鋭角が45°以下、本図の場合0°となるように、形成されている。本変形例に係る集電体は、比(L/D)が、1.0以下となるように形成されているので、上記実施形態と同様の効果が得られる。さらに、貫通孔58の長さ方向が方向xと略平行に形成されていることにより、正極電流端子26又は負極電流端子28を接続する際に、集電体に端子接続部19,23に向かって張力が働いた場合であっても、貫通孔58の短辺に応力が集中するのを防ぐことができるので、集電体の破断をより抑制することができる。 In the case of the above embodiment, the case where the through hole 34 is formed so that its length direction is parallel to the one side of the foil main bodies 18A and 22A has been described, but the present invention is not limited to this. In the positive electrode current collector 54 and the negative electrode current collector 56 shown in FIG. 13, the through hole 58 has a direction x in which the through hole 58 is orthogonal to one side provided with the terminal connection portions 19 and 23 of the foil bodies 54A and 56A, and the through hole 58. It is formed so that the acute angle formed with the length direction is 45 ° or less, and in the case of this figure, it is 0 °. Since the current collector according to this modification is formed so that the ratio (L / D) is 1.0 or less, the same effect as that of the above embodiment can be obtained. Further, since the length direction of the through hole 58 is formed substantially parallel to the direction x, when the positive electrode current terminal 26 or the negative electrode current terminal 28 is connected, the current collector faces the terminal connection portions 19 and 23. Even when tension is applied, it is possible to prevent the stress from concentrating on the short side of the through hole 58, so that the breakage of the current collector can be further suppressed.

上記実施形態の場合、貫通孔34は、長さ方向の長さLと、長さ方向の間隔Dの比(L/D)が全体的に一定である場合について説明したが、本発明はこれに限らず、前記比を変化させてもよい。図14に示す金属箔59は、比(L/D)が1.0以下となるように形成された貫通孔34が貫通孔34の長さ方向をそろえて一列に並んだ第1貫通孔列60と、前記第1貫通孔列60より前記比(L/D)が小さくなるように貫通孔62が貫通孔62の長さ方向をそろえて一列に並んだ第2貫通孔列64とを有し、前記第1貫通孔列60と前記第2貫通孔列64が、前記貫通孔34,62の幅方向に交互に配置されている。本変形例に係る集電体は、比(L/D)が、1.0以下となるように形成されているので、上記実施形態と同様の効果が得られる。さらに金属箔59から所定形状に切り出すことにより、得られた集電体は、貫通孔34,62を有するので合材層の密着性が得られ、全体としてリチウムイオン二次電池の抵抗の増加を抑制することができると共に、第2貫通孔列64を含むことで、より確実に強度を向上することができる。 In the case of the above embodiment, the case where the ratio (L / D) of the length L in the length direction and the distance D in the length direction of the through hole 34 is generally constant has been described, but the present invention describes this. However, the ratio may be changed. In the metal leaf 59 shown in FIG. 14, a first through-hole row in which through-holes 34 formed so as to have a ratio (L / D) of 1.0 or less are arranged in a row with the length directions of the through-holes 34 aligned. 60 and a second through-hole row 64 in which the through-holes 62 are arranged in a row with the length directions of the through-holes 62 aligned so that the ratio (L / D) is smaller than that of the first through-hole row 60. The first through hole row 60 and the second through hole row 64 are alternately arranged in the width direction of the through holes 34 and 62. Since the current collector according to this modification is formed so that the ratio (L / D) is 1.0 or less, the same effect as that of the above embodiment can be obtained. Further, by cutting out the metal foil 59 into a predetermined shape, the obtained current collector has through holes 34 and 62, so that the adhesion of the mixture layer can be obtained, and the resistance of the lithium ion secondary battery is increased as a whole. It can be suppressed, and by including the second through-hole row 64, the strength can be improved more reliably.

蓄電デバイスとしてリチウムイオン二次電池に適用した場合について説明したが、本発明はこれに限らず、リチウムイオンキャパシタ、電気二重層キャパシタあるいは全固体電池などに適用することができる。 The case where the battery is applied to a lithium ion secondary battery as a power storage device has been described, but the present invention is not limited to this, and the present invention can be applied to a lithium ion capacitor, an electric double layer capacitor, an all-solid-state battery, or the like.

金属箔41の材料は、用途に合わせて適宜選択することができ、例えば、ニッケル又はニッケル合金、銀又は銀合金を用いてもよい。 The material of the metal foil 41 can be appropriately selected according to the intended use, and for example, nickel or nickel alloy, silver or silver alloy may be used.

10 リチウムイオン二次電池(蓄電デバイス)
18 正極集電体(集電体)
22 負極集電体(集電体)
26 正極電流端子(電流端子)
28 負極電流端子(電流端子)
34 貫通孔
34A 開口部
34B 長辺部
34C 短辺部
35 バリ
10 Lithium-ion secondary battery (power storage device)
18 Positive electrode current collector (current collector)
22 Negative electrode current collector (current collector)
26 Positive current terminal (current terminal)
28 Negative current terminal (current terminal)
34 Through hole 34A Opening 34B Long side 34C Short side 35 Bali

Claims (3)

箔状の集電体と、前記集電体の一辺に接続された電流端子とを備え、
スリット状の複数の貫通孔が、前記集電体に形成されており、
前記貫通孔は、長さ方向の長さ(L)と、前記貫通孔の長さ方向に隣接する貫通孔同士の間隔(D)の比(L/D)が1.0以下であり、
前記貫通孔が長さ方向をそろえて一列に並んだ第1貫通孔列と、前記第1貫通孔列より前記比(L/D)が小さい第2貫通孔列とを有し、前記第1貫通孔列と前記第2貫通孔列が、前記貫通孔の幅方向に交互に配置されており、
前記貫通孔は、前記貫通孔の長さ方向に平行な一対の長辺部と、前記一対の長辺部の両端側に先窄まり状に形成された短辺部とからなり、かつ、前記貫通孔の開口部の全周において、前記集電体の裏面側に突出したバリを有する
ことを特徴とする蓄電デバイス。
It is provided with a foil-shaped current collector and a current terminal connected to one side of the current collector.
A plurality of slit-shaped through holes are formed in the current collector.
The through hole has a ratio (L / D) of 1.0 or less between the length (L) in the length direction and the distance (D) between the through holes adjacent to each other in the length direction of the through hole .
It has a first through-hole row in which the through-holes are arranged in a row in the same length direction, and a second through-hole row in which the ratio (L / D) is smaller than that of the first through-hole row. The through-hole rows and the second through-hole rows are alternately arranged in the width direction of the through-holes.
The through hole is composed of a pair of long side portions parallel to the length direction of the through hole and short side portions formed in a constricted shape on both end sides of the pair of long side portions. It has burrs protruding on the back surface side of the current collector on the entire circumference of the opening of the through hole.
A power storage device characterized by that.
前記間隔(D)が0.5mm以上であることを特徴とする請求項1記載の蓄電デバイス。 The power storage device according to claim 1 , wherein the interval (D) is 0.5 mm or more. 前記貫通孔は、幅方向の長さWが1~500μm、前記長さ方向の長さLが10~5000μmであることを特徴とする請求項1又は2記載の蓄電デバイス。 The power storage device according to claim 1 or 2 , wherein the through hole has a length W in the width direction of 1 to 500 μm and a length L in the length direction of 10 to 5000 μm.
JP2017235010A 2017-12-07 2017-12-07 Power storage device Active JP7015977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017235010A JP7015977B2 (en) 2017-12-07 2017-12-07 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017235010A JP7015977B2 (en) 2017-12-07 2017-12-07 Power storage device

Publications (2)

Publication Number Publication Date
JP2019102379A JP2019102379A (en) 2019-06-24
JP7015977B2 true JP7015977B2 (en) 2022-02-04

Family

ID=66977062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017235010A Active JP7015977B2 (en) 2017-12-07 2017-12-07 Power storage device

Country Status (1)

Country Link
JP (1) JP7015977B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001222978A (en) 2001-01-12 2001-08-17 Mitsubishi Electric Corp Flat light source and its manufacturing method
JP2001236945A (en) 2000-02-21 2001-08-31 Furukawa Electric Co Ltd:The Lithium battery electrode, its manufacturing method, and battery using the same
WO2008026358A1 (en) 2006-08-29 2008-03-06 Panasonic Corporation Electrode for nonaqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
JP2010080294A (en) 2008-09-26 2010-04-08 Panasonic Corp Secondary battery
US20120290022A1 (en) 2011-05-10 2012-11-15 Boston Scientific Neuromodulation Corporation Implantable Medical Device Having an MRI Safe Rechargeable Battery
WO2015107893A1 (en) 2014-01-15 2015-07-23 パナソニックIpマネジメント株式会社 Electrochemical element and method for manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101850180B1 (en) * 2015-01-20 2018-04-18 주식회사 엘지화학 Secondary Battery Comprising Current Collector with Through Hole

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236945A (en) 2000-02-21 2001-08-31 Furukawa Electric Co Ltd:The Lithium battery electrode, its manufacturing method, and battery using the same
JP2001222978A (en) 2001-01-12 2001-08-17 Mitsubishi Electric Corp Flat light source and its manufacturing method
WO2008026358A1 (en) 2006-08-29 2008-03-06 Panasonic Corporation Electrode for nonaqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
JP2010080294A (en) 2008-09-26 2010-04-08 Panasonic Corp Secondary battery
US20120290022A1 (en) 2011-05-10 2012-11-15 Boston Scientific Neuromodulation Corporation Implantable Medical Device Having an MRI Safe Rechargeable Battery
WO2015107893A1 (en) 2014-01-15 2015-07-23 パナソニックIpマネジメント株式会社 Electrochemical element and method for manufacturing same

Also Published As

Publication number Publication date
JP2019102379A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP4347759B2 (en) Electrode manufacturing method
JP6038803B2 (en) Battery with spiral electrode body and method for manufacturing the same
KR102499324B1 (en) Rolling Device for Secondary Battery
JP6128282B2 (en) Storage device manufacturing method and electrode manufacturing method
JP4402134B2 (en) Multilayer secondary battery and manufacturing method thereof
US11196031B2 (en) Electrode, method for manufacturing the electrode, and roller for manufacturing the electrode
JP5183691B2 (en) Winding device manufacturing equipment
WO2015107893A1 (en) Electrochemical element and method for manufacturing same
JP2014179217A (en) Method for manufacturing secondary battery, and secondary battery
KR101917661B1 (en) Semi-automatic method for manufacturing an electrochemical Li-ion battery
CN101369647B (en) Non aqueous electrolyte secondary batteries
CN216084939U (en) Pole piece strip material, pole piece monomer and battery
JP2005190787A (en) Electrode plate for nonaqueous electrolyte secondary battery and its manufacturing method
JP6045286B2 (en) Cylindrical energy storage device
KR102028167B1 (en) Secondary battery and manufacturing method using the same
JP7015977B2 (en) Power storage device
JP6351050B1 (en) Perforated metal foil for power storage device current collector, manufacturing method thereof, electrode, and battery including the electrode
JP2001126708A (en) Method of manufacturing nonaqueous electrolyte battery
JP2018026334A (en) Electrode of power storage device, manufacturing apparatus of electrode and manufacturing method of electrode
JP6809139B2 (en) Electrode manufacturing equipment
JP2003068287A (en) Cutting device for battery electrode
JP2006196218A (en) Manufacturing apparatus and method of electrode of secondary battery
CN112133877B (en) Pole piece, winding type battery and coating method of pole piece
JP2019067491A (en) Power storage device
JP2017059458A (en) Method of manufacturing lithium ion secondary battery and electrode structure for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122